SEQUENCE STRATIGRAPHY AND PETROPHYSICAL ANALYSIS OF SAWAN GAS FIELD, CENTRAL INDUS BASIN, PAKISTAN

By

MUHAMMAD WAQAS

Department of Earth and Environmental Sciences Bahria University, Islamabad

2014

CERTIFICATE OF ORIGINALITY

This is to certify that the intellectual contents of the thesis

Sequence Stratigraphy and Petrophysical analysis of Sawan Gas Field, Central Indus Basin, Pakistan.

are the product of my own research work except, as cited properly and accurately in the acknowledgements and references, the material taken from such sources as research papers, research journals, books, internet, etc. solely to support, elaborate, compare and extend the earlier work. Further this work has not been submitted by me previously for any degree, nor shall it be submitted by me in future for obtaining any degree from this University, or any other university or institution. The incorrectness of this information, if proved at any stage, shall authorize the University to cancel my degree.

Signature:	Date:

Name of the Research Candidate: Muhammad Waqas

ABSTRACT

The objectives of the study are to reconstruct sequence stratigraphic framework and petrophysical analysis of the reservoir marked by using sequence stratigraphy of Sawan gas Field. The study area lies in Central Indus Basin, District Khairpur, Sindh province, Pakistan. The study area lies tectonically in extensional regime. Lower Goru Formation and Sembar Formation act as a reservoir and source respectively. To achieve objectives, data set of seismic lines, consisting of seismic lines PSM96-114, PSM96-115, PSM96-133, PSM98-201, PSM98-202 and well logs of Sawan-01, Sawan-02 and Gajwaro-01 has been used. First of all interpretation of seismic lines has been carried out. Interpretation of seismic lines shows extensional regime in the area and cut entire Cretaceous section. Total of seven reflectors have been marked on each seismic line. Lower Goru Formation is thinning towards west. Seismic lines also show eastward tilt of stratigraphy due to uplift at western side. Sequence stratigraphic reconstruction has been done by integrating seismic and wireline log data. Total of seven sequence boundaries have been interpreted between top of Chiltan Limestone to Top of Lower Goru Formation. It has been observed on seismic lines that Sembar Formation initially generated shelf margin profile and then ramp margin on which Lower Goru deposition took place. Shelf edge deltas and slope fans have been observed on seismic lines and signatures of slope fans are also observed on wireline logs as well. Total of six sequences has been interpreted. Stratigraphic and sequence stratigraphic correlation has been carried out by using Sawan 01, Sawan 02 and Gajwaro 01 and a Low Stand Systems tract (LST) within Lower Goru C sands has been marked as a zone of interest. The petrophysical interpretation includes shale volume, effective porosity, permeability, saturation of water and hydrocarbon. On the basis of good effective porosity and hydrocarbon saturation petrophysical analysis confirms that the LST in Sawan-01 and Sawan-02 has good hydrocarbon potential.

ACKNOWLEDGEMENT

I would like to dedicate this research project to my parents, my uncle Raja Mumtaz Ali Satti (Ex. Deputy Director, CDA), my teachers and all those friends who have kept me motivated and supported me throughout my MS Program. I thank them for being the source of constant encouragement which has given me the strength to undertake this very task in the first place. This thesis would not have been possible without the encouragement and generosity of number of people including my teachers, supervisors, colleagues and family members.

My special thanks to Dr. Muhammad Zafar (Head of Department, Earth and Environmental Sciences, Bahria University, Islamabad) for their unending support and perpetual guidance which provided me inspiration needed throughout my study at this department. He really provided me all the opportunities throughout all the semesters.

First of all, I would like to pay my special gratitude to my supervisor Mr. Saqib Mehmood, Assistant Professor, for his encouragement, guidance, criticism and intellectual advice throughout my research work.

I would like to acknowledge my friend, Mr. Syed Mamoon (Assistant Geologist, Saif Energy), Mr. Fahad Mehmood (Lecturer) and Tariq Mehmood (Assistant Geologist, OGDCL) as this work would have not been completed without their thoughts provoking ideas, and guidance.

I would like to express my deepest gratitude to my parents, brothers and sisters and all those people who have cooperated with me directly or indirectly specially Dr. Tehseenullah Khan Bangash for creation of interest in geology, presentation skills and technical writing.

