

BSCS-S22-004

03-134191-035 SYED SHAHAN TAHIR

03-134191-055 NAVEED AKRAM

Human Activity Recognition Using

Deep learning

In partial fulfilment of the requirements for the degree of

Bachelor of Science in Computer Science

Supervisor: Dr. Iram Noreen

Department of Computer Sciences

Bahria University, Lahore Campus

January 2023

© Bahria University, 2023

i

C e r t i f i c a t e

We accept the work contained in the report titled

“Human Activity Recognition Using Deep learning”

written by

SYED SHAHAN TAHIR

NAVEED AKRAM

as a confirmation to the required standard for the partial fulfilment of the degree of

Bachelor of Science in Computer Science.

Approved by:

Supervisor: Dr. Iram Noreen

 (Signature)

Jan 10, 2023

ii

DECLARATION

We hereby declare that this project report is based on our original work except for

citations and quotations which have been duly acknowledged. We also declare that it

has not been previously and concurrently submitted for any other degree or award at

Bahria University or other institutions.

Enrolment Name Signature

03-134191-035 SYED SHAHAN TAHIR

03-134191-055 NAVEED AKRAM

Date : Jan 10, 2023

iii

Specially dedicated to

my parents and teachers

(SYED SHAHAN TAHIR)

my parents and teachers

(NAVEED AKRAM)

iv

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of

this project. We would like to express our gratitude to my research supervisor, Dr.

Iram Noreen for his invaluable advice, guidance, and his enormous patience

throughout the development of the research.

In addition, we would also like to express my gratitude to our loving parent and

friends who had helped and given me encouragement.

SYED SHAHAN TAHIR

NAVEED AKRAM

v

 Human Activity Recognition Using Deep learning

ABSTRACT

Majority of computer vision tasks, such as Human Activity Recognition (HAR), are

closely tied to security, virtual reality, video surveillance, and home monitoring

applications. This sets a new trend and turning point in the HAR system development

cycle. The problem is that most applications based on HAR available are low in

accuracy due to which the percentage of faulty recognition of human activities and false

alerts is quite high.

For the development of the system, we have selected UCF-SPORTS dataset

which contains 9118 images. Dataset consists of images having different activities,

which are classify according to the requirement of the system as their names. This

dataset is used to train the model. Multiple Transfer Learning models are used for the

development of this system. Design of the model is based on Xception, Inception, and

MobileNet along with stack of different layers to improve the accuracy. Method of

hyper-parameter tuning is used to analyse the behaviour of the discussed model. Model

is tested and trained for different range of values of Batch size, learning rate and epochs.

Performance of the model is validated through 5-fold cross validation. Experiments and

analysis show that model detects activities with almost 97% cross validation accuracy.

Human Activity Recognition System (HARS) is developed as a mobile

application for ease of use. In this system trained model is imported at the backend of

the application which is used to detect human activities. System detects activities by

vi

extracting frames from live feeds through camera. Moreover, system also notifies the

app user by alerts if there’s any suspicious activity to take safety measures as early as

possible. In this age where computers can now perceive and analyse their environment

with high accuracy, the detection system use latest and optimized model which

specializes in activity detection. . Application will be able to recognize and classify

several group of activities. This application is developed using Kivy a python

framework and ML/AI kit.

vii

TABLE OF CONTENTS

DECLARATION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF SYMBOLS / ABBREVIATIONS 1

CHAPTERS

1 INTRODUCTION 2

1.1 Background 2

1.2 Problem Statements 3

1.3 Aims and Objectives 4

1.4 Scope of Project 4

1.5 Dataset 4

1.6 Transfer Learning Models 6

1.6.1 Inception 6

1.6.2 MobileNet V2 10

1.6.3 Xception 14

1.7 Final Deliverable of the Project and Beneficiaries 15

2 SOFTWARE REQUIREMENT SPECIFICATION 16

2.1 Introduction 16

2.2 User Classes and Characteristics 16

viii

2.3 Operating Environment 17

2.4 Development System 17

2.4.1 Design and Implementation Constraints 18

2.5 Assumptions and Dependencies 18

2.6 External Interface Requirements 18

2.6.1 User Interface 18

2.7 Software Interfaces 19

2.8 System Use Cases 20

2.8.1 Sign Up (U1) 21

2.8.2 Login (U2) 22

2.8.3 View Result (U3) 23

2.8.4 View Live Feed (U4) 25

2.8.5 Upload (U5) 26

2.9 Other Non-functional Requirements 28

2.9.1 Performance Requirements 28

2.9.2 Safety Requirements 28

2.9.3 Security Requirements 28

2.9.4 Software Quality Attributes 29

3 DESIGN AND METHODOLOGY 30

3.1 Phase 1: Project Initiation 32

3.2 Phase 2: Benchmark Dataset Collection and Pre-processing 32

3.3 Phase 3: Model Design and Model Evaluation 33

3.3.1 Model Design 33

3.3.2 Model Verification and Validation 34

3.3.3 Training Dataset 34

3.3.4 Testing Data 35

3.3.5 Validation 35

3.4 Phase 4: Application (Proof of concept) 36

3.5 Workflow of Application 36

3.6 Sequence Diagrams 37

3.6.1 Sign Up 38

3.6.2 Login 39

ix

3.6.3 View Result 40

3.6.4 Upload 41

3.6.5 Live Feed 42

4 EXPERIMENT AND IMPLEMENTATION 43

4.1 Experimental Setup 43

4.1.1 Google Colab 43

4.1.2 Hyper Parameter Tuning 45

4.2 List of Experiment on Models 46

4.2.1 Experiment on Inception 47

4.2.2 Experiment on MobileNet 49

4.2.3 Experiment on Xception 51

4.2.4 Comparison of Models 53

4.3 Languages 54

4.3.1 Python 54

4.3.2 Framework 54

4.4 Tools 54

4.4.1 Vs Code 54

4.4.2 Emulator 55

5 RESULTS AND DISCUSSIONS 56

5.1 Result of Application 56

5.1.1 Introduction 56

5.1.2 Log In and Sign Up 58

5.1.3 Main Screen 60

5.1.4 Camera Screen 62

5.1.5 Upload Screen 63

5.2 Result of Model 64

6 CONCLUSION AND RECOMMENDATIONS 67

6.1 Project Achievements 67

6.2 Future Work 67

6.3 Implementation Issues and Challenges 68

x

6.4 Conclusion 69

REFERENCES 70

xi

LIST OF TABLES

 TABLE TITLE PAGE

Table 1.1: Summary of characteristics of UCF Sports 5

Table 2.1: Software Interface 19

Table 2.2: Sign Up 21

Table 2.3: Login 22

Table 2.4: View Results 23

Table 2.5: View Live Feed 25

Table 2.6: Upload 26

Table 4.1: Hyperparameters of Model 45

Table 4.2: Experiments on Inception 47

Table 4.3: Experiments on MobileNet 49

Table 4.4: Experiments on Xception 51

Table 4.5: Comparison of Models 53

xii

LIST OF FIGURES

 FIGURE TITLE PAGE

Figure 1.1: Sample images of UCF Sports Dataset 5

Figure 1.2: Smaller Convolution [8] 7

Figure 1.3: Asymmetric convolutions [8] 8

Figure 1.4: Auxiliary classifier [8] 8

Figure 1.5: Grid size reduction [8] 9

Figure 1.6: Final architecture [7] 9

Figure 1.7: Convolutional Blocks[10] 10

Figure 1.8: Architecture [10] 11

Figure 1.9: Depthwise Separable Convolution [11] 11

Figure 1.10: Pointwise Convolution [11] 13

Figure 1.11: Convolution Layers [11] 13

Figure 1.12: MobileNet vs CNN [11] 14

Figure 2.1: User Use Case Diagram 20

Figure 2.2: Signup Use Case Diagram 22

Figure 2.3: Login Use Case Diagram 23

Figure 2.4: View Result Use Case Diagram 24

Figure 2.5: View Live Feed Use Case Diagram 26

Figure 2.6: Upload Use Case Diagram 27

Figure 3.1: Methodology Diagram 31

xiii

Figure 3.2: Work Flow Diagram 37

Figure 3.3: Signup sequence diagram 38

Figure 3.4: Login sequence diagram 39

Figure 3.5: View Result sequence diagram 40

Figure 3.6: Upload sequence diagram 41

Figure 3.7: View Live Feed sequence diagram 42

Figure 4.1: Confusion Matrix of Inception 47

Figure 4.2: Accuracy Loss Graph of Inception 48

Figure 4.3: Confusion Matrix of MobileNet 49

Figure 4.4: Accuracy Loss Graph of MobileNet 50

Figure 4.5: Confusion Matrix of Xception 51

Figure 4.6: Accuracy Loss Graph of Xception 52

Figure 5.1: Welcome Screen 57

Figure 5.2: Sign up screen 58

Figure 5.3: Log in Screen 59

Figure 5.4: Main screen 61

Figure 5.5: Camera Screen 62

Figure 5.6: Upload Screen 63

Figure 5.7: Uploading Image 64

Figure 5.8: Result after uploading image 65

Figure 5.9: Result from live feed 66

1

LIST OF SYMBOLS / ABBREVIATIONS

HAR Human Activity Recognition

HARS Human Activity Recognition System

ML Machine Learning

AI Artificial Intelligence

CNN Convolutional Neural Network

DNN Deep Neural Network

FDD Feature Driven Development

2

CHAPTER 1

1 INTRODUCTION

1.1 Background

Human Activity Recognition (HAR) is an extensive discipline of study concerned with

