Designing Of SCADA Trainer And Implementation Of PID Controller

Muhammad Owais Khan	(25427)	BEE
Rana Sharjeel Ahmed	(25452)	BEE
Sadaf Shiraz	(25463)	BEE

A project report submitted in partial fulfilment of the requirements for the award of the degree of "Bachelor ofElectrical Engineering"

> Electrical Engineering Department Bahria University, Karachi Campus YEAR 2011-2015

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express our gratitude to our research supervisor, Mr. Burhan Ahmed for his invaluable advice, guidance and his enormous patience throughout the development of the research.

In addition, we would also like to express our gratitude to our loving parent and friends who had helped and given us encouragement.

DESIGNING OF SCADA TRAINER AND IMPLENTATION OF PID CONTROLLER

ABSTRACT

and the second second second

The objective of this project is to design a trainer for university students, office employees etc for getting knowledge and experiment based knowledge about SCADA systems. We also implemented AIR BOOSTER Plant on our trainer to show the practical example that how SCADA works and how it may be applied to real world systems. For this purpose, we used the most useful equipments of almost every industry and interfaced them all and also controlled and monitored them remotely and also with Android Cell Phone using RFB protocol. We used PLC, HMI, VFD and Energy Analyzer in our project and many other small equipments. Using this trainer we can provide twenty to twenty five experiments to the engineering students specially on Automated systems. We Used KINCO, ALPHA and SFERE brands. All are Chinese brands and have a good reputation in national and international markete. The programming of PLC is done on KINCO BUILDER software and HMI Programming is done on KINCO HMIWARE. Both the KINCO HMIWARE and KINCO BUILDER is copy cat of SIEMENS and has a perfect output like SIEMENS. The Energy Analyzer is also interfaced with Human Machine Interface and also communicate with Android Cell Phone and with computer systems as well. There is also a control section which allow us to remotely ON/OFF the motors. The Air Booster Plant's working is that when pressure of gas goes below than our required pressure then the plant will automatically on and generate a particular frequency to get the required pressure. And when the system meets the required pressure the it will hold that frequency and system will be maintained and when disturbance occurs then the plant will boost/decrease its pressure according to the situation.

TABLE OF CONTENTS

DECLARATION	ii
APPROVAL FOR SUBMISSION	iii
ACKNOWLEDGEMENTS	vi
ABSTRACT	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF SYMBOLS / ABBREVIATIONS	xivi
LIST OF APPENDICES	xvv

CHAPTER

1	INTRODUCTION		1
	1.1	Introduction	1
	1.2	P.I.D Controller	1
	1.3	SCADA Systems	2
	1.4	How Do SCADA Works	3
	1.5	Modern SCADA Systems	3
	1.6	Conclusion	3

2	DESIGNING OF THE PROJECT		5
	2.1	Introduction	5
	2.2	Details Of The Design	5
	2.3	KINCO PLC	5

viii

		2.4.1	Dimensions	7
		2.4.2	Technical Specifications	8
	2.5	Our HM	II Screen	8
		2.5.1	Power Monitoring Of Air Booster Plant	10
		2.5.2	Remote Monitoring And Controlling Of VFD	10
		2.5.3	Remote Motor Controlling	11
		2.5.4	PID Application	12
	2.6	Real tim	neMonioring System	13
		2.6.1	Line Voltages	13
		2.6.2	Line Currents	14
		2.6.3	Appararent Power	15
		2.6.4	Active Power	16
		2.6.5	Reactive Power	16
	2.7	Variable	e Frequency Drive	17
	2.8	Conclus	sion	18
	SYSTE	M HAR	DWARE	19
	3.1	Introdu	tion	19
	3.2	Feature	s Of Project Hardware	19
3.3 Features Of KINCO-K3 Ser		Feature	s Of KINCO-K3 Series	20
		3.3.1	Data Types	21
		3.3.2	Constants	22
		3.3.3	Variable Declaration	23
	3.4	Human	Machine Interface	23
		3.4.1	Dimensions of MT-4424-TE	24
	3.5	SCADA	A Trainer	24
		3.5.1	Dimensions of Trainer	25
	3.6	Conclu	sion	27

SOF	TWARE AND CODING	28
4.1	Software For PLC Programming	28
4.2	Assignments Of PID Block	30

4.2	Assignments Of PID Block	30
4.3	PLC Programming	32
4.4	HMI	33
	4.4.1 HMI Programming	34
4.5	Conclusion	40
RESU	ULTS AND DISCUSSIONS	41
5.1	Introduction	41
5.2	Problems We Faced	41
5.3	Conclusion	42
CON	CLUSION AND FUTURE WORK	43
6.1	Introduction	43
6.2	Cost Analysis	43
6.3	Time Analysis	44
6.4	Applications Of The Project	45
6.5	Conclusion	46

REFERENCES

5

6

APPENDICES

48

47

х