

BSCS-F22-029

03-134192-044 KUNWAR MUZZAMMIL WAHEED

03-134192-071 TAIMOOR KHAN

Visualization of Health Data

Through a Virtual Avatar

In partial accomplishment of the degree requirements

Bachelor of Science in Computer Science

Supervisor: Dr. Ghulam Mustafa

Department of Computer Sciences

Bahria University, Lahore Campus

June 2023

© Bahria University, 2023

i

C e r t i f i c a t e

We accept the work included in the named report

“Visualization of Health Data Through a Virtual Avatar”

written by

KUNWAR MUZZAMMIL WAHEED

TAIMOOR KHAN

as verification of the required standard for partial fulfilment of the degree

Bachelor of Science in Computer Science.

Approved by:

Supervisor: Dr. Ghulam Mustafa

 (Signature)

June 20, 2023

ii

DECLARATION

We hereby declare that this project report is based on our original work except for

citations and quotations which have been duly acknowledged. We also declare that it

has not been previously and concurrently submitted for any other degree or award at

Bahria University or other institutions.

Enrolment Name Signature

03-134192-044 KUNWAR MUZZAMMIL WAHEED

03-134192-071 TAIMOOR KHAN

Date: June 20, 2023

iii

Specially dedicated to

my beloved grandmother, mother and father

(KUNWAR MUZZAMMIL WAHEED)

my beloved grandmother, mother and father

(TAIMOOR KHAN)

iv

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion

of this project. We would like to express our gratitude to our research supervisor, Dr

Ghulam Mustafa for his invaluable advice, guidance, and his enormous patience

throughout the development of the research.

In addition, we would also like to express our gratitude to our loving parent

and friends who had helped and given us encouragement.

KUNWAR MUZZAMMIL WAHEED

TAIMOOR KHAN

v

Visualization of Health Data Through a Virtual Avatar

ABSTRACT

The proposed is a mobile application that revolutionizes the visualization of health

data using Virtual Avatars. This innovative application will allow users to

interactively visualize their health data in real time and witness their visual

representation on their smartphones. By creating a digital representation of the user,

linked to their device, the application will provide an immersive and engaging

experience.

With the rise of wearable devices and smartphones, health data collection has

become more accessible than ever. Traditional healthcare applications often

overwhelm users with numerical data, leading to confusion and frustration.

In contrast, our application leverages the power of virtual avatars to present

health data in an interactive and engaging manner. By creating a visual

representation of the user's health, the application simplifies complex measurements

and provides a more intuitive understanding of one's well-being.

The project follows the Feature-Driven Development (FDD) methodology

and utilizes Flutter as the Software Development Kit (SDK). FDD provides a

structured approach to software development, ensuring efficient collaboration and

timely delivery of features. Flutter, with its cross-platform capabilities, enables us to

develop the application for both Android and iOS platforms in future, reaching a

wider audience.

Through this project, we address the growing need for user-friendly

healthcare data visualization. By combining technology, visual representation, and

real-time data, our application empowers users to take control of their health in an

engaging and accessible way. We envision a future where individuals can easily

interpret and act upon their health data, leading to improved well-being and informed

decision-making.

