HYDROTHERMAL SCHEDULING USING HYBRID ALGORITHM

By Muneeb Yaqoob

Bahria University Islamabad Campus – Pakistan

CERTIFICATE OF ORIGINALITY

I certify that the intellectual contents of the thesis

"Hydrothermal Scheduling using Hybrid Algorithm"

is the product of my own research work except, as cited properly and accurately in the acknowledgment and references, the material taken from any source such as research papers, research journals, books, internet, etc. solely to support, elaborate, compare and extend the earlier work, Further, this work has not been submitted previously for a degree at this or any other University.

The incorrectness if the above information, if proved at any stage, shall authorize the university to cancel my degree.

Signature: _____. Dated: _____.

Name of the Research student: ______.

HYDROTHERMAL SCHEDULING USING HYBRID ALGORITHM

A Thesis Presented to

Bahria University Islamabad

In partial fulfillment of the requirement for the degree of

MS (Electrical Engineering)

By

Muneeb Yaqoob Registration Number 32378 Enrollment Number 01-244122-074

SPRING, 2015

This thesis titled

HYDROTHERMAL SCHEDULING USING HYBRID ALGORITHM

By

Muneeb Yaqoob <u>Registration Number 32378</u> <u>Enrollment Number 01-244122-074</u>

Has been approved

For the Bahria University, Islamabad

External Examiner: _____

Supervisor: ____

Engr. Sh. Saaqib Haroon Assistant Professor, Dept. of Electrical Engg. UET, Taxila

HoD: _____

Dr. Muhammad Najam-ul-Islam Professor, Dept. of Electrical Engg. Bahria University, Islamabad

Declaration

I, Muneeb Yaqoob Registration No. 32378, hereby declare that I have produced the work presented in this thesis, during the scheduled period of study. I also declare that I have not taken any material from any source except referred to wherever due that amount of plagiarism is within acceptable range. If a violation of HEC rules on research has occurred in this thesis, I shall be liable to punishable action under the plagiarism rules of the HEC.

Date: _____

Signature

Muneeb Yaqoob Registration No. 32378 Enrollment No. 01-244122-074

Certificate of Completion of Thesis Work

This is to certify that **Mr. Muneeb Yaqoob** Registration No. 32378 has successfully completed his research thesis, titled **HYDROTHERMAL SCHEDULING USING HYBRID ALGORITHM** under my supervision. The thesis meets the scholarly standard as set by Bahria University, Pakistan.

Date: _____

Supervisor

Engr. Sh. Saaqib Haroon Assistant Professor, Dept. of Electrical Engg. UET, Taxila.

Dedication

Dedicated to my mother, wife and children.

Muneeb Yaqoob Registration Number 32378 Enrollment No. 01-244122-074

ACKNOWLEDGEMENTS

I would offer my utmost gratitude and praise to my Supervisor; Engr.Sh. Saaqib Haroon– Assistant Professor UET, Taxila for his attention, precious time and appropriate guidance; which helped me a lot for completion of this thesis.

In the end, I want to offer appreciation to my family for their patience, care, affection and help during the progress of this research.

Muneeb Yaqoob Registration Number 32378 Enrollment No. 01-244122-074

Abstract

The basic purpose of hydrothermal scheduling is to reduce the cost of thermal plants. To achieve this goal one has to meet certain constraints of hydro and thermal plants. In this regard one has to satisfy different constraints of the hydraulic and thermal power systems. In Short term hydro thermal scheduling load demand follows a periodic variation for one day or a week therefore interval for this range small. For such a short interval the head may be taken constant. The amount of water required for the short range problem is determined by the long range problem [1].

If all the constraints are considered then the short term hydrothermal scheduling (STHS problems becomes complex and nonlinear. The problem has been resolved by numerous traditional and non-conventional procedures. Some of them include random integral programming (MIP) [2], dynamic programming (DP) [3], [4], gradient search method (GSM) [5], particle swarm optimization (PSO) [6], "Quasi-oppositional teaching learning based optimization" [7], "colonel real-coded quantum-inspired evolutionary algorithm" [8] and multi-objective differential evolution method for STHS [9].

In the proposed method following objectives are achieved. A new algorithm is introduced that can minimize the cost of objective function. The proposed algorithm follows the constraints given. Algorithm is capable of identifying the difference between local and global maxima. It is capable of successfully clearing the sensitivity analysis and does not has decreased diversity problem. It has good processing time as compare to the current algorithms.

