
 
 

PREDICTION OF RESERVOIR QUALITY SANDS USING SEISMIC 

ATTRIBUTES AND GEOMORPHOLOGY DRIVEN BY MACHINE 

LEARNING FACIES CLASSIFICATION IN LOWER INDUS BASIN, 

PAKISTAN  

 

 

 

 

  

 

 

 

 

 

    By 

 

 

   SYED HAMZA SHAH BUKHARI 
 

 

 

 

 

 

Department of Earth and Environmental Sciences 

Bahria University, Islamabad 

 

 2024 

                           

 

 

 

 

 



 
 

PREDICTION OF RESERVOIR QUALITY SANDS USING SEISMIC 

ATTRIBUTES AND GEOMORPHOLOGY DRIVEN BY MACHINE 

LEARNING FACIES CLASSIFICATION IN LOWER INDUS BASIN, 

PAKISTAN  

 

 

 

 

  

 

 

 

 

 

 

Thesis submitted to Bahria University, Islamabad in partial fulfillment of 

requirement for degree of Master of Science in Geophysics 

 

 

 

   SYED HAMZA SHAH BUKHARI 

01-262222-025 

 

 

 

 

 

Department of Earth and Environmental Sciences 

Bahria University, Islamabad 

 

2024 

                           

 



 
 

 



 
 

 
 

APPROVAL FOR EXAMINATION 

 

 

 

 

Scholar's Name: SYED HAMZA SHAH BUKHARI 

 

Registration No. 44660 

 

Programme of Study: MS GEOPHYSICS 

 

Thesis Title: Prediction of Reservoir Quality Sands Using Seismic Attributes and 

Geomorphology Driven by Machine Learning Facies Classification in Lower Indus Basin, 

Pakistan  

 

It is to certify that the above scholar's thesis has been completed to my satisfaction 

and, to my belief, its standard is appropriate for submission for examination. I have also 

conducted a plagiarism test of this thesis using HEC prescribed software and found 

similarity index 18% that is within the permissible limit set by the HEC for the MS degree 

thesis. I have also found the thesis in a format recognized by the BU for the MS thesis. 

 

 

 

Principal Supervisor’s Signature:    

 

 

 

Date:     

 

 

 

Name:    

 

 

 

 



 
 

 
 

 

AUTHOR’S DECLARATION 

 

 

I, “Syed Hamza Shah Bukhari” hereby state that my MS thesis titled 

“Prediction of Reservoir Quality Sands Using Seismic Attributes and 

Geomorphology Driven by Machine Learning Facies Classification in Lower Indus 

Basin, Pakistan” is my own work and has not been submitted previously by me for taking 

any degree from this university Bahria University Islamabad or anywhere else in the 

country/world. At any time if my statement is found to be incorrect even after my 

graduation, the University has the right to withdraw/cancel my MS degree. 

 

 

 

Name of scholar: Syed Hamza Shah Bukhari 

 

Date:  07 November 2024   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

 

 

 

 

 

 

 

________________________ 

PLAGIARISM UNDERTAKING 

 

 

I solemnly declare that the research work presented in the thesis titled “Prediction 

of Reservoir Quality Sands Using Seismic Attributes and Geomorphology Driven by 

Machine Learning Facies Classification in Lower Indus Basin, Pakistan” is solely my 

research work with no significant contribution from any other person. Small 

contribution/help wherever taken has been duly acknowledged and that complete thesis 

has been written by me. 

 

I understand the zero-tolerance policy of the HEC and Bahria University towards 

plagiarism. Therefore, I as an Author of the above titled thesis declare that no portion of 

my thesis has been plagiarized and any material used as reference is properly referred to 

/ cited. 

 

I undertake that if I am found guilty of any formal plagiarism in the above-titled 

thesis even after the award of the MS degree, the university reserves the right to 

withdraw/revoke my MS degree and that HEC and the University have the right to publish 

my name on the HEC / University website on which names of scholars are placed who 

submitted plagiarized thesis. 

Scholar / Author’s Sign:     

 

Name of the Scholar: Syed Hamza Shah Bukhari



i 
 

 
 

 

DEDICATION 

To my parents, whose unwavering support and boundless love have been the bedrock of my 

journey. Your sacrifices and encouragement have shaped every step I’ve taken, and this 

accomplishment is as much yours as it is mine. 

To my family, whose collective love, support, and belief in my potential have been a source 

of endless motivation. Each of you has played a unique role in this journey, and for that, I 

am profoundly grateful. 

To my friends, whose companionship, understanding, and laughter have made the journey 

not only bearable but truly joyful. Your belief in me has been a constant source of strength 

and inspiration. 

And to all my teachers, whose guidance, wisdom, and dedication have illuminated my path. 

Your commitment to nurturing my growth and expanding my horizons has been 

instrumental in reaching this milestone. 

Thank you all for being the pillars of my success and the light along the way. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



ii 
 

 
 

ACKNOWLEDGEMENTS 

 

All praises are to Allah, the most merciful and the most beneficent.  

I would like to acknowledge and express my sincere and deep gratitude to my 

supervisor Dr. Urooj Shakir for her tireless support throughout this thesis, for being always 

available whenever I needed guidance and for sharing his profound knowledge which enabled 

me to complete this thesis successfully. Secondly, I would like to acknowledge and express 

my gratitude to Dr. Syed Umair Ullah Jameel, Head of Department, Earth and Environmental 

Sciences, Bahria University Islamabad and all the other faculty members for their guidance 

and support throughout my academic journey at Bahria University.  

Last but not least, I would like to acknowledge and express my deepest gratitude to 

my parents, family, friends and all our loved ones whose prayers, unconditional support and 

encouragement enabled me to achieve what I have today. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

 
 

ABSTRACT 

  Assessing reservoir quality plays an instrumental role in an oil / gas fields 

performance and lifecycle. Lower Goru gas fairway is a prolific producer in the Lower Indus 

Basin. This research is an effort to demarcate the reservoir quality within the different system 

tracts and parasequence sets. High energy depositional environments have better reservoir 

quality as a general rule, and we apply this concept to evaluate the East-West oriented 

progradation, parasequence stacks and system tracts. The hydrocarbon-bearing intervals of 

Miano gas field belong to the Early Cretaceous and are bounded by multiple flooding surfaces 

and other unconformities identified through well correlation. Overall, the NTG is good and 

porosity ranges from 12-16% in zones of economic water saturation (<30%). Seismic 

interpretation based on local flatness and semblance attributes highlights progradation and a 

basinward shift of facies. The upper shoreface facies deposited by wave-tide effect has better 

amplitudes and reflector continuity. The reservoir quality gets affected in lower sequences as 

the shale and heavy mineral content increases. Attributes including Grey Level Co-Variance 

Matrix (GLCM), 3D Curvature and Variance are rendered on the seismic volume for improved 

feature detection and holistic evaluation. These attributes are then blended for improved 

constraint on the deposition-facies association. In order to better quantify reservoir quality 

sands in the area, we run machine learning algorithms including Principal Component 

Analysis (PCA) and Self Organizing Maps (SOM’s) on seismic attribute data and (MLP-

SVM) Multilayer Perception Support Vector Machines model to predict facies using RGB 

logs with accuracy of 92.31%. The results add immense value by sharply amplifying subtle 

stratigraphic details and predicting reservoir quality across a varying stratigraphic ecosystem. 

To better understand the reservoir quality variation within our area of interest, seismic data is 

inverted to impedance and clay volume estimated from logs along with porosity is populated 

on the impedance volume. The sand is distributed as lenses with shale deposited in between 

them. With good porosities and low clay volume, these sand lenses provide good locations for 

future exploration endeavors. Furthermore, river ravinement, channels and lobe trends can 

also be observed on the inverted volume. The effective porosities are high, and clay volume 

is low in sand bodies in the upper inverted sequence, reflecting good reservoir quality. 

Evaluating log signatures for stratigraphic control over facies and seismic interpretation 

providing insights into the facies variation trend at different levels, the machine learning 

steered attribute analysis and inversion at the upper shoreface sequence above the flooding 

surfaces agree with each other thus encouraging the validity of results at the lower 

transgressive and regressive sequences in Miano.  
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ABBREVIATIONS 

 

Abbreviation  Description 

LGF   Lower Goru Formation 

LIB   Lower Indus Basin 

HC   Hydrocarbons 

Fm   Formation 
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LST  Lowstand System Tract 

TST  Transgressive System Tract 

MFS  Maximum Flooding Surface 

LS  Lowstand 

PNN  Probabilistic Neural Network 

PCA  Principal Component Analysis 

SOM  Self Organizing Map 

MLP                Multilayer Perception  

SVM   Support Vector Machines 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Research Background 

With the advancement of reservoir interpretation in recent years and the 

need of 3D seismic data analysis, the industry has found out more and more new 

attributes on the basis of conventional seismic attributes. At the same time, 

methods and means used for the calculation and analysis of seismic attributes are 

increasing. Seismic attribute analysis has successfully been implemented in 

predicting reservoir lithology, hydrocarbon potential prediction as well as 

reservoir property estimates (Chopra et al., 2007). 

To gain the desired output leading to pro-deltaic depositional environment 

(channels, linear bodies of sharp erosional contacts, turbidities, levees and tidal 

facies) seismic attribute analysis, this research will focus on frequency based, 

tensor based and geometric attributes to test results and screen the most insightful 

geomorphic extraction from the seismic volume (Oumarou et al., 2021). 

In addition, machine learning models will be utilized which provides an 

excellent computing ability to classify and rank geomorphic features based on 

training the attribute volumes. Unsupervised learning algorithms, particularly Self 

Organizing Maps (SOM’s) can be used to highlight and delineate multiple 

geologic features from the attributes volume (Marfurt et al., 2019). 

The goal of a reservoir description study is identifying geomorphic features 

with reservoir quality facies (Chopra et al., 2007). This endeavor focuses 

establishing a sequence stratigraphic framework for clastic depositional systems 

as a predictor for reservoir quality sands within the geomorphic features of a paleo-

delta in the Lower Indus Basin.  

To achieve this, multiple clastic-deposition specific attributes are rendered 

to identify the sand bodies. Well log analysis further validates attribute analysis 

and also estimates the reservoir quality (Chopra et al., 2007). Once validated, 

machine learning models will be used to classify and rank the sand bodies within 

https://link.springer.com/article/10.1007/s12517-021-06626-1#auth-Sanda-Oumarou-Aff1-Aff2
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the deltaic depositional system. Away from well prediction will be achieved 

through inversion and validated by geomorphology manifested through attributes.  

Inversion is an effort to use seismic data to predict the characteristics of rocks, 

such as their porosity, thickness, fluid content, hydrocarbon saturation, etc. The 

three basic kinds are attribute, elastic, and acoustic. Each varies in their capacity 

for prediction as well as in the needs for data input. The data and the stage of 

exploration or development of an area determine which inversion is best to utilize. 

When we discuss inversion as a particular process, we typically refer to a 

numerical method that predicts rock characteristics like density, porosity, velocity, 

and water saturation by utilizing the seismic response. Numerous approaches 

assert that they can achieve this (Pandrel et al., 2006).  

Seismic measures only four fundamental rock-physics properties:  

 

             i. P-wave velocity,  

ii. S-wave velocity, density, and  

iii. Anisotropy.  

 

Only the above-mentioned three properties are the ones that can be predicted 

with high accuracy which is required for inversion. Inversion of the seismic data 

to other rock properties assumes a relationship between the property and one or 

more of these fundamental properties implicitly. A reliable estimation of the 

reservoir properties is of significant importance to E&P in making decisions 

(Pandrel et al., 2006).  

 Seismic inversion benefits include better seismic resolution and improved 

seismic interpretation as the layer-oriented impedance displays more complete 

constraints for reservoir models. Model based inversion is envisaged to capture the 

reservoir quality within the sequence stratigraphic framework. 

The outcome of this research endeavor will be a ranking of geomorphic 

sequence stratigraphy-based targets with reservoir quality sands which can be 

readily up-scaled into a static model or evaluated for fluid contacts / saturations.  

 Key in utilization of sequence stratigraphy as a tool for interpretation of 

the sedimentary section are the major bounding and subdividing surfaces as these 
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surfaces are commonly created by changes in relative sea level and from the 

moment the oceans were first created, they have varied in distribution of water 

volume across the globe. This has resulted in transgressions that caused the shore 

and the near-shore being flooded so transgressive surfaces (TS) formed.  

Once the rate of sea level rise reaches its most rapid change stage, the rate 

of sediment accumulating seaward of the shore slows down. From the onset of the 

Phanerozoic, the pelagic and benthic organic matter continued to accumulate, and 

these organisms isolated radioactive elements in the water column. As a result, 

from the Phanerozoic onwards, the sediments have strong radioactive signal on 

gamma logs with matching condensed sections of fossils that accumulated on a 

surface or in a thin zone which is known as the maximum flooding surface (mfs).  

