FINAL YEAR PROJECT REPORT

Solar Power Generation along with Efficiency Improvement of Solar Panels, Automatic Solar Tracking and Remote Monitoring

Basit Ali	19246	B.E.(Electronics)
Kamran Yousuf	19271	B.E.(Electronics)
Abdul Saboor Javed	19229	B.E.(Electronics)
M. Aatif Mobeen Azhar	19274	B.E.(Electronics)

Supervised By

Engr. Burhan Ahmed

Assisstant Professor

Bahria University (Karachi Campus)

Batch 2009-2013

Acknowledgements

First of all, we would like to thank Allah Almighty for Blessing us with His kind Blessings and Courage to complete this project work successfully.

We take enormous gratification in thanking all the members of Project Committee Bahria University Karachi Campus in permitting us to carry out this project.

We wish to express our deep sense of gratitude to our **Project Supervisor Asst Professor Engr. Burhan Ahmed** for his able guidance, useful suggestions and valuable assisstance, which helped us in a long way to carry out the required work successfully.

Words are inadequate for all the Faculty Members of Electrical Engineering Department Bahria University Karachi Campus especially Asst. Professor Azmat Khan, Associate Professor Naeem-ul-Hassn Janjua and Dr. Khalid Anees Ex. HOD who were the source of inspiration for us.

We would also like to convey our appreciation to Mr. Arif Khan, Engr. Haroon Yousuf and Engr. Shah Nawaz Abbassi Lt. Pakistan Navy for their kind suggestions and timely guidance in carrying out the required work successfully.

We are also thankful to all the Lab Engineers for their cooperation in carrying out the necessary project work successfully.

Finally, yet importantly we would like to express our heartfelt thanks to our beloved parents, our friends, colleagues and class fellows for their kind suggestions and wishes for the successful completion of this project.

Thank You all

Project Abstract

Solar energy is the richest stream of energy that is available directly as solar segregation and has the sources of renewable energy. Its potential is 178 Billion MW, which is about 20,000 times the world's demand. Sun provides energy in the form of electromagnetic energy.

This project esteemed for the generation of electrical energy with the help of photovoltaic arrays known as solar cell / panel. The solar cell works on the photovoltaic effect. It is the type of photovoltaic cell whose electrical characteristics are light dependant. When it is exposed to light, it can generate and support the electric current without being attached to any external voltage source. So this resultant energy produced by the solar cells can be used to switch on the electrical appliances.

The main purpose of this project is to improve the efficiency of the solar cells. i.e. solar to electrical power conversion efficiency. The power generation efficiency of the fixed solar cell / panel is less. A practicable approach to maximize this efficiency is the solar tracking. So in this project a Automatic Solar Tracking System is proposed to track the movement of sun so that the output power is maintained constant. For this purpose we will use LDR sensors and the LM324 comparators. The output of comparator is provided to the H-Bridge and as a result the orientation of the solar panel gets aligned in the direction of sun depending upon the sensitivity and output of comparators. The outputs of comparators are controlled by the variation in the output of LDRs when they are exposed to light.

Other Possible Techniques have also been worked out for the improvement of the Efficiency of Solar Panel. These Techniques includes using Convex Lens with the Panel and MPPT based Charge Controller.

The project also presents a GSM based monitoring system to in order to monitor the status of our whole system and keep us informed through sms. This monitoring system will monitor the battery's charging process and will keep us updated with the current status of the system remotely. We will also able to control the few parameters remotely. e.g. We can Switch On and Switch Off the Appliances working as a Load for this system. For this purpose the GSM Module SIM 900D is used.

Table of Contents

CHAPTER NO	TITLE	PAGE NO
1	Introduction	01
1.1	Motivation	01
2	Background / Literature Overview	03
2.1	Solar Energy	03
2.2	What is Solar Cell?	03
2.2.1	Advantages of Solar Cell	04
2.2.2	Disadvantages of Solar Cell	04
2.3	Solar Tracker	05
2.3.1	Types of Solar Tracker	05
2.4	Global System of Communication (GSM)	05
2.5	Pakistan's Geography / Current Situation	07
3	Aim and Problem Statement	08
4	Analysis and Design	09
	Block Diagram	09
	Project Parts / Phases	09
	Process Flowchart	10
4.1	Analyzing the Circuit Requirements	11
4.2	Solar Tracking Scheme	12
4.2.1	Tracking Circuit	13
4.2.2	Stepper / Geared Motor	16
4.3	Interface Circuitry	20
4.3.1	Inverter	21
4.3.2	5V DC Power Supply	24
4.4	Efficiency Improving Techniques	26
4.4.1	Lens Method	26
4.4.2	MPPT	27
4.5	GSM Module (SIM – 900D)	31
4.6	PIC Microcontroller (18F2550)	35
. 5	Implementation	40
	Implementation Scheme	40
5.1	Automatic Solar Tracker	42
5.2	Power Inverter	46
5.3	Efficiency Improvement Experiments	48
	(Convex Lens)	
5.4	Maximum Power Point Tracking (MPPT)	56

5.5	GSM Based Remote Monitoring System	71
6	Testing and Results	74
6.1	Solar Array	74
6.2	Maximum Power Point Tracking (MPPT)	76
6.2.1	MPPT for Solar Panel	77
6.3	Convex Lens (Efficiency Improvement)	79
6.3.1	10W Solar Panel	79
6.3.2	100W Solar Panel	84
6.4	Automatic Solar Tracking	89
6.5	GSM Based Monitoring System	91
7	Conclusion	93
8	Future Recommendations	94
9	References	95
	Appendix-A	96
	Appendix-B	131