vi

TABLE OF CONTENTS

DECLARATION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xi

CHAPTERS

1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 1

1.3 Aims and Objectives 2

1.4 Scope of Project 2

2 SOFTWARE REQUIREMENTS SPECIFICATIONS 4

2.1 Overall Description 4

2.2 User Classes and Characteristics 4

2.3 Operating Environment 5

2.4 Development Environment 5

2.5 Assumptions and Dependencies 5

2.6 Other Non-Functional Requirements 6

2.6.1 Performance Requirements 6

2.6.2 Security Requirements 6

vii

2.7 Software Quality Attributes 6

2.7.1 Maintainability 6

2.7.2 Reusability 7

2.8 Software Requirements Chart 7

3 DESIGN AND METHODOLOGY 8

3.1 Diagrams 8

3.1.1 Use case Diagram 9

3.1.2 Sequence Diagram 14

3.1.3 Entity Relationship Diagram 16

3.1.4 Activity Diagram 17

3.1.5 Class Diagram 18

3.1.6 Collaboration Diagram 19

4 IMPLEMENTATION 20

4.1 Avatar 20

4.2 Tools and Technologies 20

4.2.1 Flutter 20

4.2.2 Android Studio 21

4.2.3 Blender 21

5 RESULTS AND DISCUSSIONS (or USER MANUAL) 22

5.1 Splash Screen 22

5.2 Sign Up Page 23

5.3 Log In Page 24

5.4 Avatar 25

5.4.1 Idle Position 26

5.4.2 Wiping Sweat 27

5.4.3 Walking 28

5.4.4 Sit Down 29

5.4.5 Stand Up 30

5.5 Health Profile 31

viii

6 CONCLUSION AND RECOMMENDATIONS 32

6.1 Conclusion 32

6.2 Limitations 32

6.3 Recommendations & Future Use 33

REFERENCES 34

ix

LIST OF TABLES

 TABLE TITLE PAGE

Table 2.1: Development Environment 5

Table 2.2: Software Requirements Chart 7

Table 3.1: Create Profile-U1 10

Table 3.2: Sign In-U1 11

Table 3.3: Homepage-U3 12

Table 3.4: Avatar-U4 13

x

LIST OF FIGURES

 FIGURE TITLE PAGE

Figure 1: System Use Case 9

Figure 2: Sequence Diagram Sign up 14

Figure 3: Sequence Diagram Log in 15

Figure 4: ERD 16

Figure 5: Activity Diagram 17

Figure 6: Class Diagram 18

Figure 7: Collaboration Diagram 19

Figure 8: Splash screen displaying the logo and branding

elements. 22

Figure 9: Featuring input fields for user registration and account

creation. 23

Figure 10: Login page with username and password fields 24

Figure 11: Animated avatar in a relaxed and idle position 25

Figure 12: Animated avatar in a relaxed and idle position 26

Figure 13: Animated avatar in a sweating position 27

Figure 14: Animated avatar in a walking animation. 28

Figure 15: Animated avatar in a sitting down animation 29

Figure 16: Animated avatar in a standing up animation 30

Figure 17: User Health Profile 31

xi

LIST OF SYMBOLS / ABBREVIATIONS

AFL Flutter

FB Firebase

DT Dart

SRS Software Requirement Specification

ERD Entity Relationship Diagram

AR Architectural Diagram

UML Unified Modelling Language

DM Domain Model

SD Sequence Diagram

FDD Feature-Driven Development

APK Android Application Package

iOS iPhone Operating Object

API Application Program Interface

DHA Digital Health Avatar

UI User Interface

1

CHAPTER 1

1 INTRODUCTION

1.1 Background

Proposed mobile application provides a unique and innovative way to visualize

health data. Users are able to track their health in real time through a virtual avatar on

their mobile devices. The avatar indicates when the user is getting tired, prompting

them to take a break and rest. Additionally, the avatar dynamically responds to

changes in the user's health, providing a clear and easy-to-understand visualization of

their health data. With the Health Avatar app, users can easily monitor their health

and take proactive steps towards maintaining their well-being.

1.2 Problem Statement

The problem statement of our project is that existing health apps often fail to help

users understand their health data due to their overwhelming interface and

presentation of numerical data that can be difficult for users to understand. This

results in users often deleting health apps approximately within 8 days of installation.

The main challenge is to create an intelligent and interactive health app that

visualizes health data in a more user-friendly manner.

To address this challenge, the proposed solution is to create an app called

Health Avatar that uses interactive animations and a smart, friendly avatar to help

2

users understand their health data. The avatar will be used to help users understand

their health conditions in a more intuitive way and the app will show user if their

health condition is not healthy based on the collected data.

Overall, the aim is to create a health app that is more interactive, intuitive,

and engaging, and that can help users better understand their health data.

1.3 Aims and Objectives

The objectives of the thesis are shown as following:

i) To visualize the health data with the help of a virtual avatar.

ii) To implement a mobile-based application to show health data in an interactive

format.

iii) To integrate the application with real-time health data.

1.4 Scope of Project

Proposed project solves the problem of scattered health and wellness data by creating

a virtual avatar that visualizes all healthcare data available to the user. This avatar

acts as a digital representation of the user.

It also improves the user's understanding of their health data. The

visualizations displayed by the avatar are designed to be user-friendly, making it

easier for the user to understand their health information. By doing so, the user is

more informed about their health status and take necessary steps to maintain good

health.

3

The data used by your application comes from wearables and smartphones.

This means that users can use the app with devices they already own and do not need

to purchase additional hardware.

Overall, the project's scope is to provide an easy-to-use, intuitive interface

that allows users to track their health and wellness data. The application's virtual

avatar serves as an interactive and friendly companion that keeps the user informed

about their health status, making it easier for them to maintain good health.

4

CHAPTER 2

2 SOFTWARE REQUIREMENTS SPECIFICATIONS

2.1 Overall Description

The proposed project is a Mobile based application therefore front-end is

developed in Android Studio. The final application is an Android-based

application. Our development approach is feature-driven development in which

first we built an overall model then built a feature list and then we planned,

designed, and developed by feature.

2.2 User Classes and Characteristics

The application acts as your personal data manager thus features only a single

user i.e., the person who installs the app for their own use.

 User

• The user can perform the following activities.

