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A B S T R A C T

Background and objectives: Macular diseases tend to damage macula within human retina

due to which the central vision of a person is affected. Macular edema (ME) and central serous

retinopathy (CSR) are two of the most common macular diseases. Many researchers worked

on automated detection of ME from optical coherence tomography (OCT) and fundus images,

whereas few researchers have worked on diagnosing central serous retinopathy. But this

paper proposes a fully automated method for the classification of ME and CSR through robust

reconstruction of 3D OCT retinal surfaces.

Methods: The proposed system uses structure tensors to extract retinal layers from OCT images.

The 3D retinal surface is then reconstructed by extracting the brightness scan (B-scan) thick-

ness profile from each coherent tensor. The proposed system extracts 8 distinct features

(3 based on retinal thickness profile of right side, 3 based on thickness profile of left side

and 2 based on top surface and cyst spaces within retinal layers) from 30 labeled volumes

(10 healthy, 10 CSR and 10 ME) which are used to train the supervised support vector ma-

chines (SVM) classifier.

Results: In this research we have considered 90 OCT volumes (30 Healthy, 30 CSR and 30

ME) of 73 patients to test the proposed system where our proposed system correctly clas-

sified 89 out of 90 cases and has promising receiver operator characteristics (ROC) ratings

with accuracy, sensitivity and specificity of 98.88%, 100%, and 96.66% respectively.

Conclusion: The proposed system is quite fast and robust in detecting all the three types of

retinal pathologies from volumetric OCT scans. The proposed system is fully automated and

provides an early and on fly diagnosis of ME and CSR syndromes. 3D macular thickness sur-

faces can further be used as decision support parameter in clinical studies to check the volume

of cyst.

© 2016 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Macular diseases are the collective group of diseases that
affect the central vision. If they are left untreated, they can
cause severe visual impairments or even blindness. Unfortu-
nately due to lack of health resources in developing countries
like Pakistan, the rate of visually impaired people are increas-
ing day by day [1]. Globally, macular diseases are the second
major cause of blindness following cataract [2]. The most
common macular diseases are macular edema (ME) and central
serous retinopathy (CSR). ME occurs due to retinal swellings
within macular pathology where these swellings are mainly
due to diabetes and cataract surgeries [3]. CSR is another
variation of macular disorders that damage the central vision
of a person. CSR is due to the rapture in the retinal pigment
epithelium (RPE) which leads to the accumulation of serous
fluid beneath neurosensory retina [4,5]. Fig. 1 shows the OCT
image of a healthy person and a patient with macular disor-
ders where the foveal thickness between ILM and choroid is
indicated for both cases.

A number of articles have presented detailed clinical lit-
erature on ME and CSR using OCT images. Shrestha et al. [6]
found the usefulness of OCT imaging after ME surgeries. They
consider a dataset of 60 patients in their study. Hannouche and
Ávila [7] compared the different eye testing techniques and con-
cluded that OCT imaging is more effective in early macular
syndromes. Mokwa et al. [8] also compared different eye testing
techniques for grading of age related macular degeneration
(AMD) and choroidal neovascularization (CNV) and they con-
cluded that OCT is more efficient than fundus fluorescein
angiography (FFA) to diagnose early symptoms of macular pa-
thology; however, it cannot fully replace FFA. Zhang et al. [9]
gave an overview of OCT imaging system and also its usage
for diagnosing and treating diabetic macular edema (DME).
Ferrara et al. [10] used 15 eyes of 13 patients to extract differ-
ent features of retinal pigment epithelium (RPE) and choroid
to diagnose CSR positive candidates. Helmy and Allah [11] used
the dataset of 104 eyes of 86 patients to detect cystoid macular
edema (CME). The sample population was from the age group
of 50 to 71 years. In their study, they concluded that OCT
imaging is a very useful non-invasive technique to detect early
pathological changes and cyst spaces within macula.Teke et al.
[12] compared fundus auto fluorescence (FAF) and OCT imaging