figuring out the particular motion or movement of a person primarily based on sensor

data [1]. HAR is widely used in a variety of applications such as intelligent video

surveillance systems, suspicious activity detection, and in the medical field.

Movements are standard activities frequently performed, which includes walking,

standing, and sitting [1]. We need an Application or Program which could recognize

human activities and offer assistance in our everyday Lives, however on the same time,

ensure that it does not record videos which could violate our privacy. Sensor data can

be remotely recorded, consisting of video, radar, or different wireless methods.

Alternately, data can be recorded directly at the subject by a custom hardware or by

smart phones which have accelerometers and gyroscopes. There are not any apparent

or direct methods to relate the recorded sensor information to precise human activities

and every subject may also carry out an activity with great variation [1].

Our intent is to record sensor data and corresponding activities for particular

subjects, fit a model from this data, and generalize the model to categorise the activity

of recent unseen subjects from their sensor data. Many researchers have contributed

innovative algorithms and approaches in the area of human action recognition system

and have conducted experiments on individual data sets by considering accuracy and

computation. Moreover, this field requires high accuracy with less computational

complexity. The existing techniques are inadequate in accuracy due to assumptions

3

regarding clothing style, view angle and environment. Hence, the main objective of

this is to develop an efficient multi-view based human action recognition system using

deep learning.

Following are some deep learning approaches that are reported in literature for human

activity recognition.

 2-Dimensional Convolution Neural Network (2D-CNN) [2]

 Long Short Term Memory (LSTM) [3]

 3-Dimensional Convolution Neural Network (3D-CNN) [4]

 Gaussian Mixture Modelling (GMM) [5]

We are using Kivy [6] for the development of HAR App. Kivy is a free and open-

source Cross Development Platform with a natural user interface distributed under

MIT License. Kivy uses Python as its official programming language.

1.2 Problem Statements

Multimodal object perception and action description using multimodal methods of

Human activities recognition (HAR) are detected either by traditional complex

machine learning approaches involving manual engineering or by automated deep

learning approaches which use high computing resources to perform well. A

lightweight deep learning-assisted approach is desirable to solve the challenges of

multiple variations in viewpoint for significant features in HAR. A lightweight deep

learning-assisted framework for activity recognition.

4

1.3 Aims and Objectives

The objectives of the thesis are shown as following:

 To develop an app that will recognize human activities in real time

functionalities.

 To make an app that will alert users for suspicious activities.

 To provide users better surveillance

1.4 Scope of Project

Primary Objective is to develop an efficient human action recognition system using

deep learning. The scope of the project is two folds. At backend level, it is a deep

learning based trained model to achieve HAR with feasible performance measure. At

frontend level, it will provide a cross platform smart application to provide HAR

services remotely to wide range of users.

1.5 Dataset

We have used UCF Sports Dataset [19]. UCF Sports dataset consists of a set of actions

collected from various sports which are typically featured on broadcast television

channels such as the BBC and ESPN. The video sequences were obtained from a wide

range of stock footage websites including BBC Motion gallery and Getty Images.

5

The dataset includes a total of 150 sequences with the resolution of 720 x 480.

The collection represents a natural pool of actions featured in a wide range of scenes

and viewpoints.

The dataset includes the following 10 actions.

 Diving (14 videos)

 Golf Swing (18 videos)

 Kicking (20 videos)

 Lifting (6 videos)

 Riding Horse (12 videos)

 Running (13 videos)

 Skateboarding (12 videos)

 Swing-Bench (20 videos)

 Swing-Side (13 videos)

 Walking (22 videos)

Table 1.1: Summary of characteristics of UCF Sports [19]

Actions 10 Total Duration 958 fps

Clips 150 Frame Rate 10 fps

Mean Clip Length Resolution 720 x 480

Min Clip Length Max no of clips per class 22

Max Clip Length Min no of clips per class 6

Figure 1.1: Sample images of UCF Sports Dataset [19]

We have converted videos to frames in order to train our model which has 9118imges

in total.

6

1.6 Transfer Learning Models

Following are the external interface requirements of this project:

1.6.1 Inception

The Inception V3 [7] is a deep learning model used for image classification based on

Convolutional Neural Networks. The inception V3 is a 3rd version of Inception model.

It uses techniques like factorizing larger convolutions to smaller convolutions (say a

5X5 convolution is factorized into two 3X3 convolutions) and asymmetric

factorizations (example: factorizing a 3X3 filter into a 1X3 and 3X1 filter). These

factorizations are done with the aim of reducing the number of parameters being used

at every inception module. The main focus of inception v3 is to use less computational

power by changing the architectures of previous versions

In comparison to other models, Inception is superior in relationship of the

number of parameters generated by the network and computational cost. While

changing the Inception model care must be taken to avoid the computational loss. Thus,

the adaptation of an Inception network for different use cases turns out to be a problem

due to the uncertainty of the new network’s efficiency. Several techniques are sued for

the adaption of the network. The techniques include factorized convolutions,

regularization, dimension reduction, and parallelized computations.

The architecture of an Inception v3 network is built gradually, step-by-step, as

explained below:

1. Factorized Convolutions: this helps to reduce the computational efficiency as it

reduces the number of parameters involved in a network. It also keeps a check on the

network efficiency.

2. Smaller convolutions: replacing bigger convolutions with smaller convolutions

definitely leads to faster training. Say a 5 × 5 filter has 25 parameters; two 3 × 3

filters replacing a 5 × 5 convolution has only 18 (3*3 + 3*3) parameters instead.

7

Figure 1.2: Smaller Convolution [8]

In the middle we see a 3x3 convolution, and below a fully-connected layer. Since both

3x3 convolutions can share weights among themselves, the number of computations

can be reduced.

3. Asymmetric convolutions: A 3 × 3 convolution could be replaced by a 1 × 3

convolution followed by a 3 × 1 convolution. If a 3 × 3 convolution is replaced by a

2 × 2 convolution, the number of parameters would be slightly higher than the

asymmetric convolution proposed.

8

Figure 1.3: Asymmetric convolutions [8]

4. Auxiliary classifier: an auxiliary classifier is a small CNN inserted between

layers during training, and the loss incurred is added to the main network loss. In

Inception v3 an auxiliary classifier acts as a regularizer.

Figure 1.4: Auxiliary classifier [8]

9

5. Grid size reduction: Grid size reduction is usually done by pooling operations.

Figure 1.5: Grid size reduction [8]

All the above concepts are consolidated into the final architecture.

Figure 1.6: Final architecture [7]

10

1.6.2 MobileNet V2

MobileNet V2 [9] is a lightweight deep neural network which uses Depthwise

separable convolutions. Regular convolutions have more parameters which are

significantly reduced in MobileNet. MobileNet gives excellent starting point for

training classifiers that are insanely small and insanely fast.

Figure 1.7: Convolutional Blocks[10]

11

Figure 1.8: Architecture [10]

The Following are the layers of model:

Depthwise Separable Convolution is convolution originated from the idea that a

filter’s depth and spatial dimension can be separated- thus, the name separable. Let

us take the example of Sobel filter, used in image processing to detect edges.

