GEOPHYSICAL MODELLING WITH THE HELP OF WELL AND SEISMIC DATA OF THE PART OF SANGHAR AREA, SINDH PROVINCE, PAKISTAN

By

JAVERIA SAHER

Department of Earth and Environmental Sciences Bahria University, Islamabad

CERTIFICATE OF ORIGINALITY

This is to certify that the intellectual contents of the thesis

are the product of my own research work except, as cited properly and accurately in the acknowledgements and references, the material taken from such sources as research papers, research journals, books, internet etc. solely to support, elaborate, compare and extend the earlier work.

Further, this work has not been submitted by me previously for any degree, nor it shall be submitted by me in the future for obtaining any degree from this university, or any other university or institution. The incorrectness of this information, if proved at any stage, shall authorize the university to cancel my degree.

Signature: _____

Date: _____

Name of the Research Candidate:

ABSTRACT

This research work is centered on 2D seismic reflection data and well logs of Sanghar area, Sindh province, Pakistan. Seven seismic sectionshaving line numbers (856-SGR-54, 856-SGR-58, 856-SGR-63, 856-SGR-55, 856-SGR-53, 856-SGR-65 and 856-SGR-67) along with base map were used. Out of these seven seismic lines, two seismic lines; 856-SGR-54 and 856-SGR-58 are dip lines. The remaining lines are strike lines. Root mean square and interval velocities of some sections are also provided with the seismic section at selected Common Depth Points (CDP's) and were used for the calculation of average velocities to convert the given time into depth. Synthetic seismogram of Bobi-01 well was made to match the reflectors on the seismic section. Four formations were correlated with seismic section. Khadro Formation was matched at 0.5 sec, Parh Limestone at 0.7 sec, Top of Lower Goru at 1.2 sec and Chiltan Limestone at 2.4 sec. The ratio of the best correlation between seismic and synthetic was 0.094. On the basis of the synthetic seismogram the reflectors were marked which further confirm the well tops. Due to the prominent reflection on the seismic sections, four reflectors were marked. For each reflector the two way travel time structural map has been drawn and depth contour map of probable reservoir has also been drawn by using velocity and one way travel time. This study shows Horst and Graben structure along with step faults. On the basis of attribute analysis bright spots are identified for the well location. The petrophysical evaluation of Bobi-01 splits into four zones every zone has shown different petrophysical result but all of these zones have good hydrocarbon saturation like zone-01 with 37% and zone-03 with 45% hydrocarbon saturation. The zones are marked on the basis of clean formation which further confirms the presence of sand in these zones. The maximum porosity in these zones is 20 to 24%. Well correlation of Al-Hakeem-01 and Bobi-01 shows that there is thinning effect from south to north and also the maturity level in Bobi-01 is more than that of Al-Hakeem-01 and also there is a gap in Al-Hakeem-01 as two formations are missing in this well.

ACKNOWLEDGEMENTS

I am deeply obligated to my supervisor Prof. Dr. Tahseenullah Khan Bangash (Bahria University, Department of Earth and Environmental Sciences, Islamabad) and my Co-supervisor Mr. Muyassar Hussain, Geoscientist (Landmark Resources) whose help, stimulating ideas, information, experience and encouragement helped me in all the times of study and analysis of the project. I would also like to thank Ahmer Iqbal and Waqar Ahmed for their guidance and help. Marks are also extended to Landmark Resources (LMKR) and Directorate General of Petroleum Concession (DGPC) for providing data.

Last but not the least I am indebted to Prof. Dr. Muhammad Zafar (HOD, Bahria University, E&ES Department, Islamabad) and Mr. Saqib Mehmood, Assistant professor (Bahria University, E&ES Department, Islamabad) for their moral support and guidance and to my parents for their prayers and encouragement during my whole studies.

CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENTS	ii
CONTENTS	iii
FIGURES	vi
TABLES	viii

CHAPTER 1

INTRODUCTION

1.1	Introduction	01
1.2	Location of the area	01
1.3	Data for research work	03
1.4	purpose for research work	04
1.5	Recording parameters of seismic lines	04
1.6	Processing sequence of seismic lines	05
1.7	Methodology	06

CHAPTER 2

GEOLOGY OF THE AREA

2.1	Introduction	08
2.2	General geology of the area	08
2.3	Basins of Pakistan	09
2.4	Structural settings	10

CHAPTER 3

STRATIGRAPHY

3.1	General stratigraphy of the area	10
3.2	Stratigraphy of the study area	11
3.2.1	Jurassic succession	11
3.2.1.1	Chiltan Limestone	11
3.2.2	Cretaceous succession	12
3.2.2.1	Goru Formation	12

3.2.2.2 Parh Limestone	
3.2.3 Cenozoic succession	13
3.2.3.1 Khadro Formation	13

CHAPTER 4

PETROLEUM GEOLOGY

4.1	Petroleum prospect	14
4.1.1	Source rocks	14
4.1.2	Reservoir rocks	14
4.1.3	Cap rocks	15
4.2	Hydrocarbon potential of the area	15

CHAPTER 5

SEISMIC INTERPRETATION

5.1	Introduction	17
5.2	Techniques of interpretation of seismic data	17
5.2.1	Structural interpretation	17
5.2.2	Stratigraphic interpretation	18
5.3	Sequence of Interpretation	18
5.3.1	Seismic reflectors	18
5.3.2	Picking and correlation of reflectors	19
5.3.2.1	Control line	19
5.3.2.2	Tie points	19
5.3.3	Horizons	19
5.3.4	Fault identification	20
5.4	Two way time contour maps	20
5.5	Depth contour maps	21
5.6	Base map	21
5.7	Seismic sections	23
5.8	Generation of synthetic seismogram	23
5.8.1	How to generate synthetic seismogram	23
5.9	Problems in available data	28
5.9.1	Misties	28
5.10	Interpreted seismic sections	28

5.11	Time contour maps	30
5.11.1	Time contour map of Khadro Formation	36
5.11.2	Time contour map of Parh Limestone	37
5.11.3	Time contour map of Top of Lower Goru Formation	37
5.11.4	Time contour map of Chiltan Limestone	38
5.12	Depth contour maps	39
5.12.1	Depth contour map of Khadro Formation	40
5.12.2	Depth contour map of Parh Limestone	41
5.12.3	Depth contour map of Top of Lower Goru	41
5.12.4	Depth contour map of Chiltan Limestone	42
5.13	Seismic attributes	43
5.13.1	Requirement of seismic attributes	44
5.13.1.	1 Seismic data domain based upon classification	44
5.13.1.	2 Computational characteristics based upon classification	44
5.13.1.	3 Information characteristics based upon classification	44
5.13.1.	4 Physical information provided by attributes	45
5.13.1.	5 Instantaneous attributes	45
5.13.1.	6 Envelope of trace	45
5.13.1.	7 Instantaneous phase	46
5.13.1.	8 Average energy attributes	47

CHAPTER 6

PETROPHYSICAL ANALYSIS

6.1	Flowchart of petrophysical analysis	49
6.2	Raw log curves and Seg-Y	50
6.3	Editing of well logs	50
6.4	Marking zone of interest	50
6.5	Log analysis procedure	55
6.5.1	Identification of lithology	55
6.6	Calculation of volume of shale	55
6.7	Porosity calculation	56
6.7.1	Neutron porosity	56
6.7.2	Porosity from density log data	57
6.8	Average porosity	58

6.9	Effective porosity	58
6.10	Resistivity of water	59
6.10.1	Methodology	59
6.11	Water saturation	60
6.12	Saturation of hydrocarbon	61
6.13	Well correlation	62
CONC	LUSIONS	63
RECO	MMENDATIONS	64
REFERENCES		65

