Long Range Signal Amplifier Using Discrete Components

By

 Muhammad Maaz Ahsan
 01-133112-046

 Faheem Akhtar
 01-133112-210

 Muhammad Suleman
 01-133112-054

 Ali Raza
 01-133112-008

Supervised by

Sir Meraj Hasan

{Session-2015}

This Report is submitted to the Department of Electrical Engineering,
Bahria University, Islamabad.

In partial fulfillment of requirement for the degree of BS (EE).

Dedication

We would like to devote this thesis and project to our guardians and to our supervisor "Sir Meraj Hasan" who was dependably there to help and aide us when we required his offer assistance. His insightful reactions kept us attempting to make this project all the more full verification. We are grateful to him for his empowering and important backing. Working under him was a to a great degree proficient and advancing knowledge for us. We are extremely appreciative to him for all the quality expansion and upgrade done to us. No words can satisfactorily express our overriding obligation of appreciation to our guardians whose bolster helps us in the distance. Most importantly we should thank our companions who continually empowered and favored us to empower us to do this project effectively.

Acknowledgements

Most importantly, we would like to thanks Almighty Allah on the consummation of this project and thesis. We are truly delighted to each one of those who have helped and guided us amid this project and made us competent to finish it.

Secondly, we might want to say thanks to our teachers who have helped us out in reaching the objects on the go and we likewise need to gratitude our companions who have helped us out with their thoughts for the chaptalization of this thesis and for helping us out in the process of gathering all research and material for the project and thesis. We would likewise say here name of Mr. Saad who helped us a ton in gathering distinctive components for this project and Muhammad Luqman for helping to testing the antenna through spectrum analyser.

It is additionally an extraordinary delight to record respectable regards to every one of the individuals who helped us alot in learning and upgrading our knowledge and ability during the project especially to our supervisor **Sir Meraj Hasan** who helped us in giving us all the useful information related to our project.

In Last but not the least we would like to thanks our respected communication subject teacher "Sir Umar Mujahid" who had provided a very high-quality opportunity to the students to learn different aspects of researching and gathering knowledge about communication system. Finally we pay special thanks to our families for their cooperation, admiration and prayers at each step.

Abstract

Range of RF system depends upon output power of transmitter, sensitivity of receiver and high gain antennas. Long Range Signal Amplifier transmits message signal at 2.4GHz ISM band and receives at distance of 1km. Yagi-Uda antenna having high gain and characteristic impedance of 50 ohms is designed at both ends. Frequency modulation is carried out by VCO which is then fed to power amplifier having 28dBm output power. Receiver sensitivity depends upon low noise amplifier and demodulation is carried out by PLL method. Message signal is received on oscilloscope by passing it through bandpass filter. This project major application is in communication system, audio/video transmission and defense area.

Table of Contents

Certificate			i	
Dedi	ii			
Ackı	iii			
	iv			
Abstract Table of Contents				
	List of Figures			
List of Tables				
List	or rubics		vii	
1.	Introduction		1	
	1.1	Project background	3	
	1.2	Problem description	4	
	1.3	Project description	5	
	1.4	Project objectives	6	
	1.5	Project scope	6	
2.	Literature	Review	8	
	2.1	Antenna	9	
	2.2	Transmitter	9	
3.	Project imp	plementation strategy	12	
	3.1	Communication system	13	
	3.2	Factors on which range depends	14	
	3.3	Friis range equation	15	
	3.4	Wireless Transmitter	16	
	3.4.1	Message signal	17	
	3.4.2	Carrier signal	18	
	3.4.3	RF Oscillators	19	
	3.4.3.1	Factors affecting oscillator	20	
	3.4.3.2	Types of RF Oscillators	21	
	3.4.3.2.1	The Hartley Oscillator	21	
	3.4.3.2.2	Colpitts Oscillator	22	
	3.4.3.2.3	Crystal Sine Wave Oscillator	23	
	3.4.4	VCO	23	
	3.4.5	Power amplifier	24	
	3.4.5.1	Class A	25	
	3.4.5.2	Class B	25	
	3.4.5.3	Class AB	26	
	3.4.5.4	Class C	27	
	3.4.5.5	Class D	28	
	3.5	Modulation	29	
	3.5.1	what is mod, why is it necessary etc	29	
	3.5.2	types of analog mod techniques	29	
	3.5.2.1	AM	30	
	3.5.2.2	FM	32	
	3.5.3	AM or FM?	33	
	3.5.4	Techniques of generating FM	33	
	3.5.4.1	Direct Method	34	
	3512	Indirect Method	3/1	

