

"A MODEL OF DISTRIBUTED CONTROL SYSTEM FOR REMOTE AND SECURED COMMUNICATION"

A thesis Presented to The faculty of Computer Sciences Bahria University Karachi Campus

In Partial Fulfillment of the Requirements for the Degree Master in Telecommunication & Networking

BY

AZMAT KHAN REG#24212 AUG#2013

BAHRIA UNIVERSITY KARACHI CAMPUS

ACKNOWLEDGMENT

I offer my heartily gratitude to Dr. Engr. Altaf Mukati, Professor, Dean Faculty of Engineering and Sciences, Bahria University for his cooperation towards completion of thesis. Without his guidance and supervision, it would not be possible for me to undertake such a difficult task. I really felt honored working under him as my supervisor. It was due to his professional approach and technical support that I managed to accomplish my task. He is not only my teacher but also a mentor whose teaching and guidance was a source of encouragement for me to come towards research work.

I wish to thank Engr. Faizan Suri, Lab Coordinator, BUKC, facilitating to use Networking Lab and Instrumentation and Control Lab for my research model i.e. DCSM Model.

I would like to thank Engr. Zaki, Lab Engineer Networking Lab, BUKC, for his valuable time to spare with me to conduct networking experiments on my research model and to resolve issues regarding communication errors.

Engr. Arif Ansari, Network Administrator, BUKC, really cooperated with me to register my research model on BUKC Network and provide an IP address to my research model. I shall remain thankful to him for this cooperation and coordination.

Engr. Sarfaraz Mehmood, Lab Engineer Control and Instrumentation Lab, BUKC, also deserves my cordial gratitude for his valuable time to spare with me to analyze and compare the software and hardware environment of Siemens PLC with my research model

I wish to thank Engr. Muhammad Sajid, Matrix Engineer, Operation and Maintenance, Head office Standard Charted Bank, Karachi for his valuable time to spare with me to discuss major issues regarding technical and academic gap between universities and Industries.

Last but not least, my parents, my spiritual and physical mentors and my spouse Uzma Munawar, have always been very helpful and courageous towards my studies and research work. Their prayers and well-wishes played a vital role in achieving my targets.

Azmat Khan

Abstract.

Due to lack of university-industry linkages in our country, the students, especially at undergraduate level, when exposed to industries after their graduation, face practical difficulties. To bridge this gap, a model of DCS (Distributed Control System) has been proposed which can be effectively used as hands on training tool in universities labs. The model presented, meets all the fundamental requirements, such as (1) it is user-friendly (2) It can be customized (3) It contains a built-in mechanism for remote and secured communication. During the literature review, it was found that the earlier systems developed, were lacking in one or the other fundamental requirements.

The research work presents a solution to the problem by designing a simple, customizable DCSM model for secured communication via TLServer, FServer and KEPServer. TLServer 3.1 combined with Trilogi 6.31 is working as an administrator as well as engineering station in local loop communication, while the FServer works as a user. The DCSM controller can be programmed remotely and can also be controlled through online monitoring simulator. Architecture of proposed model is consist of four layers (1) Hexatec Saturn 3.0 acts as a HMI (Human Machine Interface) (2) KEPServerEx 4.0 acts as a OPC (OLE for Process Control) (3) Trilogi FMD88-10 PLC (Programmable Logic Controller) acts as a controller (4) Sensors. Currently, the developed model is a part of BUKC Intranet, having a MAC address (00-1F-2E-02-04-DE), an IP address (192.168.9.6), Subnet Mask (255.255.240.0) and port address (9080).

TABLE OF CONTENTS

COPYRIGHT	i
CERTIFICATE OF COMPLETION OF THESIS WORK	ii
CERTIFICATE OF ORIGINALITY	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
TABLE OF CONTENTS	vi
LIST OF FIGURES	ix
LIST OF TABLES	xii
 INTRODUCTION INTRODUCTION INTRODUCTION DISTRIBUTED CONTROL SYSTEM PROGRAMMABLE LOGIC CONTROLLER (PLC) OVERVIEW OF EARLIER PLC BASED DCS SYSTEMS THE PROPOSED MODEL THE SCOPE AND STRUCTURE OF THE THESIS 	1 1 3 4 4 5 7
 LITERATURE REVIEW INTRODUCTION REVIEW OF RELATED RESEARCH WORK Review of Related DCS Systems DCS Based Communication Systems and Security Models CONCLUSION 	8 9 9 20 30
 METHODOLOGY/APPROACH INTRODUCTION THE PROPOSED DCSM MODEL DCSM HARDWARE ARCHITECTURE DCSM Controller (Internet TRILOGI FMD88-10 PLC) Analog Module of DCSM Controller Digital Input Module of DCSM Controller Digital Output Module of DCSM Controller Digital Display Meters and 220V AC Bus Baron 	32 32 33 34 34 35 36 37
5.5.5. Digital Display Meters and 2200 AC bus balon	38

