2-D SEISMIC DATA INTERPRETATION AND PETROPHYSICAL ANALYSIS OF KANDRA AREA, MIDDLE INDUS BASIN, PAKISTAN

By

AHMED ZEESHAN SHAUKAT ALI AKRAM NIAZI ASAD ULLAH QAZI

Department of Earth and Environmental Sciences Bahria University, Islamabad

ABSTRACT

The Kandra area is studied with the help of the 2-D seismic and petrophysical analysis. For this purpose five seismic lines have been obtained from the LMKR by the permission of DGPC. The well log data was also obtained along with the seismic lines for the subsurface evaluation. In the seismic data interpretation the horizons were marked and faults were identified on the formation tops which are named as Sui Main Limestone, Lower Goru and Chiltan formations. The time and depth contour maps were generated which delineated the subsurface structures and the tectonic activities in the study area. Well log analysis was performed out on Kandra-02 for the identification of zone of interest. The volume of shale, sand along with the different porosities such as sonic, neutron and density were calculated. The saturation of water and hydrocarbons was observed and on the basis of this analysis one probable zone of interest was identified in the SML.

ACKNOWLEDGEMENT

First of all we are thankful to Almighty Allah who gives us power and strength to do the thesis and countless salutation upon Holy Prophet Muhammad (S.A.W), the origin of knowledge who has guided his (Ummah) to seek information from cradle to grave. We are very thankful to our Parents, their prayers and love was with us all the time. Deepest appreciation goes to our supervisor Muhammad Raiees Amjad for his help throughout the thesis work, without the consistent help, completion of this thesis would not have been possible.

CONTENTS

		Page No.
ABSTRA	ACT	iii
ACKNOWLEDGEMENT		iv
CONTE	NTS	v
FIGURE	FIGURES	
TABLES		ix
	CHAPTER 1	
	INTRODUCTION	
1.1	Location of study area	01
1.2	Objective	02
1.3	Data required	02
	CHAPER 2	
	GEOLOGY OF MIDDLE INDUS BASIN	
2.1	General geology	04
2.2	Tectonics of study area	04
2.3	Stratigraphy of the area	06
2.3.1	Sui Main Limestone	06
2.3.2	Chiltan Formation	08
2.3.3	Ghazij Formation	08
2.3.4	Ranikot Formation	08
2.3.5	Goru Formation	08
	CHAPTER 3	
	PETROLEUM SYSTEM OF THE AREA	
3.1	Source rock	10
3.2	Reservoir rock	10
3.3	Seal rock	10
3.4	Trap	11
3.5	Maturation and migration	11
	CHAPER 4	
	SEISMIC DATA ACQUISITION AND PROCESSING	j
4.1.	Seismic data acquisition	12

4.1.1	Seismic sources and acoustic spectrum	12
4.1.2	Seismic receivers	12
4.1.3	Seismic techniques	12
4.1.3(a)	Seismic reflection surveying	13
4.1.3(b)	Seismic refraction surveying	13
4.1.4	Acquisition surveying parameters	13
4.2	Seismic data processing	14
4.3	Processing sequence	14
	CHAPER 5	
	SEISMIC DATA INTERPRETATION	
5.1	Seismic data interpretation	16
5.1.1	Identifications of reflectors	16
5.1.2 Mar	rking and correlation of horizons	16
5.1.3	Fault detection	17
5.2	Reflector marking	17
5.3	Jump correlation	18
5.4	Contouring	22
5.4.1	Time contour maps	23
5.4.2	Velocity calculation	25
5.4.2.1	Depth contour maps	25
	CHAPER 6	
	PETROPHYSICAL ANALYSIS	
6.1	Petrophysics	29
6.2	Steps for petrophysical analysis	29
6.3	Zone of interest	29
6.4	Identification of lithology	30
6.4.1	Calculation of volume of Shale	30
6.5 Calc	culation of porosity	31
6.5.1	Density porosity	31
6.5.2	Neutron porosity	32
6.5.3	Average porosity	33
6.5.4	Effective porosity	33
6.6	Resistivity log	34

6.7	Calculation of fluid saturation	34
6.7.1	Determination of saturation of water	34
6.7.2	Determination of resistivity of water (Rw)	34
6.7.3	Saturation of hydrocarbon	37
6.8	Lithological contrast graph	38
6.9	Saturation porosity graph	40
CONCLUSIONS		41
REFERENCES		42

FIGURES

Figure 1.1	Map showing the location of Kandra area and block.	02
Figure 1.2	The Base map of the study area.	03
Figure 2.1	Middle Indus Basin and the subdivisions into petroleum zone.	05
Figure 2.2	Map showing regional structure configuration of Middle Indus Basin.	07
Figure 2.3	Stratigraphic column and petroleum system of Middle Indus Basin.	10
Figure 4.1	Generalized processing sequence.	16
Figure 5.1	Interpreted seismic line KDR-89-01.	19
Figure 5.2	Interpreted seismic line KDR-89-02.	20
Figure 5.3	Interpreted seismic line KDR-89-03.	21
Figure 5.4	Interpreted seismic line KDR-89-04.	22
Figure 5.5	Interpreted seismic line KDR-89-05.	23
Figure 5.6	Two way time contour map of SML.	24
Figure 5.7	Two way time contour map of Lower GoruFormation.	25
Figure 5.8	Two way time contour map of ChiltanLimestone.	26
Figure 5.9	Two way depth contour map of SML.	27
Figure 5.10	Two way depth contour map of Lower GoruFormation.	28
Figure 6.1	Diagram showing interpretation of log data.	30
Figure 6.2	Graph showing volume of shale values with depth.	32
Figure 6.3	Graph showing density and neutron values with depth.	33
Figure 6.4	Graph showing effective and average values with depth.	34
Figure 6.5	Graph Gen-09 showing interpreted value of Rmf at surface	
	temperature.	36
Figure 6.6	Graph SP-1 showing interpreted value of Rw equivalent.	37
Figure 6.7	Graph SP-2 showing interpreted value of Rw.	38
Figure 6.8	Graph showing variation in Saturation of water and hydrocarbon.	39
Figure6.9	Graph showing variation in volume of sand and shale.	40
Figure 6.10	Graph showing variation in total porosity and saturation.	41

TABLES

Table 4.1	Recording parameters of seismic lines of the Kandra area.	14
Table 4.2	Display parameters for seismic lines of Kandra area.	14
Table 4.3	Source and receiver parameters of the seismic lines for the Kandra	
	area.	15
Table 6.1	Table showing the zones of interest.	31