For establishing depositional setting of the sedimentary section, sequence 

stratigraphy utilizes geometric arrangement of sedimentary fill, particularly the 

vertical succession of sedimentary facies geometries and their enveloping surfaces 

known as stacking patterns. There is a similarity between Geometries and stacking 

patterns of un-cemented carbonates and clastic sediments as both respond to 

changes in base level and both can be subdivided by similar surfaces as well as 

both respond to wave and current movement similarly and as a result they may be 

transported  

In quantitative interpretation, seismic attributes are transformed (primarily 

but not exclusively, amplitudes) into physical quantities which can be related to 

properties of rocks. Seismic attributes are characteristics of seismic waves which 

includes geometry, kinematics, dynamics and statistical characteristics, they are 

derived from seismic data through mathematical transformation (Delaplanche et 

al., 2006) 
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1.2   Literature Review 

Early Creataceous clastics of the Lower Goru Formation in the Lower 

Indus Basin have been studied by different researchers with varying perspectives 

from both the academia and oil industries. Detailed research work on petroleum 

resources within the Sembar-Goru/Ghazij Composite total Petorleum System 

(TPS) was conducted by Wandrey et al in 2004. Sequence stratigraphic analysis 

of the Lower Goru Formation in the Lower Indus Basin was performed for fair 

play analysis by a few authors including Ahmad et al in 2004, Ahmad & Khan in 

2010 and Weihua et al in 2005. Several authors have also worked for reservoir 

characterization by utilizing petrophysical techniques in the LGF, these authors 

include Shahid et al in 2008, Nadeem et al in 2016, Hussain et al in 2016, Siyar et 

al in 2017, Khan and Khan in 2018, Khalid et al in 2018, Qadri et al in 2019, Ali 

et al in 2019, Asad and Rahim in 2019, Yasin et al in 2019, Dar et al in 2021. 

Reservoir properties of the LGF have been analyzed based on integrated analysis 

of seismic and core data by various authors which includes Parvez et al in 2003, 

Riaz and Ibrahim in 2008, Ahmed et al in 2010, Munir et al in 2011, Ashraf et al 

in 2020. Diagenesis impact on the reservoir quality of LGF has been studied by 

various authors which includes Baig et al in 2016 as well as Dar et al. Various 

authors evaluated depositional facies based on petrography, well cuttings and 

wireline log motifs for the Lower Goru Formation, Lower Indus Basin, Pakistan, 

authors include Sahito et al in 2013, Nazeer et al in 2016, Dar et al in 2021. With 

the help of seismic, image logs and wireline logs, subsurface structural analysis in 

the Lower Indus Basin, Pakistan, were performed by Wasimuddin et al in 2005, 

Abbas et al in 2015, Khan et al in 2016, Nadeem et al in 2016 and Qureshi et al in 

2021. Ahmad et al in 2015 identified reservoir geometries of C-Sand member of 

LGF in the Sawan Gas Field and discussed reservoir properties on the basis of well 

correlation seismic data and well correlation panels.  

The Miano gas discovery in the block 20 situated in the province of Sindh 

is a geological curiosity as its appraisal represents a model driven exploration case 

history The Miano-1 discovery well was drilled to a prospect originally mapped as 

a structural/ stratigraphic combination trap within the LGF. Several sands from 

3160-3900m were tight or produced water with some gas and while drilling Gas 

was produced at high rates only from one interval; the "B" sand (Krois et al., 1998). 
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The Miano area contains several gas fields having both structural and 

stratigraphic traps, according to various studies. The extensional regime located 

within Central Indus Basin, an area with normal faulting as a result of rifting of 

the Indian Plate from Africa then Madagascar & Seychelles. Miano area is located 

in the proven petroleum province with Cretaceous extensional tectonic history 

overprinted by Tertiary strike-slip tectonics. This may soon change, whilst the area 

is largely undrilled or explored in detail but has some modest production and 

substantial prospectivity with potential for hydrocarbon accumulation both 

structurally and stratigraphically by means of pinchouts. Widespread NW-SE 

aligned echelon arrays of linear gravitational sector elements are found throughout 

the faulted sedimentary rock and basement terrains covering almost 1000 km 

geographic distance area. Khairpur and Mari Highs are main structural features 

affording major control over the underlying freshwater resource system. The sand 

is of Lower Cretaceous age in arrangement and provides clothing as a tank, at the 

moment in Pandora area. The area is perspective to hydrocarbons and needs more 

wells with better understanding of structural, stratigraphic traps (Jadoon et al., 

2017) 

Pakistan lies in the tectonic plate boundary area and many wells have 

discovered giant hydrocarbon zones from traps located beneath these non-

successions that are heterogeneously developed. Miano Gas field is one of a unique 

zone producing tons of oil, gas; however, it does not fit into conventional trap 

classes. The Fluvio-deltaic facies of the deltaic depositional setting contain Lower 

Goru which is also known as Principial Hydrocarbon reservoir. Geophysical 

researches have been comprehensive in this area for the exploration of these clastic 

reservoirs. For geoscientists, predicting thin reservoirs in these lateral 

heterogeneous environments is a challenge. In order to resolve this issue, we have 

utilized spectral decomposition; robust seismic interpretation tool for detail 

mapping of channel geometries and possibility of thin beds hydrocarbon bearing 

sands (Solangi et al., 2015). 

This is where unconventional resource shales have a key role to play in 

global economic expansion. In case of unconventional prospect generation HC 

potential in Faults and Fractured shales is a significant challenge. For shale gas 

prospects exploration within the regional modeling in Indus platform, SW 
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Pakistan, this study applies the spectral decomposition (SD) technology of 

continuous wavelet transforms on high resolution 3D seismic data from the Miano 

area. The Schmoker method delineates 9.2% TOC containing high-quality shales 

in the western part of this platform. Seismic amplitude, root mean square (RMS) 

and most positive curvature attributes have restricted capability in defining the 

zones that contain prospective fractured shale lithological constituents (Naseer et 

al., 2017). 

Sequence stratigraphy is a powerful tool for understanding the spatial and 

temporal relationships of sedimentary deposits. It focuses on the identification and 

correlation of genetically related sedimentary units, known as depositional 

sequences, which are bounded by surfaces of erosion (unconformities) or non-

deposition (subaerial exposure surfaces). These surfaces represent significant 

changes in the relative sea level and can be recognized across different 

sedimentary basins, providing a framework for interpreting the stratigraphic record 

in terms of eustasy (global sea-level changes), tectonics, and sediment supply 

dynamics (Vail et al., 1977). The methodology of sequence stratigraphy involves 

detailed analysis of sedimentary facies and their stacking patterns within these 

sequences. By understanding the facies associations and their vertical and lateral 

variations, geologists can reconstruct the paleoenvironmental conditions during 

deposition. This approach allows for the recognition of systems tracts within 

depositional sequences, such as lowstand systems tracts (LST), transgressive 

systems tracts (TST), and highstand systems tracts (HST). Each systems tract 

represents a distinct phase of relative sea-level change and associated sedimentary 

response (Posamentier & Veil, 1988). One of the key applications of sequence 

stratigraphy is in hydrocarbon exploration. By correlating depositional sequences 

and identifying their systems tracts, geoscientists can predict the distribution and 

quality of reservoir rocks and seals within sedimentary basins. This predictive 

capability is crucial for optimizing drilling locations and maximizing hydrocarbon 

recovery. Sequence stratigraphy has been instrumental in improving the success 

rate of exploration and development efforts worldwide (Mitchum et al., 1977). In 

addition to its applied significance, sequence stratigraphy contributes to our 

understanding of Earth's history and dynamics. By analyzing sequences on a global 

scale, researchers can reconstruct past sea-level changes, understand climate 
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variability, and infer the tectonic evolution of continents and ocean basins over 

geological time scales. This holistic approach integrates data from various 

disciplines, including sedimentology, stratigraphy, paleontology, and geophysics, 

to unravel the complex interactions that have shaped our planet's surface through 

time. Sequence stratigraphy represents a fundamental paradigm shift in the study 

of sedimentary basins, providing a unified framework for interpreting stratigraphic 

records in terms of environmental and tectonic controls. Its applications range 

from practical exploration strategies in the petroleum industry to broader 

implications for understanding Earth's geological history and its response to 

environmental change. Continued research and application of sequence 

stratigraphy promise further insights into the dynamics of sedimentary systems and 

their role in shaping the Earth we inhabit today (Haq et al., 1987). 

 

Based on previous work and this literature review, it is concluded that 

Lower Goru Formation has been thoroughly studied for the structural analysis as 

well the reservoir properties by using conventional petrophysical techniques. 

However, a handful of authors went as far to study it for application in predicting 

play placement through sequence stratigraphic techniques providing geomorphic 

views. 

1.3 Research Gap 

       A sequence stratigraphic approach has been previously used in several 

studies for different objectives. However, quantitative interpretation integrated 

with machine learning driven facies classification for reservoir quality geomorphic 

sand bodies in the deltaic system has not been attempted before. Furthermore, there 

has been no research towards a reservoir quality (populating sand bodies with well 

properties) based ranking of sand bodies within the early cretaceous pro-delta in 

lower Indus basin. 

1.4 Objectives 

1. To evaluate fluvial / tidal dominated cretaceous sand deltaic 

geomorphology through selected seismic attributes within a sequence 

stratigraphic framework 
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2. To evaluate reservoir properties pertaining to reservoir quality, i.e., clay 

volume, total and effective porosity (higher PHIE translates to higher 

reservoir performance).  

3. To classify and rank sand geomorphology in terms of reservoir quality and 

predict higher quality sands within various system tracts. 

       1.5   Acquired Data 

         Miano field data was acquired from DGPC for the purpose of this study. 

The data included: 

 

        Table 1.1. Acquired data. 

 

 

 

 

1.6  Study Area 

  

Fig 1.1. Lower Indus Basin, Sindh Province, Miano Block, Lower Goru (Modified after Yang et al., 2023) 

 Miano field (Fig 1.1) is situated in the Lower Indus Basin, Pakistan and it is 

confined by Indian shield towards east, while Sulaiman Range arc to its west. The open 

westward dipping of the Sind platform is locally broken by north to south trending 

elevated Khairpur High interpreted as large basement induced structure. The Sindh 

Seismic Data Wells 

12 Sq.kms of 3D Seismic data 

 

Maino 2, 9, 10 

(A) 
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platform resumes its westward dip to the west of the Khairpur High, forming a monocline 

dipping towards the Kachhi foredeep. This foredeep is an asymmetric Molasse basin with 

the deepest part near to Kirthar Fold Belt (Smewing et al., 2002). 

 

1.7  Exploration history of study area 

Miano Gas Field was discovered in the year 1963, from which multi zone 

hydrocarbon bearing formation penetrated interval of three peak groups at a depth 

range between 2922 meters and it corresponds to early Cretaceous Age. They are 

enclosed by shale intervals that are known as organic rich with maximum flooding 

surfaces (MFS). Hydrocarbons bearing intervals have two reservoir units, a tight 

gas and an overlying conventional unit. The reverse trend of two reservoirs makes 

it difficult for the production in forecasting and well proposal design to be 

developed by them using tight gas technology. For this purpose, detailed Miano 

gas field reservoir characterization is conducted in order to infer a reliable 

predictive model of the overburdened that should be valid for further exploitation. 

Geological genesis analysis integrating cores, borehole logs and 3D seismic data 

demonstrates that the productive zone of tight gas reservoir is tidal-influenced 

shore facies deposition with intergranular pore space reduced by mineral cement 

during burial diagenesis while overlaying conventional reservoir shows an incised 

fluvial channel sand body derived from deltaic deposition and abundant well-

connected macropore network in the bulk volume), resulting excellent drillability 

(Karanovich et al., 2021). 

Shelf-margin deltas tend to normally develop during the falling-stage and 

lowstand periods of relative sea level (Szczepan et al., 2003). In some cases, the 

shelf-edge deltas can also accumulate in periods of relative sea level highstand and 

can even rise if it is associated with an unusually high supply of sediment or narrow 

shelves (Szczepan et al., 2003). The formation of shelf-edge deltas however, 

requires shoreline regression across the entire shelf which mostly occurs in periods 

of forced regression (Posamentier et al., 1992). Since they were initially 

recognized in Quaternary shelf-margin sequences, interest in shelf-edge deltas has 

been on the rise as they usually form sand-rich accumulations (Suter and Berryhill, 

1985), and thus prolific hydrocarbon reservoirs (Mayall et al., 1992). Furthermore, 

transportation of fluvial-derived sands from the shelf to deep-water occurs 
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preferentially in periods of falling-stage and lowstand (Posamentier & Vail, 1988) 

and it is considered that the shelf-edge deltas are the main driving force behind the 

delivery of sand to the slope and basins (Steel et al., 2000), (Porebski & Steel, 

2003). Shelf-edge deltas accumulating in higher accommodation / sediment supply 

conditions, or which lacks significant fluvial incisions have proven to be 

inefficient in delivering sands to the slope and basins. Therefore, presence of shelf-

edge deltas does not systematically guarantee formation of coeval turbidite 

reservoirs (Plink-Björklund & Steel, 2002), (Uroza & Steel, 2008), (Steel et al., 

2003), (Dixon et al., 2012). 
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 CHAPTER 2 

  GEOLOGY AND TECTONICS 

 

2.1  History of plate tectonics 

The concept of plate tectonics has been revolutionary in developing a better 

understanding of the Earth's geological processes as well as the dynamic nature of 

its crust. The history of plate tectonics goes all the way back to the early 20th 

century when a scientist named Alfred Wegener proposed his theory of the 

continental drift in 1912. It was hypothesized by Wegener that continents were 

once joined together in a single supercontinent called Pangaea and had since 

drifted apart to their current positions. This theory was based on the fit of 

continental coastlines, distribution of fossils, and geological similarities between 

continents on opposite sides of the Atlantic Ocean (Wegener, 1915). However, 

Wegener's continental drift hypothesis faced significant skepticism and criticism 

as he could not give a plausible explanation for how the continents move through 

solid oceanic crust. Advancement in geophysics in the middle 20th century, 

particularly the development of paleomagnetism and seismic studies, provided 

critical evidence supporting the concept of moving lithospheric plates. In the 1950s 

and 1960s, discoveries in marine geology and geophysics, particularly mid-ocean 

ridges mapping and the identification of magnetic striping on the seafloor, they 

provided key insights into the dynamic processes at work beneath Earth's surface. 