Figure 1.9: Depthwise Separable Convolution [11]

12

You can separate the height and width dimensions of these filters. Gx filter can be

viewed as a matrix product of [1 2 1] transpose with [-1 0 1]. We notice that the filter

had disguised itself. It shows it had nine parameters, but it has 6. This has been

possible because of the separation of its height and width dimensions. The same idea

applied to separate depth dimension from horizontal (width*height) gives us depth-

wise separable convolution where we perform depth-wise convolution. After that, we

use a 1*1 filter to cover the depth dimension. To produce one channel, we need

3*3*3 parameters to perform depth-wise convolution and 1*3 parameters to perform

further convolution in-depth dimension. But If we need three output channels, we

only need 31*3 depth filter, giving us a total of 36 (= 27 +9) parameters while for

the same no. of output channels in regular convolution, we need 33*3*3 filters giving

us a total of 81 parameters.

Depthwise separable convolution is a depthwise convolution followed by a pointwise

convolution which is shown in the figure 1.9:

13

Figure 1.10: Pointwise Convolution [11]

1. Depthwise convolution is the channel-wise DK×DK spatial convolution.

2. Pointwise convolution is the 1×1 convolution to change the dimension.

3. Depthwise convolution.

Figure 1.11: Convolution Layers [11]

The main difference between MobileNet architecture and a traditional CNN instead

of a single 3x3 convolution layer followed by the batch norm and ReLU. Mobile

14

Nets split the convolution into a 3x3 depth-wise conv and a 1x1 pointwise conv, as

shown in the figure 1.11:

Figure 1.12: MobileNet vs CNN [11]

1.6.3 Xception

Xception [12] is a deep convolutional neural network architecture that involves

Depthwise Separable Convolutions. It was developed by Google researchers. It is an

interpretation of Inception modules in convolutional neural networks as being an

intermediate step in-between regular convolution and the depthwise separable

convolution operation. Xception stands for “extreme inception”, it takes the principles

of Inception to an extreme. In Inception, 1x1 convolutions were used to compress the

original input, and from each of those input spaces we used different type of filters on

each of the depth space. Xception just reverses this step. Instead, it first applies the

filters on each of the depth map and then finally compresses the input space using 1X1

convolution by applying it across the depth. This method is almost identical to a

depthwise separable convolution. There is one more difference between Inception and

Xception. The presence or absence of a non-linearity after the first operation. In

Inception model, both operations are followed by a ReLU non-linearity, however

Xception doesn’t introduce any non-linearity.[13]

15

An inception network is a deep neural network (DNN) with a design that

consists of repeating modules referred to as inception modules. In general, each layer

if DNN is considered to extract some feature, then stacking these layers one above

each other is not a great idea. Deep networks are prone to overfitting, and chaining

multiple convolutional operations together increases the cost to train the network.

Another issue is as each layer type extracts a different kind of information, how do we

know which transformation (kernels) provides the most useful information to the DNN.

An Inception module computes multiple different transformations over the

same input and then finally combining all the output which lets the model decide what

features to take and by how much. There is one problem. It is still computationally

inefficient because of convolutions. These convolutions not only happens spatially,

but also across the depth. So, for each additional filter, we have to perform convolution

over the input depth to calculate just a single output map, and because of this, the depth

becomes a huge bottleneck in the DNN. The depth can be reduced by doing 1X1

convolution across the depth. This convolution looks across multiple channel's spatial

information and compress it down to a lower dimension. For example, using 30 1x1

filters, input of size 128x128x100 (with 100 feature maps) can be compressed down

to 128x128x30. Due to this reduction, the researchers of Inception module were able

to concatenate different layer transformations in parallel, resulting in DNN that was

wide and deep. The images below shows difference between Inception module without

1X1 filters and one with 1X1 filters.

1.7 Final Deliverable of the Project and Beneficiaries

The final deliverables of this project will be an integrated system comprising of

hardware and software. The beneficiaries of this system are people from the area where

this system is installed.

16

CHAPTER 2

2 SOFTWARE REQUIREMENT SPECIFICATION

2.1 Introduction

HAR App is Machine Learning based detection system which uses concepts and

algorithms of machine learning and computer vision. It will be used to detect activities

and make detection more reliable. Machine learning is a method of data analysis that

automates analytical model building. It is a branch of artificial intelligence based on

the idea that systems can learn from data, identify patterns and make decisions with

minimal human intervention [4].

SRS stands for software requirement specification. This document will describe

the functional and non-functional requirement for the system. The limitation that the

application will have and reasons for the limitation. The system main features and

blueprint of the system. The system requirements of HAR App are discussed below.

2.2 User Classes and Characteristics

This software is created for two main user classes:

 User – A user will be able to perform the following activities:

 Sign in

17

 Sign-out

 Login

 Forgot Password

 View Live Stream

 See Result

2.3 Operating Environment

Mobile device with the following (minimum) specifications:

 2 GB RAM

 1 GB free storage

 Internet

 Android 6.0 marshmallow

2.4 Development System

 Visual Studio Code [14]

 Kivy [6]

 Google Colab [15]

 Kaggle [16]

 Adobe XD [17]

 Adobe Illustrator [18]

18

2.4.1 Design and Implementation Constraints

HAR app is a mobile application, and the front end of the Application is designed using

Abode XD and Kivymd. For model training Google Colab and Kaggle is used. App

will be developed using FDD which divides complex structures into subparts. This

model recurrence last two phases i.e., Design by feature and Develop by Feature until

all features will complete. Time is a major constrain as trained model is integrated in

the app and to predict activity time is required. Model accuracy and dataset is also a

constraint for the application.

2.5 Assumptions and Dependencies

We are assuming that the user already has the knowledge required to operate this

application. Camera is a must dependency for this software. Without these services’

application won't be able to run.

2.6 External Interface Requirements

Following are the external interface requirements of this project:

2.6.1 User Interface

 Full-screen application

 Splash screen

 UI/UX includes the following components:

19

▪ Image viewer

▪ Buttons

▪ Text Views

▪ Google defined UI constraint standards

▪ Material design theme

2.7 Software Interfaces

Following are the required software interfaces:

Table 2.1: Software Interface

Android Version

6.0+

This app will run on mobiles that are

running Android version 6.0+

Model Training

Google Colab, Kaggle

Google Colab and Kaggle are used

to train the models used.

Tools

Visual Studio Code

Visual Studio Code is the

development platform that’ll be used

to develop this application using the

Kivy framework.

20

2.8 System Use Cases

The following are the use cases for ‘HAR App’. In these use cases User will be the

actor that will interact with the presented system.

Figure 2.1: User Use Case Diagram

21

2.8.1 Sign Up (U1)

It would be used to register new admin in the system.

Table 2.2: Sign Up

 Name Signup

1. Use-Case ID U1

2. Objective User will sign up in the system

3. Priority Low

4. Source Naveed Akram(Developer)

5. Actors User

6. Flow of Events Run the Software Application

 Enter Email & Password

 Press Sign-up button

6.1 Basic Flow Information is entered and new user is

created and can now login.

6.2 Alternate Flow(s) No Alternative Flows

6.3 Exception Flow(s) Information should be correctly added while signing

 up.

7. Includes No other Use case

8. Preconditions The user must be Signed-In.

9. Postconditions CRUD operations are performed.

10. Notes/Issues None.

If the user is using the system for the first time he will need to sign up in the application.

For that purpose, he/she will enter his detail for sign up. The detail will then be sent to

server side and it will be saved there. So, the admin could login again whenever he

wants to. If some type of error occurs, error message will be displayed. Graphical

representation of the use case is as show in Fig 2.1 Sign Up:

22

Figure 2.2: Signup Use Case Diagram

2.8.2 Login (U2)

Table 2.3: Login

 Name Login

1. Use-Case ID U2

2. Objective Admin can login into system

3. Priority Low

4. Source Naveed Akram(Developer)

5. Actors User

6. Flow of Events Run the Software Application

 Click the Login Option

 Enter Details

 Press Login Button

6.1 Basic Flow Information is entered and user can login.

6.2 Alternate Flow(s) No Alternative Flows

6.3 Exception Flow(s) User should enter correct information

7. Includes No other Use case

23

8. Preconditions Software must be installed

9. Postconditions User has logged in. Home screen will appear after it

10. Notes/Issues None.

If the user wants to access and use the system. For that purpose, he/she will enter his

detail for login. The detail will then be sent to server side and it will be validated there.

If details are correct admin will log into the system. If some type of error occurs, error

message will be displayed.

