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ABSTRACT 

This study addresses the crucial challenge of characterizing thin gas sand 

reservoirs in the Lower Ranikot/Khadro Formation of Pakistan's Lower Indus Basin, a 

reservoir with varying thicknesses 4 to 7 m below seismic resolution. Previous studies 

have struggled to produce precise results due to reservoir heterogeneity, data limitations, 

and associated uncertainties. An optimized, integrated approach, combining seismic 

attributes, petrophysical properties, advanced machine learning (ML) algorithms, and 

continuous wavelet transform (CWT) addresses thin gas sand facies and pore pressure 

challenges comprehensively. Among several employed ML algorithms gradient boosting 

regressor (GBR) accurately predicted thin sands (>90%), reducing uncertainty in 

hydrocarbon-bearing sand distribution. A delicate ML approach has been broadly applied 

to analyze the potential and robustly interpret well-logs while addressing the associated 

challenges. Support vector machine (One-class-SVM) helps to reduce outliers with great 

certainty while the missing log's sonic and density are precisely predicted via GBR and 

extra tree regressor (ETR) with the highest R2 respectively. Likewise, random forest 

regressor (RFR) performed exceptionally well for water saturation modeling expressing 

the highest 0.93 correlation among ML and conventional results. Finally, the decision tree 

classifier (DTC) modeled reservoir facies with the best 91% accuracy and 0.935 F1 

measures at the blind well. Additionally, an optimized workflow generates high-

frequency acoustic impedance synthetics by utilizing a deep neural network (DNN) 

integrated with CWT components at the reservoir level vis-a-vis validating the results 

with existing geological facies to resolve thin beds without introducing noise. The shale 

layers of the formation are quite problematic and complex geological variations exhibit 

pore pressure discrepancy making drilling operations crucial. Among all conventional 

methods for pore pressure prediction, GBR integrated with CWT has provided very good 

results after validation. The study characterizes reservoirs below seismic resolution, 

enabling more efficient resource exploration and development. It outperforms previously 

done conventional approaches by delivering higher accuracy, reducing uncertainty, and 

unlocking valuable insights using advanced ML and CWT techniques. It offers broad 

applicability to other complex, thin-bed reservoirs worldwide, optimizing field 

development and maximizing hydrocarbon recovery. 

Key Words. Machine learning, Continuous wavelet transform, Conventional neural 

network, Reservoir Characterization, Thin-heterogeneous sand, Pore pressure 
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4.4 The logs depict the removal of outliers while following the 

similar trends in comparison to original logs. 

 

86 

4.5 Pair-plots between different well logs representing the 

appropriate outliers. Outliers are highlighted with red circles 

in the zone of interest.  

 

 

87 

4.6 Box Plots for RHOB, NPHI, DT, RES depicting outliers with 

data distribution in quartiles using several unsupervised 

algorithms i.e., Isolation Forest, Local outlier factor, One-

class SVM, Minimum covariance and standard deviation 

filter. 

 

 

 

88 

4.7 Pair-plots between well logs to visualize the data distribution 

after successful outlier removal through One-Class-SVM 

approach.  

 

89 

4.8 The spliced zones identification on the available well logs of 

Zamzama Field.  

 

90 

4.9 The corrected spliced zone is bounded by the red rectangle 

while the red logs are the predicted through supervised ML 

techniques.  

 

91 

4.10 Various ML algorithms and their evaluation metrics 

indicating best technique of Extra Tree Regressor for the 

prediction of RHOB log.  

 

92 

4.11 Implemented ML algorithms with best technique for 

prediction of NPHI log i.e., Random Forest Regressor.  

 

92 

4.12 ML algorithms with best technique for prediction of DT log 

such as Extra Tree Regressor.  

 

93 

4.13 Modeled and measured well log curves in training well i.e., 

Mehar-01. Blue color shows the measured curves while red 

color depicts corrected RHOB and DT in fourth and sixth 

track.  

 

 

94 

4.14 Modeled and measured Well log curves in testing well i.e., 

Mehar-02. Blue color shows the measured curves while red 

color depicts corrected RHOB and DT in third and fifth track. 
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4.15 Washout zones are corrected mainly at the red box bounding 

the corrected logs.  

 

95 

4.16 Selection of best ML algorithm of Extra Tree Regressor after 

evaluating various techniques.  

 

96 

4.17 Petrophysical interpretation of Zamzama-02 well indicated a 

potential sand body in the Ranikot/Khadro Formation.  