The Vine-Matthews-Morley hypothesis in 1963 proposed that alternating 

magnetic striping observed along mid-ocean ridges was the result of seafloor 

spreading, where new oceanic crust is formed at spreading centers and older crust 

is subducted back into the mantle (Vine et al., 1963). The integration of these 

findings culminated in the development of the theory of plate tectonics, which was 

formally articulated in the late 1960s and early 1970s, this theory proposes that 

lithosphere of the Earth is divided into several large and rigid plates which float 

on semi-fluid asthenosphere beneath them. Interaction of these plates takes place 

at their boundaries, which can be either divergent (plates moving apart), 

convergent (moving towards each other, colliding) or transform (sliding past each 

other).  
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2.2       Plate tectonics and drift of continents through ages 

       Plate tectonics process forms new oceans by rifting, and it also creates 

oceanic ridges and forms new oceanic crust, causing the continents to collide and 

destroy the ancient oceans through subduction of their lithospheric plates, giving 

rise to some of the earth’s most notable physical features, such as the oceanic 

ridges, trenches, chains of volcanic islands, island arcs, and their associated basins 

and the large mountain chains of the world. The plate tectonic process leads to the 

concentration of valuable elements and forms significant ore deposits. 

Paleomagnetic data from Proterozoic (750 Ma), suggest that there was one Super 

Continent surrounded by the ocean, and the Indian plate was a part of it (Dietz & 

Holden 1976). During the Late Permian from 250 Ma ago to Miocene about 20 

Ma ago, several continental blocks broke from the northern part of Gondwanaland 

and drifted across. Kohistan Island Arc collided with and accreted onto the 

southern margin of Eurasia, which was a fragment of the Laurasia. The whole 

process was accompanied by the replacement of the Paleo-Tethys by several 

oceanic spaces (Dietz & Holden, 1976). Earlier, the Indian plate was part of the 

Gondwanaland, which later separated from it about 130 Ma, followed by its drift 

northwards. While India was drifting, intra-oceanic subduction started ahead of it, 

which resulted in volcanic arcs in a series that includes the Kohistan Ladakh, and 

the southern boundary includes Arabian and Afghan microplate. About 102-85 

million years ago, the back-arc basin started closing and eventually closed 

completely. Later the Kohistan Ladakh collided with Eurasia. After accretion to 

Eurasia, the Kohistan arc formed Andian-type passive margin. Later about 55-50 

million years ago, Indian Plate eventually collided with the Kohistan-Ladakh part 

of Eurasia and formed the Karakoram and the Himalayas and controlled the 

evolution of basin (Dietz & Holden, 1976). 
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Figure 2.1. Pangea reconstruction with a relative plate motion hierarchy depicted at 200 MYA 

(Modified after Seton et al., 2012) 

 

The Theory of Plate Tectonics Unification elucidates Earth's surface 

evolution through continental breakup, supercontinent amalgamation, and 

subsequent continental breakup episodes, leading to creation of new oceanic 

basins at cost of the older oceanic gateways. The configuration of continents serves 

as a primary control on long-term oceanic circulation, influencing the 

hydrosphere's capacity in order to reduce the thermal gradient from poles to 

equator. 

Plate boundary reconstructions uses seafloor magnetic anomalies to 

reverse seafloor spreading and then create snapshots of the historical 

setting/arrangement of continents and oceanic crust. When there is lack of seafloor 

spreading histories, geological data from the continents can be utilized to deduce 

their past positions. This information allows for estimating the required seafloor 

spreading rate and direction needed to move these continents. This method enables 

the restoration of continents to a Pangea configuration, where all (or most) 

continents were united into a single supercontinent (Seton et al., 2012).  
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Indian plate was part of the Gondwanaland, which later separated from it 

about 130 Ma, followed by its drift northwards. While India was drifting, intra-

oceanic subduction started ahead of it, which resulted in volcanic arcs in a series 

that includes the Kohistan Ladakh, and the southern boundary includes Arabian 

and Afghan microplate. About 102-85 million years ago, the back-arc basin started 

closing and eventually closed completely. Later the Kohistan Ladakh collided with 

Eurasia. After accretion to Eurasia, the Kohistan arc formed Andian-type passive 

margin. Later about 60-65 million years ago, Indian Plate eventually collided with 

the Kohistan-Ladakh part of Eurasia and formed the Karakoram and the Himalayas 

and controlled the evolution of basin (Dietz & Holden, 1976). 

 

2.3 Geology of Pakistan 

Pakistan is in the convergence area of the Indus Basin between Eurasia and 

India. Indus Basin has a sedimentary fill of the Precambrian age to recent. Based 

on sedimentation history, Indus-basin has been divided into three units, Upper 

Indus Basin, Middle Indus Basin, and the Lower Indus Basins. Sargodha High and 

Pizu uplift separate the Middle Indus Basin from Upper Indus Basin. The Punjab 

platform is a monocline structure which is dipping very gently towards the west, 

and the Sulaiman Fold belt has been resulted from the of Ind-Eurasian plates, the 

collision took place in the Paleocene to Mio-Pliocene. In the south of Mari 

Kandhkot High, the Lower Indus Basin is located, and the Indian Shield bounds it 

towards the east of the Indian Plate, and the southern border of LIB is along the 

offshore of the Indus Sub-basin (Iqbal & Shah, 1980). 
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Figure 2.2. Tectonics map of Pakistan (Haleem et al., 2014). 

 Miano Field lies on the eastern flank of Khairpur High. Khairpur High, 

during its geological history of rifting and compression, went through number of 

phase if inversion and subsidence. The Proterozoic basement beneath the Khairpur 

High is also marked by high geothermal gradients because of recent uplift and / or 

higher heat flow. Schematic east to west stratigraphic cross-section showing a 

generalized basin architecture, with the thickening and thinning of the Cretaceous 

succession towards the E-W (Haleem et al., 2014). 

The above contributes to the evidence of onlapping Paleocene clastics 

overlying this Basal Tertiary Unconformity and there is dramatic thickness, facies 

changes within. There are significant Eocene to thick Oligocene to Pleistocene 

Molasse deposits in the foredeep on western end near Kirthar Range. There is a 
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hiatus, or erosional phase of variable length between the Jurassic platform 

carbonates and the basal clastic. The Whitehorn was last deposited in the Miocene 

to Pliocene, outcropping over most of its entirety with minor hypothetical 

exception on a high arm at Kakela. Sediments of the Cretaceous. In general, Lower 

Cretaceous sediments comprise the Sembar Formation and Lower Goru Member 

of the Goru Formation. Sembar clinoforms show a westwards pro-grading history, 

aging basin ward and becoming younger towards the top. A time gap 30my, 

connected with the Late Aptian/Base Albian sea-level low stand is observed in-

between Lower Goru Member and Sembar Formation (Haleem et al., 2014).  

The Lower Goru Member in its lower part is subdivided (in the base 

upwards) as "A", "B" and "C". Lower Goru "A', "B" and ‘C'' intervals were 

deposited in a ramp type setting unlike the seismic geometries with relatively 

steeply dipping clinoforms which shows shelf type margin developed by Sembar 

Formation. These three intervals account for a modest 7 MY of the total time scale. 

This section can be dated within the time span of global sea level rise from Albian 

into Cenomanian. The Lower Goru Member shows a rise in carbonate content, 

finally becoming stabilized within the upper member. The paleontological record 

shows a deepening of the water for these deposits. The Upper Goru Member 

contains basal shales and marls succeeded by limestones, absent in the outcrops 

but rumored to attain a thickness of up to 500 feet (150 m) within basin (Krois et 

al 1998). 
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2.4  Generalized stratigraphy 

 

Table 2.1. Generalized stratigraphy of Lower Indus Basin. (Khalid et al., 2014) 
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2.4.1 Chiltan Limestone 

  Chiltan Limestone consists of massively bedded limestone, which is dark 

gray and forms a thick band on the rough surface. These limestones have unique 

property; they are highly resistant, and they also form the highest mountain valley 

around the Quetta and Chiltan Formation is underlain by the Shrinab Formation 

(Shah, 1977; Shah, 2009). 

 

2.4.2     Sembar Formation 

   Sembar Formation is deposited in a passive margin geological setting, and 

its sediments have derived from the uplifted Indian Continent towards the 

Southeast (Hedleyetal, 2009). At present, the Formation’s distribution indicates 

that it had been deposited in a large sedimentary basin, which most likely extended 

from the Indian Shield in the East (Raza et al., 1990). The term Sembar Formation 

was coined by Williams in the year 1959 (Raza et al., 1990). The Sembar 

Formation passes through the Mari hills, which are composed of clastic rocks, 

mainly shale and with a less amount of siltstone and sandstone in the lower Indus 

platform. In the southern part of the Platform, the sand content gradually increases. 

Sembar Formation consists of black to dark grey silts in the northeast towards the 

Sulaiman Fold Belt and the Formation gradually becomes sandy towards the 

Eastern part of the fold belt within the lower part. Glauconite is found very 

commonly in the Formation in the Formation, and sandy shales, phosphatic 

nodules, and pyrite are also developed locally (Shah, 2009). The color of shale 

tends to be light to dark grey and its hardness being medium hard (Raza et al., 

1990). The thickness of the Formation in the type section is approximately 133 

meters, although it increases up to 265 meters towards the Mughal Kot section of 

the Sulaiman Range (Shah, 2009). The depositional environment of Sembar 

Formation is open marine (Qadri et al., 1986). The lower contact of the Formation 

is with several Jurassic formations, e.g., Mazar Drik Formation, Chiltan L.S., and 

a disconformable contact with Shrinab Formation. Its upper contact however, is 

gradational with Guru Formation (Shah, 2009). Age of the Sembar Formation is 

Neocomian mostly. Sembar Formation consists of shale, which is black and silty, 

and shale is interbedded by siltstone, which is also black; argillaceous limestone 

beds are also present but on the top of their surface nodular rusting weathering also 
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occur. The greenish color of weathering is due to the presence of glauconite 

mineral, pyrite phosphatic nodules sandy shales are also present at the basal part, 

and Goru Formation overlies Sembar Formation (Shah et al., 2009). 

 

2.4.3 Goru Formation 

    Goru Formation consists of shale, siltstone, and interbedded limestone of 

light-medium grey and olive-grey. The size of limestone is fine grain and thin-

bedded of shale, and siltstone is quite different like grey to greenish-grey, and 

sometime in maroon color, they are present locally. The concentration of limestone 

is quite high in the lower and upper part of Formation, while shale changes its 

proportion throughout the Formation (Shah, 1977; Shah, 2009). 

 

2.5  Petroleum system of Lower Indus Basin 

 Indus Basin’s petroleum system with all of its formations is given in a 

generalized stratigraphic column (Table 2.1). Success rate is highest in Lower 

Indus Basin as strings of discoveries have been made in a relatively short time in 

a small fault block of the Goru reservoir. During the 1980s, several oil and gas 

discoveries were made in the Lower Goru Formation. Exploration efforts were 

pushed further later in the 1990s at the time when major gas discoveries were made 

in the rocks of Late Cretaceous, Bhit and the Zamama are two examples of those 

discoveries (Raza et al., 1990). 

 

2.5.1  Source Rocks of Lower Indus-Basin 

Sembar Formation is the main source rock for majority of the Indus Basin, 

although there are also other source rocks with potential (Table 2.2). 

                  Table 2.2. Source Rocks of Lower Indus Basin (Shah, 1977; Shah, 2009). 

FORMATION LITHOLOGY AGE 

Laki Shale Eocene 

Ranikot Shale Paleocene 

Mughalkot Shale Cretaceous 

Goru Mudstone/Shale Cretaceous 

Parh Shale/Packstone Cretaceous 

Sembar Mudstone/Shale Cretaceous 
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Chiltan Limestone Jurassic 

Wulgai Shale/Limestone Triassic 

 

2.5.2 Reservoir Rocks of Lower Indus Basin 

      Reservoir rocks are shown in table 2.3.  

 

  Table 2.3. Reservoir Rocks of Lower Indus Basin (Shah, 2009). 

FORMATION LITHOLOGY AGE 

Chiltan Limestone Jurassic 

Sembar Shale Early Cretaceous 

Lower Goru Sandstone/Mudstone Cretaceous 

Pab Sandstone Cretaceous 

Ranikot Limestone Fracture Paleocene 

Laki Limestone Eocene 

Nari Sandstone Oligocene 

Gaj Sandstone Miocene 

Sui Main LS Limestone Eocene 

Habib-Rahi LS Limestone Eocene 

 

  2.5.3  Seal and Trap of Lower Indus Basin 

    Sembar Formation serves as a seal-rock for the Chiltan Limestone while 

the upper Goru Formation comprises of marl and shale; therefore, the reason that 

it acts as a seal rock. Its upper part is known to be an excellent cap for the lower 

Goru reservoir which underlies it. The fault traps in LIB resulted from extension 

caused by rifting (Raza et al., 1990). 
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2.6 Environment of deposition 

 

     
Figure 2.3. Position of the Indian plate Hauterivian and Barremian Age (Modified after Seton et al., 2012) 

 

2.6.1  Hauterivian Age 

The Indian Plate had separated from the supercontinent Gondwana a long 

time ago, some 130 million years during Hauterivian age and started colliding with 

Asia about 40 to 50 million years back. At that time, the Indian Plate was much 

farther south than it is now. These low-lying areas marked the environments of the 

Indian Plate at that time: 

1. Marine Influence: The shallow regions of the Indian Plate were largely 

occupied by marine environments. This was the province of marine sedimentation-

dominated epicontinental seas. Proof that swamps and forests can be submerged 

enough comes from the presence of marine fossils, as well as the deposition of 

limestones, shales and marls which are clearly marine in origin. 

2. Coastal and Shelf Environments: Regions of Indian Plate coastal and shelf 

environments had been previously sedimented by terrestrial and marine material 

which resulted in deposition of combinations of carbonates, siltstones, sandstone 

as is observed at many places. 