Figure 2.3: Login Use Case Diagram

2.8.3 View Result (U3)

Table 2.4: View Results

 Name View Result

1. Use-Case ID U3

2. Objective View Result

3. Priority Low

4. Source Naveed Akram(Developer)

24

5. Actors User

6. Flow of Events After successful login in system

 Click on capture

6.1 Basic Flow Frame will be captures and result will be displayed on the screen

6.2 Alternate Flow(s) No Alternative Flows

6.3 Exception Flow(s) Admin should enter correct information

7. Includes U1

8. Preconditions System must be installed first and Admin must Login

 into the system.

9. Postconditions Result has been generated. Result will be displayed

on Screen.

10. Notes/Issues None.

If the user wants to generate the result of recent activity. He/she will have to login into

the system and then press Generate report button. If some type of error occurs, error

message will be displayed.

Graphical representation of the use case is shown in figure 2.4:

Figure 2.4: View Result Use Case Diagram

25

2.8.4 View Live Feed (U4)

It would be used to view live stream of camera that is connected to the system.

Table 2.5: View Live Feed

 Name View Live Feed

1. Use-Case ID U4

2. Objective View Live Feed

3. Priority Low

4. Source Naveed Akram(Developer)

5. Actors User

6. Flow of Events After successful login in system

 Click on Play Button

6.1 Basic Flow After login into the system, default page that is opened is view

live stream. Press Play there to view

the live stream.

6.2 Alternate Flow(s) No Alternative Flows

6.3 Exception Flow(s) Information should be correctly added while signing

 up.

7. Includes U2

8. Preconditions User

9. Postconditions CRUD operations are performed.

10. Notes/Issues None.

If the user wants to view the live stream of the camera to see what is happening around.

He/she will have to login into the system and then press Start button. If some type of

error occurs, error message will be displayed.

26

Figure 2.5: View Live Feed Use Case Diagram

2.8.5 Upload (U5)

Table 2.6: Upload

 Name Signup

1. Use-Case ID U1

2. Objective User will sign up in the system

3. Priority Low

4. Source Naveed Akram(Developer)

5. Actors User

6. Flow of Events Run the Software Application

 Enter Email & Password

 Press Sign-up button

6.1 Basic Flow Information is entered and new user is

created and can now login.

6.2 Alternate Flow(s) No Alternative Flows

6.3 Exception Flow(s) Information should be correctly added while signing

 up.

7. Includes No other Use case

27

8. Preconditions System must be installed first and User must Login

 into the system.

9. Postconditions Live Feed has been displayed on Screen.

10. Notes/Issues None.

Figure 2.6: Upload Use Case Diagram

28

2.9 Other Non-functional Requirements

Non-functional requirements of this project are:

2.9.1 Performance Requirements

Performance of system depends upon the speed of its response. If malicious activity

is present, system should immediately notify the situation to the owner. The speed of

its response time should be very fasts. Error rate of the software should be close to

negligible.

2.9.2 Safety Requirements

To provide the users with the best application experience we will bring time to time

updates in our application to prevent any bugs and try to fix that bugs and errors. As

the system comprises of both hardware and software. Safety measures are different

for both of them. As it will have a camera, so protection of that camera against things

that can damage it is essential. Camera should be installed in damp and dry place.

Software should only be deployed when it is tested and verified.

2.9.3 Security Requirements

System can be used inside or outside of the building and video data of all the

happenings and activities are passed to system which is only used for detecting

activities. Frames are being recorded that should not be used for any other reason

keeping user activity private.

29

2.9.4 Software Quality Attributes

To ensure the better quality of system the camera should be of good quality. Quality

of camera affects performance of the detection. Besides this the system should only be

deployed when performance is verified and is ensured.

Software quality attributes of this project are:

• Availability: The application will be available for the user 24/7.

• Flexibility: The application would be flexible for any type of user.

• Usability: The application should be user-friendly for the user. The users easily

understand how to use the application.

• Testability: The application should be easy to test at each level and find the

bugs/defect at each level of development and remove the defects easily.

• Reusability: The application is divided into different modules of coding. These

modules can be used across the application.

• Maintainability: The application will be easy to maintain and removing

bugs/errors and upgrade the application features, functionalities from time to

time.

30

CHAPTER 3

3 DESIGN AND METHODOLOGY

In recent years activity detection system has been adopted due to the rapid development

in the field of machine learning. There are many machine learning techniques and

algorithms available which can detect hundreds of thousands of human activities. These

techniques include neural networks, ID3 algorithm, k-nearest algorithm and many more.

HARS has the capability to solve many problems. To detect Human Activity Dataset

consists of Human activity images is required. To meet the requirements, system has been

sub-divided into four phases. It is observed that life is full of problems but in a positive

manner it helps us to identify the solutions which makes our life easier. So, first phase for

the system is to identify the need for the system. Secondly, as system is using machine

learning techniques for object detection dataset must be generated or collected. So, second

phase of the system include collection of datasets and pre-processing of the dataset to

make it useable for system to detect the object. It is very important to plan a design for the

model which is used to detect human activity. After designing the model, verification and

validation of the model is necessary to minimise the chances of failure this is the third

phase of the system. Final phase of the system to run the application along with proof of

concepts. Summary of the phases can be seen in the figure 3.1

31

Figure 3.1: Methodology Diagram

32

3.1 Phase 1: Project Initiation

The first phase of Methodology is Project Initiation. In which Problem statement highlights

identification of problem. It states the problem our system is trying to solve. Multimodal

object perception and action description using multimodal methods of HAR are detected

either by traditional complex machine learning approaches involving manual engineering

or by automated deep learning approaches which use high computing resources to perform

well. A lightweight deep learning-assisted approach is desirable to solve the challenges of

multiple variations in viewpoint for significant features in HAR. A lightweight deep

learning-assisted framework for activity recognition.

3.2 Phase 2: Benchmark Dataset Collection and Pre-processing

Second phase of project is about Data Collection and it’s Pre-processing. Data is essential

for every kind of system. Computer and digital technologies computes, calculates and operate

on the basis of data. In this digital age many jobs are automated to achieve fast and accurate

results or outputs. Machine learning and deep learning algorithms and techniques are used to

automate many jobs or tasks such as detection of objects from images or real time video to

save time and money by providing required results with fast speed. These algorithms and

techniques need handsome amount of data to learn information. So, it can be used to solve

the problem. These algorithms and techniques require specific dataset to solve the specific

problem. That is why, data set of human activities is needed for the HARS. The second phase

has two sub phases i.e., data collection and data pre-processing. For this project UCF-Sports

Dataset [19] is used so that model could be trained on it.

33

3.3 Phase 3: Model Design and Model Evaluation

The third phase has two sub phases i.e., Model Design and its Verification and

Validation. For this thesis images UCF Sports Dataset [19] were used so that model could

be trained on it.

3.3.1 Model Design

Neural Network which is used for model design is MobileNet (a pre trained convolutional

neural network). MobileNetV2, there are two types of blocks. One is residual block with

stride of 1. Another one is block with stride of 2 for downsizing.

 There are 3 layers for both types of blocks.

 This time, the first layer is 1×1 convolution with ReLU6.

 The second layer is the depthwise convolution.

 The third layer is another 1×1 convolution but without any non-linearity. It is

claimed that if ReLU is used again, the deep networks only have the power of a

linear classifier on the non-zero volume part of the output domain

As MobileNet is used as functional layer in this model input size required for the model which

is (224, 224, 3). 224 is length and width. 3 is image type. RGB is the colour format for the

images.

To design the model Python programming language 3.9, Keras, Tensor flow API, Google

Colab has been used. Model structure has been written in python programming language.

Keras is a neural network library developed in python while TensorFlow is an open-source

library. Keras offer simple high-level APIs. It reduces the cognitive stress of users by

following best practices to build and train neural models. TensorFlow offers both high-level

and low-level APIs. TensorFlow is flexible as its eager execution allows for immediate

iteration along with intuitive debugging. Both frameworks thus provide high-level APIs for

building and training models with ease. Model design needs good computation sources.

Google Colab is platform which provide free limited sources to perform machine learning

operations, model design and many more. These sources include GPU, TPU, python Jupyter

notebook environment and cloud storage in the form of google drive.

34

Keras is used to import the MobileNet model along with other layers to make the model more

effective. There are two methods to implement convolutional neural network architecture

using Keras.