• Sign-in

• View avatar

5

2.3 Operating Environment

The required environment for the Digital Health Avatar is as follows.

• Android Smartphone Phone

• Android 10 or above

• Stable Internet Connection

2.4 Development Environment

Table 2.1: Development Environment

Name Description

Operating system Environment Windows

Support Device Android-based Smart Phone

Language Dart

Framework Flutter

Tools and Technology • Nvidia GPU with at least 8GB

• RAM 16 GB

• SSD 256 GB

• Android Studio

• VS code

Database Fire Base

2.5 Assumptions and Dependencies

Following are the assumptions and dependencies:

i. Assume the phone is at least Android 10 or better.

ii. Assume the user grants permission to the app.

iii. Assume the user's phone is Android based.

6

2.6 Other Non-Functional Requirements

The non-functional requirements of the proposed project are given below:

2.6.1 Performance Requirements

The user requirement is for the Android mobile application to have a smaller APK

size so that it can work on a wider range of mobile devices, including those with

lower storage capacity.

2.6.2 Security Requirements

To protect your health data, the login system is secure Software Quality Attributes.

The system includes basic database security features such as login and password

authentication.

2.7 Software Quality Attributes

Software quality attributes are as following:

2.7.1 Maintainability

The developer maintains the mobile application data and all the services.

7

2.7.2 Reusability

Provided mobile application has reusability functions.

2.8 Software Requirements Chart

Table 2.2: Software Requirements Chart

ID Priority Type Description

DHC - R1 High Functional Login

DHC - R2 High Functional Register new user

DHC - R3 High Functional Read Heartbeat

DHC - R4 High Functional Count Steps

DHC - R5 Medium Functional Display Data

DHC – R6 High Functional Stress

DHC – R7 High Functional Avatar to visualize above Functionalities

8

CHAPTER 3

3 DESIGN AND METHODOLOGY

3.1 Diagrams

This chapter provides an overview of the Digital Health Avatar design. The

overall view of the system is provided by the system architectural design. Developers

and clients are able to examine and check the design plan of the project. This

Chapter includes the following objects.

• Use case diagrams.

• Sequence Diagrams.

• Entity relationship diagram

• Activity Diagram

• Class Diagram

• Domain Diagram

9

3.1.1 Use case Diagram

Figure 3.1: System Use Case

Fig 1 shows a high-level view of a system's functionality from a user's

perspective, identifying the actors, their interactions with the system, and the

use cases that meet their needs.

10

3.1.1.1 User Create Profile (U1)

Table 3.1: Create Profile-U1

 Name Create Profile

1. Use Case ID U1

2. Objective Users will always log in with their username and

password

3. Priority High

4. Initiating Actor Will be User

5. Goal To Create a new profile

6. Pre-Conditions User is viewing the login screen of the system

7. Post Conditions System displays the home screen

8. Flow of Events 1. User enter the personal information and press

submit button

2. The system checks to see whether a user with

the same ID already exists.

3. The system generates a new page containing

the user’s data and shows it as the user’s

home page

8.1. Basic Flow After success creates profile user go to login page U3

9. Flow of Events

for Extension

(Alternate

Scenario)

No alternative flow must sign up to proceed further

10. Use Case No other use case use

11

3.1.1.2 User Sign-In (U2)

Table 3.2: Sign In-U1

 Name Sign In

1. Use Case ID U2

2. Objective The user will sign in with the credentials

3. Priority High

4. Source Data Base

5. Actors User

6. Flow of Events 1. Open Application

2. Enter sign in

3. Enter Username and Password

4. Click on Sign-in Button

6.1. Basic Flow After successful sign in user will go to U3

6.2. Alternate Flow No alternate flow, user must sign in to proceed

further

6.3. Exception Flow Invalid Username

Invalid Password

7. Includes U1

8. Preconditions Must sign up

9. Postconditions Taken to Home page

10. Notes/Issues If the User will sign in with the right credentials no

problem will occur

12

3.1.1.3 Homepage (U3)

Table 3.3: Homepage-U3

 Name Homepage

1. Use Case ID U3

2. Objective In this use case, user can view the main area of our

app and access features from there

3. Priority High

4. Source User

5. Actors User

6. Flow of Events Sign in to and view application home screen with all

the available features

6.1. Basic Flow After successful sign in Administrator can go to any

of succeeding flows

6.2. Alternate Flow No alternate flow

6.3. Exception Flow No exception flow

7. Includes No other use case includes

8. Preconditions User must be signed in to perform U3

9. Postconditions Health status can be checked

10. Notes/Issues Provide Accurate data

13

3.1.1.4 Avatar (U4)

Table 3.4: Avatar-U4

 Name Avatar

1. Use Case ID U4

2. Objective Show condition of user by actions

3. Priority High

4. Source Database

5. Actors Animated avatar

6. Flow of Events Login

6.1. Basic Flow None

6.2. Alternate Flow No alternate flow

6.3. Exception Flow Accurate data should be entered

7. Includes None

8. Preconditions None

9. Postconditions No postcondition

10. Notes/Issues None

14

3.1.2 Sequence Diagram

3.1.2.1 Sign Up

Figure 3.2: Sequence Diagram Sign up

Fig 2 shows an illustration of the flow of interactions between the user and the

system during the sign-up process. It highlights the steps involved, such as inputting

user details, validating the information, and creating a new account.