3. Fluvial and Deltaic Systems: Terrestrial environments were also significant, 

including deltaic environments and river systems. These conditions resulted in the 
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deposition of clastic sediments such as sandstones and mudstones carried by rivers 

into floodplains, deltas etc. 

4. Vegetation and climate: Climate of the Indian plate in the Hautervian age was 

warm and humid which supported a range of diverse vegetation. The presence of 

plant fossils like ferns, conifers etc., indicates very lush vegetation in some areas 

which contributes to the formation of coal and other organic-rich deposits. 

5. Tectonic Activity: Indian plate experienced tectonic activity as a result of 

Gondwana separation from Laurasia. Sedimentation patterns and formation of 

depositional environments were influenced due to the tectonic movement. Sea 

levels were influenced by rifting and initial stages of plate separation which 

created new basins as well.  

In short, Indian plate was a mix of deltaic, coastal, fluvial and shallow marine 

settings and was influenced by warm and humid climatic conditions and the active 

tectonic processes associated with the breakup of Gondwana (Dietz & Holden, 

1976). 

2.6.2  The Barremian Age 

The Barremian age (roughly 129.4 to 125 MYA), when the Indian Plate 

continued a process of breaking away from Gondwana it was causing active 

geological and climatic changes. The environment of the Indian Plate at that time 

is characterized by the features given below. 

1. Marine Environments: During this period, significant portions of the Indian 

Plate were under shallow marine environments similar to those during Hauterivian 

age. They were continental shelves and epicontinental seas, where was 

predominant one marine sedimentation. Limestones, shales and marls were 

deposited in those areas, and they contained marine fossils as well in some cases. 

2. Coastal and Shelf Environments: Margins of the Indian plate had coastal and 

continental shelf environments. Marine and terrestrial processes interacted in these 

dynamic areas, resulting in mixed sedimentary deposits which included 

sandstones, siltstones and carbonates. 
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3. Fluvial and Deltaic Systems: There is a major role of river systems and deltaic 

environments in sedimentation on the Indian Plate. Clastic sediments like 

mudstones, sandstones and siltstone were deposited by rivers mostly in floodplains 

and deltas. 

4. Vegetation and Climate: The Barremian climate was warm, humid with 

abundant vegetation. Plant fossils (ferns, conifers and cycads) demonstrate that the 

area accommodated rich vegetation. This vegetative debris ultimately resulted in 

the formation of coal and other organic-rich deposits occurring at different places. 

5. Tectonic Activity: The tectonic activity that led to the breakup of Gondwana 

continued in part as stresses acting upon India itself due to Plate Tectonics. 

Mechanisms of rifting and basin forming, were producing factored sea-level 

changes generated by progradation stacked sequences. Tectonism: this created rift 

valleys and a variety of fault systems. 

6. Lagoonal and Coastal Plains: In some regions, lagoon & coastal blanketed 

were usual. This created a range of sediment types (evaporites, for example, 

formed in the drier areas) and variable freshwater/saline/hypersalinity systems. 

Marine deposits are part of the continental shelf, suggesting a warm, humid climate 

on the Indian Plate throughout Barremian time. Associated with the breakup of 

Gondwana, tectonic activity further influenced sedimentation and depositional 

environments (Dietz & Holden, 1976). 

 

Figure 2.4. Position of the Indian plate in the Cenomanian age ((Modified after Seton et al., 2012) 
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2.6.3  The Cenomanian Age 

By the Cenomanian epoch (about 100.5 to 93 Ma) of the Late Cretaceous, 

as it became further north from its later apparent position throughout even larger a 

part of middle and early cretaceous periods at other million year. All this 

movement along with global sea level changes and climatic conditions affected the 

depositional environment in Indian Plate. Some notable features of the 

Cenomanian age depositional environments are as discussed below. 

1. Marine Environments: Wide portions of the Indian Plate remained under 

extensive shallow-marine environments. These settings are the result of deposition 

in margin parts of what was essentially a tethys sea existing between surrounding 

north continents and migrating Indian Plate. The diversity of benthic and 

planktonic microorganisms also attests to a sea that was high in nutrients 

throughout scapulite-time marine sedimentation, which is generally characterized 

by the accumulation of limestones, marls and shales richly loaded with species like 

ammonites. 

2. Carbonate Platforms: warm, tropical to subtropical climate favored the 

formation of vast carbonate platforms & reefs. These platforms were areas of 

significant carbonate sedimentation— and the depositional environment is said to 

have cleared up for calcareous algae, stromatoporoids, crystals resembling calcite. 

The result was large buildups of limestone materials including reefs, rudistids; reef 

building organisms like corals, rudists with thick sequences of exogenic material 

produced in shallow seas. 

3. Coastal and Shelf Environments: Around the margins of the Indian Plate, 

coastal (littoral) and continental shelf environments prevailed. They are 

characterized by interbedded sands, siltstones and mudstone deposited from both 

marine and terrestrial sources. In addition, tidal flats with lagoons and estuaries 

were characteristics of these environments. 

4. Fluvial and Deltaic Systems: River systems and deltas remained the major 

depositional areas. These were areas of clastic sediment transport and deposition, 

with widespread sandstone-siltstone-claystones. Floodplains with fine-grained 

sediments also characterized many fluvial and deltaic environments as well. 
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5. Climatic influence: The climate during the Cenomanian age was relatively 

warm, with high sea levels that caused extensive transgressions. An array of 

marine life flourished in these tropical waters, and fertile land provided wide 

ranging vegetation which dictated the sediments that were laid down. 

6. Organic-Rich deposits: In some regions, the Cenomanian age was associated 

with deposition of black shales (organic-rich sediments). The conditions for the 

preservation of organic matter were created by anoxic or low-oxygen 

environments in restricted basins where these deposits accumulated. Together with 

the black shales, they also form promising source rocks for hydrocarbons. 

7. Tectonic Activity: The continued tectonism related to the breakup of 

Gondwana, and northward drift of Indian Plate also influenced sedimentation 

patterns. Tectonic activity created new basins and reconfigured existing 

depositional environments. 

The middle Cenomanian stage was characterized by a shallow marine to carbonate 

platform sedimentation with important influxes of fluvial and deltaic systems, 

influencing the Indian plate margin. These environments and the sedimentary 

record are equally shaped by warm climate, high sea levels of this thinner crust 

period in combination with ongoing tectonic activity (Dietz & Holden, 1976). 

 

    Figure 2.5. Position of the Indian plate in the Ypresian Age ((Modified after Seton et al., 2012) 
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2.6.4  The Ypresian Age 

The Indian plate was continuing its northward march towards Asia and this 

crash continued well into the subsequent Oligocene epochs that lasted between 34-

23 million years ago, eventually leading to the uplift of rocks in what is now called 

Western Ghats due forced thrust coming from southwards growing mantle forming 

a bulge somewhere around vicinity of Chanda Mountain region. This tectonic 

activity, along with climatic and sea level changes affected the depositional 

environments on the Indian Plate during this stadial Epoch (Ypresian age). Some 

key things to know about the environment during this period of deposition: 

1. Marine Environment: extensive shallow-marine platform deposits are known 

on Precambrian strata especially in North plate while evidence for carbonates and 

evaporites indicate formation of restricted basins. These regions laid in the greater 

Tethys Ocean which was a marine sedimentary environment. These environments 

were sites for depositional formation of limestone, marl and shales with coral reefs 

usually found in the equatorial sea belt together limestones rich in fauna e.g., 

numerous species marine fossils including ostrocods, nummulites etc. 

2. Carbonate Platforms: Substantial ditches progressing in creation are shown as 

carbon stages. These platforms were centers of intense carbonate sedimentation, 

including reef-building and the deposition of biogenic carbonates. These settings 

also held abundant nummulitic limestones, defined by the presence of large 

foraminifera. 

3. Coastal and Shelf Environments: The coastal and continental shelf 

environments were common along the margins of Indian Plate. This caused these 

regions to have a combination of marine and land deposition with sandstone, 

siltstone or mudstones forming the deposits. These were often dominated by 

coastal plains, tidal flats and estuaries. 

4. The river systems and deltas: Fluvial and Deltaic Systems played a major role 

in sedimentation especially in the southern, central part of Indian Plate The 

sediments transported and deposited in these environments were clastic (i.e. they 

consist of sandstones, siltstones and claystones). While rivers deposit their 

sediments from the interior regions into coastal lands, vast floodplains and deltaic 

deposits built up. 
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5. Terrestrial Environments: Indian Plate terrestrial deposition is varied and 

includes fluvial, lacustrine, paludal settings. This region was marked by an 

accumulation of fluvial and lacustrine sediments such as conglomerates, 

sandstones and shales. It is likely that these coal aggregates were deposited in 

swamplands where dense vegetation existed. 

6. Climate Influence: The warm, humid climate of the Ypresian age with its high 

precipitation rates. This climate allowed for a mix of plant life, including tropical 

forests that helped make the different types of sediments found in lake and river 

deposits. The warm conditions also allowed the deposition of huge marine 

carbonate platforms. 

7. Tectonic Activity: The continued northward motion of the Indian Plate that was 

to collide with Eurasian plate in future resulted for depositional environment 

tectonic activity. Foreland basins formed by tectonic activity and controlled the 

location of depositional environments. This tectonic event uplifted also the 

Himalayas, changing local drainage patterns and supply sediment. 

The different sedimentary systems observed in the Indian Plate during the 

Ypresian age as fluvial, deltaic and terrestrial environments related to a coastline 

that extended along what is now northern Pakistan, where salt pans were developed 

later. These climate conditions combined with active tectonic processes would 

have strongly influenced the nature of environments in which these sediments were 

deposited and hence what is preserved within sedimentary record (Dietz & Holden, 

1976). 
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  CHAPTER 3 

   FORMATION EVALUATION 

 

 

3.1       Introduction 

The primary objective of any formation evaluation effort is to assess, 

measure and characterize the spatial arrangement of petrophysical parameters 

including shale volume, porosity, permeability and saturations in order to define 

flow units within it. For effective development, management and prediction of 

future performance of gas-field, precise understanding of these factors is needed. 

Analysis of wireline logs allows for the determination of petrophysical parameters 

(Aadil et al., 2011). 

The process for achieving a reservoir description through open-hole logs requires:  

i. Data quality control via environmental corrections for logs. 

ii. Estimation of petrophysical properties via logs data. 

iii. Calculation of net pay of studied reservoir. 

For the purpose of this study, open-hole wireline data acquired within the 

Cretaceous Lower Goru Formation was used from the following wells:  

1. Miano-02 

2. Miano-09 

3. Miano-10 
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   3.2  Log QC and Conditioning 

    Acquisition of data, as we all know, has its own limitations as a result of 

various pitfalls in the acquisition methods which can reduce overall accuracy and 

precision, and therefore can result in reduced confidence & robustness. Also, the 

fact that datasets are often incomplete is one of the main reasons for most operators 

to put effort in maximization and full integrating the available information 

(Shekaili et al., 2012).  

In order to do this, all geoscience workflows should start with rigorous QC 

and data conditioning. Performing QC and data conditioning may seem like a 

thankless task and is often given to junior geoscientists. However, it is a very 

important step, laying the foundations for the subsequent workflows to be 

performed with as much precision and accuracy as possible. Data that hasn’t 

undergone QC & rigorous conditioning can lead to large errors to be carried 

forwards and results in expensive mistakes, and misinterpretations later on. Issues 

such as rough borehole conditions and gas effects are among the most common 

effects that should be repaired; however, there are other effects that may also cause 

errors. There are common practices that may be applied for each type of log, and 

often logs are checked against each other for errors (Shekaili et al., 2012).   

   3.3    Logplot Display 

   After stringent QC, the logs from the wells are displayed below. VGS, a 

proprietary software from Vizdom Solutions Oil and Gas Services is utilized for 

formation evaluation in this study.  
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Figure 3.1. Logplot of Miano-02 with caliper, GR, SP, spectral GR, resistivity, porosity and 

acoustic log suites.  

 

Notice that in the above fig 3.1 the density log is not reflecting the Compton 

scattering as it should within the formation due to stick and pull of the tool in bad-

hole conditions. This means that density will give an under-compensated porosity, 

therefore cannot be used for porosity estimations. Sonic and neutron are used 

instead.  
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Figure 3.2. Logplot of Miano-09 with caliper, GR, SP, spectral GR, resistivity, porosity and 

acoustic log suites. 

 

  In case of Miano-09, bad-hole condition from 3325 to 3332 m have caused 

error in measurements in density and shallow-focused resistivity tool did not work 

in the upper section, evident by discrete spikes in intervals. In the lower section as 

well, data quality is not optimal. GR values are overcompensated in general and 

density log is not reliable. In such a scenario, it is advisable to take parameters 

from reliable logs i.e. accoustic, neutron and deep resistivity.  
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Figure 3.3. Logplot of Miano-10 with caliper, GR, SP, spectral GR, resistivity, porosity and 

acoustic log suites. 

 

 

Logs acquired in Miano-10 are relatively poor quality in all of Lower Goru 

Interval. In this case, it is not a good idea to use over compensated or under 

compensated measurements which were recoreded due to poor borehole 

conditions; i.e. higher shaliness which causes swell / breakouts within the 

borehole. The tool gets stuck in this situation and the measurements are 

detrimentally affected. Therefore, density log cannot be used for porosity 

estimation, rather acoustic and neutron is utilized in this scenario.  
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3.4 Correlation and Interpretation 

 

Figure 3.4. Correlation of sand units within the Lower Goru Interval of Miano-02, Miano-09 and Miano-10 

wells.  

 
 

           Figure 3.4.1. Index map showing trend of wells. 