• Sequential

• Functional

Functional API of Keras allows you to define a model when layers are linked to more than

one layers (layers are previous layers and next layers) in the model. The functional API is

able handle models with non-linear topology, shared layers, and multiple inputs or outputs.

Sequential API is easy to implement as it allows to build a stack of layers (building model

layer by layer). Sequential basically groups a linear stack of layers into tf.keras.model.

Sequential also provide training and inference features on the model. Model type is

sequential as it is fulfilling the need to design a model for the development of the system

A neural network model is defined by its layers as it defines the topology of the model.

Number of layers varies for according to the requirement of the model. The model which is

used in the development of the system consist of seven layers. There are 4 types of the layers

involved in the building model architecture:

1. Functional Layer

2. Pooling Layer

3. Dense Layer

4. Dropout layer

3.3.2 Model Verification and Validation

Model Verification and Validation is sub phase in third phase of methodology. In it training,

testing and validation of dataset is done

3.3.3 Training Dataset

UCF SPORTS Dataset [19] is used so that model can learn required information from the

dataset for this purpose, dataset is split into training and testing. To perform training 80% of

the data is used to train the model.

35

The training technique is often carried out by employing mini-batch gradient descent (based

on back-propagation) with momentum to optimise the multinomial logistic regression goal.

Three arguments (weights, include top, input shape) were passed to the constructor.

MobileNet has a feature called Fast Feature Extraction. ImageDataGenerator instances are

used to extract photos as NumPy arrays, as well as their labels. The predict technique of the

model is used to extract the features from these photos. A validation accuracy of roughly 95%

is achieved here, which is significantly better than a small model trained from scratch.

However, despite utilising a high rate of dropout, the plots show that overfitting occurs nearly

immediately. This is due to the fact that this method does not employ data augmentation,

which is critical for avoiding overfitting.

MobileNet has a huge number of parameters: 3.2 Million. On top of that, there are 300

million parameters in the classifier. Before building and training the model, it's critical to

freeze the convolutional basis. The weights of a layer or set of layers cannot be frozen during

training. If this is not done, the convolutional base's previously learnt representations will be

updated during training, which is undesirable. Because the Dense layers on top are randomly

initialised, very significant weight modifications would propagate across the network,

effectively destroying previously learnt representations. A network can be frozen in Keras

by setting the trainable attribute to False.

3.3.4 Testing Data

Testing is very important for the model because it gives you detail about the performance of

the model so far. Basically, model is evaluated with testing dataset. When training of the

model is completed the other 20% of the data is used to test the model. For testing accuracy

is used as a metric to test the trained model.

3.3.5 Validation

Cross-validation is a technique for evaluating and testing the performance of a machine

learning model (or accuracy). It entails conserving a portion of a dataset for which the model

has not been trained. The model is then evaluated on this sample to see how well it works.

Cross-validation is a technique for preventing overfitting in a model, especially when the

quantity of data supplied is restricted. To predict the outcomes, our model was verified using

36

k-fold cross validation, where k = 5. Using 5-fold cross validation, it was discovered that the

model produces positive results

3.4 Phase 4: Application (Proof of concept)

Interface for Admin is developed using Python Language. Most of the Graphic representation

is coded using Kivymd framework of Python. Sign up, Login, View Live Feed, and Result

is coded to perform the desired functionalities. Sign Up and Login uses CSV File to verify

the authentic user. Model that has been exported is integrated in the application. Images are

fed to model as input and activity is detected on them as output. System sends notification in

case of detection.

3.5 Workflow of Application

Human Activities are recognised by system when it receives a frame from live feed from a

camera and passes that frame to model that has been trained to perform detection. Notification

will popup when malicious activity is detected. The figure 3.2 describes the overall workflow

of recognition system.

37

Figure 3.2: Work Flow Diagram

3.6 Sequence Diagrams

The actions that can be performed by user are listed above. Here is a detailed version of it that

how can user perform those operations on system. This is done by Sequence diagrams.

Sequence diagrams of system are:

Start

Real Time Camera
Feed

Result
Human Activity
Recognition

38

3.6.1 Sign Up

If a new user is to be entered into the system, they must enter the signup details in on the

signup screen and press signup button, the system would validate the details entered and then

sends the data to the server side and user created notification is generated and shown to the

invigilator, if wrong details are entered, the system would then generate an error message as

shown in figure 3.3:

Figure 3.3: Signup sequence diagram

39

3.6.2 Login

If user is to login into the system, they must enter their login details in on the login screen and

press login button, the system would validate the details entered and then sends the data to the

server side and user authenticated notification is generated and shown to the invigilator, if

wrong details are entered, the system would then generate an error message.

Figure 3.4: Login sequence diagram

40

3.6.3 View Result

If the user wants to look into details of all the recent Activity, he clicks the View Capture button

after Signing in. Result will be displayed on the screen after image being processed by the

model. It is shown in figure 3.5

Figure 3.5: View Result sequence diagram

41

3.6.4 Upload

If the user wants to find the activity of a specific picture or frame, he clicks op upload button

on the main screen, after that popup will appear on screen where he can upload a picture,

after selecting the picture result will be shown recognizing the activity in the picture. It is

shown in Figure 3.6

Figure 3.6: Upload sequence diagram

42

3.6.5 Live Feed

If the user wants to look into live feed from camera, he just needs to clicks the Play button

to View Live Feed after Signing in. Live Feed will be displayed on Screen. It is shown in

Figure 3.7

Figure 3.7: View Live Feed sequence diagram

43

CHAPTER 4

4 EXPERIMENT AND IMPLEMENTATION

In this section experiments are discussed which are performed on dataset. Dataset is

used to train the neural network model (Inception, Xception and MobileNet) using

machine learning and deep learning techniques. Experiments for the system was very

vital as it helps us to find optimal conditions where neural network model (Inception,

Xception, MobileNet) have shown highest accuracy.

4.1 Experimental Setup

Google Colab is used to do experiments on our selected neural network (Inception,

Xception and MobileNet). Python language is used to write code for experimentation.

Gmail authentication is required for uploading the data on google Colab for training.

After uploading dataset, Keras, TensorFlow, OpenCV, matplotlib, sklearn are the

libraries that are imported to train, test and validate the model by performing

experiments on the dataset using hyper-parameter tuning.

4.1.1 Google Colab

Google Collaboratory (Colab) is a free Jupyter notebook environment running

completely in the cloud. Amazing thing about Colab is that it does not require setup,

In Colab files that you have created are termed as notebooks. Colab gives its users a

collaboration feature in which your created notebooks can be simultaneously edited

44

by your team members same as you edit documents in Google Docs. Main and the

greatest feature of Colab is that it supports almost all popular machine learning

libraries without the need to download extensions. These libraries are easily loaded

in your Colab notebook

Developer Features

As a developer, you can perform the tasks mentioned below using Colab and Kaggle

 Write code in Python and execute it

 Notebooks can be uploaded, created and shared

 Notebook can be saved in Google Drive

 Notebook from GitHub can be imported and published

 Import datasets in Notebook

 Integrate PyTorch, TensorFlow, Keras, OpenCV

 Free Cloud storage service with free GPU and TPU

Gmail account is must to use Google Collaboratory. Otherwise, most of the Google

Collaboratory features would not work.

Why Colab?

Reasons to choose Google Colab to do training and testing on neural network model

(MobileNet) are stated below:

 Pre-installed Libraries

 Free Cloud storage

 Collaboration with teammates

 Free GPU and TPU for machine learning or deep learning

45

4.1.2 Hyper Parameter Tuning

Hyper-parameter tuning is performed to find the best values of the hyper-parameter to

design the model with the best accuracy. Hyper-parameters that are used for fine tuning

a neural network model are Activation function, Optimizer, Learning rate, Batch Size

and Epochs. Epochs are set to 100 for every batch size and learning rate. Batch sizes

8, 12, 16 and 20, 32, 64 are used in Experimentation along with learning rate of 0.001,

0.0001 and 0.00025 for model. Activation Function used was SoftMax and Optimizer

used in model was Adam. Activation Function and Optimizer used remains constant

throughout process of fine tuning. Details of hyperparameters can be seen in Table 4.1

Table 4.1: Hyperparameters of Model

Hyperparameters

Activation Function Optimizer Batch Size Learning Rate Epochs

SoftMax Adam 16,20,32,64 0.001,0.0001,0.00025 100

Hyper-parameters which are considered for the tuning the model (Inception, Xception,

MobileNet) are Epochs, Batch size, and Learning rate. These hyper-parameters are

fine-tuned on model to get insight on performance of model. Values of hyper-

parameters on which model performed best are recorded and will be used for

application later. Epochs, Batch Size and Learning Rate are defined in sections below

Epoch

One epoch means to train the neural network using all the training data in one cycle. In

an epoch, all of the data is used exactly once. It consists of two passes a forward pass

and a backward pass which together counted as one pass. Epoch sizes depends upon the

size of dataset thus varies accordingly. Different epoch sizes are used to find desired

better results. Epoch size of 100 is used in the development of the system.

