PETROPHYSICAL AND FACIES ANALYSIS OF DHODAK OIL FIELD, EASTERN SULAIMAN FOLD AND THRUST BELT, PAKISTAN, BY USING WIRELINE LOGS OF SELECTED WELLS

By

SHOUKET ALI

Department of Earth and Environmental Sciences, Bahria University, Islamabad

2013

ABSTRACT

Dhodak field is located in the in the Dera Ghazi Khan district, Punjab province and geologically it is the western boundary of middle Indus basin and lies eastern side of Sulaiman range. Middle Indus basin is separated from upper Indus basin by Sargodha high in the north and by Indian shield in the east, marginal zone of Indian plate in the west, and Mari-Kandhkot high in the south. Structurally, it is divided into Punjab Platform in the east and Sulaiman fold belt in the west. The Sulaiman lobe is a broad and gentle fold and thrust belt that is still tectonically active and it is a product of oblique collision between the Indian and Eurasian Plates during Paleocene to Pliocene time. The prime objective of this research work is to evaluate hydrocarbon potential by interpreting wire line logs of study wells with the help of Petrophysical parameters and facies analysis of study wells. To establish the reservoir for study wells, the petrophysical evaluation was done at minute scale manually and with the help of Geographix software. In Dhodak-01, Pab Sandstone (Upper Cretaceous) has two pay zones having thickness 5 m and 12 m where as saturation of hydrocarbons from 82% to 87% respectively. In Dhodak-03, both Pab Sandstone and Upper Ranikot Formation are producing hydrocarbons. The thickness of pay zone in Pab Sandstone is 16 m having saturation of hydrocarbons is 56.8% where as 17 m thickness of pay zone in Upper Ranikot Formation with 54% saturation of hydrocarbons. In Dhodak-05 Pab Sandstone and Lower Ranikot Formation are producing hydrocarbons. Pab Sandstone has two pay zones, thickness 34 m and 36 m with 60% to 70% saturation of hydrocarbons respectively whereas in Lower Ranikot Formation also has two pay zones, thickness 20 m and 30 m with 67% to 72% saturation of hydrocarbons respectively. The top Cretaceous regressive sequence (Pab Sandstone) and lower Paleocene transgressive deposits (Ranikot Formation) are pay zones in the study wells on the basis of petrophysical parameters.

ACKNOWLEDGMENTS

I am grateful to my supervisors Dr. Muhammad Mujtaba, former Chief Geologist Hydrocarbon Development Institute of Pakistan (HDIP), Islamabad and Ms. Mehwish Nadeem Butt, former Lecturer, Bahria University, Islamabad, for their kind supervision, valuable and expert guidance, inspiration, endless support and encouragement during this research work to success. I am thankful to Prof. Dr. Muhammad Zafar and Prof. Dr. Tahseenullah Khan, Department of Earth and Environmental Sciences, Bahria University, Islamabad, for their guidance, resources provided and critically reviewing this research work.

I would like to pay special thanks to Mr. Tariq Mahmood, Geologist, Oil and Gas Development Company Limited (OGDCL), and Mr. Shaukat Ali, Senior Petrophysicist, Schlumberger Pakistan, for providing me technical support and continued assistance that made this research work possible. I am also grateful to Mr. Abdul Qayyum for his help in understanding the basics of Geographix software.

I am deeply grateful to my parents and wife. They have always been supporting and encouraging me with their best wishes.

CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENTS	ii
CONTENTS	iii
FIGURES	V
TABLES	vii

CHAPTER 1

INTRODUCTION

1.1	Petroleum exploration history	4
1.2	Previous work	5
1.3	Objectives of present study	8
1.4	Available data	9
1.5	Data limitation	9

CHAPTER 2

REGIONAL GEOLOGY

2.1	Tectonic boundaries of study area	12
2.2	Structure style of Sulaiman fold belt	12

CHAPTER 3

STRATIGRAPHY OF SULAIMAN FOLD BELT

3.1	Cretaceous rocks	14
3.1.1	Sembar Formation	15
3.1.2	Goru Formation	15
3.1.3	Parh Limestone	15
3.1.4	Mughal Kot Formation	16
3.1.5	Fort Munro Formation	16
3.1.6	Pab Sandstone	16
3.2	Paleocene rocks	16

3.2.1	Ranikot Group	17
3.2.2	Dungan Formation	17
3.3	Eocene rocks	17
3.3.1	Ghazij Group	17
3.3.2	Kirthar Formation	18
3.3.2.1	Habib Rahi Formation	18
3.3.2.2	Domanda Formation	18
3.3.2.3	Pirkoh Formation	19
3.3.2.4	Drazinda Formation	19
3.4	Oligocen rocks	19
3.4.1	Nari Formation	19
3.5	Stratigraphy of study wells	20
3.6	Petroleum system	21
3.6.1	Source socks	21
3.6.2	Reservoir rocks	21
3.6.3	Seal rocks	21
3.6.4	Traps	22

CHAPTER 4

PETROPHYSICAL INTERPRETATION

4.1	Wireline logging	23
4.2	Methodology	24
4.3	Zone of Interests	26
4.4	Calculation of volume of shale (Vshl)	26
4.5	Calculation of porosity	28
4.5.1	Density porosity	28
4.5.2	Neutron porosity	29
4.5.3	Average neutron density porosity	29

4.5.4	Effective porosity	29
4.6	Saturation of formation	30
4.6.1	Saturation of water	31
4.6.2	Formation water resistivity	31
4.6.3	Saturation of hydrocarbons	32
4.7	Petrophysical interpretations of study wells	33
4.7.1	Interpretation of Dhodak-01	33
4.7.2	Interpretation of Dhodak-03	36
4.7.3	Interpretation of Dhodak-05	39
4.7.4	Interpretation of Dhodak-07	45