 

Sand units Z1, Z2 and Z3 are conformbale in all three wells and can act as 

potential reservoirs. The depositional facies of the reservoir horizons is related to 

shoreline and estuarine sedimentation. A wave dominated prograding barrier bar 

system, frequently overwashed by storm waves, describes the observed features 

best. Reservoir quality sands are developed in the high energy shoreface to 
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foreshore facies of the prograding shoreline. In order to define the stratigraphic 

boundaries based on log responses, we first take the wells that are closer to each 

other in an southwest-northeast i.e. Miano-09 and Miano-10. Based on the above 

correlation. The log trends indicate higher shaliness as we move from southwest 

to northeast reflecting a basinwards change of facies.  

When dealing with stratigraphic prospects, the most difficult challenge is 

accurate prediction of medium to coarse grained sand body. Its reservoir quality 

and the extent of its lateral and updip shale-out. The eastward tilt of the strata or a 

valid structure closure is the other pre-requise for such prospect. 

When it comes to the Lower Goru stratigraphic possibilities, predicting 

with precision whether a medium- to coarse-grained sand body will exist, the 

quality of the reservoir, and the degree of lateral and updip shale-out are the biggest 

challenges. The other requirement for such prospects is an overall tilt of the strata 

towards the east or a good structural closure.  

3.5    Sequence Boundary indentification 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Stratigraphic boundaries marked based on log motifs (GR and DT) using 

data from Miano-09 and Miano-10 wells.  
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In the context of high-resolution seismic reflections of sand progrades, the 

GR log motif elucidates sequence stratigraphic surfaces identification on well logs 

and the interpretation of detached shoreface wedges. Transgressive shales, as 

defined in the preceding section, are observed as regionally widespread 

stratigraphic markers of high GR character and comparatively reduced acoustic 

impedance (slow DT) on the GR logs (including spectral GR logs K, Th and U) 

from wells that are widely separated. Shales are located above a reworked 

lithoclasts-bearing chamositic mudstone lag layer with high GR and high acoustic 

impedance (fast DT). A low-grade coarsening-upward, blocky or fining-upward 

sand-prone interval is located below, which represents the sands classified as 

Facies type 1 and 2. Seismic analysis identifies these transgressive events as 

sequence flooding surfaces that occur above the sequence boundaries. 

Therefore, the high GR shales (high Th) define the basin-wide genetic 

stratigraphic packages within the LG mega-sequence. The transgressive shale 

seismic event (mfs) overlies a positive or negative reflectivity event (peak or 

trough on zero phase seismic data) that on the proximal areas towards the east 

marks the sequence boundary in each case depending on cemented or porous 

nature of the upper-most last regressive sand within each of the sequence. In the 

distally steepened ramp setting, the sequence boundary is located on the bottom of 

the forced regressive sand which exhibits a sharp-based fining upward log motif. 

The high-GR shales also occur at other stratigraphic levels within the “Z1”, 

“Z2” and “Z3” sequences and overlie fining-up, coarsening-up or blocky GR log 

motifs. These transgressive shales bound genetic stratigraphic packages comprised 

of further smaller scale, multiple coarsening and / or fining-upward trends 

representing the multiple regressive sand wedges. Each smaller scale sequence is 

comprised of the coarsening-upward or blocky sand capped by the ravinement 

erosion surface in the form of thinner high gamma counts, followed by the high 

gamma counts transgressive event and shaly bottom sets of the following 

prograding paralics.  

The parasequences and PS sets are represented by these small sequences 

and sequence sets. High resolution correlations and regional seismic stratigraphic 

interpretations show that a marine incursion happened above the Sembar and that 
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a lowstand wedge was followed by a regression within the Z1 sand. A sediment 

supply and relative sea level rise equilibrium resulted in an aggradational stack of 

coastal plain and shallow marine deposits within the Z1 sand.  

 

 

Figure 3.6. Stratigraphic boundaries marked based on log motifs (GR and DT) using data from 

Miano-09 and Miano-10 wells and translated to Miano-02.  

 

 

  Facies vary in Miano-09 and Miano-10 wells in a southeast-northwest 

orientation, whereas, in Miano-02, the correlation is not quite evident since it is 

north-east of Miano-09 and Miano-10 respectively. However, similar stratigraphic 

events are picked on log responses and correlated with the other wells.  

3.6  Cross Plots 

Cross plots of log data are an indispensable tool for the well log analyst for 

interpreting both logging while drilling (LWD) and wireline well log data. The 

basic idea behind a cross plot is a 2D representation of the variation of log data 

points with respect to two or more properties.  
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Cross plots of Sonic versus Density logs are preferred for shaly sands. For 

carbonates formations, Density versus Neutron cross-plots are commonly utilized.  

The Neutron - Sonic cross-plot shows neutron values on x-axis which 

increases from left to right and the sonic transit time on the y-axis which decreases 

from top to bottom. Lithology lines which are present on the plot shows the 

increasing neutron porosity with increasing transit time and the large separations 

between lithology lines on the plot indicate good resolution of the main lithologies 

using this cross-plot, and it also indicates that the porosity is very much 

independent of lithology.  

3.6.1  Neutron Sonic Cross-plots 

NS cross plots for the Lower Goru interval are generated using overlay 

lines from SLB considering 1g/cm3 density of water filled porosity. The cross-plot 

values are constrained by gamma counts for understanding lithology variation.  

 
            Figure 3.7. Neutron Sonic Xplot of Miano-02. 
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           Figure 3.8. Neutron Sonic Xplot of Miano-09. 

 

 
           Figure 3.9. Neutron Sonic Xplot of Miano-10. 
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 3.7  Workflow, Parameters and Interpretation  

  Workflow, parameters and interpretation is discussed as below. 

 

  3.7.1 Workflow 

The formation evaluation workflow is based on identifying minerals, 

building lithology, estimating and separating clay volume from sands, estimating 

clean lithology porosities and finally estimating the saturation of water for the 

subsequent NTG & pay. In this analysis, we have used the deterministic clastic 

model in the software which has the lab calibrated end points for Quartz.  

The petrophysical parameters and model selection varies and depends on 

whether the values of shale and knowledge of matrix is desired. The values of fluid 

for different interpretation methods are generally acquired in a laboratory 

environment and are calibrated for temperature, pressure and salinity needed. 

The values of rock matrix are generally available from interpretation 

charts, book or data tables. The values of ‘end point’ usually shows readings of 

log for pure 100% minerals, which are rare in real environments. These values may 

also be found on inspecting logs if they are relatively pure, zero- porosity zones 

are also found. 

3.7.2  Parameters 

3.7.2.1 Clay Volume 

Clay volume is calculated by GR and Neutron log overlay method. The 

best match has been finalized for porosity estimations.  
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           Figure 3.10. Clay volume parameters from GR and NEU overlay. 

 

       3.7.2.2   Porosity Estimation 

 Porosity is estimated through density and neutron readings where the 

borehole data is not affected by bad borehole condition. DSI measurements are 

utilized in case of bad borehole conditions. A temperature log is also generated 

using average geothermal gradient and bottom hole temperature i.e. 0.3 / 100m 

and 120 degrees respectively. Total porosity and effective porosity curves are 

finalized as a last step.  
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Figure 3.11. Porosity estimation parameters.  

 

 

 

 
  Figure 3.12. Temperature log generation to estimate Rw. 
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3.7.2.3   Water Saturation 

  Using the temperature curve and a known salinity of formation water 

@110PPK Rw is calculated to be 0.3316 ohm-m. Clay volume, effective porosity 

and Rw are used with saturation exponents a=1, m=2 and n=2 in Indonesian 

Equation.  

 

 

 

 

 

 

 

 

 

      

Figure 3.13. Water saturation estimation parameters.  
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3.8.  Interpretation 

 

 
Figure 3.14. Interpretation of Miano-02, lithology; porosity, saturation and pay estimation at Lower Goru 

Level.  

 

 Figure 3.14 shows Interpretation of Miano-02, lithology; porosity, saturation and pay estimation at 

Lower Goru Level. 
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Figure 3.15. Interpretation of Miano-09, lithology; porosity, saturation and pay estimation at Lower Goru Level. 
 

 Figure 3.15 shows interpretation of Miano-09, lithology; porosity, saturation and pay 

estimation at Lower Goru Level. 
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Figure 3.16. Interpretation of Miano-10, lithology; porosity, saturation and pay estimation at Lower Goru 

Level. 

 

Figure 3.16 shows interpretation of Miano-10, lithology; porosity, saturation and pay 

estimation at Lower Goru Level. 

 

3.9  Summary and results 

 

Cutoff criteria based on the above analysis: 

  i. Clay Volume: 40% 

ii. Porosity: 6%  

  iii. Water Saturation: 60% @ Formation Water Salinity - 110PPK.  

 

Table 3.1 Summary and results  

 

0.2601 

0.3323 

0.3496 
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Miano-02: Has the highest gross thickness and net reservoir thickness with 

relatively lower water saturation. This indicates a potentially thicker and more 

productive zone with good porosity and low clay content. 

Miano-09: Shows a smaller gross thickness but a high net-to-gross ratio. However, 

its high-water saturation may indicate that hydrocarbons are less dominant in this 

well. 

Miano-10: Demonstrates good net pay with relatively low V Clay, suggesting 

good quality rock, although it has slightly lower porosity compared to Miano-02. 

The well interpretation reveals Miano-02 has good NTGR with low clay 

volume, 14% porosity and ~27% saturation. Miano-09 has the best NTGR with 

low clay volume and ~9% porosity but has high water saturation. Miano-10 also 

exhibits good gas potential owing to high NTGR, low clay volume, ~9% porosity, 

whereas the water saturation is on the higher side ~49%.  

From the initial correlation and log motif investigation, we can clearly 

conclude that flooding surfaces shift marine facies landwards and reduce 

reservoir quality, however, sands above flooding surfaces (shoreface) have good 

reservoir potential owing to higher porosities. Due to fluvial ravinement, 

the reservoir quality is generally affected by variability in depositional 

architecture, thus porosities are high or chocked depending on the relief and 

energy of deposition. There is no particular trend for reservoir quality.  

However, the base regressive sands onlapping onto the previous prograde 

have poor reservoir quality due to a transitioning depositional environment (from 

sand to shale), thus the base sequences have poor reservoir quality.  

 

 

 

 

 

 



47 
 

 
 

CHAPTER 4 

 SEISMIC INTERPRETATION 

 

   4.1      Introduction 

            Apart from science, seismic interpretation can also be deemed as an art, it 

allows geophysicists and geologists to see the subsurface geology (Badly, 1985). 

In seismic interpretation, interpreter has to gather information from the seismic 

section, and he must be familiar with setting of the basin, dominant tectonic 

regime, major stratigraphic components i.e. shelf breaks, reefs and other major 

sequence boundaries in order to follow the patterns correctly on the seismic 

sections and identify zones of interest (Badley, 1985). Seismic contains two 

different elements the interpreter to study in theory. Firstly, arrival time from a 

reflected or refracted geologic interface while stratigraphic thickness and 

velocities of the overlying layers shows the true depth of this interface. Secondly, 

shape of the reflection which shows strength of signal, frequency distribution and 

dominant frequency (Brown, 2011). Evaluation of lithology and fluid content of 

the reflector under observation is done through frequency spectrum. Identification 

of subsurface structures is dealt with through structural interpretation which fits 

the geology and based on the inferences drawn, time and depth maps are created. 

In seismic interpretation, patterns of observed reflections are related to a cyclic 

depositional model. In seismic sequence analysis, identification of major reflection 

packages is delineated by identifying surfaces of discontinuity. By interpreting 

systematic patterns of terminations along surfaces of discontinuity, discontinuities 

may be recognized (Brown et al., 2011).  
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A generalized flow-chart of seismic interpretation which can be employed 

in any exploration campaign is given in Figure 4.1.  

 

 
 

Figure 4.1. Generalized flow chart of seismic interpretation that may be employed in any well-

thought exploration campaign. 

 

 
       Figure 4.2. Base map of study area (Modified after Yang et al., 2023). 

 

4.2    Data Loading and QC 

After verifying header information and data consistency on Seisee, SEGY, 

LAS well tops and checkshot data was loaded in Petrel using the appropriate 

Seismic to Well Tie 

Horizon Interpretation 

Time / Depth Mapping 

Isopach Mapping 

Data Loading and QC 

VSP/Checkshot Synthetic Seismogram 
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coordinate reference system. The frequency spectrum of Lower Goru was analyzed 

to check whether it had enough resolution to resolve sand bodies including 

channels and lenses. The overall quality was good, not needing any Gain filter with 

an acceptable signal to noise ratio.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Frequency spectrum of Lower Goru Formation, showing a dominant frequency of 21.69 Hz.  

 

4.3       Seismic to Well Tie 

Time depth relation (TDR) is established through available VSP data, 

using OWT/TWT against depth such as a checkshot. In generation of synthetic 

seismogram, sonic calibration is a vital step. Primary objective of sonic calibration 

is to reconcile seismic (checkshot) times and integrate sonic times for any given 

depth in the well. Calibration of sonic log us done for correcting log velocities to 

time depth (Commonly checkshots), calibration of sonic is vital for obtaining 

accurate time/depth relationship. Arbitrary stretch to the seismogram is avoided 

by utilization of sonic calibration (White et al, 2003).  
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Seismic checkshot times are used as reference for calibration of the sonic log 

through a mechanism called Drift Curve correction (Figure 4.4). The drift can be 

computed at every depth level, and it is defined as: 

 

i.  Drift = checkshot time - integrated sonic time 

ii. (Tcheckshot - Tlog) 

Positive drift curve shows that the sonic log is too fast. 

Negative drift curve shows that the sonic log is too slow. 

 

     Figure 4.4. Drift curve vs sonic log correction. 
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Synthetic seismogram is the bridge between geological information (well 

data in depth) and geophysical information (seismic in time). It allows the 

interpreter to: 

1. Tie the geologic markers to the seismic horizons. 

2. Generate accurate time and depth relationships. 

3. Develop understanding of the seismic response of lithologies and fluids at 

well location. 