46

Batch Size

Number of samples processed prior to the update in model is batch size. The size of a

batch must be greater than 1 and less than the number of samples in the training dataset.

Batch sizes of 8, 12, 16 and 20, 32, 64 are used in experimentation.

Learning Rate

Learning rate is also a hyper parameter used to fine tune model. It controls how much

change is shown by the model in response to the estimated error each time the weights

of the model are updated. Learning rate is thought to be the most important hyper-

parameter when configuring your neural network. It is important to know and evaluate

the effects of the learning rate on the performance of the model to build an awareness

about the changing aspects of the learning rate on the behavior of model. Learning rate

of 0.001, 0.0001 and 0.00025 are used for experimentation.

4.2 List of Experiment on Models

Following are the list of done to obtain best accuracy for the model. Description about

experiments related where experiments were done, images involved, platform used,

problem which is handled by experiment, and number of epochs used are described

below:

Location: Home

Dataset: UCFSPORTS [19]

Total Images: 9118

Equipment: Laptop

Platform: Google Colaboratory

Problem: Multiclass

Epochs: 100 for each 64 batch size and 0.0001 learning rate

47

4.2.1 Experiment on Inception

Table 4.2: Experiments on Inception

Hyper-parameters Model Evaluation

Image

Size

Batch

size

Learning

rate

Accuracy Validation Accuracy

75x75 64 0.001 0.975 0.999

90x90 64 0.001 0.856 0.758

120x120 64 0.001 0.996 0.988

150x150 64 0.001 0.993 0.77

180x180 64 0.001 0.993 0.612

Figure 4.1: Confusion Matrix of Inception

48

(a)

(b)

Figure 4.2: Accuracy Loss Graph of Inception

49

4.2.2 Experiment on MobileNet

Table 4.3: Experiments on MobileNet

Hyper-parameters Model Evaluation

Image

Size

Batch

size

Learning

rate

Accuracy Validation Accuracy

75x75 64 0.001 0.991 0.971

90x90 64 0.001 0.995 0.940

120x120 64 0.001 0.996 0.806

150x150 64 0.001 0.992 0.656

180x180 64 0.001 0.993 0.210

Figure 4.3: Confusion Matrix of MobileNet

50

(a)

(b)

Figure 4.4: Accuracy Loss Graph of MobileNet

51

4.2.3 Experiment on Xception

Table 4.4: Experiments on Xception

Hyper-parameters Model Evaluation

Image

Size

Batch

size

Learning

rate

Accuracy Validation Accuracy

75x75 64 0.001 0.992 0.997

90x90 64 0.001 0.989 0.966

120x120 64 0.001 0.994 0.989

150x150 64 0.001 0.984 0.891

180x180 64 0.001 0.981 0.715

Figure 4.5: Confusion Matrix of Xception

52

(a)

(b)

Figure 4.6: Accuracy Loss Graph of Xception

53

4.2.4 Comparison of Models

Table 4.5: Comparison of Models

Sr.

No

Model

name
Validatio

n method

Classe

s

Epoc

hs

Dimensio

ns

Traini

ng

Accuac

y

Valida

tion

Accur

acy

Traini

ng

Loss

Validat

ion

Loss

1 Inception

Train/Test

/Split

3 50
150x150 99.36% 77% 0.0324 1.4501

180x180 99.36% 61.27% 0.0234 3.9486

13

100
90x90 85.65% 75.88 0.4398 0.8381

120x120 99.66% 98.82% 0.0212 0.0476

KFold

100 x

5

folds

75x75 99.37% 99.96% 0.0181 0.105

90x90 99.74% 92.21% 0.0195 0.3291

2 Xception

Train/Test

/Split

3 50
150x150 99.27% 89.12% 0.0353 0.7589

180x180 99.37% 71.54% 0.0280 2.3106

13

100
90x90 99.56% 96.67% 0.0256 0.0256

120x120 99.68% 98.99% 0.0212 0.0474

KFold

100 x

5

folds

75x75 99.96% 99.78% 0.0022 0.0091

90x90 99.90% 97.92% 0.0033 0.1053

3 MobileNet

Train/Test

/Split

3 50
150x150 98.44% 65.61% 0.0717 2.5221

180x180 98.16% 21% 0.0822 23.2987

13

100
90x90 98.99% 94.04% 0.0488 0.3927

120x120 99.46% 80.66% 0.0216 2.9432

KFold

100 x

5

folds

75x75 99.84% 97.15% 0.0126 0.1753

90x90 99.04% 82.67% 0.0397 0.9486

54

4.3 Languages

4.3.1 Python

Python is a general-purpose high-level programming language. Its design philosophy

emphasizes code readability with the use of significant indentation. Python is

dynamically-typed and garbage-collected. It supports multiple programming

paradigms, including object-oriented, functional and structured programming. It has

comprehensive standard libraries.

4.3.2 Framework

Kivy [19] is an Open-source, cross-platform framework for developing a native mobile

application. Kivy allows us to build a mobile application for Android and IOS with a

single code-based and programming language called Python. The Kivy framework

contains Natural User Interface.

4.4 Tools

4.4.1 Vs Code

Microsoft Visual Studio Code is a standalone source code editor that runs on multiple

operating systems. It is used to develop computer programs, as well as websites, web

apps, web services, and mobile apps. It supports many programming languages and a

set of features that differs per language. VS Code provides initial support including

syntax highlighting etc.

55

4.4.2 Emulator

The emulator provides simulations of android devices on your computer which helps

us to test our application on a variety of devices without needing to have each physical

device. It came along with a predefined configuration for multiple android-based

Phones, Tablets. Testing in an emulator is way faster than physical devices.

56

CHAPTER 5

5 RESULTS AND DISCUSSIONS

5.1 Result of Application

5.1.1 Introduction

This is the introduction of the application which tells the main features of the HAR

app and this will show only once at the user downloads the application and runs it for

the first time.

57

Figure 5.1: Welcome Screen

58

5.1.2 Log In and Sign Up

The Log in and sign up is simple as other mobile applications with the additional

features of email verification which will support the confidentiality triad.

Figure 5.2: Sign up screen

59

Figure 5.3: Log in Screen

60

5.1.3 Main Screen

After Sign in as User, they will be directed towards this screen which has the following

feature:

 Camera

 Upload

61

Figure 5.4: Main screen

62

5.1.4 Camera Screen

By clicking on the Camera button, camera screen will appear where we have live feed

which will appear by using camera and capture button by which picture will get feuded

to the model and result will be displayed after processing on the screen.

.

Figure 5.5: Camera Screen

63

5.1.5 Upload Screen

User can upload a picture by clicking on the upload button. Popup will appear where

user can select the folder and the specific picture.

Figure 5.6: Upload Screen

64

5.2 Result of Model

Figure 5.7 show that when user clicks on select image button popup will appear by

which use can select the image and after selection the model will display the result

with the image on the screen.

Figure 5.7: Uploading Image

65

Figure 5.8 show the result with the image selected by user and the result of selected

the image on the screen.

Figure 5.8: Result after uploading image

66

Figure 5.9 show the live feed and the result with the image captured when captured

button is pressed by user on the screen.

Figure 5.9: Result from live feed

67

CHAPTER 6

6 CONCLUSION AND RECOMMENDATIONS

6.1 Project Achievements

Form the verification of plan and after testing the application, the actual output of the

HAR App is getting good result as manage to reach all the expected output and fulfilled

the project objectives. In the end, HAR App manages to help the user by providing

them a platform that will recognize human activities from live feed and alert user on

suspicious activities. Furthermore, HAR App counters the factor which requires

individual’s physical presence in front of a screen to check the activities. By HAR App

users will get an alert without the need of a constant watch.

