Impact of Distributed Generation on Voltage Profile and Losses of Distribution Network

BY

MUHAMMAD WAQAS

ENROLLMENT NUMBER: 01-244141-034

SUPERVISED BY

JEHANZEB AHMAD

Associate Professor

Session 2014-2016

A Report submitted to the Department of Electrical Engineering Bahria University, Islamabad in partial fulfillment of the requirement for the degree of MS(EE)

CERTIFICATE

We accept the work contained in this report as a confirmation to the required standard for the partial fulfillment of the degree of MS (EE).

Head of Department

Supervisor

Internal Examiner

External Examiner

DECLARATION OF AUTHORSHIP

I hereby declare that content of this thesis is my own work and that it is the result of work done during the period of registration. To the best of my knowledge, it contains no material previously published or written by another person nor material which to a substantial extent has been accepted for the award of any other degree or diploma of the university or other institute of higher learning, except where due acknowledgement has been made in the text.

Parts of this thesis appeared in the following publication, to which I have made substantial contributions:

 Muhammad Waqas and Zmarrak Wali Khan, "The Effect of Distributed Generation on Voltage Profile and Electrical Power Losses" *International Journal of Engineering Works*, Vol. 2, Issue 12, PP. 99-103, Dec. 2015. ISSN: 2409-2770.

ACKNOWLEDGEMENTS

In the name of Allah, the most gracious and the most merciful Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this thesis. I offer my sincerest gratitude to my supervisor, Mr. Jehanzeb Ahmad, who has supported me throughout my thesis with his patience and knowledge. He has not only guided me during this work but also allowed me the room to work in my own way. I am thankful to him for making time for me and giving me opportunity for this work, without him this work would not have been completed or written. One simply could not wish for a better and a friendlier supervisor.

I am grateful to my parents for providing me with all the necessary means for my education, especially my father who had prioritized education on everything. I am thankful to my mother for everything she has done for me, especially during my MS studies, staying awake for me even in the middle of the nights for my return to home from Islamabad every week.

I would like to thank my siblings, cousins, friends and family for their constant encouragement and support throughout my studies and this research work.

I am grateful to Dr. Muhammad Ali Shami and Dr. Salman Ali for enlightening me the first glance of research. In the end but not the least I would like to thank Mr. Muhammad Imranullah for his support during my MSc studies and Dr. Imtiaz Alam for all of his help, patience and guidance.

Muhammad Waqas

ABSTRACT

Energy crises are rising all over the world. The demand of electricity is increasing as the industrialization as well as the population of the World is increasing day by day. In this context not only the energy production is a key to fulfil consumer demands but also the losses of the distribution network need to be minimized. In addition to this, Electricity has to be delivered within the claimed levels by the utility to the end consumer. Distributed generation (DG) together with the centralized generation (CG) can be used to fulfil the energy demands.

Distributed generation integration into the system can improve the voltage profile of the system as well as reduce the losses of the system, though it depends on the nature of a distributed generation source as well as its location of integration into the system.

In this research project, work has been done on the system to improve its voltage profile, minimize the amount of losses of the network and enhance energy production. For this purpose, a test system is designed in ETAP and this test system is analyzed with and without the impact of different DG sources. Different DG sources with different nature from each other are selected for test purposes. These sources include synchronous generator, wind turbine generator and photovoltaic modules. These DG sources are designed in ETAP and then integrated into the test system. After simulation of different DG scenarios results are compared with the base cases and recommendation are made.

Keywords: Distributed Generation, Distributed Generation Integration, Point of Common Coupling, Voltage Profile Improvement, Power Losses, Renewable Energy, Photovoltaic, Wind Turbine Generator, Synchronous Generator.

