PETROPHYSICAL ANALYSIS OF NAIMAT BASAL-01, KHIPRO BLOCK, LOWER INDUS BASIN, PAKISTAN

By

DANIAL AHMED NIZAMI

JAWAD FAROOQ

MUHAMMAD KHYZER JEHANGIRI

Department of Earth and Environmental Sciences Bahria University, Islamabad

2014

ABSTRACT

The main rationale of this study is to evaluate the hydrocarbon potential using well log data of Naimat Basal-01, Khipro block, Lower Indus basin, Pakistan. The well under study lies in Sindh monocline which is bounded in north east by Sukkur rift, in south by Arabian sea, in west by Karachi depression and in northwest by Kirthar depression. Khipro block carries large amounts of oil and gas reserves. The above mentioned well was initially exploratory and gave out enormously large gas condensates. The target horizon has been Lower Goru Formation of Cretaceous age. For evaluating the hydrocarbon potential at reservoir level, three zones/sand packages are identified and are marked through log analysis, two of them are marked below Talhar shale and one above Talhar shale. Various physical properties like porosity, resistivity, volume of shale, are calculated through different logs suites. In sand package 1, the average values of volume of shale are found 28.22 %, effective porosity 8.11% and saturation of hydrocarbons is 62.98%. In sand package 2, the average values of volume of shale is 31.59%, effective porosity 12.51% and saturation of hydrocarbons is 52.01% while in sand package 3 the average values of volume of shale is 28.58%, effective porosity 9.04% and saturation of hydrocarbons is 60.70%. The net pay thicknesses of sand packages 1, 2 and 3 of Lower Goru Formation are 33, 21 and 38 feet respectively. On the basis of calculated parameters through petrophysical analysis, it is concluded that in Naimat Basal-01, Lower Goru Formation is showing fair to good hydrocarbon saturation

ACKNOWLEDGEMENTS

We are quite obliged to Dr Muhammad Zafar, Head of department, earth and environmental sciences, Bahria University Islamabad, for his respectable feedback throughout the whole study.

Special credit goes to our supervisor, Mr. Saqib Mehmood for his supervision and consistent help. His priceless and enlightening efforts helped all around this venture, to the achievement of this research.

Also a very special thanks to Ma`am Urooj Muyyasar for her ultimate guidance and selfless help during this thesis. We would also like to thank our parents and siblings because without their prayers, this goal would have been a dream to achieve. We would also like to thank all our friends and colleagues for always being there for help.

CONTENTS

		Page
ABST	TRACT	i
ACKNOWLEDGEMENTS		ii
FIGU	RES	vii
TABL	LES	ix
	CHAPTER 1	
	INTRODUCTION	
1.1	General statement	1
1.2.1	Objectives of thesis	1
1.3	Data obtained for study	2
1.4	Introduction of the area	2
1.5	Location of the study area	2
	CHAPTER 2	
GEOLOGY AND PETROLEUM SYSTEM OF THE LOWER INDUS BASIN		
2.1	Main units of Lower Indus basin	4
2.1.1	Thar platform	4
2.1.2	Karachi trough	4
2.1.3	Kirthar foredeep	5
2.1.4	Kirthar fold belt	5
2.1.5	Offshore Indus	5
2.2	Structural setting	5
2.3	Stratigraphy of the Lower Indus basin	6
2.3.1	Sembar Formation	7
2.3.2	Goru Formation	8
2.3.3	Parh limestone	8

2.3.4 Mughal kot Formation
2.3.5 Pab sandstone
2.3.6 Laki Formation
2.3.7 Ghazij group

8

8

9

9

2.3.8	Kirthar Formation	9
2.3.9	Nari Formation	10
2.3.10	Gaj Formation	10
2.4	Borhole stratigraphic succession of Naimat basal-01	10
2.5	Petroleum geology of Lower Indus basin	11
2.5.1	Trapping mechanism	11
2.5.2	Source rock	12
2.5.3	Reservoir rocks	13
2.5.4	Seals	13
2.5.5	Migration and hydrogen charge	13
2.6	Petroleum play of the study area	13
	CHAPTER 3	
	PETROPHYSICAL INTERPRETATION APPROACH	
3.1	Introduction	15
3.2	Methodology adopted	16
3.3	Data provided	16
3.3.1	Gama ray log	16
3.3.2	Sonic log	17
3.3.3	SP log	17
3.3.4	Resistivity log	17
3.4	Volume of shale (Vsh)	17
3.5	Porosity	18
3.5.1	Sonic porosity	18
3.5.2	Effective porosity	18
3.6	Water saturation (S _w)	19
3.7	Hydrocarbon saturation (S _{HC})	19
3.8	Net pay thickness	19