6.2 Future Work

Some improvements can be made in the future HARS is a detection system which

uses machine learning procedure for activity detection. As it is designed and train to

learn human activities. These kinds of system perform their operation based on

dataset. In future, to enhance HARS as a recognition system a dataset will be

generated in near future. Dataset will contain new images with better quality that will

be produced by using tools and methods required to generate better quality

benchmark dataset. Model will be trained on that dataset to make it useable for

commercial purpose as well. Current system only works with a single camera. In the

68

future HARS will be enhanced by making it work on multiple Camera so that

detection could be done at multiple places at the same time.

6.3 Implementation Issues and Challenges

In this project, we encounter serval challenges throughout the project life cycle. First

and foremost, the selection of dataset and model is a major issue. There are number

of datasets available on Human Activities, most of them are decade old and resolution

is low and the size of dataset is not big enough to train model properly. Selecting the

best transfer learning model is also a bid challenge as there are many models available

and each one has its own pros and cons. Training of the model is the biggest challenge

we have encountered as model training requires lots of resources as dataset and pre

trained models are themselves quite heavy and in order to train them again more

resources are required and personal PCs cannot bear that much of a load. Online

platforms such as Google Colab and Kaggle are better but gives limited resources so

in order to train the model we have to change the structure of the model to work

within the resources available.

On the other hand, development tools and environment need to be determined

before the project can proceed. There are many much-integrated development

environments such as Visual Studio Code, PyCharm, and Jupyter Notebook which

can be used for the development of HAR App. IDEs like PyCharm require extra

plugins to integrate with the system while developing a mobile application. From

Jupyter studio and Visual Studio Code, we use both as both are the best tools

moreover, they have a vast amount of developer community which helps native

developers in the hour of need.

69

6.4 Conclusion

In this modern era, most organizations are using the latest technologies and software

but hopefully, through this project, we solve this long-awaited upgrade, by

successfully meeting our aims and objectives. We have developed a cross-platform

app that can be for both iOS and Android user which provide a light wait model

integrated in a mobile app to detect human activities. We have created an app that

recognizes human activities using deep learning model. This application also makes

Surveillance operation easily automated.

70

REFERENCES

[1] “Deep Learning Models for Human Activity Recognition.”

https://machinelearningmastery.com/deep-learning-models-for-human-

activity-recognition/ (accessed Mar. 15, 2022).

[2] M. Gholamrezaii and S. M. Taghi Almodarresi, “Human Activity Recognition

Using 2D Convolutional Neural Networks,” ICEE 2019 - 27th Iran. Conf.

Electr. Eng., pp. 1682–1686, Apr. 2019, doi:

10.1109/IRANIANCEE.2019.8786578.

[3] C. Feng, M. Sun, M. Dabbaghjamanesh, Y. Liu, and J. Zhang, “Advanced

machine learning applications to modern power systems,” New Technol. Power

Syst. Oper. Anal., pp. 209–257, 2021, doi: 10.1016/B978-0-12-820168-

8.00007-9.

[4] R. Vrskova, R. Hudec, P. Kamencay, and P. Sykora, “Human Activity

Classification Using the 3DCNN Architecture,” Appl. Sci., vol. 12, no. 2, pp. 1–

17, 2022, doi: 10.3390/app12020931.

[5] N. Jaouedi, N. Boujnah, and M. S. Bouhlel, “A new hybrid deep learning model

for human action recognition,” J. King Saud Univ. - Comput. Inf. Sci., vol. 32,

no. 4, pp. 447–453, May 2020, doi: 10.1016/J.JKSUCI.2019.09.004.

[6] “Kivy: Cross-platform Python Framework for GUI apps Development.”

https://kivy.org/ (accessed Dec. 15, 2022).

[7] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the

Inception Architecture for Computer Vision,” Proc. IEEE Comput. Soc. Conf.

Comput. Vis. Pattern Recognit., vol. 2016-December, pp. 2818–2826, Dec.

2015, doi: 10.48550/arxiv.1512.00567.

[8] “Inception V3 Model Architecture.” https://iq.opengenus.org/inception-v3-

model-architecture/ (accessed Dec. 15, 2022).

[9] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen,

“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Proc. IEEE

71

Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 4510–4520, Jan. 2018,

doi: 10.48550/arxiv.1801.04381.

[10] “Review: MobileNetV2 — Light Weight Model (Image Classification) | by Sik-

Ho Tsang | Towards Data Science.” https://towardsdatascience.com/review-

mobilenetv2-light-weight-model-image-classification-8febb490e61c (accessed

Dec. 15, 2022).

[11] “Understanding Depthwise Separable Convolutions and the efficiency of

MobileNets | by Arjun Sarkar | Towards Data Science.”

https://towardsdatascience.com/understanding-depthwise-separable-

convolutions-and-the-efficiency-of-mobilenets-6de3d6b62503 (accessed Dec.

15, 2022).

[12] F. Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions,”

Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol.

2017-January, pp. 1800–1807, Oct. 2016, doi: 10.48550/arxiv.1610.02357.

[13] “Review: Xception — With Depthwise Separable Convolution, Better Than

Inception-v3 (Image Classification) | by Sik-Ho Tsang | Towards Data Science.”

https://towardsdatascience.com/review-xception-with-depthwise-separable-

convolution-better-than-inception-v3-image-dc967dd42568 (accessed Dec. 15,

2022).

[14] “Visual Studio Code - Code Editing. Redefined.” https://code.visualstudio.com/

(accessed Dec. 15, 2022).

[15] “Welcome To Colaboratory - Colaboratory.”

https://colab.research.google.com/ (accessed Dec. 15, 2022).

[16] “Kaggle: Your Home for Data Science.” https://www.kaggle.com/ (accessed

Dec. 15, 2022).

[17] “Adobe Creative Cloud | Details and products | Adobe.”

https://www.adobe.com/creativecloud.html (accessed Dec. 15, 2022).

[18] “Industry-leading vector graphics software | Adobe Illustrator.”

https://www.adobe.com/products/illustrator.html (accessed Dec. 15, 2022).

[19] “CRCV | Center for Research in Computer Vision at the University of Central

Florida.” https://www.crcv.ucf.edu/data/UCF_Sports_Action.php (accessed

Dec. 15, 2022).

 [20] “CRCV | Center for Research in Computer Vision at the University of Central

Florida.” https://www.crcv.ucf.edu/data/UCF101.php (accessed Dec. 15, 2022).

72

[21] “Kinetics | DeepMind.” https://deepmind.com/research/open-source/kinetics

(accessed Dec. 15, 2022).

[22] “Serre Lab » HMDB: a large human motion database.” https://serre-

lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/ (accessed

Dec. 15, 2022).

[23] “Activity Net.” http://activity-net.org/ (accessed Dec. 15, 2022).

[24] “THUMOS Challenge 2014.” http://crcv.ucf.edu/THUMOS14/ (accessed Dec.

15, 2022).

[25] “GitHub - tejaskhot/KTH-Dataset: Experimenting with the KTH human activity

recognition dataset from http://www.nada.kth.se/cvap/actions/.”

https://github.com/tejaskhot/KTH-Dataset (accessed Dec. 15, 2022).

[26] “Sports-1M Dataset | DeepAI.” https://deepai.org/dataset/sports-1m (accessed

Dec. 15, 2022).

[27] “YouTube-8M: A Large and Diverse Labeled Video Dataset for Video

Understanding Research.” https://research.google.com/youtube8m/ (accessed

Dec. 15, 2022).

[28] “UTKinect-Action3D Dataset.”

http://cvrc.ece.utexas.edu/KinectDatasets/HOJ3D.html (accessed Dec. 15,

2022).

[29] “COVE - Computer Vision Exchange.” https://cove.thecvf.com/datasets/37

(accessed Dec. 15, 2022).

[30] H. Zhao, A. Torralba, L. Torresani, and Z. Yan, “HACS: Human action clips

and segments dataset for recognition and temporal localization,” Proc. IEEE Int.

Conf. Comput. Vis., vol. 2019-October, pp. 8667–8677, Oct. 2019, doi:

10.1109/ICCV.2019.00876.

[31] “Coin.” https://coin-dataset.github.io/ (accessed Mar. 16, 2022).

[32] C. Liu, Y. Hu, Y. Li, S. Song, and J. Liu, “PKU-MMD: A Large Scale

Benchmark for Continuous Multi-Modal Human Action Understanding,” Mar.