15

3.1.2.2 Log In

Figure 3.3: Sequence Diagram Log in

Fig 3 shows a capture of the sequence of interactions between the user and the

system while logging in. It visualizes the steps involved, including providing login

credentials, verifying the information, and granting access to the user account.

16

3.1.3 Entity Relationship Diagram

Figure 3.4: ERD

Fig 4 tells a visual representation of the entities, attributes, relationships, cardinality,

and constraints in a system or domain's data model.

17

3.1.4 Activity Diagram

Figure 3.5: Activity Diagram

Fig 5 shows us the illustrates the flow of activities, control flow, decision points,

synchronization, and actors involved in a system or organizational workflow or

process flow.

18

3.1.5 Class Diagram

Figure 3.6: Class Diagram

Fig 6 shows class diagram of a project provides an overview of the classes, their

attributes, methods, and inheritance with each other. It describes the structure of the

system and helps in understanding the behavior of the system.

19

3.1.6 Collaboration Diagram

Figure 3.7: Collaboration Diagram

Fig 7 shows illustration of the interactions and relationships between various objects

or components in a system. It visualizes the communication and collaboration

between different entities, showcasing the flow of information and functionality

within the system.

20

CHAPTER 4

4 IMPLEMENTATION

4.1 Avatar

We have used animated Avatars which makes the application more user-friendly and

easier to understand.

4.2 Tools and Technologies

The tool and technologies used in this application are under following:

4.2.1 Flutter

Flutter is an open-source software created by Google to develop beautiful and fast-

moving UIs. It is used to create cross platform apps from a single code base for

Android, iOS, Linux, macOS, Windows, and web. It utilizes Dart as its base

language to write code. Flutter allows you to create fast and Dynamic UIs.

21

4.2.2 Android Studio

Android Studio is a unified development environment for creating Android apps.

Flutter is used for the front end, while Dart is used for the back end, which includes

the train model, camera sensors, avatars, and outcomes.

4.2.3 Blender

Blender is a free and open-source 3D modeling and animation program that is used

to create animations, visual effects, video games, and more. It provides several

capabilities, including 3D modeling, texturing, lighting, animation, simulation,

rendering, compositing, and video editing. It is accessible for Windows, Mac, and

Linux operating systems, and it has a big and supportive user and development

community.

22

CHAPTER 5

5 RESULTS AND DISCUSSIONS (or USER MANUAL)

5.1 Splash Screen

Figure 5.1: Splash screen displaying the logo and branding elements.

23

5.2 Sign Up Page

Figure 5.2: Featuring input fields for user registration and account creation.

The sign-up screen allows you to establish a new account by entering the required

information. To begin, input your chosen username, which should be distinct and

distinctive to represent your profile. After that, provide a valid email address that will

be used for correspondence and account verification. Finally, to safeguard the

security of your account, create a strong password. Once you've completed all the

needed forms, click the "Sign Up" button to finish the process and successfully

establish your account.

24

5.3 Log In Page

Figure 5.3: Login page with username and password fields

The login screen allows you to access your existing account. Enter your username,

which should be the same as the one you used at registration, to log in. Then enter

your password while assuring its accuracy and security. If you do not yet have an

account, you can sign up by clicking on the "Don't have an account? Sign Up" option

at the bottom of the page. After entering your login information, click the "Log In"

button to proceed and access your account.

25

5.4 Avatar

Figure 5.4: Animated avatar in a relaxed and idle position

Avatar depicting the user's virtual health will appear on the screen. The avatar will

seem inactive, suggesting that the user's real-time health data is within typical limits.

The avatar will move in a pleasant and peaceful manner, reflecting the user's general

well-being. This visual depiction is a reassuring signal that the user's health is steady

and that no immediate action or attention is necessary.

26

5.4.1 Idle Position

Figure 5.5: Animated avatar in a relaxed and idle position

Avatar depicting that the user's real-time health data is within typical limits. The

avatar is in a pleasant and peaceful manner, reflecting the user's general well-being.

This visual depiction is a reassuring signal that the user's health is steady and that no

immediate action or attention is necessary.

