PETROPHYSICAL ANALYSIS AND STRATIGRAPHIC CORRELATION OF MIANO 04 AND MIANO 05 WELLS, LOWER INDUS BASIN, PAKISTAN

By

BADAR HABIB UMAIR NADEEM KHAN

Department of Earth and Environmental Sciences Bahria University, Islamabad

2014

ABSTRACT

The main resolution of the study is to evaluate hydrocarbon potential and stratigraphical correlation of Miano well 04 and 05. The area is located in Taluka Saleh Pat, District Sukkur of Sindh Province, Pakistan bounded by 27° 24" 42.4' N and 69°19"15.82' E. Miano is a natural gas reservoir which covers the Thar Desert having a total area of 814.02 km². Tectonically the block lies on PannoAqilgraben and in between two highs i.e. on the eastern flank of Khairpur-Jacobabad High and west of Mari Kandkot High. The hydrocarbon potential of the two study wells were evaluated by petrophysical parameters and it has been interpreted that Goru Formation was having good potential to be reservoir based on volume of shale, average porosity, saturation of water and hydrocarbon saturation for Miano well 04 and 05. Stratigraphic correlation is used to determine the lateral continuity and thickness variation of lower Goru formation by considering a top of lower Goru formation as datum line.It has been observed that both the strata (sand and shale) are thickening in NE direction towards well 05.

ACKNOWLEDGEMENTS

With the grace and guidance of All Mighty ALLAH this research has come to its completion. We are deeply indebted to many people for their invaluable contributions in this research study for their active encouragements, unconditional support and heartedly cooperation.

In this regard we would like to express our deepest sense of gratitude to our supervisor Professor Dr. TehseenUllah Khan, Department of Earth and Environmental sciences Bahria University Islamabad. We are very grateful to our co-supervisor Mr. Muhammad RaieesAmjad, Department of Earth and Environmental sciences Bahria University Islamabad, for his expert guidance, encouragement and advice throughout the study. We are also thankful for him trusting our own working style and giving us a free hand to progress this venture. Without his guidance and positive criticism this endure would not have been possible.

We are thankful to Dr. Muhammad Zafar Head of Department of Earth and Environmental Sciences, Bahria University, Islamabad for his cooperation and guidance.

Last but not the least we thank our families and friends for their prayers, honest sacrifices and absolute understanding. We thank them for being the source of constant encouragement which has given us the strength to undertake this very task in the first place. We would like to thank Mr. Malik Umar Awan for his helpful support and appreciation.

CONTENTS

		Page
	ABSTRACT	i
	ACKNOWLEDGEMENTS	ii
	CONTENTS	iii
	FIGURES	vii
	TABLES	viii
	GRAPHS	ix
	CHAPTER 1	
	INTRODUCTION	
1.1.	Location	1
1.1.	Topography and accessibility	1
1.2.	Climate	1
1.3.		-
	Exploration history of Miano field	2
1.5.	Data used	2
1.6.	Objectives	5
1.7.	Methodology	5
	CHAPTER 2	
	TECTONIC, STRATIGRAPHY AND PETROLEUM SYSTEM	
2.1.	Sedimentary basins of Pakistan	6
2.2.	Regional structure settings	6
2.3.	Tectonic history	7
2.4.	Stratigraphy	9
2.5.	Stratigraphy encountered in Miano 04 and 05 wells	10
2.5.1.	Kirthar formation	12
2.5.1.1.	Drazinda member	12
2.5.1.2.	Perkoh member	12
2.5.1.3.	Sirki member	12

2.5.1.4.	Habib rahi member	12
2.5.2.	Laki formation	13
2.5.2.1.	Ghazij member	13
2.5.2.2.	Sui main limestone member	13
2.5.3.	Ranikot formation	13
2.5.4.	Goru formation	14
2.5.4.1.	Upper Goru formation	14
2.5.4.2.	Lower Goru formation	14
a.	"D" Interval	14
b.	"C" Interval	15
c.	"B" Interval	15
d.	"A" Interval	15
2.6.	Petroleum system	16
2.6.1.	Source rock	16
2.6.2.	Reservoir rock	17
2.6.3.	Seal rocks	17
2.6.4.	Тгар	17
	CHAPTER 3	
	INTRODUCTION TO WIRELINE LOGGING	
3.1.	Introduction	18
3.2.	Creating wireline logs	18
3.3.	Logging tools	18
3.3.1.	Gamma ray log	18
3.3.2.	Neutron log	20
3.3.2.1.	Compensated neutron log (CNL)	20
3.3.3.	Density log	21
3.3.4.	Resistivity logs	21
3.3.4.1.	Laterolog shallow (LLS)	22
3.3.4.2.	Laterolog deep (LLD)	22

