Offline Optical Character Recognition for Urdu Script

Ayesha Rafiq Enrollment# 01-244121-002

SUPERVISED BY

Dr. Shehzad Khalid

A thesis is partial fulfillment of requirements for degree of MS (Software Engineering)

Copyright© 2015. By Ayesha Rafiq
All rights reserved

DECLARATION

The substance of this report is the original work of the author and due references and acknowledgements have been made, where necessary, to the work of others. No part of this thesis has been already accepted for any degree, and it is not being currently submitted in candidature of any degree.

FINAL RESEARCH THESIS MS (Software Engineering)

"Offline Optical Character Recognition for Urdu Script"

SUBMITTED BY

Ayesha Rafiq 01-244121-002 MS (Software Engineering)

SUPERVISED BY

Dr. Shehzad Khalid

Department of Computer and Software Engineering

Bahria University
ISLAMABAD

Session 2012 -2014

Acknowledgement

Countless thank to Almighty Allah, Lord of the Lords, Creator of the Universe, Worthy of all Praise, who guides in the darkness and helps in difficulties. All respects for his last Holy Prophet Hazrat Muhammad (المنافة), who enabled me to recognize my creator.

I owe my deepest gratitude to my supervisor Engr. Dr. Shehzad Khalid, Head of Department of Computer Engineering. Despite his hectic schedule as Head of Department, he is always available for his invaluable guidance, moral support, healthy criticism and strong motivation. He has set a role model as a teacher who cares and loves his students as if they were his own kids. Thanks Engr. Dr. Shehzad Khalid.

I also want to thank my co-supervisor, Dr. Imran Ahmed Siddqui for his supportive behavior at every step of my research work.

My sincere gratitude to Dr. Shazia Noreen and Khadija Noureen, who provided encouragement, good company, and lots of good ideas. I would have been lost without them.

I am grateful to my friends Sadia Maqbool, Sunia Hassan, Nadia Hanif, Kurram Shehzad and Mazhar Iqbal Rana for all the good time we spent together and for their continued moral support thereafter. I am indebted to my family for their unflagging love and support throughout my life; this dissertation is simply impossible without them. This dissertation would not have been possible without support of Atiq Ahmad, Iftikhar Ali, Babur Shafiq and Asim Qazi who accompanied me in distant traveling.

<u>DEDICATION</u>

This dissertation is dedicated to

my parents...

Abstract:

Development of OCR system for Urdu language has been much challenging task for Urdu researchers for last few years. Intensive complex behavior of Urdu language system is one of prime reason. Urdu images are difficult to understand or manipulate properly unlike English. Retrieving text, sorting out diacritics, and more other functionalities are almost becomes impossible, until or unless they do not have satisfactory domain knowledge of the concerned field. In view of research limitations, proposed work in existing area, presents segmentation free approach using ligature base recognition for various fonts size and different writing style of Urdu. Binary image of Urdu text separates into individual lines. By using connected component labeling on segmented lines extracted ligature along with diacritics. After extraction of ligatures and diacritics, diacritics connected with their respective ligature and then these associated ligatures consider as basic recognition unit. Total 2017 clusters are used in our research; half of them serve as training data and remaining treated as test data. Discrete Fourier Transform (DFT) extracted feature vectors for data set. K-Nearest Neighbor was used to find closest node to query ligature. Our Propose system handled five type of diacritics i.e. different number and position of dots, hamza(ϵ), toay($\stackrel{\bot}{\rightarrow}$), diacritics connected with haey($\stackrel{\bot}{\rightarrow}$) and gaaf($\stackrel{\checkmark}{}$). The proposed system evaluated on 70595 most commonly used ligatures of Urdu script and found system is able to recognize Urdu ligature with accuracy rate 98.6%.

Table of Contents

1 Introduction	9
1.1 Character Recognition	9
1.2 Optical Character Recognition	10
1.2.1 Online Character Recognition	10
1.2.2 Offline Character Recognition	11
1.3 Application of OCR	11
1.4 Techniques for Urdu OCR	12
1.4.1 Segmentation-Based Approach	12
1.4.2 Segmentation-Free Approach	12
1.5 Thesis Contribution	13
1.6 Objectives of the Thesis	13
1.7 Thesis Outline	14
2 Literature Review	15
2.1 Converting Documents	15
2.2 Perform Online Search	15
2.3 Image Acquisition	16
2.4 Pre-Processing	16
2.4.1 Binarization	17
2.4.2 Thinning	17
2.4.3 Noise Removal	18
2.4.4 Smoothing	19
2.4.5 Unit Isolation	20
2.5 Segmentation	20
2.6 Feature Extraction	21
2.7 Classification	22
2.8 Related Work in Urdu OCR	23
2.9 Comparison of Related Work With Urdu OCR	25
3 Complexities of Urdu Script Writing	28
3.1 Urdu Character Set	28
3.2 Characteristics of Urdu Script	29
3.3 Large Number of Diacritics	30
3.4 Cursiveness	30

3.5 Context Sensitive	31
3.6 Bi-directional	32
3.7 Positioning and Spacing	33
3.8 Overlapping	34
3.8.1 Intra Ligature Overlapping	35
3.8.2 Inter Ligature Overlapping	35
3.9 Uneven Stoke Width	35
3.10 Complex Dot Position Rule	36
4 Proposed Methodology	37
4.1 Binarization	38
4.2 Segmentation of Image into Lines	38
4.3 Segmentation of Line into Ligatures and Diacritics	39
4.4 Associate Diacritics with Respective Ligature	40
4.5 Ligature Recognition	41
5 Experiments and Results	45
5.1 Dataset	45
5.2 Performance of Identification of Ligatures and Diacritics	46
5.3 Performance Associate Diacritic with Respective Ligature	46
5.4 Performance of Recognition	47
75.5 Competitor Analysis	48
6 Conclusion and Future Work	50
6.1 Conclusion	50
6.2 Future Work	50
References	52

List of Figures

Figure 1.1: Classification of Optical Character Recognition
Figure 2.1: Binarization Process ^[10]
Figure 2.2: (a) Original Text; (b) Text after skeletonization
Figure 2.3: (a) Skewed Document (b) De-Skewed Document
Figure 2.4: Segmentation of Urdu text into lines using Horizontal Projection21
Figure 3.1: Bi-directional Text
Figure 3.2: Word, Ligature and Isolated Characters
Figure 3.3: Context Sensitivity; Three different shapes of bey-initial32
Figure 3.4: Bi-directional movement
Figure 3.5: Bi-directional writing
Figure 3.6: Positioning and Spacing
Figure 3.7: Character Overlapping
Figure 3.8: Intra Ligature Overlapping
Figure 3.9: Inter Ligature Overlapping
Figure 4.1: Block Diagram of Proposed Method
Figure 4.2: Connected component b) represent ligatures c) highlight diacritics39
Figure 4.3: Associated diacritics with their respective ligature
Figure 4.4: Connected Ligature
Figure 4.5: 1-D time series ligature representation
Figure 5.1: Example of Diacritics
Figure 5.2: Some Ligatures without Diacritics

List of Tables

Table 2.1: Comparison of Previous Research Work	25
Table 3.1: Shapes of Urdu Script	28
Table 3.2: Diacritics Type and Positioning	30
Table 5.1: Extracted of Diacritics and Ligatures	46
Table 5.2: Comparison of Proposed Work with Exiting Research Work	48

List of Abbreviation

CR Character Recognition

OCR Optical Character Recognition

AI Artificial Intelligence

DCT Distinct cosine Convert

UOCR Urdu Optical Character Recognition

DFT Discrete Fourier Transform