on a dataset of 100 CSR candidates and concluded that both
techniques are quite effective in clinically diagnosing CSR. Wani
et al. [13] used OCT and FFA to diagnose 48 CSR candidates and
they concluded that OCT is the good alternative to fluores-
cein angiography (FA) for diagnosing CSR. Mitarai et al. [14] used
a dataset of 26 patients with 23 to 3 men and women ratio and
they have detected the variations in fluid leakage points in CSR
candidates. Ahlers et al. [15] considered 18 patients suffering
from CSR and they concluded that OCT gives an objective evalu-
ation of retinal pathology under CSR symptoms. Apart from
this, some researchers have also proposed automated algo-
rithms to detect ME from OCT images. Zhang et al. [16]
segmented retinal layers to diagnose CME from macular pa-
thology using adaptive boosting (AdaBoost) algorithm and they
achieved the accuracy of 98.60%. Wilkins et al. [17] used a
dataset of 16 subjects and detected inter-retinal fluid by manu-
ally annotating inner limiting membrane (ILM) and retinal
pigment epithelium (RPE) with the sensitivity and specificity
ratings of 91% and 96% respectively. Srinivasan et al. [18] au-
tomatically diagnosed diabetic macular edema (DME), AMD and
healthy pathology within macular region and they achieved
the accuracy of 100%, 100% and 86.67% respectively. Sugruk et al.
[19] proposed a fully automated method to diagnose AMD and
DME. For AMD, they detect RPE abnormalities within macular
scan and to detect DME, they extracted cyst segments with the
accuracy of 100% and 86.6% respectively.

To the best of our knowledge, no technical paper related to
automated detection of CSR was found in literature except
Ref. [20] in which we proposed a structure tensor based au-
tomated detection of CSR, ME and healthy pathology from OCT
B-scans. We achieved an overall accuracy of 98.88% for cor-
rectly classifying ME, CSR and healthy scans. Here, we propose
an extension of the fully automated algorithm proposed in Ref.
[20] to detect ME and CSR by reconstructing 3D retinal thick-
ness surfaces and cyst cavity from OCT volumes. The robust
reconstruction is based on adaptive de-noising filter [21] and
coherent tensors. Afterwards the proposed system uses SVM
to distinguish between healthy, CSR and ME subjects. The
rest of the paper is organized as follow: section 2 is about the
in-depth description of proposed methodology, section 3 dem-
onstrates our results and accuracy for automatically classifying
macular subjects, section 4 is about the discussion on our pro-
posed implementation and section 5 outlines conclusions and
future directions.

Fig. 1 – Macular analysis: (a) CSR affected OCT scan; (b) normal macular OCT scan; (c) ME affected OCT scan.
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2. Proposed methodology

The proposed algorithm for multi-classification of ME, CSR and
healthy candidates is based on three stages. The first stage is
related to the robust reconstruction of 3D retinal thickness sur-
faces and cyst space cavities from input OCT B-scan volume
which are fed to the second stage in which 8D feature vector
is extracted. The 8D feature vector “f” is composed of 8 dis-
tinctive features from all the three thickness sides (axis) of 3D
surface and cyst space cavity which are then passed to the third
stage. The third stage is related to the supervised multi-
classification of ME, CSR and healthy cases using trained pair
of SVM classifiers. The classification is based on the passed

feature vector “f” upon which SVM was trained using 30 labeled
volumes. The block diagram of the proposed system is shown
in Fig. 2.

2.1. OCT dataset acquisition

The dataset which have been used in this article is collected
locally from Armed Forces Institute of Ophthalmology (AFIO),
Rawalpindi. The dataset has 90 OCT volumes (consisting of
128 B-scans) of 73 patients in which 54 were male and 19 were
female. The OCT volumes within the dataset consist of time
domain OCT (TD-OCT) B-scans which are acquired using
TOPCON 3D OCT-2000 machine. The detailed description about
the dataset is shown in Table 1.

Fig. 2 – Proposed methodology: (a) 3D retinal surface reconstruction; (b) feature set formulation; (c) retinal subject
classification.

Table 1 – Patients data and scanning parameters of OCT dataset.

Patients data Scanning parameters Type

Healthy CSR ME

Total patients 73 Total subjects 30 30 30
Male 54 Axial resolution (µm) 3 ~ 3.8 3 ~ 3.8 3 ~ 3.8
Female 19 Lateral resolution (µm) 11 ~ 13 7 ~ 13 11 ~ 13
Mean age 36.2 Azimuthal resolution (µm) 49 ~ 122 58 ~ 129 63 ~ 186
Total eyes 90 Scan resolution (pixel × pixel) 480 × 1280 480 × 1280 480 × 1280
Unilateral 56 B-scans 128 115 ~ 134 117 ~ 126
Bilateral 17 A-scans (points) 480 points 480 points 480 points
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2.2. 3D retinal surface reconstruction