27

5.4.2 Wiping Sweat

Figure 5.6: Animated avatar in a sweating position

The avatar is sweating, suggesting that the user's real-time health data has recognised

a condition that causes excessive perspiration. The avatar's motions will become

livelier, indicating exertion or discomfort. It urges the user to take relevant steps,

such as monitoring vital signs or obtaining medical assistance as needed.

28

5.4.3 Walking

Figure 5.7: Animated avatar in a walking animation.

The avatar is depicted walking, showing that the user's real-time health data shows

that steps are increasing. The purpose of this graphic depiction is to encourage the

user to keep an active lifestyle and to emphasise the need of regular physical activity

for general health and well-being.

29

5.4.4 Sit Down

Figure 5.8: Animated avatar in a sitting down animation

The avatar will be portrayed sitting down, suggesting that it is exhausted. This image

represents the user's current health statistics, implying that the user has strained

oneself or participated in strenuous physical activity. The fatigued avatar acts as a

visual reminder to the user to relax, take a break, and prioritise self-care.

30

5.4.5 Stand Up

Figure 5.9: Animated avatar in a standing up animation

The avatar will be seen standing up this time, reflecting an active and energetic state.

The programme encourages the user to be active, exercise, and live a healthy lifestyle

by presenting the avatar standing up.

31

5.5 Health Profile

Figure 5.10: User Health Profile

The real-time health data panel displays a complete summary of the user's important

health parameters. It shows vital information including heart rate, step count, weight,

and calories burnt. Users may check their cardiovascular health, measure their

physical activity, manage their weight goals, and keep track of their energy.

32

CHAPTER 6

6 CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

This pandemic has been an eye-opener for everyone. Now more than ever it has

become crucial to maintain a healthy immune system so that your body can be

prepared for the worst. Digital health avatar application which allows the user to

better understand their health data by creating dynamic visualizations of that data.

This application helps the user in regulating and maintaining a healthy lifestyle. The

Application features dynamic graphics and avatars to help users get a better

understanding of their health data.

6.2 Limitations

This app can only be used on Android smartphones as it was developed on Android

Studio and this tool are not light weighted and sometimes on low-configuration

devices start crashing and mostly then when you are using the app multiple times at

the same time. 3D Model Viewers don’t give us many options to control this

animation, limited customization, limited GLTF, and OBJ file formats.

33

6.3 Recommendations & Future Use

This application covers a drop in the ocean that is the potential a mobile phone

possesses in the field of medicine. Nowadays the technology has been pushed back

and limitation barriers on everything is available on the palm of your hand. The

features we are currently utilizing can be improved upon and added upon to create a

much more functional and dynamic application. In future, we can add multiple

modules and integrate many features that we can integrate soon. We will also work

towards improving the animation and graphics system to create a much more

interactive and customizable UI.

34

REFERENCES

[1] 'Futureshaper: Shikha's journey to the "patient twin"'. https://www.siemens-

healthineers.com/perspectives/futureshaper-patient-twin (accessed Jan. 03,

2023).

[2] 'FitBit Fitness Tracker Data'. https://www.kaggle.com/datasets/arashnic/fitbit

(accessed Jan. 03, 2023).

[3] 'Health Platform API', Android

Developers.https://developer.android.com/training/wearables/healthservices/

health-platform (accessed Jan. 03, 2023).

[4] L. Team, '7 Things You Need to Know About Feature Driven Development',

Lvivity, Jun. 12, 2020. https://lvivity.com/7-things-about-feature-driven-

development (accessed Jan. 04, 2023)

[5] "Meet your virtual avatar. the future of personalized healthcare."

https://news.itu.intimeet-your-virtual-avatar-the-future-of-personalized-

healthcare/ (accessed Oct. 16, 2022).

[6] “The virtual human: digital avatars that are advancing healthcare - Atos."

https:/atos.net/en/blog/the-virtual-human-digital-avatars-that-are-advancing-

healthcare (accessed Oct. 16, 2022).

[7] "ISO - One step ahead with mobile apps."

https://www.iso.org/news/isofocus_141-6.html (accessed Sep. 09, 2022).

[8] "ISO - ISO/TS 82304-2:2021 - Health software - Part 2: Health and wellness

Apps - Quality and reliability." https://www.iso.org/standard/78182.html

(Accessed Sep. 09.2022).

[9] E. Parimbelli et al., "A review of AI and Data Science support for cancer

management," Artif Intell. Med, vol. 117, Jul. 2021. doi:

10.1016/J.ARTMED.2021A02111. (Accessed Sep. 09.2022).