TABLE OF CONTENTS

Certificate	ii
Declaration of Authorship	iii
Acknowledgements	iv
Abstract	v
Table of Contents	vi
List of Figures	X
List of Tables	xiii
Abbreviations	xvi

Chapter 1 Introduction

1.1	Conventional Power System	2
1.2	Modified Power System	3
1.3	Distributed Generation	3
1.4	Applications of DG	. 4
1.5	Thesis Objectives	4
1.6	Thesis Structure	4
	1.6.1 Outlines of the chapters	5

Chapter 2	Literature Review
2.1	Introduction7
2.2	Types of Distributed Generation
	2.2.1 Photovoltaics
	2.2.2 Wind Turbines
	2.2.3 Micro Turbines
	2.2.4 Fuel Cells
	2.2.5 Induction and Synchronous Generators
2.3	Centralized Generation Vs Distributed Generation
2.4	Islanding Mode

2.4.1 Intentional Islanding	
2.4.2 Unintentional Islanding	
2.5 Voltage and Power Impact of DG	

Chapter 3 Research Methodology

3.1 Research Objectives
3.2 Tasks
3.3 Assumptions
3.4 Methodology23
3.4.1 ETAP
3.4.2 Selected Grid
3.4.3 Loading, CT Ratio and Calculated Amperes of Feeders25
3.4.4 Number of Consumers
3.4.5 Distribution Transformers of the Grid27
3.4.6 Cables Data of the Grid28
3.5 Circuit Description
3.5.1 Single Line Diagram
3.5.2 Test Feeder's Single Line Diagram31
3.6 Designed DG Scenarios
3.6.1 Designed/ Modeled Synchronous Generator32
3.6.1.1 Ratings32
3.6.1.2 Type32
3.6.1.3 Grounding33
3.6.2 Wind Turbine Generator
3.6.2.1 WTG Type33
3.6.2.2 Rating
3.6.2.3 Turbine Ratings
3.6.2.4 Grounding33
3.6.2.5 Power Curve
3.6.3 Photovoltaic

3.6.3.1 PV Type	34
3.6.3.2 Ratings	34
3.6.3.3 PV Array	34
3.6.3.4 Module Dimensions	34

Chapter 4

4.1 Designed Scenarios
4.2 Testing the System without DG Sources
4.3 Testing the System with DG Sources
4.4 Scenario A: With Synchronous Generator
4.4.1 Scenario A1: With DG unit at Bus 238
4.4.2 Scenario A2: With DG unit at Bus 340
4.4.3 Scenario A3: With DG unit at Bus 441
4.4.4 Scenario A4: With DG unit at Bus 543
4.4.5 Scenario A5: With DG unit at Bus 645
4.4.6 Scenario A6: With DG unit at Bus 747
4.5 Scenario B: With Wind Turbine Generator49
4.5.1 Scenario B1: With DG unit at Bus 249
4.5.2 Scenario B2: With DG unit at Bus 351
4.5.3 Scenario B3: With DG unit at Bus 453
4.5.4 Scenario B4: With DG unit at Bus 555
4.5.5 Scenario B5: With DG unit at Bus 657
4.5.6 Scenario B6: With DG unit at Bus 759
4.6 Scenario C: With Photovoltaic61
4.6.1 Scenario C1: With DG unit at Bus 262
4.6.2 Scenario C2: With DG unit at Bus 363
4.6.3 Scenario C3: With DG unit at Bus 465
4.6.4 Scenario C4: With DG unit at Bus 567
4.6.5 Scenario C5: With DG unit at Bus 669

4.6.6 Scenario C6: With DG unit at Bus 771
4.7 Bus Wise Impact on Voltage Profile and Losses with DG Sources 73
4.7.1 Injection Point Being Bus Number 274
4.7.2 Injection Point Being Bus Number 375
4.7.3 Injection Point Being Bus Number 476
4.7.4 Injection Point Being Bus Number 577
4.7.5 Injection Point Being Bus Number 578
4.7.6 Injection Point Being Bus Number779