The first stage of our proposed algorithm is the reconstruc-
tion of 3D retinal surfaces and cyst spaces. Many automated
methods are used to predict the retinal edema from best
selected OCT B-scans; however, single B-scan is not enough
to fully analyze retinal edema. In fact ophthalmologists also
analyze the 3D retinal surface for objective evaluation of
retinal pathology. Currently to the best of our knowledge, no
automated method exists that incorporate reconstruction of
3D OCT surfaces for the diagnosis of macular edema and
central serous retinopathy. Therefore we have extended our
algorithm proposed in Ref. [20] to reconstruct accurate retinal
and cyst surfaces which are then used for the automated
diagnosis of ME, CSR and healthy candidates. The detailed
description of each processing step to generate B-scan thick-
ness profile from each frame has been already explained in
Ref. [20] and here we will only discuss the extension of our
algorithm to reconstruct and incorporate 3D retinal surfaces
for the automated diagnosis of all the three types of retinal
pathologies. After generating the thickness profile from the
coherent tensor of each frame, a retinal surface R x y z, ,( ) is
reconstructed by combining them all into a single volumetric
surface as shown in Fig. 3.

R x y z, ,( ) is then smoothen using multivariate Gaussian
smoothing filter as expressed in Eq. (1)

R x y z R x y zD i j k
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µ is the mean value of the neighboring Gaussian window
and ε is the 3 × 3 covariance matrix.

2.3. Feature set extraction

After the successful reconstruction of 3D retinal surfaces, 8 dis-
tinct features are automatically extracted from retinal and cyst
surfaces to classify healthy, CSR or ME pathology. 6 features
are obtained from thickness surface generated from seg-
mented ILM and choroid layer and 2 features are extracted from
cyst fluid present within diseased retinal layers to form feature
vector ( f f f f f f f f f= { }1 2 3 4 5 6 7 8, , , , , , , ). The retinal surface has
three axes or sides as shown in Fig. 4; the retinal surface is
generated by taking the absolute difference of ILM and choroid
in each B-scan frame.

The description of each feature to is given below:

Max thickness of left side f1( ) : It is the maximum value in
the mean thickness vector T n vleft ( ), which is generated by taking
the mean of the left side. f1 is expressed by Eqs. (5–6) and
T n vleft ( ) is generated using Eqs. (3–4):

T n v T n v T n v T n vleft left left left i( ) = ( ) ( ) ( )[ ]1 2, , ,… (3)

where

T n v Mean B Bleft i ILMLeft ChoroidLeft( ) = ( ) − ( )( )u v u v, , (4)

f max T n vleft1 = ( )[ ] (5)

f max Mean B BILMLeft ChoroidLeft1 = ( ) − ( )[ ]u v u v, , (6)

Min thickness of the left side f2( ) : It is the minimum value
in the mean thickness vector T n vleft ( ) which is due to minimum
gap in T n vleft ( ) as expressed by Eqs. (7–8):

f min T n vleft2 = ( )[ ] (7)

f min Mean B BILMLeft ChoroidLeft2 = ( ) − ( )[ ]u v u v, , (8)

Fig. 3 – Reconstructed 3D retinal surface: cyst regions are
highlighted in red color while normal regions are shown in
green color. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version
of this article.) Fig. 4 – Three sides of reconstructed retinal surface.
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Thickness variation in the left side f3( ) : It is the absolute dif-
ference between f2 and f1 as expressed by Eq. (9), it tells about
the variation between the layers due to presence of cyst fluid
between the retinal layers.

f f f3 2 1= − (9)

Max thickness of right side f4( ) : It is the maximum value
in the mean thickness vector T n vright ( ), which is generated by
taking the mean of the right side.

Min thickness of right side f5( ) : It is the minimum value in
the mean thickness vector T n vright ( ), which is due to minimum
gap in T n vright ( ).

Thickness variation in the right side f6( ) : It is the absolute
difference between f5 and f4, which depicts the variation
between retinal layers due to presence of cyst fluid.

Retinal Top Surface Area f7( ) : The top surface area deter-
mines the area occupied by the leaked fluid within retinal
layers. It is computed by taking area of top surface projection
of R x y z, ,( ) as expressed by the Eq. (10):

f TopSurfaceArea R x y z7 = ( )( ), , (10)

Top surface area is computed by generating the binary
map of R x y z, ,( ) and computing the area of the binary map
as shown in Fig. 5.

Cyst Energy f8( ) : It is the total energy of a mean cyst space
cavity calculated by Eq. (11). The block diagram of cyst energy
extraction is also shown in Fig. 6. The purpose of calculating
cyst energy is to discriminate ME cyst pathology from retinal
serous pathology:

f Low band DWT Mean Cyst x y z8
2= ( )( )( )( ), , (11)

The feature vector of five randomly selected samples from
the unlabeled dataset is shown in Table 2. These vectors are
generated for all the three types of macular pathologies. From
Table 2, it can be observed that all the 8 features are quite dis-
tinct for all three cases.