 

97 

4.18 Petrophysical analysis of Ranikot/Khadro Formation on 

Zamzama-03 along with the two interested sand of 

Ranikot/Khadro Sand-01 and Sand-02 at the top of 

Ranikot/Khadro Formation.  
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4.19 Minor potential sands with low porosity and comparatively 

high Sw in Ranikot/Khadro Formation. The Ranikot/Khadro 

Formation is dominated by shales majority.  

 

 

99 

4.20 The Ranikot/Khadro Formation bears plausible sand body 

where high PHIE with low Sw is observed. 

 

99 

4.21 Zamzama-06 well contains no significant potential sands with 

negligible gas saturations.  

 

     100 

4.22 Few sand streaks are depicted within Ranikot/Khadro 

Formation with low VCL while the Sw curve showed no 

significance regarding the potential within sands.  

 

 

101 

4.23 Zamzama-08 depicts fair to good porosities at certain 

locations with low VCL but the Sw is high in these streaks, i.e., 

above 50%.  

 

 

101 

4.24 

 

 

 

Petrophysical interpretation of Mehar-01 depicting 

interpreted petrophysical properties (clay/shale volume, 

PHIE, and Sw) in their respective tracks while 2nd, 4th, 5th, 

and 6th tracks show the measured GR, RHOB, DT and RES 

logs respectively as well. Modeled RHOB and DT are 

represented by red color curves whereas blue represents 

measured logs. In the PHIE track light brown color reflects 

PHIE whereas in Sw track blue color shows the water. Facies 

track reflects the respective facies after applying 

petrophysical cut off ranges.  
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4.25 Petrophysical interpretation of Mehar-02 is shown in VCl, 

PHIE, and Sw tracks while 2nd, 4th, 5th, and 6th tracks show 

the measured GR, RHOB, DT and RES logs respectively. 

Modeled RHOB and DT are represented by red color curves 

whereas blues represents measured logs. In the PHIE track 

light brown color reflects PHIE whereas in Sw track blue color 

shows the water. Facies track reflects the respective facies 

after applying petrophysical cut off ranges. 
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4.26 Expressed K-fold Cross validation against each fold from 0-9 

folds respectively for (a) Shale volume, (b) PHIE and (c) Sw. 

It represents statistical measures at each fold for the respective 

petrophysical property along with mean and standard 

deviation of K-folds.  
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4.27 Evaluation metrics for volume of shale reflecting the 

performance of algorithms.  

 

108 

4.28 Evaluation metrics for PHIE highlighting the statistical 

measures.  

109 

4.29 Evaluation metrics of Sw indicating performance of deployed 

algorithms.  

 

109 

4.30 (a) Feature Importance Plot: ETR for volume of clay 

predictions, (b) PHIE predictions (c) RFR for Sw predictions.  

 

110 

4.31 The predicted and conventionally interpreted petrophysical 

properties of Mehar-02 (a). Predicted and conventionally 

interpreted volume of shale (b). Predicted and conventionally 

interpreted effective properties (c). Predicted and 

conventionally interpreted Sw. Blue color shows the 

conventionally interpreted curves while red color depicts 

predicted properties.  
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4.32 Regression plots comparing the predicted and measured 

petrophysical properties and illustrate the high correlation 

amongst modeled and conventionally calculated properties, 

hence validating the results. 
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4.33 Vol-Shale is predicted on blind well Zamzama-08 by training 

Zamzama-04 and Zamzama-05. 

 

112 

4.34 PHIE is predicted on blind well Zamzama-08 by training 

Zamzama-04 and Zamzama-05. 
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4.35 PHIE is predicted on blind well Zamzama-08 by training 

Zamzama-04 and Zamzama-05. 

 

113 

4.36 Cross plots comparing the predicted and measured 

petrophysical properties, representing high correlation 

between them, hence validating the results.  

 

 

114 

4.37 K-fold cross validation highlight the measures at each fold for 

facies prediction.  

 

114 

4.38 Evaluation metrics represent the measures at each fold for 

facies prediction.  

 

115 

4.39 Confusion metrics highlight the measures at each fold for 

facies prediction in (a) training well and (b) blind well.  

 

115 

4.40 Comparison of the facies predictions after ML with 

conventionally interpreted facies (4th Track) at the well 

showing a high correlation amongst the predicted results (5th 

Track).  

 

 

116 

4.41 Display of arbitrary Seismic section along with showing of all 

well of Zamzama Gas Field.  

 

118 

4.42 Seismic section along with synthetic traces based on 

Zamzama-05 and inline is 401.  
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4.43 Two-way travel time map of Ranikot/Khadro Formation 

along with major and minor faults. All wells are drilled in the 

hanging wall of the anticline.  

 

 

120 

4.44 Depth contour map of Ranikot/Khadro Formation clarify the 

wells penetration at the crest of anticline with the illustration 

of fault polygons.  