Table of Contents

ABSTRACT	VIII
LIST OF FIGURES	XII
LIST OF TABLES	XII
1. CHAPTER 01	1
1.1 Introduction	1
1.2 Power System Operational Planning	2
1.3 Problem Statement	3
1.4 Constraints:	4
1.4.1 Continuity equation to obtain water balance	4
1.4.2 Boundary limits for reservoir Volumes and Discharges	4
1.4.3 Staring and Final Reservoir Volume:	5
1.4.4 Generation Capacity	5
1.4.5 System Load Balance:	5
1.5 Overview of thesis	6
2 CHAPTER 02	7
2.1 Hydrothermal Scheduling	7
2.2 Classification of Hydro thermal Scheduling Problem	7
2.2.1 Long range problem	7
2.2.1.1 Multi storage hydroelectric systems	7
2.2.1.2 Cascaded hydroelectric systems	7
2.2.1.3 Multi chain Hydroelectric systems	8
2.2.2 Short range problem	8
2.2.2.1 Fixed head hydrothermal scheduling	8
2.2.2.2 Variable head hydrothermal scheduling	8
2.3 Classification of hydro plants	8
2.3.1 Classification on the base of type	8
2.3.1.1 Pumped Storage Plants	9
2.3.1.2 Conventional Plants	9

2.3.2 Classification on location basis	9
2.3.2.1 Hydro plants located on different stream	9
2.3.2.2 Hydro plants on the same stream	10
2.3.2.3 Multi chain Hydro plants	10
3 CHAPTER 03	14
3.1 Conventional Optimization Techniques	14
3.1.1 Gradient Search Method	14
3.1.2 Newton Raphson Method	14
3.1.3 Lagrange Relaxation Method	14
3.1.4 Dynamic Programming	15
3.2 Heuristic Algorithms	15
3.2.1 Genetic Algorithm	15
3.2.2 Stimulated Annealing	15
3.2.3 Particle swarm optimization	16
3.2.4 Differential evolution	16
4 CHAPTER 04	17
4.1 Literature review of Hydrothermal Scheduling	17
5 CHAPTER 05	21
5.1 Cuckoo search algorithm	21
5.2 Cuckoo search algorithm for short term variable head HTS problem	21
5.3 Implementation of Cuckoo search Algorithm	21
5.3.1 Population generation (Initialization)	22
5.3.2 Generation of new solution using levy flights	22
5.3.3 Discovery of Alien egg and randomization.	23
5.4 Repair procedure for new solutions	24
5.4.1 Meeting the end storage volume	24
5.4.2 Meeting the system power balance	25
5.5 MATLAB Coding to implement CSA for resolving variable head STHS problem	27
6 CHAPTER 06	28
6.1 Test Systems	28
	x

6.1.1	Test System-I	28
6.1.2	Test System-II	28
6.1.3	Test System-III	28
6.2 R	esults	28
6.2.1	Basic Parameters and Results Test System-I	29
6.2.2	Basic Parameters and Results Test System-II	31
6.2.3	Basic Parameters and Results Test System-III	34
7 CH	APTER 07	38
7.1 D	viscussion and conclusion	38
7.2 R	eferences:	39

List of Figures

Figure 2-1	11
Figure 2-2	12
Figure 2-3	13
Figure 5-1	

List of Tables

Table 6-1: Hydro discharges for test system-I	29
Table 6-2: Hydel and thermal powers for test system-I	30
Table 6-3: Hydro discharges for test system-II	31
Table 6-4: Hydel powers for test system-II	32
Table 6-5: Thermal powers test system-II	33
Table 6-6: Hydro discharges for test system-III	34
Table 6-7: Hydel powers for test system-III	35
Table 6-8: Thermal powers for test system-III	36
Table 6-9: Thermal powers for test system-III (continued)	37
Table 7-1 Comparison of different results with the proposed Algorithm	38

List of Abbreviations

MIP	Mixed Integer Programming
GSM	Gradient Search Method
DP	Dynamic Programming
PSO	Particle Swarm Optimization
ED	Economic Dispatch
HTS	Hydro Thermal Scheduling
STHS	Short Term Hydro Thermal Scheduling
CSA	Cuckoo Search Algorithm
LR	Lagrange Relaxation
GA	Genetic Algorithm
SA	Stimulated annealing
DE	Differential Evolution
SPPSO	Small population based PSO
QOTLBO	Quasi-Oppositional Teaching Learning Based Optimization
ISAPSO	Improved Self Adaptive PSO
MDE	Modified DE
CB- MOHDE	Culture Belief Based Multi Objective Hybrid DE
EP	Evolutionary Programming
FEP	Fast EP
MATLAB	Matrix Laboratory
MCSA	Modified CSA