CHAPTER 5

WELL LOGS FACIES

5.1	Importance of wire line logs	47
5.2	Well logs geological uncertainties	49
5.3	Gamma ray and log motif relationship	49
5.3.1	Cylindrical shape	50
5.3.2	Serrated shape	51
5.3.3	Bell shape	51
5.3.4	Funnel shape	51
5.4	Interpreted facies of Dhodak area	54
5.5	Litho-stratigraphic and sequence stratigraphic correlation concepts	55
5.5.1	Cretaceous sequence	59
5.5.2	Paleocene and Eocene sequence	60
CONCLUSIONS		61
REFERENCES		62

FIGURES

Figure 1.1.	Geographical location of Dhodak field.	01
Figure 1.2.	Google earth view of study area.	02
Figure 1.3.	Location map of study area and its surrounding wells in the Sulaiman	
	fold belt.	03
Figure 2.1.	Structural elements of Pakistan.	11
Figure 3.1.	Generalized stratigraphic succession of Sulaiman sub basin.	14
Figure 4.1.	Well log curves present in Dhodak - 01 and Dhodak - 03.	23
Figure 4.2.	Work flow chart used for petrophysical interpretation study wells.	25
Figure 4.3.	Interpreted volume of shale from GR log curve in Dhodak - 01 and Dhodak - 03.	27
Figure 4.4.	Interpreted volume of shale from GR log curve in Dhodak - 05 and	
	Dhodak - 07.	28
Figure 4.5.	Pickett plot to determine Rw in study wells.	32
Figure 4.6.	Reservoir zones of Pab Sandstone in Dhodak - 01.	34
Figure 4.7.	Reservoir zone - B and zone - C of Pab Sandstone in Dhodak - 01.	35
Figure 4.8.	Reservoir zone of Upper Ranikot Formation in Dhodak - 03.	37
Figure 4.9.	Particular reservoir zone-A of Pab Sandstone in Dhodak - 03.	37
Figure 4.10.	Reservoir zone of Pab Sandstone in Dhodak - 03.	38
Figure 4.11.	Particular reservoir zone - B of Pab Sandstone in Dhodak - 03.	39
Figure 4.12.	Reservoir zones of Lower Ranikot Formation in Dhodak - 05, zone -	
	A-1and zone - A-2.	40
Figure 4.13.	Particular Reservoir zone-A-1 of Lower Ranikot Formation in Dhodak	
	- 05.	41
Figure 4.14.	Particular reservoir zone - A-2 of Lower Ranikot Formation in	
	Dhodak - 05.	42
Figure 4.15.	Reservoir zones of Pab Sandstone in Dhodak - 05.	43
Figure 4.16.	Particular reservoir zone - B of Pab Sandstone in Dhodak - 05.	43
Figure 4.17.	Particular reservoir zone - C of Pab Sandstone in Dhodak-05.	44
Figure 5.1.	Types of well logs and their use for geological interpretations.	48
Figure 5.2.	Log shapes, their nomenclatures, environments of deposition.	50
Figure 5.3.	Funnel and Bell shapes with change of GR log in Dhodak - 01.	52
Figure 5.4.	Hour glass and Agradation with change of GR log in Dhodak - 03.	52

- Figure 5.5. Funnel and Bell shapes with relative change of GR log in Dhodak 53 05.
- Figure 5.6. Funnel and Bell shapes with relative change of GR log in Dhodak 53 07.

Figure 5.7.	Facies and cycles marked in the study wells.	58

Figure 5.8. Lithofacies correlation of study wells using well tops. 59

TABLES

Table 1.1.	Summarized exploration history of Sulaiman fold belt.	05
Table 3.1.	Stratigraphic rocks encountered in study wells.	20
Table 4.1.	Different log suits run in the study wells.	24
Table 4.2.	Zones of interest in study wells selected for interpretation.	26
Table 4.3.	Common porosity standards used for petrophysical interpretation.	30
Table 4.4.	Effective porosity (PHIE), saturation of water (Sw) and saturation	35
	of hydrocarbon (Shc) of zone - B in Dhodak - 01.	
Table 4.5.	Effective porosity (PHIE), saturation of water (Sw) and saturation	36
	of hydrocarbon (Shc) of zone - C in Dhodak - 01.	
Table 4.6.	Effective porosity (PHIE), saturation of water (Sw) and saturation	38
	of hydrocarbon (Shc) of zone - A in Dhodak - 03.	
Table 4.7.	Effective porosity (PHIE), saturation of water (Sw) and saturation	39
	of hydrocarbon (Shc) of zone - B, in Dhodak - 03.	
Table 4.8.	Effective porosity (PHIE), saturation of water (Sw) and saturation	41
	of hydrocarbon (Shc) in Dhodak - 05.	
Table 4.9.	Effective porosity (PHIE), saturation of water (Sw) and saturation	42
	of hydrocarbon (Shc) in Dhodak - 05.	
Table 4.10.	Effective porosity (PHIE), saturation of water (Sw) and saturation	44
	of hydrocarbon (Shc) in Dhodak - 05.	
Table 4.11.	Effective porosity (PHIE), saturation of water (Sw) and saturation	45
	of hydrocarbon (Shc) in Dhodak - 05.	
Table 4.12.	Effective porosity (PHIE), saturation of water (Sw) and saturation	46
	of hydrocarbon (Shc) in study wells.	
Table 5.1.	Facies and cycles marked in Dhodak - 01.	55
Table 5.2.	Facies and cycles marked in Dhodak - 03.	56
Table 5.3.	Facies and cycles marked in Dhodak - 05.	56
Table 5.4.	Facies and cycles marked in Dhodak - 07 well.	57