STRUCTURAL INTERPRETION AND PETROPHYSICAL ANALYSIS OF EAST BADIN AREA, LOWER INDUS BASIN, PAKISTAN

By MUHAMMAD HASNAIN FRAZ RASHID BILAL ARSHAD

Department of Earth and Environmental Sciences Bahria University, Islamabad

2014

TABLE OF CONTENTS

CONTENTS	Page No.
ACKNOWLEDGEMENT	i
ABSTRACT	ii
LIST OF FIGURES	iii
LIST OF TABLES	V

CHAPTER 1

INTRODUCTION

1.1 Introduction to the study area	1
1.2 location	2
1.3 Data acquired	2
1.3.1 Seismic data	2
1.3.2 Well data	3
1.4 Base map	3
1.5 Objective of study	4
1.6 Exploration history	4

CHAPTER 2

TECTONIC HISTORY AND STRUCTURAL SETTING

2.1 Tectonic history	6
2.2 Structural setting	7
2.3 Main units of Southern Indus Basin	8
2.3.1 Thar Platform	8
2.3.2 Karachi Depression	9

2.3.3 Kirther Fore-deep	9
2.3.4 Kirther Fold Belt	9
2.3.5 Offshore Indus	9

CHAPTER 3

STRATIGRAPHY OF SOUTHERN INDUS BASIN

3.1 Stratigraphy	10
3.1.1 Chiltan	10
3.1.2 Lower Goru Formation	10
3.1.3 Upper Goru Formation	11
3.1.4 Khadru Formation	11
3.1.5 Parh Formation	11
3.1.6 Mughal Kot Formation	12
3.1.7 Pab Sandstone	12
3.1.8 Ranikot Formation	12
3.2 Borehole Stratigraphy	14

CHAPTER 4

PETROLEUM PLAY

4.1 Introduction	15
4.1.1 Source rocks	15
4.1.2 Reservoir rocks	16
4.1.3 Cap rocks	16
4.1.4 Migration	16

CHAPTER 5

SEISMIC DATA ACQUISITION AND PROCESSING

5.1 Seismic Acquisition	17
5.2 Seismic Reflection Recording	17
5.3 Source Parameters	18
5.4 Receiver Parameters	18
5.5 Recording Paramaters	19
5.6 Seicmic Data Processing	19
5.7 Processing in General	20

CHAPETR 6

SEISMIC DATA INTERPRETATION

6.1 Introduction	21
6.1.1 Structural Interpretation	21
6.1.2 Stratigraphy Interpretation	22
6.2 Interpretation of Seismic Lines of Study Area	22
6.3 Marking of Horizons	23
6.4 Identification of Faults	23
6.5 Interpreted Seismic Sections	24
6.6 Two Way Time contour maps	26
6.7 Depth contour maps	28
6.8 3-D Depth surfaces	30

CHAPTER 7

PETROPHYSICAL ANALYSIS

7.1 Well log analysis	32
7.2 Raw log data	32
7.3 Method opted for analysis	33
7.3.1 Data provided	34
7.3.1.1 Gamma ray log	34
7.3.1.2 Sonic log	34
7.3.1.3 SP log	34
7.3.1.4 Density log	35
7.3.1.5 Resistivity log	35
7.4 Zone of Interest	35
7.5 Lithology Confirmation	36
7.6 Calculation of Shale Volume (VSH)	36
7.7 Calculation of Porosity	37
7.8 Saturation of water (S _w)	37
7.9 Saturation of hydrocarbon (Sh)	39
CONCLUSIONS	41
REFERENCES	42

ACKNOWLEDGEMENTS

We are quite obliged to Dr. Muhammad Zafar, HOD, Earth and Environmental Sciences, Bahria University Islamabad, for his merciful conduct, capable direction and scholastics feedback throughout the whole study.

Special thankfulness heads off to our supervisor, MR M. Fahad Mehmood for his supervision and consistent help. His priceless help of helpful remarks and prescriptions all around the venture have helped the achievement of this research.