CHAPTER 4

INTERPRETATION OF NAIMAT BASAL-01

4.1	Interpretation of Naimat Basal-01, Lower Indus basin	21
4.2	Gamma ray log trend of sand package 1	24
4.2.1	Volume of shale of sand package 1	25
4.2.2	Volume of sand of sand package 1	26
4.3	Sonic log trend of sand package 1	27
4.4	Resistivity log response of sand package 1	29
4.5	Using of GEN charts to calculate resistivity of water (Rw)	29
4.5.1	Correlation of different factors	35
4.5.2	Correlation of water saturation and volume of shale of sand package 1	35
4.5.3	Correlation of water saturation and hydrocarbon saturation of sand	36
	package1	
4.5.4	Correlation of volume of shale and sonic porosity of sand package 1	37
4.5.5	Correlation of volume of shale and effective porosity of sand package 1	38
4.6	Gamma ray log trend of sand package 2	39
4.6.1	Volume of shale of sand package 2	40
4.6.2	Volume of sand of sand package 2	41
4.6.3	Sonic log trend of sand package 2	42
4.6.4	Resistivity log response of sand package 2	44
4.6.5	Using of GEN charts to calculate resistivity of water (Rw)	44
4.6.6	Correlation of different factors	50
4.6.7	Correlation of water saturation and volume of shale of sand package 2	50
4.6.8	Correlation of water saturation and hydrocarbon saturation of sand	51
	package2	
4.6.9	Correlation of volume of shale and sonic porosity of sand package 2	52
4.6.10	Correlation of volume of shale and effective porosity of sand package 2	53
4.7	Gamma ray log trend of sand package 3	54
4.7.1	Volume of shale of sand package 3	55
4.7.2	Volume of sand of sand package 3	56
4.7.3	Sonic log trend of sand package 3	57
4.7.4	Resistivity log response of sand package 3	58
4.7.5	Using of GEN charts to calculate resistivity of water (Rw)	59

4.7.6	Correlation of different factors	61
4.7.7	Correlation of water saturation and volume of shale of sand package 3	61
4.7.8	Correlation of water saturation and hydrocarbon saturation of sand	62
	package3	
4.7.9	Correlation of volume of shale and sonic porosity of sand package 3	63
4.7.10	Correlation of volume of shale and effective porosity of sand package 3	64
4.8	Net pay thickness	65
4.8.1	Net pay thickness of sand package 1	65
4.8.2	Net pay thickness of sand package 2	65
4.8.3	Net pay thickness of sand package 3	66
4.9	Comparison of sand packages	67
RESU	LTS AND CONCLUSIONS	68
REFE	RENCES	69
APPENDIX		70