35

APPENDIX A: Code

Main.dart

import 'package:firebase_auth/firebase_auth.dart';

import 'package:firebase_core/firebase_core.dart';

import 'package:flutter/material.dart';

import 'package:fyp/screens/home_screen.dart';

import 'package:fyp/screens/LogIn_Screen.dart';

void main() async{

 WidgetsFlutterBinding.ensureInitialized();

 await Firebase.initializeApp();

 runApp(const MyApp());

}

class MyApp extends StatefulWidget {

 const MyApp({super.key});

 @override

 State<MyApp> createState() => _MyAppState();

}

class _MyAppState extends State<MyApp> {

 User? user;

 @override

 void initState() {

 super.initState();

 user = FirebaseAuth.instance.currentUser;

 }

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 home: user != null ? const HomeScreen() : const SignInScreen(),

);

 }

36

Animation Control:

import 'package:firebase_auth/firebase_auth.dart';

import 'package:flutter/material.dart';

import 'package:fyp/screens/GoogleFit_API.dart';

import 'package:fyp/screens/LogIn_Screen.dart';

import 'dart:async';

import 'package:model_viewer_plus/model_viewer_plus.dart';

import 'package:health/health.dart';

class HomeScreen extends StatefulWidget {

 const HomeScreen({super.key});

 @override

 State<HomeScreen> createState() => _HomeScreenState();

}

enum AppState {

 DATA_NOT_FETCHED,

 NO_DATA,

 STEPS_READY,

}

class _HomeScreenState extends State<HomeScreen> {

 int _count = 0;

 String _currentAnimation = '';

 final user = FirebaseAuth.instance.currentUser!;

 List<HealthDataPoint> _healthDataList = [];

 AppState _state = AppState.DATA_NOT_FETCHED;

 int _nofSteps = 0;

 int tempsteps = 0;

 HealthFactory health = HealthFactory();

 Future fetchStepData() async {

 int? steps;

 final now = DateTime.now();

 final midnight = DateTime(now.year, now.month, now.day);

 bool requested = await

health.requestAuthorization([HealthDataType.STEPS]);

 if (requested) {

 try {

 steps = await health.getTotalStepsInInterval(midnight, now);

 } catch (error) {

 print("Caught exception in getTotalStepsInInterval: $error");

 }

 print('Total number of steps: $steps');

 setState(() {

 _nofSteps = (steps == null) ? 0 : steps;

 _state = (steps == null) ? AppState.NO_DATA :

AppState.STEPS_READY;

 });

 }

37

else {

 print("Authorization not granted - error in authorization");

 setState(() => _state = AppState.DATA_NOT_FETCHED);

 }

 }

 @override

 void initState() {

 super.initState();

 _currentAnimation = randomAnimation();

 Timer.periodic(const Duration(seconds: 10), (timer) {

 setState(() {

 _currentAnimation = randomAnimation();

 _count += 1;

 key:

 ValueKey<int>(_count);

 print('Animation changed: $_currentAnimation');

 });

 });

 }

 int flag = 0;

 int randomIndex = 0;

 String randomAnimation() {

 fetchStepData();

 if (randomIndex >= 5) {

 randomIndex = 1;

 }

 randomIndex++;

 if (_nofSteps > 10000) {

 randomIndex = 4;

 }

 switch (randomIndex) {

 case 1:

 return 'StandToSit';

 case 2:

 return 'SitToStand';

 case 3:

 return 'BreathingIdle';

 case 4:

 return 'Sweating';

 case 5:

 return 'walking';

 default:

 return 'BreathingIdle';

 }

 }

38

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 backgroundColor: Color.fromRGBO(94, 97, 244, 1),

),

 drawer: Drawer(

 child: Container(

 color: Color.fromRGBO(94, 97, 244, 1),

 child: ListView(

 children: [

 DrawerHeader(

 child: Icon(

 Icons.home,

 size: 35,

),

),

 ListTile(

 leading: Icon(

 Icons.home,

 size: 30,

),

 title: Text(

 'Sign In',

 style: TextStyle(fontSize: 18),

),

 onTap: () {

 Navigator.of(context).push(

 MaterialPageRoute(builder: (context) => SignInScreen()));

 },

),

 ListTile(

 leading: Icon(

 Icons.home,

 size: 30,

),

 title: Text(

 'Log out',

 style: TextStyle(fontSize: 18),

),

 onTap: () {

 FirebaseAuth.instance.signOut();

 Navigator.of(context).push(

 MaterialPageRoute(builder: (context) => SignInScreen()));

 },

),

39

 ListTile(

 leading: Icon(

 Icons.home,

 size: 30,

),

 title: Text(

 'Step Count',

 style: TextStyle(fontSize: 18),

),

 onTap: () {

 Navigator.of(context).push(MaterialPageRoute(

 builder: (context) => HealthDataScreen()));