FIGURES

		Page
Figure 1.1.	Location map of the sanghar area.	02
Figure 1.2.	Sateliteimagery of the location of the Sanghar area.	02
Figure 1.3.	Base map of the study area.	03
Figure 2.1.	Tectonic map of Pakistan showing study area.	08
Figure 2.2.	Structural setting of Southern Indus Basin.	09
Figure 3.1.	Generalize stratigraphic column of Lower Indus Basin.	10
Figure 3.2.	Lithologic stratigraphic column of Lower Indus Basin.	11
Figure 5.1.	Generation of grid for contouring.	20
Figure 5.2.	Base map of the area.	22
Figure 5.3.	Synthetic seismogram of Bobi-01.	26
Figure 5.4.	Synthetic matches on seismic data.	27
Figure 5.5.	Seismic section of 856-SGR-63.	29
Figure 5.6.	Seismic section of 856-SGR-55.	30
Figure 5.7.	Seismic section of 856-SGR-65.	31
Figure 5.8.	Seismic section of 856-SGR-67.	32
Figure 5.9.	Seismic section of 856-SGR-53.	33
Figure 5.10.	Seismic section of 856-SGR-54.	34
Figure 5.11.	Seismic section of 856-SGR-58.	35
Figure 5.12.	Time contour map of Khadro Formation.	36
Figure 5.13.	Time contour map of Parh Limestone.	37
Figure 5.14.	Time contour map of Top Lower Goru.	38
Figure 5.15.	Time contour map of Chiltan limestone	39
Figure 5.16.	Depth contour map of Khadro Formation.	40
Figure 5.17.	Depth contour map of Parh Limestone.	41
Figure 5.18.	Depth contour map of Top of Lower Goru.	42
Figure 5.19.	Depth contour map of Chiltan limestone.	43
Figure 5.20.	Envelope attribute of 856-SGR-54.	46
Figure 5.21.	Phase attribute of 856-SGR-54.	47
Figure 5.22.	Average energy attribute of 856-SGR-54.	48
Figure 6.1.	Petrophysics of Zone-1.	51
Figure 6.2.	Petrophysics of Zone-2.	52
Figure 6.3.	Petrophysics of Zone-3.	53

Figure 6.4.	Petrophysics of Zone-4.	54
Figure 6.5.	Petrophysics of Al-Hakeem-01.	55
Figure 6.6.	Workflow for Rw.	59
Figure 6.7.	Picket plot of Bobi-01.	60

TABLE

		Page
Table 1.1.	Description of lines.	03
Table 1.2.	Seismic acquisition parameters of seismic lines	04
Table 1.3.	Spread parameters of seismic lines	06
Table 3.3.	Divisions of Top of Lower Goru	12
Table 6.1.	Workflow for petrophysical analysis .	49
Table 6.2.	Zone of interest of Bobi-01(Zone-1).	50
Table 6.3.	Zone of interest of Bobi-01(Zone-2).	52
Table 6.4.	Zone of interest of Bobi-01(Zone-3).	53
Table 6.5.	Zone of interest of Bobi-01(Zone-4).	54
Table 6.6.	Zone of interest of Al-Hakeem-01.	54
Table 6.7.	Values of Vsh for the prospective zone of Bobi-01.	56
Table 6.8.	Values of neutron porosity for the prospective zone of Bobi-01	. 56
Table 6.9.	Matrix densities of common lithologies.	57
Table 6.10.	Values of Density porosity of Bobi-01.	58
Table 6.11.	Values of average porosity of Bobi-01.	58
Table 6.12.	Values of effective porosity of Bobi-01.	59
Table 6.13.	Overall values of Rw.	60
Table 6.14.	Values of water saturation in all the zones of Bobi-01.	61
Table 6.15.	Values of hydrocarbon saturation in all the zones of Bobi-01.	61
Table 6.16.	Bobi-01.	62
Table 6.17.	Al-Hakeem-01.	62