4. Develop understanding of the phase characteristics of the seismic data. 

4.3.1 Synthetic generation steps 

 

1. Time converts wells with checkshot data or a sonic log to establish a time 

and depth relationship. 

2. Calculation of acoustic impedance and reflection coefficients from different 

logs (Density and sonic logs are commonly used). 

3. Generate or extract a wavelet. 

4. Generate synthetic seismograms from density logs, sonic logs, and a seismic 

wavelet by calculating acoustic impedance and reflection coefficients. These 

calculations then are convolved using a wavelet. 
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The Synthetic generation workflow used in the seismic to well tie procedure 

featured the ability to tie a synthetic seismic trace with seismic. Gardner patching is 

used to finish the reflectivity series if there are gaps in the logs between runs. 

According to Herrera et al. (2014), the Gardner equation establishes a link between 

velocities and densities. The equation is valid for sedimentary rocks with densities of 

2 to 2.8 g/cm3 and velocities of 1500 m/s to 6000 m/s. Gardner patching is used to 

finish the reflectivity series if there are gaps in the logs between runs. Densities and 

velocities are related by the Gardner equation (Herrera et al., 2014). For sedimentary 

rocks with densities of 2 to 2.8 g/cm3 and velocities of 1500 m/s to 6000 m/s, the 

equation often functions well. The wavelet type that is convolved with the reflectivity 

series needs to be chosen very carefully.  

 

Finding the one wavelet that best fits the seismic signal requires 

experimenting with and testing several other wavelets.  

       Figure 4.5. Input panel for synthetic seismogram generation. 
 

   

 

 

 



53 
 

 
 

 

 Figure 4.6. Wavelet parameters used in synthetic seismogram.  

 

 
  Figure 4.7. Synthetic seismogram on Inline 4396 from well Miano-02.  
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Figure 4.8. Synthetic seismogram on IL 3496 from well Miano-02. 

 

4.4       Horizon Interpretation 

Using Inline 3946 as control line, sand units were picked from the 

cretaceous Sembar prograde system, marking the beginning of the Lowstand 

System Tract (LST). Jurassic Chiltan Formation was flattened, and rest of the 

unconformities / discontinuities were marked identifying sand bodies as they were 

deposited within various depositional settings. Due to sudden fall in sea level due 

to tectonic highs in the vicinity, the shoreline has been extending basin-wards the 

deposition has been dominated by wave-tide action.  

In order to verify the amplitudes with sand picks, local flatness and 

semblance attributes were utilized and the sand-units with positive polarity (peaks) 

were picked accurately.  

The local flatness attribute maps the flatness of the local seismic signal in 

3D. Flatness is the degree to which features on seismic are planar. It is a very good 

indicator for stratigraphic features, particularly subtle channel fills in a mixed 

deposition environment.  

Semblance is the measure of later changes in the seismic response which 

are caused by the variation in different factors such as structure, lithology, 

stratigraphy, porosity as well as presence of HC. It is unlike the shaded relief maps 
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which allows us 3D visualization of channels and faults from horizon picks, 

semblance is bias-free as it operates on the seismic data itself. 

Six sand units (SU-1 to SU-6) were picked within Lower Goru Formation 

above Sembar Fm, which serves as the base for the LST. These sand units were 

picked according to the amplitude, shape and character of genetically related strata 

with clear stacking pattern. These parasequence sets vary in terms of depositional 

character across the 3D volume.  

         Figure 4.9. Un-Interpreted in line 4936.  

 

 

 

 

 

 

 

 

 

 

 

       Figure 4.10. Interpreted in line 4936. 
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  Figure 4.11. Confirmation of the genetically related stacking pattern through the local flatness attribute 

on inline 4936.  

       

            Confirmation of the genetically related stacking pattern through the local flatness 

attribute on inline 4936 can be seen in fig 4.11. 

 

 Figure 4.12. Confirmation of the genetically related stacking pattern through the semblance attribute on 

inline 4936. 

 Confirmation of the genetically related stacking pattern through the semblance attribute 

on inline 4936 can be seen in fig 4.12. 
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Figure 4.13. Un-Interpreted in line 4780. 

Figure 4.14. Interpreted in line 4780. 
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Figure 4.15. Confirmation of the genetically related stacking pattern through the local flatness attribute on 

inline 4780.  

Confirmation of the genetically related stacking pattern through the local flatness 

attribute on inline 4780 can be seen in fig 4.15. 

 

Figure 4.16. Confirmation of the genetically related stacking pattern through the semblance attribute on inline 

4780. 
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.  Confirmation of the genetically related stacking pattern through the semblance 

attribute on inline 4780 can be observed in fig 4.16. 

Figure 4.17. Un-Interpreted in line 4673. 

 

 Figure 4.18. Interpreted in line 4673. 
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Figure 4.19. Confirmation of the genetically related stacking pattern through local flatness attribute on inline 

4673. 

 

Figure 4.20. Confirmation of the genetically related stacking pattern through semblance attribute on inline 

4673. 

Confirmation of the genetically related stacking pattern through semblance 

attribute on inline 4673 can be observed in fig 4.20. 
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4.5       Time and Depth Mapping 

Time maps illustrate the two-way time and spatial arrangement of specific 

geological horizons beneath the Earth's surface. By analyzing the travel time of 

seismic waves reflected from subsurface layers, these maps provide insights into 

the dip and thickness of geological units, essential for applications such as oil and 

gas exploration, mineral prospecting, and groundwater studies. Time maps help 

identify stratigraphic variation over the 3D volume and in creation of accurate 

geological models, guiding drilling operations, and minimizing exploration risks. 

They offer a three-dimensional perspective crucial for informed decision-making 

and optimizing resource extraction (Omoja et al., 2019).  

Depth maps, similar to time maps, are fundamental in geology for 

delineating the depth of geological horizons and formations below the Earth's 

surface. These maps are pivotal for understanding the dip and thickness of 

geological units, crucial for various applications. They also aid in visualizing the 

subsurface (Omoja et al., 2019). Additionally, depth maps contribute significantly 

to geological modeling and simulation efforts, providing accurate representations 

of Earth's subsurface for scientific research and resource management purposes. 

Time and depth maps are instrumental in visualizing reservoir trends. In 

this study, time and depth maps were generated for each horizon of interest using 

checkshot velocities. SU-6 and SU-5 were mapped as they were penetrated by 

Miano-02 well, however, the well was projected over SU-4 for mapping.  
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Figure 4.21. Time map (left) and depth map (right) of amplitudes for SU-6. 

 

 

Figure 4.22. Time map (left) and depth map (right) of amplitudes for SU-5. 
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Figure 4.23. Time map (left) and depth map (right) of amplitudes for SU-4. 

 

4.6    Isopach Maps 

 Isopach maps visualize stratigraphic thickness between upper and lower 

horizon. It is quantified as minimum separation between the two surfaces. Isopach 

map offer a more precise representation of stratigraphic thickness as it reflects the 

thickness of the deposited bed. Isopach maps provide a more geologically precise 

visualization of stratigraphic interval thickness (Omoja et al., 2019). Isopach maps 

have been generated between SU-6 / SU-5 and SU-5 / SU-4.  

 

Figure 4.24. Isopach maps showing stratigraphic thickness trends between Sand Unit 6 & 5 (left) and 5 & 4 

(right). 
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Figure 4.25. Conceptual sequence stratigraphic model indicating various system tracts and surfaces (Modified after 

Nadeem et al., 2004). 
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CHAPTER 5 

           SEISMIC INVERSION 

 

5.1  Introduction 

Seismic inversion, either Pre-Stack or Post-Stack, converts subsurface 

seismic reflection data into quantitative characteristics that show the subsurface 

topography. Datasets such as centers and well logs are combined by seismic 

inversion (Chen et al., 2021). It also makes use of geostatistical techniques, which 

are related to both stochastic and deterministic approaches. Seismic inversion is 

helpful because it is efficient and of high quality, and it can be misleading when 

interpreting seismic data in a simple qualitative manner without including 

inversion results. This is especially true when looking for tight sands and shale gas 

reservoirs. By enhancing the accuracy and precision of the data via the calculation 

of rock characteristics like porosity, net pay, TOC, water saturation, etc., it reduces 

the risk factors (Pendrel, 2006).  

 

              Figure 5.1. Basemap of the area under investigation.  

       5.2 Post Stack Seismic Inversion 

Post-stack inversion adds low resolution seismic with high resolution well 

data in order to create a highly detailed (vertical) model in the vicinity and away 

from well control; producing supply models having topographically conceivable 

shapes and evaluates uncertainty to survey chance (Figure 5.1). Accurate 
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petrophysical models are produced which contributes in reservoir characterization 

(Barclay et al., 2008). 

 

Post-stack inversion is assumptions based, assuming that lateral variation 

in velocity is a minimum and average amplitude of stacked trace and is equal to 

amplitude of a normally reflected trace. 

  This technique is classified further as given below:  

i. Band limited inversion (BLI) 

ii. Model-based inversion (MBI) 

iii. Linear Programming Sparse Spike Inversion (LPSSI)  

If data quality is poor and density is sparse then the Linear Programming Sparse 

Inversion (LPSSI) is applied in order to estimate porosity and lithology in the study 

area (Pontnaguine & Castagna, 2005). 

5.3  Linear Programming Sparse Spike Inversion (LPSSI) 

In our clastic case, the Sparse Spike inversion is very reliable as SSI is 

based on generalized linear inversion (GLI) algorithm which within acceptable 

bounds matches the inversion results with seismic data (Zhang & Castagna, 2011). 

Until the objective function (error) is minimized, the perturbation of the model 

continues. However, geological knowledge is a pre-requisite to build an initial 

model (Helgesen et al., 2000).  Workflow of LPSSI is given as: 

 

                                        Figure 5.2. Generic inversion workflow. 
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5.4      Wavelet Estimation 

Seismic information is necessary for seismic inversion, and a wavelet is 

derived from this data using seismic deconvolution. The extraction of the precise 

wavelet from available data is essential for the implementation of any seismic 

inversion approach (Abdulaziz et al., 2018). Seismic inversion necessitates seismic 

data and a wavelet derived from this data, achieved through seismic deconvolution. 

Extracting an accurate wavelet from the available data is vital for any successful 

seismic inversion technique. The stage and recurrence of the wavelet are 

determined by analyzing a reflection coefficient configuration along the borehole. 

Ensuring the quality of the assessed wavelet is fundamentally significant, as the 

wavelet's characteristics profoundly influence the inversion outcomes and, thus, 

directly affect reservoir quality (Yi et al., 2013). Wavelet sufficiency and stage 

spectra can be quantitatively recorded from either 1) seismic data; or 2) a 

combination of seismic data and well logs, specifically sonic and thickness 

variations. Following the estimation of the seismic wavelet, it is employed to 

calculate seismic reflection coefficients in the seismic reversal (Pendrel et al., 

2006). 

Distinct statistical wavelets were isolated, and the wavelet exhibiting the 

highest correlation was computed and later employed for the inversion project.  

 

 

 
    Figure 5.3. Statistical wavelet time, phase and frequence response. 
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5.5 Inversion Analysis 

In the Miano-02 well inversion analysis was carried out as it is the only 

well that penetrates sand unit 6, the cross-correlation factor in the Miano-02 was 

about 92.5%, which shows that inversion results are a relatively true depiction of 

the lithology in the subsurface. 

 

 
Figure 5.4. Seismic and well correlation. 
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5.6  P-Impedance Model 

The P-Impedance model is a very useful attribute of seismic data for 

discriminating lithological properties as well as potential reservoir zones 

(Abdulaziz et al., 2018). The higher impedance zones indicate sand bodies, the 

lower impedances indicate shale. In case of gas filled sands, the impedance will 

suddenly drop within a sand body. Here, the impedance shows that the picked 

horizon has a continuous low impedance over a high impedance indicating gas in 

the sand body.  

Figure 5.5. P- Impedance model from well Miano-02 on inline 4936. 

 

5.7  Probabilistic Neural Network for Reservoir Quality Prediction 

Physical properties were predicted through the use of seismic petrophysics 

and a geostatistical approach using probabilistic neural network. After PNN was 

used successfully, shale volume and porosity were calculated using seismic and 

inverted properties. Since porosity and shale volume are crucial properties for 

characterizing strata that contain hydrocarbons, they were evaluated using inverted 

seismic profiles, a geostatistical method. It shows a minimal average error 

correlation of over 90%. 

 

There is a lot of potential for improving accuracy and resolving even 

thinner sand bodies when deep learning (DL), or the PNN technique, is applied to 
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seismic inversion (Abdulaziz et al., 2018). More accurate estimates can be made 

by combining several seismic parameters with inverted properties, which can offer 

insightful information on reservoir heterogeneity and fluid content. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. Estimated clay volume populated on the inverted seismic discriminating good quality poor quality 

reservoir sands in the area.  

 

 

Figure 5.7. Estimated effective porosity populated on the inverted seismic discriminating good quality and 

poor reservoir sands in the area.  
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For the gas prospect, the sparse-spike inversion analysis has effectively 

captured the fluctuations in the reservoir parameter (P-impedance). According to 

the inversion results, the expected sand lenses are where the comparatively lower 

P-impedance values are found. Geostatistical methods, such as probabilistic neural 

network (PNN) analysis and multi-attribute regression, are used to estimate the 

reservoir's effective porosity in order to better define it. In contrast, the PNN 

analysis applied its estimations to the full seismic volume and predicted the desired 

property more effectively. Additionally, the reservoir candidate zones were 

considerably anticipated by the geostatistical predictions of PNN analysis, which 

also validated the sand channel's role as a key contributor to the gas accumulation 

in the area.  
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CHAPTER 6 

 SEISMIC ATTRIBUTES AND MACHINE LEARNING BASED FACIES 

CLASSIFICATION 

 

6.1       Seismic Attributes 

Seismic attributes can be described as "quantities that are measured, 

computed, or inferred from seismic data." The primary purpose of attributes is to 

offer precise and comprehensive insights to interpreters regarding the structural, 

stratigraphic, and petrophysical characteristics of a seismic prospect (Oumarou et 

al., 2021). 