	3.6	Receiver	34
	3.6.1	Receiver sensitivity	35
	3.6.2	LNA	36
	3.6.2	Demodulator	36
	3.6.3	Filtering	38
	3.6.3.1	Passive filter	40
	3.7	Antenna	40
	3.7.1	Types of high frequency antenna	41
	3.7.2	Yagi antenna basics	42
4.	Har	dware Design System	44
	4.1	System architecture	45
	4.1.1	Transmitter –unit	45
	4.1.2	Receiver –unit	45
	4.2	Design constraints	46
	4.2.1	Frequency of 2.4 Ghz	46
	4.2.2	Micro strip lines	46
	4.2.3	PCB	47
	4.3	Design methodology	47
	4.4	Transmitter design	49
	4.4.1	Pulse generator	49
	4.4.1.1	Specifications	51
	4.4.1.2	Major Components	51
	4.4.2	VCO	52
	4.4.2.1	Major Components	53
	4.4.3	PA	53
	4.4.4	Impedance matching	54
5.	Simul	ation	56
	5.1	Transmitter simulation	57
	5.1.1	Pulse Generator	57
	5.1.2	Power Amplifier	58
	5.2	Antenna	61
6.	Testin	ng and Evaluation	66
	6.1	limitations of project	67
	6.1	Optimizing project for better result	67
	6.1	Future work	67
7.	Concl	usion	68
	Refere	ences	70
	Apper	ndices	72
	A	Types of Oscillators	73
	A.1	Sinusoidal Oscillators	73
	A.2	Crystal Oscillators	73
	A.3	Non-sinusoidal Oscillators	73
	A.4	Radio Frequency Oscillator	71
	A.5	Frequency Control in Radio Frequency Oscillator	71
	A.5.1	LC Network	71
	A.5.2	Quartz Crystal	75
	A.5.3	Ceramic Resonator	75
	В	Types of Power Amplifier	76
	B.1	Class F Amplifier	76
	B.2	Class G Amplifier	76

B.3	Class I Amplifier	76
B.4	Class S Amplifier	76

List of Figures

Figure 3.1	block diagram of communication system		13
Figure 3.4 (a)	Transmitter		16
Figure 3.4 (b)	Modified Transmitter		16
Figure 3.4.1 (a)	Analog Signal		17
Figure 3.4.1 (b)	Digital Signal		17
Figure 3.4.2	A Carrier Signal & B Signal		19
Figure 3.4.3	Block Diagram of an oscillator		20
Figure 3.4.3.2.1	The Hartley Oscillator	22	
Figure 3.4.3.2.2	Colpitts Oscillator		22
Figure 3.4.3.2.3	Crystal Sine Wave Oscillator		23
Figure 3.4.5.1	Class A amplifier		25
Figure 3.4.5.2	Class B amplifier		26
Figure 3.4.5.3	Class AB Amplifier		27
Figure 3.4.5.5	Class D amplifier		28
Figure 3.4.5.4	Class C amplifier		28
Figure 3.5.3	FM signal		33
Figure 3.6.2	Synchronous Demodulation		37
Figure 3.6.2.1	Phase Locked Loop PLL FM demodulator		37
Figure 3.6.3.1	Passive Filters		39
Figure 3.7	Wifi Antenna Types		40
Figure 3.7.2(a)	Yagi Antenna		42
Figure 3.7.2(b)	Basic concept of Yagi Antenna		43
Figure 3.7.2(c)	Yagi Antenna radiation pattern		43
Figure 4.1.1	Transmitter & receiver unit		45
Figure 4.3(a)	FM modulation using VCO (Direct method)		47
Figure 4.3(b)	General figure of Yagi antenna		48
Figure 4.3(c)	PLL method		48
Figure 4.4.1 (a)	Circuit diagram of pulse generator		49
Figure 4.4.1 (b)	PCB Hardware of Pulse Generator		50
Figure 4.4.1.2(a)	LM324 low power quad operational amplifier		50
Figure 4.4.1.2(b)	Variable resistor		52
Figure 4.4.2	Circuit diagram of 2.4 Ghz VCO		52
Figure 4.4.2.1	Symbol and Electrical connection		53
Figure 4.4.3	Circuit diagram of PA		54
Figure 5.1.1 (a)	simulation of Pulse generator on Multisim		57
Figure 5.1.1 (b)	Pulses results on oscilloscope		57
Figure 5.1.1 (c)	PCB design of Pulse generator		58
Figure 5.1.2(a)	Circuit diagram of PA		58
Figure 5.1.2(b)	PA Simulation on AWR microwave office		59
Figure 5.1.2(c)	Gain Output		60
Figure 5.1.2(d)	Gain Output Matches		60
Figure 5.1.2 (d)	PCB design of PA		61
Figure 5.2(a)	Radiation patteren of Yagi antenna		61
Figure 5.2(b)	VSWR of the antenna		63
Figure 5.2(c)	Antenna in 3 coordinate axes		63
Figure 5.2(c)	Simulation result on antenna analyzer software		64
Figure 5.2(d)	The radiation pattern of antenna in 3-D		64

Figure 5.2(e)	Current distribution on various different elements	65
Figure 5.2(f)	4:1 impedance step down Balun	65
Figure 6.3	Video modulator	67
Figure A.5.1	LC Network	74
Figure A.5.3	Ceramic Resonator	75
Figure A.5.2	Quartz Crystal	75

List of Tables

Table 3.4.5.9Amplifier Class by Conduction Angle 31