 },

),

],

),

),

),

 body: Center(

 child: Container(

 color: Colors.white,

 child: AnimatedSwitcher(

 duration: const Duration(milliseconds: 2750),

 child: ModelViewer(

 key: ValueKey<int>(_count),

 autoPlay: true,

 src: 'assets/leanordAnimations.glb',

 animationName: _currentAnimation,

),

),

),

),

);

 }

}

40

User Health Profile:

import 'package:flutter/material.dart';

import 'package:fyp/resuable_widgets/custom_clipper.dart';

import 'package:fyp/resuable_widgets/card_main.dart';

import 'package:fyp/utils/const.dart';

import 'package:health/health.dart';

import 'dart:async';

class dScreen extends StatefulWidget {

 const dScreen({super.key});

 @override

 State<dScreen> createState() => _dScreenState();

}

enum AppState {

 DATA_NOT_FETCHED,

 FETCHING_DATA,

 DATA_READY,

 NO_DATA,

 AUTH_NOT_GRANTED,

 STEPS_READY,

}

class _dScreenState extends State<dScreen> {

 List<HealthDataPoint> _healthDataList = [];

 AppState _state = AppState.DATA_NOT_FETCHED;

 int _nofSteps = 10;

 HealthFactory health = HealthFactory();

 Future fetchData() async {

 setState(() => _state = AppState.FETCHING_DATA);

 final types = [

 HealthDataType.STEPS,

 HealthDataType.WEIGHT,

 HealthDataType.HEIGHT,

 HealthDataType.ACTIVE_ENERGY_BURNED,

 HealthDataType.HEART_RATE,

];

 final now = DateTime.now();

 final yesterday = now.subtract(Duration(hours: 24));

 _healthDataList.clear();

 List<HealthDataPoint> healthData =

 await health.getHealthDataFromTypes(yesterday, now, types);

 _healthDataList.addAll(

 (healthData.length < 100) ? healthData : healthData.sublist(0, 100));

 //_healthDataList.forEach((x) => print(x));

 setState(() {

41

 _state = _healthDataList.isEmpty ? AppState.NO_DATA :

AppState.DATA_READY;

 });

 //_content();

 }

 Future fetchStepData() async {

 int? steps;

 final now = DateTime.now();

 final midnight = DateTime(now.year, now.month, now.day);

 steps = await health.getTotalStepsInInterval(midnight, now);

 print('Total number of steps: $steps');

 setState(() {

 _nofSteps = (steps == null) ? 0 : steps;

 _state = (steps == null) ? AppState.NO_DATA :

AppState.STEPS_READY;

 });

 }

 @override

 void initState() {

 super.initState();

 Timer.periodic(const Duration(seconds: 6), (timer) {

 setState(() {

 fetchData();

 fetchStepData();

 Timer(Duration(seconds: 3), () {

 print('1 here--1');

 sortdata();

 print('2 here--1');

 print(stps);

 print(hrtrate);

 print(cales);

 print(wgt);

 print('3 here--1');

 });

 });

 });

 }

 List stps = [];

 List hrtrate = [];

 List cales = [];

 List hgt = [];

 List wgt = [];

 String replacer = '';

 double n2 = 0.0; //heartbeat

 double n3 = 0.0; //calories

 double nn3 = 0.0;

 int calnum = 0;

42

 int n4 = 0;

 double n5 = 0; //weight

 void sortdata() {

 stps.clear();

 hrtrate.clear();

 cales.clear();

 hgt.clear();

 wgt.clear();

 for (int i = 0; i < _healthDataList.length; i++) {

 if (_healthDataList[i].typeString == 'STEPS') {

 stps.add(_healthDataList[i].value);

 } else if (_healthDataList[i].typeString == 'HEART_RATE') {

 hrtrate.add(_healthDataList[i].value);

 } else if (_healthDataList[i].typeString ==

'ACTIVE_ENERGY_BURNED') {

 cales.add(_healthDataList[i].value);

 } else if (_healthDataList[i].typeString == 'HEIGHT') {

 hgt.add(_healthDataList[i].value);

 } else if (_healthDataList[i].typeString == 'WEIGHT') {

 wgt.add(_healthDataList[i].value);

 }

 }

 n4 = _nofSteps;

 replacer = hrtrate[0].toString();

 n2 = double.parse(replacer);

 replacer = cales[0].toString();

 n3 = double.parse(replacer);

 replacer = wgt[0].toString();

 n5 = double.parse(replacer);

 for (int i = 0; i < cales.length; i++) {

 replacer = cales[i].toString();

 nn3 = double.parse(replacer);

 n3 += nn3;

 }

 calnum = n3.toInt();

 // String n1 = '';

 // double n2 = 0.0;

 // double n3 = 0.0; //calories

 // double n5 = 0;

 // n1 = hrtrate[0].toString();

 // n5 = double.parse(n1);

 // for (int i = 0; i < cales.length; i++) {

 // n1 = cales[i].toString();