Seismic attribute analysis involves breaking down seismic data into 

various distinct attributes. This disintegration of seismic data lacks formal 

guidelines for attribute computation or defining their nature. In fact, any 

geological or geophysical parameter derived from seismic data can be considered 

an attribute. Amplitude is an inherent attribute of seismic data (Barens, 2001). 

Seismic attributes play a crucial role in offering qualitative insights for 

understanding both structural and stratigraphic features, such as channels, 

meanders, pinch-outs, thin bed tuning etc. They can also provide indicators for 

rock types and fluid content, contributing to a more comprehensive understanding 

of reservoir characteristics (Oumarou et al., 2021). 

Attributes are primarily employed to detect various features and changes 

in the subsurface. These include the identification of distinct bright spots, areas 

of gas accumulation, and demarcations of sequences. They can also highlight 

significant shifts in depositional settings, effects arising from thin-bed tuning, and 

discrepancies such as unconformities. Additionally, they can point out notable 

lithological transitions, localized alterations suggesting fault presence, and spatial 

relationships related to porosity (Oumarou et al., 2021). 

6.2 Attribute Analysis and Blending 

 Four stratigraphic attributes include General Spectral Decomposition 

(GSD), Grey Level Co-Variance Matrix (GLCM), 3D Curvature and Variance.  
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Seismic attributes are used to support interpretation at all scales, ranging 

from analyzing regional depositional systems to mapping fine details of structure, 

stratigraphy, and rock properties.  

 

Figure 6.1. Your choice of an attribute depends on the dataset and what you want to highlight (Shen et al., 2020). 

 

     Figure 6.2. 3D seismic volume displayed without filtering or attribute rendering.  
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The sequences are clear in figure 4.25 but in order to glean further insights, 

attributes will play a significant role.  

Textural attributes such as the grey level co-occurrence matrix (GLCM) 

and its derived attributes are able to describe the spatial dependencies of seismic 

facies.  GLCM and its derived attributes are tools for image classification that 

were initially described by. Principally, the GLCM is a measure of how often 

different combinations of pixel brightness values occur in an image (Haralick et 

al., 1973). 

Spectral decomposition separates the seismic signal into its constituent 

frequencies. It allows the interpreter to delineate subtle geologic features 

(amplitude and/or phase) tuned at a specific frequency (Chopra et al., 2007). 

A popular attribute for qualitative and quantitative interpretation 

workflows, it is commonly used for seismic geomorphologic analysis, layer 

thickness determination, and direct hydrocarbon indicator for gas charged 

reservoirs (Chopra et al., 2007). 

3D Curvature represents a sophisticated approach in the analysis seismic 

data, leveraging the phase and amplitude characteristics inherent in seismic 

waveforms. By decomposing seismic signals into their in-phase and quadrature 

components, these attributes facilitate the extraction of vital facies change 

information that is instrumental in illuminating subsurface geology. The process 

of attribute extraction involves calculating instantaneous frequency, amplitude, 

and phase from the quadrature components (Chopra et al., 2007). 

Variance (edge detection) estimates trace-to-trace variance (1-semblance). 

It is amplitude invariant (but not orientation invariant); i.e., it will produce the 

same response for the same seismic signature, whether in a low- or high-

amplitude region (Chopra et al., 2007). 

Its utility includes revealing discontinuities in seismic data either related 

to stratigraphic terminations or structural lineaments, it can discriminate between 

low and high continuity of seismic. It is useful in interpreting progradational vs 

aggradational stacking patterns on stratal slices. Also, Variance is a good 
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discriminator for seismic facies analysis. The attribute analysis is run on a 100 ms 

time shift from 2350 to 2650 ms time window.  

 

Figure 6.3. GLCM at 2350 ms, highlighting upper shoreface sand deposition.  

 

Figure 6.4. GLCM at 2450 ms, highlighting upper shoreface sand deposition.  
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Figure 6.5. GLCM at 2550 ms, highlighting channels and river incision. 

 

Figure 6.6. GLCM at 2650 ms, indicating deeper incision and further channels translating to mixed 

deposition. 
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Figure 6.7. GSD at 2350 ms, showing channel geometries and sand deposition (lobes around the 

channels). 

 

 

Figure 6.8 GSD at 2450 ms, highlighting channel paths and sand lens geometries (wave-tide deposition). 
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Figure 6.9. GSD at 2550 ms, highlighting channel paths and sand lens geometries along with a hint of 

mixed facies, i.e. river dominated / wave-tide dominated deposition. 

 

Figure 6.10. GSD at 2650 ms, highlighting channel paths and sand lens geometries along with a hint of 

mixed facies, i.e. river dominated / wave-tide dominated deposition. 
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Figure 6.11. 3D Curvature at 2350 ms, highlighting channel pathways. 

 

 

Figure 6.12. 3D Curvature at 2450 ms, highlighting sand lenses. 
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Figure 6.13. 3D Curvature at 2650 ms, showing start of fluvial incision and mixed deposition 

due to sudden changes to depositional environment owing to rapid sea level drop. 

 

Figure 6.14. 3D Curvature at 2650 ms, showing advanced fluvial incision and mixed deposition 

due to sudden changes to depositional environment owing to rapid sea level drop. 
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Figure 6.15. Variance at 2350 ms, highlighting channel deposition. 

 

 

Figure 6.16. Variance at 2450 ms, highlighting channel pathways. 
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Figure 6.17. Variance at 2550 ms, showing fluvial incision. 

 

 

Figure 6.18. Variance at 2650 ms, showing inconsistent trends due to mixed deposition. 
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6.2.1  Attribute Blending 

In terms of viewing multiple potentially helpful seismic volumes, the 

attribute blending enables us to widen the color spectrum in a dynamic and visually 

impressive way, allowing us to make various conclusions regarding the color 

changes indicating, for example, changing facies, or pore fill. It helps to accurately 

identify stratigraphic features and later red, green, and blue are the additive 

primary colors of the color spectrum. For blending magnitude volumes from the 

frequency decomposition, the RGB (red, green and blue) color scheme is the best 

one (Ruan et al., 2018). 

 

    Figure 6.19. Schematic of spectrally decomposed attribute blending (Ruan et al., 2018).  

 

One of the most successful and highly effective techniques for visually 

combining the multiple attributes is the RGB blending color model (Ruan et al., 

2018). Figure 6.19 shows three relevant inputs. Attribute blending using the 

General Spectral Decomposition (GSD), Grey Level Co-Variance Matrix 

(GLCM), 3D Curvature and Variance is carried out for the Miano 3D volume.  
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Figure 6.20. High resolution attribute blending resolves channels and sand lenses at 2350 ms. 

  

Figure 6.21 High resolution attribute blending resolves channels and sand lenses at 2450 ms. 
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Figure 6.22 High resolution attribute blending resolves fluvial incision and sand lenses at 2550 ms. 

 

Figure 6.23. High resolution attribute blending resolves channels mixed deposition at 2650 ms. 
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6.3       ML Based Facies Clustering from Well Logs 

 In order to gain control for facies classification on seismic (coarse scale), 

we use the open hole log interpretation (fine scale) for facies discrimination and 

then match that with facies encapsulated by attributes (Bestagini et al., 2017). 

These attributes are ideally suited to subtle stratigraphic discontinuities 

unconformities. Here we present the methodological controls for a multi-step 

approach leading to assessing the sub-seismic scale facies prediction prowess of 

machine learning algorithms. Open-hole log interpretation of the wells Miano 2, 9 

and 10 classified lithology of the reservoir into 5 lithotypes Lithotype 1 was Sand, 

Lithotype 2 was Sandy Shale, Lithotype 3 was Silt, Lithotype 4 was Shaly-sand 

and Lithotype 5 was Shale. Well data was preprocessed NaN values were removed 

in training and testing data and the data was merged into a single data-frame. 

Skewness was removed in curve data required through machine learning 

algorithms and the dataset was normalized using yeo-johnson normalization. The 

outliers were subsequently removed. Miano 2 was used as a blind well and two 

machine learning algorithms (Random Forest Classification and Gradient 

Boosting Classification) were used to train well Miano-9 and predict facies on 

Miano-10. Random Forest predicted facies with little more accuracy than Gradient 

Boosting. Randon Forest classifier had an accuracy of 87.1% and accuracy of 

each lithology column were Sand 92%, Sandy Shale 88%, Siltstone. 

First and foremost, an Exploratory Data Analysis (EDA) is performed. 

EDA stands as a compass in the initial QC of a dataset, serving as a guide through 

the intricate details of the data. This exploratory step focuses on revealing 

underlying patterns, trends, and irregularities within the dataset. Summary 

statistics take center stage in this process, providing a quick overview of the 

central tendencies, dispersions, and distributions of the dataset, setting the 

foundation for a comprehensive understanding. Visualizations such as 

histograms, scatter plots, and box plots complement the numerical summaries, 

offering a visual representation of the data's narrative. These visual aids play a 

vital role in identifying outliers, discerning relationships between variables, and 

elucidating the overall structure of the dataset. Essentially, EDA functions as a 

preliminary investigative phase preceding the modeling stage, enabling 

practitioners to make informed decisions about data preprocessing, feature 
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engineering, and the selection of suitable machine learning algorithms. Moreover, 

EDA extends beyond being a one-time detective process; it is dynamic and 

iterative, adapting to the unique characteristics of each dataset. It involves a 

thorough examination of missing values, scrutiny of feature relationships, and the 

identification of potential transformation needs. The insights gained during EDA 

often prompt additional refinements in data cleaning, preprocessing, or the 

creation of new features. This iterative approach ensures that a deep 

understanding of the intricacies of the data are gained, facilitating well-informed 

decisions in subsequent stages of the machine learning pipeline (Bestagini et al., 

2017). 

Exploratory Data Analysis (EDA) is performed on well logs to assess 

petrophysical parameters derived from log data (Bestagini et al., 2017). The mean 

and variance of the red, green, blue, and greyscale pixel channels for each pixel 

row in the aligned core photographs are computed. These computations are then 

depth registered to produce RGB Logs (RGBL). This foundational calculation 

generates a pseudo- lithology log directly from the images, capturing shifts in log 

values corresponding to changes from sand to mud. The RGBL log and 

petrophysical analysis of well logs are used to train models at wells (Bestagini et 

al., 2017).   

The dataset underwent rigorous preprocessing to ensure data quality and to 

make it suitable for machine learning analysis: 

1. Data Cleaning: Any missing values (NaN) are removed to avoid 

inconsistencies. Removing NaNs ensures the models are trained on complete 

data without gaps, improving model reliability. 

2. Data Merging: Different datasets from various sources are combined into a 

single cohesive table, or data frame, for unified processing. This merged data 

frame provides a comprehensive basis for training and testing ML models. 

3. Normalization and Skewness Removal: Skewness in the dataset is removed, 

and Yeo-Johnson normalization is applied to standardize the distribution of 

data values. This normalization is crucial as it scales data to a range that ML 

models can handle effectively, enhancing the accuracy of predictions. 
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4. Outlier Removal: Outliers, or anomalous values, are identified and removed. 

This step prevents the models from being biased by extreme values that could 

otherwise degrade performance. 

 

 

   Figure 6.24 Exploratory Data analysis of Miano-02. 
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Figure 6.25 Exploratory data analysis of Miano-09. 
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Figure 6.26. Exploratory data analysis of Miano-10. 
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The use of the MLP-SVM model for predicting lithofacies based on RGB 

logs is a new approach to understanding oil and gas reservoirs. By using machine 

learning techniques, the model achieved an impressive total accuracy of 92.31%. 

This successful application of MLP-SVM showed the utility of machine learning 

in improving lithofacies prediction and reservoir characterization. The 

comparison of Random Forest Classification and Gradient Boosting 

Classification provided valuable insights into their performance in lithofacies 

prediction. Both algorithms were effective at finding patterns in the data, but 

Random Forest had slightly higher accuracy compared to Gradient Boosting. This 

difference highlights the importance of selecting the right algorithm for the 

specific dataset. GR logs were split into RGB components the red, green and blue 

pixel rows were average to plot it as a pseudo litho-log, yeo-johnson normalization 

was used to normalize the RGB logs from 0-255 to 0-1 per channel (red green 

blue) representing the mean value for each channel across the core. the RGB logs 

capture fine-scale detail that the GR log does not. MLP-SVM (Multilayer 

Perception Support Vector Machines) was used to predict facies using RGB log 

instead the GR log. 
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Figure 6.27. RGB log (left), and gamma ray log (GR, right) (depth in meters). 

To represent the mean value for each channel across the core, we normalize 

the RGB log's scale from 0–255 values to 0–1 on a per-channel basis (i.e., red, 

green, blue, and gray) (Bestagini et al., 2017). Keep in mind that the GR log lacks 

fine-scale detail, but the RBG log does. The results from using Multilayer 

Perception Support Vector Machines (MLP-SVM) to predict rock layers (lithology 

facies) based on RGB log data show an impressive total accuracy rate of 92.31%. 

This demonstrates the exceptional effectiveness of MLP-SVM in accurately 

predicting rock layers using the comprehensive information extracted from the 

RGB logs. The high accuracy suggests the model was well-trained on the RGB 

log data, allowing it to effectively identify the complex patterns and relationships 

in the dataset, leading to precise predictions of the rock layers.
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Figure 6.28 Actual interpreted litho-facies of Miano-2 

 
Figure 6.29 K Means lithofacie prediction of Miano 2. 