FIGURES

Page

Figure 1.1. L	ocation of the study area.	3
Figure 2.1. T	ectonic map of Lower Indus basin with highlighted study area.	6
Figure 2.2. Pr	roducing wells in Lower Indus basin with Sembar as a source rock.	12
Figure 3.1. P	etrophysical interpretation workflow.	15
Figure 4.1. L	og trends of sand package 1.	21
Figure 4.2. L	og trends of sand package 2.	22
Figure 4.3. L	og trends of sand package 3.	23
Figure 4.4. V	ariation in GR log of sand package 1.	25
Figure 4.5. V	ariation in volume of shale of sand package 1.	26
Figure 4.6. V	variation in volume of sand of sand package 1.	27
Figure 4.7. V	ariation in sonic porosity of sand package 1.	28
Figure 4.8. V	ariation in effective porosity of sand package 1.	28
Figure 4.9. C	alculation of Rmf at Formation temperature of sand package 1.	30
Figure 4.10. C	alculation of Rmf equivalent of sand package 1.	31
Figure 4.11. C	Calculation of Rw equivalent of sand package 1.	32
Figure 4.12. C	Calculation of Rw of sand package 1.	33
Figure 4.13. V	Variation in saturation of water of sand package 1.	34
Figure 4.14. V	variation in saturation of hydrocarbons of sand package 1.	35
Figure 4.15. C	Correlation of saturation of water and volume of shale of sand	36
pa	ackage 1.	
Figure 4.16. C	Correlation of water saturation and hydrocarbon saturation of sand	37
pa	ackage 1.	
Figure 4.17. C	Correlation of volume of shale and sonic porosity of sand package1.	38
Figure 4.18. C	Correlation of volume of shale and effective porosity of sand	39
pa	ackage 1.	
Figure 4.19. V	ariation in GR log of sand package 2.	40
Figure 4.20. V	ariation in volume of shale of sand package 2.	41

Figure 4.21. Variation in volume of sand of sand package 2.	42
Figure 4.22. Variation in sonic porosity of sand package 2.	43
Figure 4.23. Variation in effective porosity of sand package 2.	43
Figure 4.24. Calculation of Rmf at Formation temperature of sand package 2.	45
Figure 4.25. Calculation of Rmf equivalent of sand package 2.	46
Figure 4.26. Calculation of Rw equivalent of sand package 2.	47
Figure 4.27. Calculation of Rw of sand package 2.	48
Figure 4.28. Variation in saturation of water of sand package 2.	49
Figure 4.29. Variation in saturation of hydrocarbons of sand package 2.	50
Figure 4.30. Correlation of saturation of water and volume of shale of sand package 2.	51
Figure 4.31. Correlation of water saturation and hydrocarbon saturation of sand package 2.	52
Figure 4.32. Correlation of volume of shale and sonic porosity of sand package2.	53
Figure 4.33. Correlation of volume of shale and effective porosity of sand	54
package 2.	
Figure 4.34. Variation in GR log of sand package 3.	55
Figure 4.35. Variation in volume of shale of sand package 3.	56
Figure 4.36. Variation in volume of sand of sand package 3.	57
Figure 4.37. Variation in sonic porosity of sand package 3.	58
Figure 4.38. Variation in effective porosity of sand package 3.	
	58
Figure 4.39. Variation in saturation of water of sand package 3.	58 60
Figure 4.39. Variation in saturation of water of sand package 3.	60
Figure 4.39. Variation in saturation of water of sand package 3. Figure 4.40. Variation in saturation of hydrocarbons of sand package 3.	60 61
Figure 4.39. Variation in saturation of water of sand package 3.Figure 4.40. Variation in saturation of hydrocarbons of sand package 3.Figure 4.41. Correlation of saturation of water and volume of shale of sand	60 61
 Figure 4.39. Variation in saturation of water of sand package 3. Figure 4.40. Variation in saturation of hydrocarbons of sand package 3. Figure 4.41. Correlation of saturation of water and volume of shale of sand package 3. Figure 4.42. Correlation of water saturation and hydrocarbon saturation of sand 	60 61 62
 Figure 4.39. Variation in saturation of water of sand package 3. Figure 4.40. Variation in saturation of hydrocarbons of sand package 3. Figure 4.41. Correlation of saturation of water and volume of shale of sand package 3. Figure 4.42. Correlation of water saturation and hydrocarbon saturation of sand package 3. 	60 61 62 63

TABLES

	Page
Table 2.1. Generalized stratigraphic sequence of Lower Indus basin	7
Table 2.2. Borehole stratigraphic succession of Naimat Basal-01.	11
Table 2.3. Petroleum play of the study area.	14
Table 4.1. Sand packages along with their depths.	24
Table 4.2. Cut offs for the determination of net pay thickness.	66
Table 4.3. Net pay thickness of sand packages by cut offs.	66
Table 4.4. Average values of petrophysical parameters of sand packages.	67