

REAL TIME INTELLIGENCE SYSTEM FOR DRIVER FATIGUE

By

ASADULLAH

22737

BSCS

SAMEED AHMED

22764

BSCS

Submitted To: MS. LUBNA SIDDIQUI

In fulfillment of the requirement for the degree of

BS (Computer Science)

DEPAREMENT OF COMPUTER SCIENCE

BAHRIA UNIVERSITY

2014

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express our gratitude to my research supervisor, Madam Lubna Siddiqui for her invaluable advice, guidance and her enormous patience throughout the development of the research.

In addition, we would also like to express our gratitude to our loving family and friends who had helped and given us encouragement.

REAL TIME INTELLIGENCE SYSTEM FOR DRIVER FATIQUE

ABSTRACT

Driver fatigue is the major cause of traffic accidents, since Sleepy drivers are unable to make rapid decisions to control the situations. So we develop a system which will help to decrease the amount of crashes due to fatigued driver. Our system is implemented by using Matlab and its image processing tool box. The system uses a web camera that that points directly towards the driver face and began to monitor the driver eyes in order to detect fatigue. And when the fatigue is detected a warning system is trigger to alert the driver. Our report will describe that how we find the eyes and also define how we determine in the system that the eyes are open or closed. Our algorithm is unique to any currently published papers. The system uses viola and Jones algorithm to find the face in the frame. Once face is found. The next step is to find the eyes which are found by using our self developed algorithm we named as cropper. Our cropper function finds the left and right eye separately. Now we apply our self modified intensity algorithm on left and right eye, which measure the distance between the intensity changes in eyes. A small distance corresponds to eye open and large distance to eye closure. If the eyes are found closed for 5 continuous frames, the system will draw conclusion that driver is asleep and issue an alarm call. The system is also able to detect when eyes are not found and its work under adequate light.

Keyword: Viola and Jones, Intensity, Threshold

TABLE OF CONTENTS

DECLAR	ii					
APPROV.	iii					
ACKNOV	VLEDGE	MENTS		v		
ABSTRA	vi					
TABLE O	vii					
LIST OF TABLES						
LIST OF FIGURES						
LIST OF	SYMBO	LS / ABB	REVIATIONS	xiv		
CHAPTE	R					
1	INTE	INTRODUCTION				
	1.1	Backg	Background			
	1.2	Proble	Problem Statements			
	1.3	Aims a	and Objectives	2		
	1.4	Scope	of Project	2		
2	Requ	Requirements				
	2.1	Functional Requirement		3		
		2.1.1	System Specification	3		
		2.1.2	Software Version	3		
		2.1.3	Camera Quality	3		
		2.1.4	System Speaker	3		
		2.1.5	Operating System	4		
	2.2	Non-Functional Requirement		4		
		2.2.1	Camera Distance	4		
		2.2.2	Camera Angle	4		
		2.2.3	Driver Head Placement	4		
		2.2.4	Lightening Effects	4		

			VIII			
3	LITERATURE REVIEW					
	3.1	Brain studies couple EEG with electrooculography:				
	3.2	Volvo Cars introduced its Driver Alert Cont	rol system 5			
	3.3	ASV (Advanced Safety Vehicle) project	5			
	3.4	Advanced Driver Fatigue Research	6			
	3.5	Real-Time Warning System for Driver Drowsiness Detection				
	Using Visual Information					
	3.6	6 Drowsy Driver Detection System				
	3.7	Detecting Faces in Images: A Survey	7			
4	DESIGN AND METHODOLOGY					
	4.1	Camera Initialization:	8			
	4.2	Video Frames:	9			
	4.3	Face Detection				
	4.4	Eye Detection	10			
		4.4.1 Check conditions pre-processing	10			
	4.5	Process Flow Diagram for RISDF	11			
	4.6	Use case Diagram				
	4.7	Use Case Documents				
		4.7.1 Use Case Document for Start syste	m 12			
		4.7.2 Use Case Document for Stop system	m 14			
		4.7.3 Use Case Document for Test Alarm	n 15			
		4.7.4 Use Case Document for Stop Alarr	n 16			
	4.8	Sequence Diagram				
		4.8.1 Sequence Diagram for Start system	17			
		4.8.2 Sequence Diagram for Stop system	18			
		4.8.3 Sequence Diagram for Test Alarm	18			
		4.8.4 Sequence Diagram for Stop Alarm	19			
	4.9	Block Diagram for system	20			
5	IMPLMENTATION					
	5.1					
	5.2	Challenges in Implementation				

				1X	
		5.2.1	Framing from Video	23	
		5.2.2	Obtaining the Image	23	
		5.2.3	Extracting the Face from image	23	
		5.2.4	Face Detection Algorithm Implementation	24	
	5.3	Eyes I	Eyes Detection from Frames		
	5.4	Cropp	Cropping face for Eyes Detection		
	5.5	Noise	Noise removal from Image		
	5.6	Findin	Finding the Threshold Value of Image		
		5.6.1	Average Filter Graph Values:	31	
	5.7	Alarm	Conditions:	32	
6	TEST	ING		33	
	6.1	Testing	g Conditions:	33	
		6.1.1	Different Lighting conditions:	33	
		6.1.2	Test case 2: Position of the automobile driv	vers face	
			34		
		6.1.3	When the driver is wearing glasses:	40	
		6.1.4	When the driver head is tilted	42	
		6.1.5	One Eye Close:	43	
7	RESU	LTS AN	D FUTURE WORK	45	
	7.1	Simula	tion Results	45	
	7.2	Sample	Sample results:		
	7.3	Limita	Limitations		
	7.4	Future	Work	49	
		7.4.1	Monitoring Yawning:	49	
		7.4.2	Auto Zooming Camera:	49	
		7.4.3	High Speed Processing:	49	
		7.4.4	Adding Vibration in Seat Belt:	50	

8	CONCLUSION	51
APPE	ENDIX A	52
	Program Listing	52
REFI	ERENCES	61

X