We are for sure submissively thankful to our Co-Supervisor Mr. Muyyasar Hussain, Geophysicist at Landmark Resources for his profitable prescriptions, most agreeable loving conduct, rousing and reckless direction, and ethical help for the fulfillment of this assignment.

We will always remember the prayers and untiring deliberations of our parents, siblings and their consolation dependably. We offer our warm on account of all our friends who helped us and prayed for our prosperity all around the time of study.

ABSTRACT

Seismic final stack sections comprising of East Extension Badin block of Badin area were provided for this research by the department of Earth and Environmental Sciences, Bahria University Islamabad through Directorate General of Petroleum Concession (DGPC). The main purpose of the dissertation is to evaluate the structure and hydrocarbon potential using seismic and well log data of East Badin area, Lower Indus Basin, Pakistan. Badin District is located in Sindh Provence of Pakistan.Normal faults are generated in Lower Indus Basin as a result of entire Southern Basin exhibiting the extensional tectonics showing the horst and graben structures with former being of great exploratory importance. The targeted Formations were of Cretaceous age. For structural enhancement, four migrated seismic lines i.e. 864-RP-14, 864-RP-16 and 874-RP-22 (dip lines) 874-RP-27 (strike line) were used. Time and depth contour maps of three horizons, Pab Sandstone formation, Parh Limestone and Lower Goru Sandstone were generated which confirmed the Horst and Graben structures in the subsurface. In this research study the well data of Palari Sarki-01 was obtained from DGPC in the form of well logs. This was an exploratory well located in the Lower Indus Basin. Neutron log, Density log, Gamma log, SP log and Resistivity logs were analyzed for petrophysical analysis. The logs were used to determine lithology, volume of shale, petrophysical and seismic parameters for reservoir estimation.

LIST OF FIGURES

Figure 1.1. Location of Badin District, Sindh, Pakistan	1
Figure 1.2. Base map of the study area	3
Figure 2.1. Regional tectonic setting of Pakistan	7
Figure 3.1. Generalized Stratigraphic Sequence of Lower Indus Basin	13
Figure 5.1. Basic layout for a seismic reflection acquisition	18
Figure 6.1. Interpreted seismic line 864-RP-14	24
Figure 6.2. Interpreted seismic line 864-RP-16	24
Figure 6.3. Interpreted seismic line 874-RP-22	25
Figure 6.4. Interpreted seismic line 874-RP-27	25
Figure 6.5. Two Way Time contour map of Pab Sandstone	26
Figure 6.6. Two Way Time contour map of Parh Limestone	27
Figure 6.7. Two Way Time contour map of Lower Goru Sandstone	27
Figure 6.8. Depth contour map of Pab Sandstone	28
Figure 6.9. Depth contour map of Parh Limestone	29
Figure 6.10. Depth contour map of Lower Goru Sandstone	29
Figure 6.11. 3-D Depth surface of Pab Sandstone	30
Figure 6.12. 3-D Depth surface of Parh Limestone	31
Figure 6.13. 3-D Depth surface of Lower Goru Sandstone	31
Figure 7.1. Complete interpretation workflow.	33
Figure 7.2. Depth vs. volume of shale calculated in zone 1	37

Figure 7.3. Depth vs. Effective porosity calculated in zone 1	38
Figure 7.4. Depth vs. Average porosity calculated in zone 1.	38
Figure 7.5. Depth vs. saturation of water calculated in zone 1	39
Figure 7.6. Depth vs. saturation of hydrocarbon calculated in depth zone 1.	40

LIST OF TABLES

Table 1.1. Seismic lines used in 2-D seismic interpretation of the area	2
Table 1.2. Logs used in the Petrophysical analysis of well	3
Table 3.1. Formation Tops of Palari Sarki Well-01	14
Table 5.1. Source parameters used for seismic lines	18
Table 5.2. Receiver parameters for seismic lines	18
Table 5.3. Recording parameters for seismic survey	19
Table 7.1. Zones of Interest	36
Table 7.2. Summarized Values of Petrophysical Analysis of Parh zone.	40