My sincere appreciation and thanks for my friends, Adil Nawaz, Kamran Zia (Reservoir Geologist OMV), Muhammad Aftab, Shafkat, Ali Imtiaz (Geoscientist, LMKR), Sheheryar Khan, Muhammad Zubair Idrees, Nadeem Ahmed Usmani (Assistant Director, GSP), Sohaib Iqbal (Assistant Director, GSP) and all of my class fellows for their encouragement, moral and technical support, company and interest in seeing this research complete.

CONTENTS

	Page
ABSTRACT	i
ACKNOWLEDEGMENTS	ii
FIGURES	vii
TABLES	ix

CHAPTER 1

INTRODUCTION

1.1	Exploration history of Central Indus Basin	1
1.2	Objectives	3
1.3	Data and facilities	4
1.4	Methodology	4

CHAPTER 2

GEOLOGY AND TECTONICS

2.1 Regional tectonics	5
2.1.1 Tectonic setting of study area	8
2.1.2 Hydrocarbon prospecting and tectonics in the study area	10
2.2 Previous work	12
2.3 General stratigraphy of Central Indus Basin	14
2.4 Stratigraphy of the study area	15
2.4.1 Cretaceous Stratigraphy	15
2.4.1.1 Sembar Formation	
2.4.1.2 Goru Formation	15
2.4.2 Tertiary stratigraphy	16
2.4.2.1 Paleocene	16
2.4.2.1.1Ranikot Formation	16
2.4.2.2 Eocene	
2.4.2.2.1Sui Main Limestone	

2.4.2.2.Ghazij Formation	16
2.4.2.3Habib Rahi Formation	17
2.4.2.2.4Sirki Formation	17
2.4.2.2.5Pirkoh Formation	17
2.4.2.2.6Drazinda Formation	17
2.4.3 Neogene and Quaternary stratigraphy	17

CHAPTER 3

FORMATION EVALUATION

3.1	Introduction	19
3.2	Methodology	19
3.2.1	Marking potential zones of interest	21
3.2.2	Calculation of volume of shale (Vsh)	21
3.2.3	Porosity calculation	21
3.2.3.1	Sonic porosity	21
3.2.3.2	Neutron porosity	22
3.2.3.3	Density porosity	22
3.2.3.4	Neutron-Density log combination (average porosity)	23
3.2.3.5	Effective porosity	23
3.2.4	Saturation of formation	23
3.2.4.1	Water saturation	24
3.2.4.2	Determination of Rw	25
3.2.4.3	Hydrocarbon saturation	25
3.2.5	Net pay	25
3.2.6	Movability of hydrocarbons	26
3.3	Petrophysical interpretation	26
3.3.1	Interpretation of Sawan 01	26
3.3.2	Interpretation of Sawan 02	29
3.4	Results	30

CHAPTER 4

SEISMIC INTERPRETATION

4.1	Introduction	31
4.1.1	Structural analysis	31
4.1.2	Stratigraphic analysis (seismic stratigraphy)	31
4.2	Seismic interpretation steps	32
4.3	Interpretation of the study area	32
4.3.1	Base map of the study area	33
4.3.2	Synthetic seismogram	33
4.4	Interpretation of seismic lines	35
4.4.1	PSM98-202	35
4.4.2	PSM98-114	35
4.4.3	PSM98-133	36
4.4.4	PSM98-201	37
4.4.5	PSM96-115	37
4.5	Two way time contour maps	38
4.5.1	Two way time contour map of Chiltan	38
4.5.2	Two way time contour map of B-Interval	39
4.5.3	Two way time contour map of C-Interval	40
4.5.4	Two way time contour map of Lower Goru	41
4.5.5	Two way time contour map of Upper Goru	42
4.5.6	Two way time contour map of Ranikot	43
4.5.7	Two way time contour map of Sui Main Limestone	44
4.6	Results	45

CHAPTER 5

SEQUENCE STRATIGRAPHY

5.1	Introduction	46
5.2	Sequence	46
5.3	Accommodation space	46
5.3.1	Base level	46

5.3	Sediment supply	47
5.4	Stacking patterns	47
5.5	Systems tracts	48
5.5.1	Lowstand Systems Tract (LST)	49
5.5.2	Transgressive Systems Tract (TST)	49
5.5.3	Highstand Systems Tract (HST)	49
5.5.4	Falling Stage Systems Tract (FSST)	49
5.6	Methodology	51
5.6.1	Tectonic setting (type of sedimentary basin)	51
5.6.2	Paleodepositional environments	52
5.6.3	Sequence stratigraphic framework	52
5.7	Interpretation of the study area	53
5.7.1	Sequence stratigraphic interpretation of Sawan-01	57
5.7.2	Sequence stratigraphic interpretation of Sawan-02	62
5.7.3	Sequence stratigraphic interpretation of Gajwaro-01	65
5.7.1	Stratigraphic and sequence stratigraphic correlation	71
5.8	Results	73
CON	CLUSIONS	75
RECO	OMMENDATIONS	76
REFERENCES		77