Chapter 5 Summary and Conclusion

5.1 Voltage Profile Summary	81
5.2 Active Power Losses	82
5.3 Reactive Power Losses	83
5.4 Summary and Conclusion	84

ferences

LIST OF FIGURES

Fig 1.1	Conventional Power System
Fig 1.2	Modified Power System
Fig 2.1	Components of Typical PV11
Fig 2.2	Schematic Arrangement of a Typical Wind Turbine12
Fig 2.3	Schematic Arrangement of Micro Turbine13
Fig 2.4	Typical Fuel Cell Arrangement14
Fig 3.1	DGs integration into the System23
Fig 3.2	Single Line Diagram of the Grid
Fig 3.3	Test System
Fig 3.4	Power Curve of WTG
Fig 4.1	Effect on Voltage Profile with SG at Bus 2
Fig 4.2	Effect on Losses with SG at Bus 2
Fig 4.3	Effect on Voltage Profile with SG at Bus 340
Fig 4.4	Effect on Losses with SG at Bus 341
Fig 4.5	Effect on Voltage Profile with SG at Bus 442
Fig 4.6	Effect on Losses with SG at Bus 443
Fig 4.7	Effect on Voltage Profile with SG at Bus 544
Fig 4.8	Effect on Losses with SG at Bus 545
Fig 4.9	Effect on Voltage Profile with SG at Bus 646
Fig 4.10	Effect on Losses with SG at Bus 647

Fig 4.11	Effect on Voltage Profile with SG at Bus 748
Fig 4.12	Effect on Losses with SG at Bus 749
Fig 4.13	Effect on Voltage Profile with WTG at Bus 250
Fig 4.14	Effect on Losses with WTG at Bus 251
Fig 4.15	Effect on Voltage Profile with WTG at Bus 352
Fig 4.16	Effect on Losses with WTG at Bus 353
Fig 4.17	Effect on Voltage Profile with WTG at Bus 454
Fig 4.18	Effect on Losses with WTG at Bus 455
Fig 4.19	Effect on Voltage Profile with WTG at Bus 556
Fig 4.20	Effect on Losses with WTG at Bus 557
Fig 4.21	Effect on Voltage Profile with WTG at Bus 658
Fig 4.22	Effect on Losses with WTG at Bus 6
Fig 4.23	Effect on Voltage Profile with WTG at Bus 760
Fig 4.24	Effect on Losses with WTG at Bus 761
Fig 4.25	Effect on Voltage Profile with PV at Bus 262
Fig 4.26	Effect on Losses with PV at Bus 263
Fig 4.27	Effect on Voltage Profile with PV at Bus 364
Fig 4.28	Effect on Losses with PV at Bus 365
Fig 4.29	Effect on Voltage Profile with PV at Bus 466
Fig 4.30	Effect on Losses with PV at Bus 467
Fig 4.31	Effect on Voltage Profile with PV at Bus 5
Fig 4.32	Effect on Losses with PV at Bus 5
Fig 4.33	Effect on Voltage Profile with PV at Bus 670

Fig 4.34	Effect on Losses with PV at Bus 6	.71
Fig 4.35	Effect on Voltage Profile with PV at Bus 7	.72
Fig 4.36	Effect on Losses with PV at Bus 7	.73
Fig 5.1	Summary of Voltage Profile of Test System	.81
Fig 5.2	Active Power's Summary of Test System	.82
Fig 5.3	Reactive Power's Summary of Test System	.83

LIST OF TABLES

Table 2.1	Categorization of DG Units
Table 2.2	DG Components and Available Sizes per Module9
Table 2.3	Centralized Generation Vs Distributed Generation16
Table 3.1	Feeders Data of Cantt Grid25
Table 3.2	Number of Consumers
Table 3.3	Distribution Transformers Ratings27
Table 3.4	Feeder Wise Transformers Ratings (in kVA)28
Table 3.5	Conductors Data of the Grid29
Table 3.6	Test System's Transformers Ratings
Table 3.7	PV module dimensions35
Table 4.1	Effect on Voltage of System with SG on Bus 2
Table 4.2	Effect on Losses of System with SG on Bus 2
Table 4.3	Effect on Voltage of System with SG on Bus 340
Table 4.4	Effect on Losses of System with SG on Bus 341
Table 4.5	Effect on Voltage of System with SG on Bus 442
Table 4.6	Effect on Losses of System with SG on Bus 443
Table 4.7	Effect on Voltage of System with SG on Bus 544
Table 4.8	Effect on Losses of System with SG on Bus 545
Table 4.9	Effect on Voltage of System with SG on Bus 646
Table 4.10	Effect on Losses of System with SG on Bus 647
Table 4.11	Effect on Voltage of System with SG on Bus 748