3.3.4.3.	Water saturation	22
3.3.4.4.	Hydrocarbon saturation	23
3.3.5.	Spontaneous potential log	23
3.3.5.1.	Determination of Rw	23
	CHAPTER 4 STRATIGRAPHIC CORRELATION, LITHOLOGY AND PETROPH	YSICAL
	INTERPRETATION	
4.1.	Lithology	25
4.1.1.	Lithology of Miano well 04	25
4.1.2.	Lithology of Miano well 05	27
4.2.	Saturation	29
4.2.1.	Saturation of Miano well 04	29
4.2.2.	Saturation of Miano well 05	30
4.3.	Zonation	32
4.3.1.	Zones of Miano well 04	32
4.3.1.1.	Zone 1	34
4.3.1.2.	Zone 2	34
4.3.1.3.	Zone 3	35
4.3.2.	Zones of Miano well 05	35
4.3.2.1.	Zone 1	37
4.3.2.2.	Zone 2	37
4.3.2.3.	Zone 3	38
4.4.	Stratigraphic correlation	38
4.4.1.	Sand package # 01	40
4.4.2.	Sand package # 02	40
4.4.3.	Sand package # 03	40
4.4.4.	Sand package # 04	40
4.4.5.	Sand package # 05	40
4.4.6.	Sand package # 06	40

4.4.7.	Sand package # 07	40
4.4.8.	Shale package # 01	41
4.4.9.	Shale package # 02	41
4.4.10.	Shale package # 03	41
4.4.11.	Shale package # 04	41
4.4.12.	Shale package # 05	41
4.4.13.	Shale package # 06	41
4.4.14.	Shale package # 07	41
	CONCLUSIONS	42
	REFERENCES	43

Figure.1.1. Map showing Miano -04 & -05 well in Miano D and P lease	03
location map.	
Figure 1.2. Miano average raw gas production 2011.	04
Figure 2.1. Tectonic map displaying Miano area in Lower Indus Basin.	08
Figure 2.2. Generalized stratigraphy of Central Indus Basin.	09
Figure 2.3. Stratigraphic column of Miano -04 well given with thickness.	10
Figure 2.4. Stratigraphic column of Miano -05 well given with thickness.	11
Figure3.2. Typical gamma ray log response.	19
Figure 3.3. Compensated neutron log tool configuration.	20

LIST OF TABLES

Table 1.1. Annual production of OMV for 2011.	04
Table 4. 1 Showing highest, lowest and average values of Shale and Sand	34
volume, PHIE, Sw, Sh in zone 1.	
Table 4. 2 Showing highest, lowest and average values of Shale and Sand	34
volume, PHIE, Sw, Sh in zone 2.	
Table 4. 3 Showing highest, lowest and average values of Shale and Sand	35
volume, PHIE, Sw, Sh in zone 3.	
Table 4. 4 Showing highest, lowest and average values of Shale and Sand	36
volume, PHIE, Sw, Sh in zone 1.	
Table 4. 5 Showing highest, lowest and average values of Shale and Sand	37
volume, PHIE, Sw, Sh in zone 2.	
Table 4. 6 Showing highest, lowest and average values of Shale and Sand	38
volume, PHIE, Sw, Sh in zone 3.	
Table 4. 7. Table showing Vsh, EPHI, Sw and Sh of sand packages of Miano	39
well 04 and 05.	

LIST OF GRAPHS

Graph 4. 1. Lithology of Miano well 04 showing sand and shale volume.	26
Graph 4. 2. Lithology of Miano well 05 showing sand and shale volume.	28
Graph 4.3. Explains percentage of effective porosity, water saturation and	29
hydrocarbon saturation of Miano well 04.	
Graph 4.4. Explains percentage of effective porosity, water saturation and	31
hydrocarbon saturation of Miano well 05.	
Graph 4.5. Pay zones of Miano well 04, showing volume percentage of	33
Water satuation (Sw), Hydrocarbon saturation (Sh) and effective porosity.	
Graph 4.6. Pay zones of Miano well 05, showing volume percentage of	36
Water satuation (Sw), Hydrocarbon saturation (Sh) and effective porosity.	
Graph 4.7. Stratigraphic correlation of Miano well 04 and 05	39