2.4. Classification

The third stage of the proposed system is related to the clas-
sification of retinal pathology based on the extracted feature
set. The proposed system is based on multi-level classifica-
tion in which we have used pair of supervised SVM classifiers
to classify all the three types of retinal pathology. At first the
SVM was trained to classify healthy or diseased surface based
on 8 extracted features, afterwards if the surface is classified
as diseased, then it is further classified as CSR or ME based
on 7th and 8th features.The classification process is also shown
in Fig. 7.

Fig. 5 – Retinal surface: (a) top projection; (b) binary map of (a).

Fig. 6 – Cyst energy extraction through wavelet decomposition.
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2.4.1. Classifier training phase
For classification of retinal pathologies, we have used super-
vised support vector machines (SVM) classifier. After extracting
8 distinct features from retinal thickness and cyst surface, they
are used to predict the respective retinal pathology. SVM is one
of the most popular and widely used classifier [22], and two
kernels multilayer perceptron kernel (MLP) and Gaussian radial
basis function (RBF) are used in the proposed system. Train-
ing phase of classifier is shown in Fig. 8.

We used a total of 30 labeled OCT volumes (10 Healthy, 10
CSR, 10 ME) annotated by an expert ophthalmologist for train-
ing purpose of SVM classifiers. After computing the feature set
“f,” it is passed to supervised SVM classifiers. After classify-
ing the labeled samples, K-fold cross validation is performed
for different values of “K” to calculate maximum accuracy as
shown in Table 3.

2.4.2. Retinal subjects classification
After training the classifier, it was used to classify test OCT
volumes by extracting the 8D feature vector. The classifica-
tion is based on multilevel as shown in Fig. 7 and the candidate
volume is classified into one of the three cases i.e. healthy, ME
positive or CSR positive. The flow chart of the proposed system
is shown in Fig. 9.

3. Results

Different unlabeled OCT volumes from our dataset are passed
to the proposed system for the automated diagnosis of macular
syndromes and our system correctly classified all the ME and
CSR candidates. For the healthy case, our proposed system
correctly classified 29/30 subjects. These results on unlabeled
dataset were also cross validated and verified by expert oph-
thalmologists. Table 4 shows the results of our proposed system
for each type of pathology.

Fig. 10 shows the results of our cyst segmentation on ran-
domly selected B-scan from each syndrome. Segmented ILM
layer and choroid are shown in “red” and “green” color respec-
tively, whereas segmented cysts are shown in “yellow” color.

Table 2 – Features extracted from all 3 types of retinal subjects.

Type Cases Features

F1 (mm) F2 (mm) F3 (mm) F4 (mm) F5 (mm) F6 (mm) F7 (pixels) F8 (volts2.sec)

ME Case 1 379.04 89.62 289.42 355.01 213.22 141.78 2654.60 89,855.1
Case 2 369.83 212.67 157.16 407.20 241.07 166.13 2901.20 179,977
Case 3 331.43 193.21 138.22 347.08 196.21 150.86 2937.77 138,123
Case 4 350.21 160.24 189.97 350.49 199.54 150.95 3024.57 235,713
Case 5 335.52 170.63 164.89 341.52 205.14 136.38 2859.13 152,351
Mean 353.20 165.27 187.93 360.26 211.03 149.22 2875.45 159,203
S.D. 20.855 46.915 59.693 26.698 17.982 11.312 137.681 53,818.6

CSR Case 1 317.34 126.50 190.84 340.97 147.28 193.69 242.0 3423
Case 2 342.87 104.62 238.24 376.75 193.15 183.60 755.3 3483
Case 3 355.15 199.87 155.28 300.75 228.43 72.320 84.56 7182
Case 4 330.47 150.58 179.89 346.58 176.98 169.60 96.84 5147
Case 5 336.70 143.98 192.72 403.22 163.87 239.35 119.0 3398
Mean 336.50 145.11 191.39 353.65 181.94 171.71 259.54 4526.6
S.D. 14.070 35.410 30.137 38.729 30.981 61.405 284.13 1659.57

Healthy Case 1 85.45 32.97 52.48 52.23 36.25 15.98 35 504.25
Case 2 42.79 37.84 4.950 68.42 45.66 22.76 47 401.75
Case 3 57.41 24.31 33.10 59.48 41.96 17.52 40 632.21
Case 4 58.79 30.54 28.25 75.18 44.25 30.93 26 458.94
Case 5 60.87 42.15 18.72 45.62 24.59 21.03 49 215.16
Mean 61.06 33.56 27.50 60.18 38.54 21.64 39.40 442.46
S.D. 15.38 6.839 17.61 11.92 8.585 5.851 9.343 152.82

Fig. 7 – Multilevel supervised classification.

