

FINAL YEAR PROJECT REPORT

IMAGE PROCESSING OF SORTING ROBOT

In fulfillment of the requirement For degree of BEE (Electronics)

By

30957	BEE(ELECTRONICS)
30971	BEE(ELECTRONICS)
25423	BEE(ELECTRONICS)
30986	BEE(ELECTRONICS)
	30971 25423

SUPERVISED

BY

ENGR. BURHAN AHMED

BAHRIA UNIVERSITY (KARACHI CAMPUS) 2012-2016

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express our gratitude to our project supervisor, Mr. Burhan Ahmed for his invaluable advice, guidance and his enormous patience throughout the development of the project.

We are also thankful to our **H.O.D. Dr. Haroon Rasheed** for approving our project and his great support and encouragement which lead us to complete our project successfully.

We also express our utmost gratitude to Engr. Zaryab Qazi for his helpful knowledge, kindness and his generous attitude. He helped us a lot in shaping our project and guided us in a lot of aspects.

Last but not the least, we would also like to express our gratitude to our beloved parents, teachers and friends who helped us and became a source of encouragement for us.

IMAGE PROCESSING FOR SORTING ROBOT

ABSTRACT

The project aims to create a proto-type robotic pick and place system which includes mechatronics sorting system solution with the application of image processing for pick and place mechanism. It synchronizes the movement of robotic arm to pick the objects moving on a conveyor belt. It aims in classifying the objects which are coming on the conveyor by picking and placing the objects in their respective preprogrammed places. An image processing algorithm that distinguishes the objects with the help of camera from captured image of an object. The captured image of that object placed on the conveyer belt is saved and fed into the computer. Then processing algorithm in PROCESSING IDE software processes the image type and sends respective commands to the Arduino microcontroller which then controls the robotic arm. The Robotic arm picks the sorted objects and places them on their respective pre-programmed places.

Thus a cost effective Mechatronics system becomes convenient using the simplest concepts and efficient results can be achieved and determining real time and highly accurate characteristics of small objects in a fast flowing stream would open new directions for industrial sorting processes.

TABLE OF CONTENTS

DECLAR	ATION		ii	
APPROVAL FOR SUBMISSION				
ACKNOWLEDGEMENTS				
ABSTRACT				
TABLE OF CONTENTS				
LIST OF	FIGURES		xiii	
CHAPTE	R			
1	INTR	ODUCTION	1	
	1.1	Background		
	1.2	Aim and Statement of Problem	1	
	1.3	Scope of Project	2	
2	LITE	RATURE REVIEW	3	
	2.1	Robotic Arm Theory	3	
	2.2	Components of Robotic Arm	5	
	2.3	Degree of Freedom (DOF)	6	
	2.4	Law of Robotics	9	
	2.5	Robot Control Loop	9	
1	2.6	Advantages of Pick and Place Robots	10	
	2.7	Arduino UNO	12	
	2.8	Conveyer belt	13	
	2.9	DC Gear Motor	14	
	2.10	Servo Motor	16	
	2.11	Power Supply	17	
	2.12	Relay	19	
	2.13	Ultrasonic Sensor	20	
	214	Logitech Webcam	21	

3	ANA	LYSIS DESIGN AND METHODOLOGY	22	
	3.1	Defects in current system	22	
	3.2	Advantages of our proposed system	22	
	3.3	Image Processing Benefits	23	
	3.4	Blockdiagram of Proposed system	24	
	3.5	Robotic arm designing	25	
	3.6	List of Hardwares used	26	
	3.7	List of Softwares used	26	
4	IMPI	LMENTATION	27	
	4.1	Manual testing of robotic arm	27	
	4.2	Sensors and Motors testing	28	
	4.3	Image capture and Image Processing	29	
	4.4	Conveyer belt controlling	32	
	4.5	Serial Interface of Processing with Arduino	33	
	4.6	Integration of complete project	33	
5	RESI	RESULTS AND DISCUSSIONS		
	5.1	Reults	34	
	5.2	Discussions	34	
6	CON	CLUSION AND RECOMMENDATIONS	35	
	6.1	Conclusion		
	6.2	Applications		
1	6.3	Future Work and Recommendations	37	
REFE	RENCE	cs	38	
APPE	NDICES		39	