

### **FINAL YEAR PROJECT REPORT**

# TITLE

# "FABRICATION OF LOW ENERGY CONSUMING FAN"

|                   | ВҮ    |            |     |
|-------------------|-------|------------|-----|
| OWAIS RASOOL      | 19315 |            | BEE |
| WARIS JAMIL       | 19352 | A Ministra | BEE |
| SYED USAID SHAMIM | 19342 |            | BEE |
| SAAD ALI KHAN     | 19322 |            | BEE |

## **SUPERVISED BY:**

PROFESSOR NAEEM-UL-HASSAN JANJUA

BAHRIA UNIVERSITY (KARACHI CAMPUS)

YEAR

2013

#### Acknowledgement

We wish to express our sincere appreciation to those people who have contributed either directly or indirectly to this project. First of all we are thankful to Almighty Allah for giving courage, strength and firm determination to successfully complete the project. We are grateful to our parents who show extreme commitment, sympathy and kindness to us during the course of entire project completion. We would like to offer thanks to our worthy Director of Bahria University for providing us access to labs and its equipments. We offer warm gratitude to our supervisor Prof Naeem–ul-Hassan Janjua for his guidance in resolving the problems throughout the project.

#### **ABSTRACT**

We are making a low energy consuming fan via optical sensor remote control with backup Battery charger, the purpose of making energy saving fan is to reduce the power. Now the Question arises is that how we reduce the power? Basically we are using different techniques to reduce the power we replace the aluminum body of fan with fiber body because aluminum fan have low starting torque, more weight, and more noise, power consumption is high depending on the size of the fan. Using fiber body we reduce the losses it has more starting torque, less Weight, less noise longer life due to improved mechanical strength and the most important part is that there is a big cost difference as compare to metal. Moreover we are using DC motor this is more advantageous as compare to AC motor. DC motor high starting torque, it starts quickly as well as stops quickly it is smaller in size it has no control complexity, whereas AC Motor has low starting torque, control complexity, large in size.

#### **TABLE OF CONTENT:**

| 1. INTRODUCTION                               |    |
|-----------------------------------------------|----|
| 1.1 Project Overview                          | 1  |
| 1.2 Project Application                       | 1  |
| 1.3 Project Features & Specifications 1.      | 1  |
| 1.4 Project Block Diagram & Block Description | .2 |
| 1.4.1 ADC                                     |    |
|                                               | .3 |
| 1.4.3 Sensors 1.                              |    |
|                                               | .4 |
| 1.4.5 Battery charging                        | .4 |
|                                               |    |
| 2. BACKGROUND AND LITERATURE REVIEW           |    |
| 2.1 Introduction                              | 15 |
| 2.2 History                                   | 15 |
|                                               | 16 |
|                                               |    |
| 2.3.1 Ceiling fans                            | 16 |
| 2.3.2 Exhaust fans . 1                        | 16 |
| 2.3.3 Pedestal fans                           | 17 |
|                                               |    |
| 3. AIM AND STATEMENT OF PROBLEM               |    |
|                                               | 18 |
| 3.2 Statement of problem 1                    | 19 |
| 4. ANALYSIS AND DESIGN                        |    |
|                                               | 10 |
|                                               | 19 |
|                                               | 20 |
|                                               | 21 |
|                                               | 21 |
| 4.5 Remote control with RC-5 protocol         | 22 |
| 4.6 Zero crossing detector                    | 24 |
| 4.7 Microcontroller ATMEGA 16L                | 25 |
| 4.8 Battery                                   | 30 |
| 4.9 LCD graphic module                        | 30 |
| 4.10 Diac Triac circuit                       | 31 |
|                                               | 32 |
|                                               | 32 |

| 4.13 IVI sensor                          | 33 |
|------------------------------------------|----|
| 4.14 Motor                               | 34 |
| 4.15 Circuit diagram                     | 35 |
| 4.16 Description of circuit diagram      | 36 |
| 5.IMPLEMENTATION                         |    |
| 5.1 Methodology                          | 37 |
| 5.2 Implementation of Diac Triac circuit | 38 |
| 5.3 Structure of Fan                     | 38 |
| 5.4 Motion Sensor                        | 40 |
| 5.5 Complete schematic diagram           | 41 |
| 5.6 Datasheet                            | 42 |
| 5.6.1 MOC 3021                           | 42 |
| 5.6.2 LM7805                             | 43 |
| 5.6.3 IN5820                             | 44 |
| 5.6.4 741C                               | 45 |
| 5.6.5 C1383                              | 46 |
| 5 6 6 HC-SR501 Motion Sensor             | 47 |

Sugar 21: Motor circustry

The state of the s

Page 2 State State State Page 10 High ration