Table 4.12	Effect on Losses of System with SG on Bus 749
Table 4.13	Effect on Voltage of System with WTG on Bus 250
Table 4.14	Effect on Losses of System with WTG on Bus 251
Table 4.15	Effect on Voltage of System with WTG on Bus 352
Table 4.16	Effect on Losses of System with WTG on Bus 353
Table 4.17	Effect on Voltage of System with WTG on Bus 454
Table 4.18	Effect on Losses of System with WTG on Bus 455
Table 4.19	Effect on Voltage of System with WTG on Bus 556
Table 4.20	Effect on Losses of System with WTG on Bus 557
Table 4.21	Effect on Voltage of System with WTG on Bus 6
Table 4.22	Effect on Losses of System with WTG on Bus 6
Table 4.23	Effect on Voltage of System with WTG on Bus 760
Table 4.24	Effect on Losses of System with WTG on Bus 761
Table 4.25	Effect on Voltage of System with PV on Bus 262
Table 4.26	Effect on Losses of System with PV on Bus 263
Table 4.27	Effect on Voltage of System with PV on Bus 364
Table 4.28	Effect on Losses of System with PV on Bus 365
Table 4.29	Effect on Voltage of System with PV on Bus 466
Table 4.30	Effect on Losses of System with PV on Bus 467
Table 4.31	Effect on Voltage of System with PV on Bus 568
Table 4.32	Effect on Losses of System with PV on Bus 569
Table 4.33	Effect on Voltage of System with PV on Bus 670
Table 4.34	Effect on Losses of System with PV on Bus 671

Table 4.35	Effect on Voltage of System with PV on Bus 772
Table 4.36	Effect on Losses of System with PV on Bus 773
Table 4.37	Voltage Profile with Injection of DG Sources at Bus Number 274
Table 4.38	Power Losses with Injection of DG Sources at Bus Number 274
Table 4.39	Voltage Profile with Injection of DG Sources at Bus Number 375
Table 4.40	Power Losses with Injection of DG Sources at Bus Number 375
Table 4.41	Voltage Profile with Injection of DG Sources at Bus Number 476
Table 4.42	Power Losses with Injection of DG Sources at Bus Number 476
Table 4.43	Voltage Profile with Injection of DG Sources at Bus Number 577
Table 4.44	Power Losses with Injection of DG Sources at Bus Number 577
Table 4.45	Voltage Profile with Injection of DG Sources at Bus Number 678
Table 4.46	Power Losses with Injection of DG Sources at Bus Number 678
Table 4.47	Voltage Profile with Injection of DG Sources at Bus Number 779
Table 4.48	Power Losses with Injection of DG Sources at Bus Number 779

ABBREVIATIONS

DG: Distributed Generation
ETAP: Electrical Transient Analyzer Program
CG: Centralized Generation
PV: Photovoltaic
WTG: Wind Turbine Generator
SG: Synchronous Generator
IEA: International Energy Agency
GW: Gigawatt
MW: Megawatt
IEEE: Institute of Electrical and Electronics Engineers
CIGRE: International Council on Large Electricity Systems
EPRI: Electric Power Research Institute
DC: Direct Current
AC: Alternating Current
MPPT: Maximum Power Point Tracking system
MVA: Mega Volt Ampere
MVAR: Mega Volt Amperes Reactive
MW: Megawatts
WECC: Western Electricity Coordinating Council
WAPDA: Water and Power Development Authority
PESCO: Peshawar Electric Supply Company