 // n2 = double.parse(n1);

 // n3 += n2;

 // }

43

 print(n2);

 print(calnum);

 print(n4);

 print(n5);

 }

 //heartrate

 //$wgt

 //$_nofSteps

 // Widget _contentDataReady() {

 // sortdata();

 // // print(stps);

 // // print(hrtrate);

 // // print(cales);

 // // print(wgt);

 // return Text('');

 // }

 // Widget _stepsFetched() {

 // return Text('Total number of steps: $_nofSteps');

 // }

 // Widget _content() {

 // if (_state == AppState.DATA_READY)

 // return _contentDataReady();

 // else if (_state == AppState.STEPS_READY)

 // return _stepsFetched();

 // else

 // return Text('No data');

 // }

 @override

 Widget build(BuildContext context) {

 double statusBarHeight = MediaQuery.of(context).padding.top;

 return Scaffold(

 backgroundColor: Constants.backgroundColor,

 body: Stack(

 children: <Widget>[

 ClipPath(

 clipper: MyCustomClipper(clipType: ClipType.bottom),

 child: Container(

 color: Color.fromARGB(255, 87, 6, 217),

 height: Constants.headerHeight + statusBarHeight,

),

),

 Positioned(

 right: -45,

 top: -30,

 child: ClipOval(

 child: Container(

 color: Colors.black.withOpacity(0.05),

44

 height: 220,

 width: 220,

),

),

),

 // BODY

 Padding(

 padding: EdgeInsets.all(Constants.paddingSide),

 child: ListView(

 children: <Widget>[

 // Header - Greetings and Avatar

 Row(

 children: <Widget>[

 Expanded(

 child: Text(

 "Good Morning,\nMuzzammil",

 style: TextStyle(

 fontSize: 25,

 fontWeight: FontWeight.w900,

 color: Colors.white),

),

),

 CircleAvatar(

 radius: 26.0,

 backgroundImage: AssetImage(

 'assets/icons/muzzamildaku.jpeg'))

//assets\icons\muzzamildaku.jpeg

],

),

 SizedBox(height: 50),

 // Main Cards - Heartbeat and Blood Pressure

 Container(

 height: 140,

 child: ListView(

 scrollDirection: Axis.horizontal,

 children: <Widget>[

 CardMain(

 image: AssetImage('assets/icons/heartbeaticon.png'),

 title: "Hearbeat",

 value: '$n2',

 unit: "bpm",

 color: Color.fromARGB(255, 255, 46, 46)),

 CardMain(

 image: AssetImage(

 'assets/icons/step.png'), //assets\icons\step.png

 title: "Steps",

 value: "$n4",

45

 unit: "int",

 color: Color.fromRGBO(105, 255, 64, 0.992)),

],

),

),

 SizedBox(

 height: 50, // <-- SEE HERE

),

 Container(

 height: 140,

 child: ListView(

 scrollDirection: Axis.horizontal,

 children: <Widget>[

 CardMain(

 image: AssetImage('assets/icons/weight.png'),

 title: "Weight",

 value: "$n5",

 unit: "kg",

 color: Constants.lightGreen,

),

 CardMain(

 image: AssetImage('assets/icons/calories.png'),

 title: "Calories Burn",

 value: "$calnum",

 unit: "cal",

 color: Constants.lightYellow)

],

),

),

],

),

)

],

),

);

 }

}

9%
SIMILARITY INDEX

2%
INTERNET SOURCES

1%
PUBLICATIONS

7%
STUDENT PAPERS

1 4%

2 1%

3 1%

4 1%

5 <1%

6 <1%

7 <1%

8 <1%

9 <1%

health avatar
ORIGINALITY REPORT

PRIMARY SOURCES

Submitted to Higher Education Commission
Pakistan
Student Paper

Submitted to Midlands State University
Student Paper

Submitted to Dhofar University
Student Paper

www.scaler.com
Internet Source

Submitted to Edge Hill University
Student Paper

Submitted to University of Hertfordshire
Student Paper

businessdocbox.com
Internet Source

theseus.fi
Internet Source

flutterawesome.com
Internet Source

10 <1%

11 <1%

12 <1%

Exclude quotes Off

Exclude bibliography On

Exclude matches Off

"Human-Computer Interaction – INTERACT
2011", Springer Science and Business Media
LLC, 2011
Publication

dspace.unza.zm
Internet Source

Kyu C. Cho, Yeong-Tae Song. "Layered Design
of CORBA Audio/Video Streaming Service in a
Distributed Java ORB Middleware Multimedia
Platform", Sixth International Conference on
Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed
Computing and First ACIS International
Workshop on Self-Assembling Wireless
Networks (SNPD/SAWN'05), 2005
Publication

