AGE AND GENDER RECOGNITION FROM HUMAN FACIAL IMAGES

Muhammad Hassan Maaz Ahmed Zakir Alma Muhammad Hanif Sheraz Ahmed Khan

A project report submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Computer Science (Honours)

> Department of Computer Science Bahria University

> > December 2016

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express our gratitude to our research supervisor, Mr. M. Tariq Siddique for his invaluable advice, guidance and his enormous patience throughout the development of the research.

In addition, we would also like to express our gratitude to our loving parents and friends who had helped and given us encouragement.

AGE AND GENDER RECOGNITION FROM HUMAN FACIAL IMAGES

ABSTRACT

Automatic human gender and age recognition has started catching the attention of researchers due to its possible wide application pool. To name a few it can be used in Human-Computer Interaction (HCI) systems to tune the context appropriately to suit the target person's gender and age, to monitor specific gender or age restricted areas in surveillance systems, to make targeted advertising where the relevant advertisement/information to the audience can be channelled from electronic billboard systems, in automated biometric data acquisition and for content based search in which identifying the gender and age reduces the search space significantly.

This project focuses on the area of face processing and aims at designing a reliable framework to facilitate face, gender, and gender group recognition. A framework has been optimized for the task of face cropping, gender, and age group recognition. It makes an extensive experiment with row pixel intensity valued features and Discrete Cosine Transform (DCT) coefficient features with Principal Component Analysis and k-Nearest Neighbour classification to identify the best recognition approach. The final results show approaches using DCT coefficient outperform their counter parts resulting in a 99% correct gender recognition rate and 68% correct age group recognition rate (considering four distinct age groups) in unseen test images. Detailed experimental settings and obtained results are clearly presented and explained in this report.

TABLE OF CONTENTS

iii
iii
vii
viii
ix
xiii
xiiii
xiiv
xv
xvi

CHAPTER

1

2

INTE	RODUCTION	1
1.1	Background	1
1.2	Motivation	2
1.3	Problems Description	and a particular 2
1.4	Statement of Objectives	Construction of 3
1.5	Scope of Project	Conditioner 3
1.6	Design and Consideration	of Software

LITE	RATURE REVIEW	4
2.1	Introduction	4.
2.2	Face Detection	C. C. C. C. C.

2.3	Facial Features Extraction	4
2.4	Existing Literature on Face Detection, Feature Extraction	
	Recognition	5
	2.4.1Holistic Approaches	5
	2.4.2Principal Component Analysis	5
	2.4.3Linear Discriminant Analysis	6
	2.4.4Feature Based Approaches	6
	2.4.5Basic Hough Transform	6

ix

ALG	OTITHMS AND METHODS	Erristia - de s	
3.1	Overview		
3.2	Workflow of System		8
	3.2.1The Viola-Jones Face De	etector	8
	3.2.1.1Haar Features		9
	3.2.1.2The Cascade Classifier		10
	3.2.1.3Face Detection using Ja	avaCV	11
	3.2.2k-Nearest Neighbour (k-	NN) Classification	12
3.3	Training the Dataset		13

DESIGN AND IMPLEMENTATION		14
4.1	Basic Structure of System	1 1 14
	4.1.1 Introduction	14
4.1.27	Fraining images	14
	4.1.3Basic Working of System	14
	4.1.3.1Face alignment and Cropping	15
	4.1.3.1.1Face and Landmark Detection	15
	4.1.3.1.2Face Detection Algorithm	15
	4.1.3.1.3Align and Crop	16
	4.1.3.2Facial Data Extraction	16
	4.1.3.3 Age Group and Gender Classification	16
4.2Fe	ature Extraction	16

		4.2.1 Local Binary Pattern Histogram	17
		4.2.2Color Histogram	17
		4.2.3Measurement of Facial Features	18
	4.3	Complete Workflow of System	19
5	ANA	LYSIS AND DESIGN STRUCTURE	20
	5.1	Context Diagram	20
	5.2	Analysis use case Diagram	21
		5.2.1Select Camera	22
		5.2.2Browse Image	22
		5.2.3Training Dataset	22
6	TEST	ГING	23
	6.1	Testing with image	24
		6.1.1 Confuse Matrix	34
		6.1.1.1Age Recognition	34
		6.1.1.2 Gender Recognition	34
		6.1.2 Demographic	36
7	CON	CLUSION AND RECOMMENDATIONS	37
	7.1	Conclusion	38
	7.2	Recommendation	38
REF	ERENCE	ES	39

APPENDICES

45

x