FIGURES

F : 1 1		2
Figure 1.1.	Location of the study area	2
Figure 1.2.	A short history of petroleum discoveries in Pakistan	3
Figure 1.3.	A flow chart of methodology adopted	4
Figure 2.1.	Regional tectonic setting	6
Figure 2.2.	Tectonic and sedimentary basin map of Pakistan	8
Figure 2.3.	Basin configuration of study area	11
Figure 2.4.	Tectonic setting of the study area	11
Figure 3.1.	Work flow of petrophysical analysis	20
Figure 3.2.	Log curves response in Sawan-01	27
Figure 3.3.	Log curves response in Sawan-02	29
Figure 4.1.	Relation of reflections within a sequence	32
Figure 4.2.	Base map the study area	33
Figure 4.3.	Synthetic seismogram of Sawan-01	34
Figure 4.4.	Control line PSM 98-202	34
Figure 4.5.	NE-SW seismic line (strike line) (PSM 98-202)	35
Figure 4.6.	NNE-SSW seismic line (strike line) (PSM98-114)	36
Figure 4.7.	EW seismic line (dip line) (PSM98-133)	36
Figure 4.8.	EW seismic line (dip line) (PSM98-201)	37
Figure 4.9.	EW seismic line (dip line) (PSM96-115)	38
Figure 4.10.	Two way time contour map of Chiltan limestone	39
Figure 4.11.	Two way time contour map of B-Interval	40
Figure 4.12.	Two way time contour map of C-Intrval	41
Figure 4.13.	Two way time contour map of Lower Goru	42
Figure 4.14.	Two way time contour map of Upper Goru	43
Figure 4.15.	Two way time contour map of Ranikot formation	44
Figure 4.16.	Two way time contour map of Sui Main Limestone	45
Figure 5.1.	The various factors and combinations for sequence development	47
Figure 5.2.	Modified from Galloway (1989) and from Emery and Myers (1996	5) 48
Figure 5.3.	Scheme of systems tracts adopted	50
Figure 5.4.	Stratal terminations	51

Figure 5.5.	Basin evolution and depositional environment of CIB	53
Figure 5.6.	Sequence stratigraphic interpretation on PSM 98-133	54
Figure 5.7.	Sequence stratigraphic interpretation on PSM 98-201	54
Figure 5.8.	Seismic reflection terminations for systems tracts	55
Figure 5.9.	Sequence stratigraphic interpretation on PSM 96-114	56
Figure 5.10.	Characteristic well log responses for HST, LST and TST	57
Figure 5.11.	Sequence stratigraphic interpretation on Sawan-01 (3494-3088 m)	60
Figure 5.12.	Sequence stratigraphic interpretation on Sawan-01(3088-2696 m)	61
Figure 5.13.	Sequence stratigraphic interpretation on Sawan-02 (3444-3010 m)	64
Figure 5.14.	Sequence stratigraphic interpretation on Sawan-02 (3010-2683 m)	65
Figure 5.15.	Characteristics well log response for slope fan complex	66
Figure 5.16.	Characteristics well log response for slope fan complex	66
Figure 5.17.	Sequence stratigraphic interpretation on Gajwaro-01 (3958-3122 m)) 69
Figure 5.18.	Sequence stratigraphic interpretation on Gajwaro-01 (3122-2500 m)) 70
Figure 5.19.	Stratigraphic correlation of Sawan-02, Sawan-01 and Gajwaro-01	71
Figure 5.20.	Sequence stratigraphic correlation of Sawan-02, -01 and Gajwaro-0172	
Figure 5.21.	Sequence stratigraphic pattern of Lower Goru Formation	73

TABLES

Table 2.1. Generalized stratigraphic sequence and petroleum system	14
Table 2.2. Stratigraphic sequence of the study area	18
Table 3.1. Petrophysical results of Sawan 01 after every 5 meters interval	28
Table 3.2. Petrophysical results of Sawan 02 after every 5 meters interval	30