Table 3 – Classifier cross validation performance.

K Max accuracy

2 0.942
4 0.957
8 0.968

10 0.980
12 0.974

The bold row indicates the highest accuracy that has been achieved
on the training dataset for K = 10.
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Fig. 8 – Training phase of SVM supervised classifier.

Fig. 9 – Flowchart of classification algorithm.
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Some of the randomly selected retinal surfaces for all the
three types of retinal pathologies are shown in Fig. 11.The peak
thickness is defined by red color and the dip is defined by the
blue color.

4. Discussion

This paper proposes an automated method for diagnosing three
types of macular pathologies (i.e. ME, CSR and healthy) from
OCT volumes. We have extended our algorithm proposed in
Ref. [20] to incorporate 3D retinal surfaces to diagnose all the
three types of macular syndromes since a single B-scan cannot
be used to diagnose the severity of the disease. The dataset
used in this research is collected from AFIO and it contains 90
OCT volumes (30 CSR, 30 ME and 30 healthy volumes). The
detailed description about the dataset is presented in Table 1.
The proposed system takes an OCT volume as an input and
reconstruct 3D retinal surface by extracting a coherent tensor
from each B-scan. The proposed system also extracts cyst seg-
ments from each scan and generates a cyst surface. Then both
of these surfaces are used to extract 8D feature vector which
is passed to multilevel SVM classifiers to classify all the three
cases. The proposed method is quite fast and robust in de-
tecting macular pathologies. It takes around a minute on
average to reconstruct retinal surfaces and diagnose a candi-
date volume, on a machine with core i5 (2.2 GHz) 5th generation

multithreaded processor and 4 GB RAM. Apart from this, the
proposed system is rotation invariant and it incorporates the
full 3D OCT volume instead of single best selected B-scan, so
the proposed system can objectively evaluate the retinal pa-
thology which can be easily cross validated and verified by
ophthalmologist. 3D retinal thickness surface provides the best
and objective method to detect any type of retinal pathology
and the proposed system reconstructs those surfaces to au-
tomatically diagnose CSR, ME and healthy subjects.The dataset
used in this research was annotated by multiple expert oph-
thalmologists and our system correctly classified all the
diseased subjects. Our proposed system is dependent on the
quality of the input scans as there were some poor scans in
our dataset and one of such scans led to the misclassification
of healthy candidate as false positive. Fig. 12 depicts two of such
low quality B-scans and we can see that the significant portion
of neurosensory retina is washed out in these B-scans.

Since there is a tradeoff between sensitivity and specific-
ity, we have tuned our proposed system to give more priority
to the diseased volumes as compared to the healthy ones
because false negatives are more critical in this application as
compared to the false positives. The proposed technique can
act as an aid to ophthalmologists. A machine can automati-
cally reconstruct 3D retinal surfaces and can measure the retinal
thickness, which doctors can use to back their decision. The
proposed system can help in clinical studies as a decision support
system and fresh doctors with less experience can rely on this.

5. Conclusion

An automated algorithm is proposed here which is used to di-
agnose three types of macular pathologies.The proposed system
is based on OCT volume from which 3D retinal surfaces are
reconstructed by extracting a coherent tensor from each B-scan.

Table 4 – Achieved results.

Type Correctly
classified

Accuracy Sensitivity Specificity

Healthy 29/30 98.88% 100% 96.66%
CSR 30/30
ME 30/30

Fig. 10 – Unlabeled images: (a) ME cyst, ILM and choroid segmentation; (b) healthy segmentation; (c) CSR cyst, ILM and
choroid segmentation.
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The proposed system uses a supervised SVM based multi-
level classification system as shown in Fig. 7. The dataset used
in this research has been collected from AFIO and the de-
tailed information about the dataset is presented in Table 1.

Also, our system is quite fast, robust and has promising re-
ceiver operator characteristics (ROC) ratings. Currently we have
generated retinal surfaces (from 128 B-scans volumes) using
a single thread sequential process and reconstructing retinal

surfaces from a very large volume can be cumbersome. So in
the future this can be optimized by processing each B-scan in
parallel on multiple CPU or GPU threads. Also, this work can
be extended for grading of these retinal diseases and the pro-
posed method can be extended to diagnose other macular and
ocular disorders such as AMD and glaucoma etc. The same
system can be extended and tailored for circular optic nerve
head (ONH) scans for diagnosis of glaucoma.

Fig. 11 – 3D retinal thickness surfaces: (a) ME classified surfaces; (b) CSR classified surfaces; (c) healthy surfaces.

Fig. 12 – Bad quality OCT scans: (a) healthy; (b) diseased.
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