 

Figure 6.30 Actual interpreted litho-facies of Miano-10. 

 

6.4  SOM Steered Seismic Attribute Analysis 

From the well based control points and rendered attributes, facies clustering 

is performed through Self Organizing Map, a type of unsupervised machine learning 

algorithm. Initially, using the well based facies clusters (SOM-1) and attributes-based 
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clusters are parameterized and transformed to a color log. An initial neighborhood 

radius is kept at 1.2 and training iterations are constrained to 5 (Wen et al., 2011). 

The grid spacing for the cluster projection space is kept at 150 at a Eucilidian 

threshold of 80 and threshold for spectral angle mapping is limited to 45 degrees. 

EarthVision grid is employed for volumetric classification of facies clusters (Wen et 

al., 2011). 

 

Figure 6.31. Principal component analysis, unsupervised machine learning. 

Fig 6.31 represents the contribution of various attributes to the first principal 

component, or Eigenvector 1, in a data set, where Eigenvector 1 captures 63.49% of 

the total data variability. The attributes such as GLCM Entropy, Variance, and 

Curvature are shown with bars indicating their percentage contribution to this 

primary component, with GLCM Energy, Curvature, and Variance being the most 

significant. In this context, Eigenvector 1 highlights the direction in which the data 

varies the most, meaning it captures the dominant patterns across all attributes. By 

analyzing these contributions, the attributes with the highest variability are identified, 

allowing us to select the most informative features for input to a Self-Organizing Map 

(SOM). This step is essential for dimensionality reduction, focusing the SOM on the 

attributes that best represent the data's underlying structure, thereby improving 

clustering and interpretation efficiency. 
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Figure 6.32. Parameterization cross plot with the color log for well-based and attributes driven facies.  

Fig 6.32 shows a 2D Color Legend for a Self-Organizing Map (SOM). It 

shows a color-coded grid, where each square represents a node or cluster within the 

SOM. The axes, labeled SOM1 and SOM2, correspond to two dimensions in the 

SOM's reduced feature space, where similar data points are grouped close together. 

The colors vary across the grid, indicating different clusters or regions with distinct 

patterns. The color scale on the right provides a reference for these clusters, with 

colors ranging from blue to pink, green, and orange, each representing different 

values or classes in the dataset. This color map helps in visually interpreting the 

clustering results, allowing users to identify clusters or zones with similar attributes 

based on the color coding. 

  

    Figure 6.33. Sand lenses and depositional trends at 2416 ms. 
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     Figure 6.34. Fluvial ravinement and depositional trends at 2456 ms.  

 

 

     Figure 6.35. Sand channels and chaotic depositional trend at 2656 ms. 

Seismic attributes, well based facies classification and attributes-based facies 

clustering does a remarkable job in evaluating and predicting reservoir candidate 

sands within the study area (Qi et al., 2019). At upper sequences, all attributes are in 

agreement that sand lenses above the flooding surface are good quality whereas silty 

sands / shaly sands around these lenses and at the edges of river channels downgrade 

the reservoir quality by choking porosities.  

With high resolution attributes blending and good confidence in edge detection 

/ stratigraphic boundary discrimination, we can assess that below the flooding 

surface, the transgressive sands have mixed variation in terms of reservoir potential 

owing to the fact that due to rapid sea level fall, deep fluvial incision and transitioning 
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depositional environments. Forced progradation has been a consistent feature over 

the Late Cretaceous (Qi et al., 2019).  

Furthermore, the lower regressive facies indicate poor reservoir quality as the 

sands onlap shaly strata, thus deeper sands are enveloped with higher reservoir 

quality risk and challenging characterization.  

This multi-method approach integrating well log data, machine learning 

algorithms, RGB log transformations, and SOM-based seismic clustering enables a 

detailed analysis of facies distribution and reservoir quality. Random Forest, MLP-

SVM, and SOM collectively enhance the accuracy of lithofacies prediction and 

reservoir assessment, demonstrating the power of machine learning for subsurface 

characterization. The insights gained can inform drilling decisions, optimize 

production, and support effective reservoir management in complex geological 

settings. 
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CHAPTER 7 

RESULTS AND DISCUSSION 

 

7.1  Results and discussions 

Clastic depositional environments are diverse, heterogeneous and have 

massive potential for being hydrocarbon reservoirs. Facies prediction is a critical yet 

challenging endeavor for oil and gas field development, particularly at centimeter 

scale. Since the deposition does not happen randomly and depends entirely on the 

energy of water at different stages of sea level rise and fall, there are patterns in nature. 

The effort to integrate core-based facies to reservoir scale models is especially 

complicated while trying to capture the thin-bedded heterogeneity that is common to 

deposition via interacting dynamic processes (wave energy, tidal regime, currents etc.; 

each with different energy), which re- work and disperse fluvial clastic sediments in 

a deltaic setting. Depositional morphology in deltaic environments include 

distributary channels, river-mouth bars, inter-distributary bays, tidal flats, shore-face, 

beaches, swamps, marshes, and evaporite flats. Identifying facies (the characteristics 

of a rock that reflect its origin and differentiate it from other rocks in its vicinity) within 

the morphologies is the key to understanding how the hydrocarbon reservoir will 

perform in its lifecycle. The lower Indus basin still has huge upside gas potential. With 

exploration efforts dating back to 1980s, Miano Gas Field was discovered at upper 

sand interval of the early Cretaceous Lower Goru Formation in August 1994 and is 

something of a geological puzzle. The sands which were supposed to flow gas proved 

to be either low porosity (tight) or produced water. This relates directly to facies 

variation within the Lower Goru Formation. With only upper sand interval producing 

commercially viable gas, other sand bodies were extensively tested but due to a poor 

understanding of depositional geomorphology, most models were inconclusive in 

evaluating the true potential of Lower Goru Formation. However, the upper sequence 

sand interval has been exploited thoroughly for commercial gas flow for the past three 

decades. A lack of facies control and understanding in the deltaic and pro-deltaic 

environment have hindered subsequent exploration endeavors. This is precisely where 

machine learning driven workflows with a high level of detail can be of immense 

value. 
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Control of depositional trends is first obtained from the wells. Gamma ray log 

is used in conjunction with the acoustic slowness log to interpret the depositional 

environments and sequence boundaries. Due to a lack of well control beyond 3600 

meters, a model-based approach is taken for the middle and lower sand sequences. We 

build upon the work of Nadeem et al., 2012 and interpret the depositional 

environments sequentially using seismic and advanced ML driven attributes.   

 

In terms of seismic stratigraphy as indicated in Figure 5.25, SU-1 can be sub-

divided in lower sequence and upper sequence. The Lowstand wedge’s base of slope 

is called “SU-2” Sequence LS. SU-1 sequence progrades maximum till the last offlap 

break. Downward shift in the coastal onlap defines a sequence boundary as sea level 

is dropping below the SU-1 (lower sequence) shelf margin, by downlap of steep post- 

SU-1 reflections by the onlapping truncations against the slope of the upper sequence 

boundary, as well as the low-angle SU-1 lower boundary and base-of-slope reflectors. 

The chaotic to drape-like geometries stacked against the lower sequence's slope and 

base-of-slope describe the SU-2 sequence. These could be explained as turbidite lobes 

that shifted as a result of a significant ravinement event. In a traditional topsets 

geometry, these submarine fans are overlain by progradational geometries typical of 

shelf-edge deltas. The clinoforms of a westward prograding system are represented by 

the seismic reflections in this package (upper series), which have an oblique shape and 

a rather high angle. This upper sequence wedge's offlap break displays sub-horizontal 

topsets after a mild aggradational trend (end of section, east). The base-of-slope and 

higher sequence slope of the lowstand system are stacked up against by another 

forced-regressive wedge. The "SU-2" Sequence's lowstand may very well be this 

wedge. This wedge is mapped as a component of the Sembar Formation in practice. 

This wedge serves as a crucial interface to limit the westward sand movement in the 

overlying sequences and specifies the maximum westward displacement of the 

Sembar shelf margin. 

  

A widely distributed regional seismic event (toplap surface) above the 

lowstand wedge in the basinal part and on top of the SU-1 upper sequence boundary 

in the proximal areas towards east can be inferred as the flooding surface of the SU-2 

Sequence. The high GR log motif on the logs from Miano field and other wells 

connects with this occurrence. These shales and the lag associated with erosion in the 
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basal ravinement can be understood as a transgressive surface created during a 

significant flood and reversing the ramp created by the SU-2 lowstand wedge and SU-

1 upper sequence highstand. The nature of this sequence (Type-I vs. Type-II) varies 

within the survey area and is controlled by local uplift (e.g., thermal doming) and the 

magnitude of resulting sea level fall.  

SU-1 upper sequence provide evidence that this is a depositional remnant of 

the fluvio-deltaic progradation from which the uppermost better reservoir quality 

sands were lost either during the subsequent regression or during transgressive 

ravinement erosion of the overlying SU-2 sequence. In view of that the areas bearing 

higher accommodation space, such as the distal end of the ramp, should be explored 

for the shelf edge deltaic topsets and shoreface depositional remnants of SU-1 upper 

sequence. 

 

As gleaned from the interpreted seismic, large proportions of the SU-3, 4, 5 

and 6 lap out near the lowstand shelf margin beneath. Within geometries of LG 

sequences, it is shown that good quality shoreface sands are in the shelf margin 

eastwards.  

 

Near the SU-1 upper sequence shelf margin, there are two major breaks in the 

ramp's slope that may be seen. Where seismic imaging quality permits, these breaks 

can be plotted. This portion of the ramp, known as the outer ramp, is viewed as a 

distally steepened ramp and is situated between the margin made outwardly by the 

SU-2 lowstand wedge and the SU-1 upper sequence shelf margin. Sands deposited 

very thick aggradational stacked parasequences on the proximal ramp (SU-2 and SU-

3), thinning across the distally steepened slope. The SU-4 and early SU-5 regressions 

most likely represent stacked forced regressive sand wedges that are bound by 

sequence boundaries and maximum flooding surfaces. It is more probable that the 

fluvial tracts that fed into the SU-6 forced regressive systems later on converted into 

a distinct noticeable shelf edge delta and disconnected shoreface systems because 

they incised significantly deeper into the underlying SU-5 highstand on the proximal 

ramp. Stratigraphic attributes including Spectral Decomposition, Grey Level Co-

Variance Matrix, 3D Curvature and Variance highlight the subtle features and facies 

variation. Time correlating these with rapid sea level fall due to uplift in the vicinity 
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(Kandra High, Jacobabad High) reveal three different levels of deposition. The 

deposition above the flooding surfaces has shoreface facies which translates to sand 

lenses deposited by wave-tide action. These high energy deposited lenses have good 

reservoir potential. As the sea receded in an earlier time, fluvial incision and channels 

dominated the depositional ecosystem as the facies shifted basinwards. These 

channels have good to medium quality reservoir sands. Furthermore, as we go deeper, 

the sea level falls further causing the fluvial incision to advance. At this stage, the 

reservoir quality drops drastically due to the fact that the sands are now regressively 

onlapping shales and mixed deposition is widespread. Facies transition quickly 

chaotic deposition occurs as can be seen in time slices >2550 ms. Petrel rendered 

attributes, machine learning driven facies clustering and seismic inversion agree in 

terms of system tracts, flooding surfaces and depositional variations in the Cretaceous 

sands of Lower Goru Formation. The robust workflow employed has been successful 

in delineating reservoir quality and charts a way forward for further exploration in an 

already de-risked area.   

7.2   Conclusion and Recommendations 

  In this research, we can see a new era of exploring and characterizing the 

subsurface for hydrocarbon exploitation. This is thanks to the powerful combination of 

machine learning and traditional geological expertise. By employing a data-driven 

workflow, we can now better understand reservoir quality of Miano. This will direct 

explorationists and future researchers to more advanced strategies for optimized gas 

recovery. As we venture into this new frontier of discovery, the blend of technology 

and human creativity will reveal fascinating insights about our planet's geology. This 

will build resilience and sustainability for the future. 

 

Expanding on these remarkable achievements, the future holds exciting 

research directions with promises of further innovation and advancement. Exploring 

advanced modeling techniques, such as neural networks, self-organizing maps, high 

resolution color blending, these advanced methods can capture intricate spatial and 

temporal patterns within geological data, leading to more precise insights. 

Furthermore, integrating seismic data and well logs promise a more comprehensive 

understanding of reservoir characteristics. This holistic approach can help overcome 

the limitations of individual datasets, ultimately enhancing the accuracy and reliability 
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of predictive models. Furthermore, the investigation of techniques for integrating data 

in real-time provides a chance to develop dynamic lithofacies prediction models. These 

models can continuously update their forecasts to adapt to changing reservoir 

conditions, enhancing reservoir management practices.  

 

As the boundaries of subsurface exploration expand, the combination of 

cutting-edge technology and interdisciplinary collaboration will continue to shape the 

future of geological research and resource management. Proper data preparation is 

crucial for building effective machine learning models. Exploring new preprocessing 

methods, like tailoring feature engineering to geological data or using advanced outlier 

detection, can enhance data quality and model performance. Additionally, 

incorporating domain expertise into the preprocessing stage can help reduce biases and 

improve the interpretability of predictive models. 

 

Carefully testing and comparing different models is crucial for understanding 

how well lithofacies prediction models work in various geological areas. Doing 

detailed analyses to see how the new models stack up against existing methods and 

standard datasets can reveal the strengths and weaknesses of each modeling 

approach. Additionally, scientists working together and agreeing on standard ways 

to evaluate these models can help ensure the results are reliable and can be built upon, 

speeding up progress in predictive modeling for geoscience.
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