2017, Accessed: Mar. 16, 2022. [Online]. Available:

http://arxiv.org/abs/1703.07475

[33] “UT-Interaction Benchmark (Human Interaction Recognition) | Papers With

Code.” https://paperswithcode.com/sota/human-interaction-recognition-on-ut-

1 (accessed Dec. 15, 2022).

[34] “InceptionV3.” https://keras.io/api/applications/inceptionv3/ (accessed Dec. 15,

73

2022).

[35] “Xception.” https://keras.io/api/applications/xception/ (accessed Dec. 15, 2022).

[36] “VGG Very Deep Convolutional Networks (VGGNet) - What you need to know

- viso.ai.” https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/

(accessed Dec. 15, 2022).

[37] “[1512.03385] Deep Residual Learning for Image Recognition.”

https://arxiv.org/abs/1512.03385 (accessed Dec. 15, 2022).

[38] “[1704.04861] MobileNets: Efficient Convolutional Neural Networks for

Mobile Vision Applications.” https://arxiv.org/abs/1704.04861 (accessed Dec.

15, 2022).

[39] “[1608.06993] Densely Connected Convolutional Networks.”

https://arxiv.org/abs/1608.06993 (accessed Dec. 15, 2022).

[40] “CNN Starter - NasNet Mobile (0.9709 LB) | Kaggle.”

https://www.kaggle.com/code/CVxTz/cnn-starter-nasnet-mobile-0-9709-

lb/notebook (accessed Dec. 15, 2022).

[41] “Image classification via fine-tuning with EfficientNet.”

https://keras.io/examples/vision/image_classification_efficientnet_fine_tuning

/ (accessed Dec. 15, 2022).

16

1

1

1

1

1

ORIGINALITY REPORT

%
SIMILARITY INDEX

12%
INTERNET SOURCES

11%
PUBLICATIONS

%
STUDENT PAPERS

PRIMARY SOURCES

machinelearningmastery.com
Internet Source %

maelfabien.github.io
Internet Source %

mc.ai
Internet Source %

huggingface.co
Internet Source %

future.wsb.net.pl
Internet Source %

 6
Yogesh Kumar, Surbhi Gupta. "Deep Transfer

Learning Approaches to Predict Glaucoma,

Cataract, Choroidal Neovascularization,

Diabetic Macular Edema, DRUSEN and

Healthy Eyes: An Experimental Review",

Archives of Computational Methods in

Engineering, 2022
Publication

 7
Yogesh Kumar, Surbhi Gupta, Williamjeet

Singh. "A novel deep transfer learning models

 1

 2

 3

 4

 5

1%

1%

 8

 9

 10

 11

 12

 13

 14

for recognition of birds sounds in different

environment", Soft Computing, 2022
Publication

ijircce.com
Internet Source

www.ijres.org
Internet Source

cad-journal.net
Internet Source

Suet-Peng Yong, Yoon-Chow Yeong. "Human

Object Detection in Forest with Deep Learning

based on Drone’s Vision", 2018 4th

International Conference on Computer and

Information Sciences (ICCOINS), 2018
Publication

www.ijert.org
Internet Source

Andrea Barucci, Costanza Cucci, Massimiliano

Franci, Marco Loschiavo, Fabrizio Argenti. "A

Deep Learning Approach to Ancient Egyptian

Hieroglyphs Classification", IEEE Access, 2021
Publication

Willian M. Freire, Aline M. M. M. Amaral,

Yandre M. G. Costa. "Gemstone classification

using ConvNet with transfer learning and fine-

tuning", 2022 29th International Conference

1%

1%

1%

<1%

<1%

<1%

<1%

http://www.ijres.org/
http://www.ijert.org/

 15

 16

 17

 18

 19

 20

 21

on Systems, Signals and Image Processing

(IWSSIP), 2022
Publication

"Innovative Data Communication

Technologies and Application", Springer

Science and Business Media LLC, 2022
Publication

analyticsindiamag.com
Internet Source

Hamza Ahmed Shad, Quazi Ashikur Rahman,

Nashita Binte Asad, Atif Zawad Bakshi et al.

"Exploring Alzheimer's Disease Prediction with

XAI in various Neural Network Models",

TENCON 2021 - 2021 IEEE Region 10

Conference (TENCON), 2021
Publication

tanthiamhuat.files.wordpress.com
Internet Source

knowledgecommons.lakeheadu.ca
Internet Source

osuva.uwasa.fi
Internet Source

Revanth Shankar Muthuselvam, Ramón

Moreno, Mario Guemes, Miguel Del Río

Cristobal et al. "Chapter 37 Deep Learning

Based Baynat Foam Classification

<1%

<1%

<1%

<1%

<1%

<1%

<1%

 22

 23

 24

 25

 26

 27

forHeadliners Manufacturing", Springer

Science and Business Media LLC, 2023
Publication

ijsrcseit.com
Internet Source

Mohamed Afify, Mohamed Loey, Ahmed

Elsawy. "A Robust Intelligent System for

Detecting Tomato Crop Diseases Using Deep

Learning", International Journal of Software

Science and Computational Intelligence, 2022
Publication

ndvsu.org
Internet Source

"CIGOS 2021, Emerging Technologies and

Applications for Green Infrastructure",

Springer Science and Business Media LLC,

2022
Publication

www.linuxlinks.com
Internet Source

Roberto Pierdicca, Flavio Tonetto, Marco

Mameli, Riccardo Rosati, Primo Zingaretti.

"Chapter 13 Can AI Replace Conventional

Markerless Tracking? AComparative

Performance Study forMobile Augmented

Reality Based onArtificial Intelligence",

<1%

<1%

<1%

<1%

<1%

<1%

http://www.linuxlinks.com/

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

Springer Science and Business Media LLC,

2022
Publication

"Intelligent Computing", Springer Science and

Business Media LLC, 2022
Publication

www.spaodontologico.com.br
Internet Source

hackernoon.com
Internet Source

tsukuba.repo.nii.ac.jp
Internet Source

visualstudio.microsoft.com
Internet Source

www.coursehero.com
Internet Source

www.tandfonline.com
Internet Source

"Innovations in Smart Cities Applications

Volume 5", Springer Science and Business

Media LLC, 2022
Publication

link.springer.com
Internet Source

web.archive.org
Internet Source

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

http://www.spaodontologico.com.br/
http://www.coursehero.com/
http://www.tandfonline.com/

 38

 39

 40

 41

 42

 43

"Image and Graphics", Springer Science and

Business Media LLC, 2017
Publication

Masoumeh Izadi, Aiden Chia, Bernard Cheng,

Shangjing Wu. "NetClips: A Framework for

Video Analytics in Sports Broadcast", 2018

IEEE International Conference on Big Data (Big

Data), 2018
Publication

Shamshad Ansari. "Building Computer Vision

Applications Using Artificial Neural Networks",

Springer Science and Business Media LLC,

2020
Publication

Sujigarasharma K., Rathi R., Visvanathan P.,

Kanchana R.. "chapter 9 Emotion-Based

Human-Computer Interaction", IGI Global,

2022
Publication

scholarcommons.usf.edu
Internet Source

"Intelligent Systems in Medicine and Health",

Springer Science and Business Media LLC,

2022
Publication

<1%

<1%

<1%

<1%

<1%

<1%

<1%

 44

 45

 46

 47

 48

 49

 50

Jesús M. Almendros-Jiménez, Luis Iribarne.

"Chapter 12 Describing Use Cases with

Activity Charts", Springer Science and

Business Media LLC, 2005
Publication

Parvathi R., Pattabiraman V.. "chapter 12 A

Similarity-Based Object Classification Using

Deep Neural Networks", IGI Global, 2019
Publication

ebin.pub
Internet Source

"Big Data Analytics and Machine Intelligence

in Biomedical and Health Informatics", Wiley,

2022
Publication

"Artificial Intelligence and Blockchain for

Future Cybersecurity Applications", Springer

Science and Business Media LLC, 2021
Publication

"Innovation in Information Systems and

Technologies to Support Learning Research",

Springer Science and Business Media LLC,

2020
Publication

Sara Dilshad, Nikhil Singh, M. Atif, Atif Hanif,

Nafeesah Yaqub, W.A. Farooq, Hijaz Ahmad,

Yu-ming Chu, Muhammad Tamoor Masood.

<1%

<1%

<1%

<1%

<1%

<1%

<1%

"Automated image classification of chest x-

rays of covid-19 using deep transfer learning",

Results in Physics, 2021
Publication

