

FINAL YEAR PROJECT REPORT

TRAFFIC CONGESTION RESOLUTION AND ROAD PLANNING

In fulfillment of the requirement For degree of BEE (Electronics)

By

MAHEEN KHAN FAIZAN UR RAHMAN NOMAN MEHBOOB 25484 BEE(ELECTRONICS) 25358 BEE(ELECTRONICS) 25449 BEE(ELECTRONICS)

SUPERVISED

BY

ENGR. MR UMAIR ARIF

BAHRIA UNIVERSITY (KARACHI CAMPUS) 2011-2015

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express my gratitude to my research supervisor, Sir Muhammad Umair Arif for his invaluable advice, guidance and his enormous patience throughout the development of the research.

In addition, we would also like to express my gratitude to our loving parent and friends who had helped and given me encouragement.

indown and decision on the second angles. Molecower, the second contracts information about different analysis processing algorithms. Allow any unordered on Xines, FPON model Virtuel unity ar editional for because Allow Symmetry Contracts for MATLAN. All the holder processing algorithms asceleting mayor provident, contract percenter, Subar ofger descenter, boundary estimation at sec contracts a this report lease, the Hardword co-site alternation threader in the Symmetry Contracts are use table to amplement these algorithms on an Virtue 4. Lang Systems Statements reduces completency architecters in the second

TRAFFIC CONGESTION RESOLUTION AND ROAD PLANNING

ABSTRACT

In this project we perform classification of Vehicles in surveillance videos on three different datasets with varying level of complexity. First Dataset (Highway II) contains single lane, high speed vehicles, no vehicle occlusion, long shadows and the camera angle is top front view. Second Dataset (Toolplaza) contains two lanes, slow speed vehicles, varying vehicle type, long shadows and the camera angle is top front view. Third Dataset (Nipa) contains three lanes, high speed vehicles, varying vehicle type, no shadows and the camera angle is top side view. Existing algorithms such as blob analysis, tracking using kalman filter, detection line techniques were used and tested on all 3 data sets and experimental results for detection, tracking and attribute based classification are presented at the end. Results show that the algorithms perform well for simple datasets but as soon as the complexity increased, several tracking and classification errors were identified. Major Contribution of errors was because of occlusion due to shadows and occlusion due to camera angles.

Moreover, this report provides information about different image processing algorithms which are implemented on Xilinx FPGA model Virtex4 using an efficient tool known as Xilinx System Generator for MATLAB. All the image processing algorithms including image inversion, contrast sketching, Sobel edge detection, Boundary extraction etc are explained in this report. Using the Hardware co-simulation function given in the System Generator we are able to implement these algorithms on the Virtex 4. Using System Generator reduces complexity and intricacy in the design.

1. Revises (1) Conserver, Vision Wate Differen 2. Die Annagen Of Mallet Drey Offer Lan 1999 Representation im Mailan

TABLE OF CONTENTS

DECLARATION	Error! Bookmark not defined.
APPROVAL FOR SUBMISSION	2
ACKNOWLEDGEMENTS	4
ABSTRACT	5
TABLE OF CONTENTS	6
LIST OF TABLES	9
LIST OF FIGURES	10

CHAPTER

1

2

	INTRODUCTION			
	1.1	Backgro	ound	11
		1.1.1	What Is Traffic Congestion	11
		1.1.2	What is Road Planning	11
	1.2	Problem	n Statements	12
		1.2.1	Old Methods	12
		1.2.2	Some Reasons Of Traffic Congestion	12
	1.3	Aims ar	nd Objectives	13
	1.4	Scope o	f Project	13
LITERATURE REVIEW				
	2.1	2.1 Introduction To Matlab		
		2.1.1	Relation Of Computer Vision With Different Fiel	14
		The Advantages Of Matlab Over Other Languages	s14	
		2.1.3	Image Representation In Matlab	15
		2.1.4	Image Processing Techniques	16

	2.2	Introduction To Fpga		
		2.2.1	Field Programmable Gate Array	19 20
		2.2.2	Architecture Of Field Programmable Gate Array	20
		2.2.3	History Of Field Programmable Gate Array	20
		2.2.4	Fpga Comparisons	21
		2.2.5	Applications	21
	DESIG	N AND	METHODOLOGY	24
	3.1	Detectio	on and tracking of vehicles	24
	3.2		sed classification of vehicles	24
3.1 Detection and tracking of vehicles				24
	3.2	Stored v	video processing on MATLAB	25
		3.2.1	Problem Formulation:	25
		3.2.2	Algorithms:	25
	3.3	Implem	enting the offline video processing on FPGA	31
	Figure	3.5: Impl	ementing the offline video processing on FPGA	31
		3.5.1	Image inversion:	32
		3.5.1.1	Image enhancement:	33
		3.5.1.2	Contrast Stretching:	34
		3.5.1.3	Sobel edge detection:	34
		3.5.1.4	Perwitt Edge Detection	36
		3.5.1.5	MRI image manipulation:	37
		3.5.1.6	Image Thresholding:	38
		3.5.1.7	Boundary Extraction	38
	IMPLI	EMENT	ATION	40
	4.1	Implem	entation On Matlab	40
		4.1.1	Evaluated Datasets:	40
		4.1.2	Custom GUI	42
	4.2	Our Implementations On Virtex 4		
		4.2.1	Image inversion:	44
		4.2.2	Image Contrast Manipulation:	45
		423	Image Enhancement Manipulation:	45

		4.2.4	BoundaryExtraction:	45
		4.2.5	SobelEdgeDetection:	46
		4.2.6	HorizontalSobel:	46
		4.2.7	Vertical Sobel:	46
		4.2.8	Horizontal Prewit:	47
		4.2.9	Vertical Perwit:	47
		4.2.10	MRI Image Manipulation:	48
		4.2.11	Color Image To YCbCr:	48
5	RESU	JLTS ANI	DDISCUSSIONS	
	5.1	Results	obtained from Matlab:	49
	5.2 Results obtained from FPGA:			
		5.2.1	Image inversion:	52
		5.2.2	Image enhancement:	52
		5.2.3	Contrast stretching:	52
		5.2.4	Vertical gradient (Sobel):	53
		5.2.5	Vertical gradient(Perwitt);	53
		5.2.6	Horizontal gradient(Perwitt):	54
		5.2.7	Transformation form colored to YCbCr:	54
		5.2.8	Image thresholding:	54
		5.2.9	Edge detection using 5x5filter:	55
		5.2.10	Boundary Extraction:	55
		5.2.11	MRI image:	55

CONCLUSION AND RECOMMENDATIONS

REFERENCES

57

56