3.3.6. Overload	Protection Circuit for DCSM Controller	38		
3.3.7. User Inter	face of Proposed DCSM System	40		
3.4. DCSM SOFTWA	ARE ARCHITECTURE	40		
3.4.1. DCSM Er	ngineering Station (DCSM-ES)	41		
3.4.2. DCSM Se	erver (DCSM-S)	42		
3.4.3. DCSM Hu	uman Machine Interface (DCSM-HMI)	43		
3.5. THE DCSM BAS	SE UNIT TESTING	44		
3.5.1. DCSM an	d KL-64008 Communication	44		
3.5.2. DCSM an	d KL-64007 Communication	45		
3.6. THE COMPARISON STUDY TO TEST SIMPLICITY				
3.6.1. Hardware	Setup	47		
3.6.2. New Task	Initialization	47		
3.6.3. Ladder Pr	ogramming	48		
3.6.4. Simulation	n Setup	49		
3.6.5. Interfacing	g of Client Software with PLC Hardware	50		
3.7. THE COMMUN	NICATION SYSTEMS FOR DCSM	50		
3.7.1. Local Con	nmunications with DCSM	51		
3.7.1.1. TL	Server- DCSM Communications via RS-232	51		
3.7.1.2. K	EPServer- DCSM Communications via MODBUS Serial	52		
3.7.1.3. KE	PServer-Hexatec Saturn Communications	53		
3.7.2. Remote (Communication with DCSM	54		
3.7.2.1. FS	Server- DCSM Communications	55		
3.7.2.2. KE	PServer- DCSM Communications via MODBUS Ethernet	57		
3.7 2.3. KE	PServer-Hexatec Saturn Communications	59		
3.8. THE SECURITY	MEASURES FOR DCSM	60		
3.8.1. TSFS Sec	curity System for DCSM	60		
3.8.1.1. Ba	sic Communication Setup for TSFS	60		
3.8.1.2. TS	FS Flow Charts	61		
3.8.1.2.1.	Administrative Flow Chart (AFC)	61		
3.8.1.2.2.	F-User Flow Chart (FUFC)	62		
3.8.2. KSFS Saf	e-Key Security System for DCSM	63		
3.8.2.1. Ba	sic Communication setup for KSFS	64		
3.8.2.2. KS	SFS Safe-Key Security System	64		
3.8.2.2.1.	Sender-1, Reciever-2 Flowchart	65		
3.8.2.2.2.	Sender-2, Reciever-1 Flowchart	66		
	mple ladder Programming for Address Code	67		
	istom Function Programming for ADDCODE	67		
0.0.2111 00		07 vii		

	3.8	.2.5.	Sample Ladder Programming for actual code	68
	3.8	.2.6.	Custom Function ACTCODE	68
		600	log norm of Read Industrial Dr. 5 Systems 1971 St. 1981	
4.			DISCUSSION	69
				69
			SED MODEL OF DCS (DCSM)	70
			IS MORE SIMPLE THAN SIEMENS PLC	71
			HAS ADMINISTRATIVE RIGHTS OVER FSERVER ALUES AFFECT ON-LINE COMMUNICATIONS	72 74
	1.0	DEL V		14
5.	CONCLU	SIONS	AND FUTURE WORK	75
	5.1. SUMM	MARY C	DF RESEARCH MODEL	75
	5.2. APPLI	CATIO	NS	75
	5.3. LIMIT/	ATIONS	5	76
	5.4. FUTU	RE WC	RK	76
RE	FERENCES	S		77
AP	PENDIX A	PROT	OCOL SCHEMES FOR DCSM BASE UNIT	81
AP	PENDIX B	DCSM	I INTERFACING WITH PNEUMATIC/HYDRAULIC PROCESS	83