 

 

122 

4.45 Field seismic data shows coarser, smudged and obscure 

reflection at certain levels.  

 

123 

4.46 Average energy seismic attribute on seismic data set with 

blocky & coarser resolution.  
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4.47 RMS seismic attribute on seismic data set unable to 

distinguish fine reservoir layering.  

 

124 

4.48 Normalized seismic amplitude attribute extracted on field 

seismic data set.  

 

124 

4.49 Sweetness seismic attribute on seismic data set showing 

random results.  

 

125 

4.50 RPM based cross-plot between elastic attributes such as Zp 

along the x-axis and Vp/Vs ratio on the y-axis, colored with 

lithofacies (gas-sand, wet-sand, limestone, and shale) present 

within Ranikot/Khadro Formation, depicts their specific 

elastic ranges. 
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4.51 Prediction of Zp at well location of Zamzama-02 using 

different ML algorithms by training from Zamzama-04 & 07. 

Blue is measured while orange is the predicted log. High R2 

score depicts the accuracy of between measured and predicted 

logs.  
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4.52 Prediction of Zp at Zamzama-04-ST3 by employing different 

ML algorithms trained from Zamzama-02 & Zamzama-05. 

Blue is measured while orange is the predicted log. A decent 

match, i.e., modeled (orange) and measured (blue) logs, is 

attained.  

 

 

 

127 

4.53 Prediction of Zp at Zamzama-05 trained from Zamzama-02 & 

Zamzama-04. A reliable trend is accomplished amongst 

measured (blue) and predicted (orange) logs.  

 

 

128 

4.54 Prediction of Zp at well location of Zamzama-07 trained from 

Zamzama-02, Zamzama-04-ST3 & Zamzama-05. A 

consistent match is observed for DTR, RF, and GBR with 

above 0.9 R2 score.  
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4.55 Prediction of Zp at well location of Zamzama-08-ST2 training 

from Zamzama-05, Zamzama-06 & Zamzama-07. GBR 

shows a very good correlation along with trend matching 

between measured (blue) and predicted log (orange).  
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4.56 Prediction of Zs at Zamzama-02 using similar ML algorithms 

of Zp and trained from Zamzama-04-ST3, Zamzama-06 & 

Zamzama-07. GBR showed highest correlation of measured 

(blue) and predicted (orange) logs. 
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4.57 Prediction of Zs at Zamzama-04-ST3 using ML algorithms 

trained from Zamzama-02 & Zamzama-05. High correlation 

between measured (blue) and predicted (orange) logs.  

 

 

130 

4.58 Prediction of Zs at Zamzama-05 using ML algorithms trained 

from Zamzama-02 & Zamzama-04. GBR showed high 

correlation between measured (blue) and modeled (orange) 

logs.  

 

 

130 

4.59 Prediction of Zs at Zamzama-07 using ML algorithms trained 

from Zamzama-02, Zamzama-04-ST3 & Zamzama-05. 

Measured (blue) and predicted (orange) showed good 

correlation.  

 

 

131 

4.60 Prediction of Zs at well location Zamzama-08-ST2 using ML 

algorithms trained from Zamzama-05, Zamzama-06 & 

Zamzama-07. Measured (blue) and predicted (orange) logs 

showed reliable correlation.  
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4.61 Correlation matrix showing the actual vs predicted logs 

against key wells used for training the ML algorithm.  

 

132 

4.62 The modeled AVO synthetic traces along with key well logs 

employed for AVO modeling and reservoir characterization 

while lithofacies log identified two zones of gas sands in the 

Ranikot/Khadro Formation.  

 

 

 

135 

4.63 The amplitude responses of the identified event observed at 

the amplitude vs. angles of incident crossplot.  

 

136 

4.64 a) Sand classification scheme. b) The AVO responses of Event 

1 and Event 2 is plotted that depicted Event 1 (top sand) as 

Class 1 while the Event 2 as Class 4. 

 

 

136 

4.65 Arbitrary line passing through the wells showing the low-

frequency model of Zp used for Pre-Stack Inversion study 
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overlain by the Zamzama Field wells with similar property of 

impedances filtered at 15 Hz.  

137 

4.66 Arbitrary line passing through the wells showing the low-

frequency model of Zs overlain by the Zamzama Field wells 

having Zs. 

 

137 

4.67 Inversion analysis via comparison of inverted (red), measured 

(blue), and LFM (black) logs along with synthetic (red) 

generated from inverted logs by convolving with wavelet 

extracted reservoir zones correlation with seismic (black).  

 

 

 

138 

4.68 Regression analysis based on natural logs on Zp, Zs, and ρ, i.e., 

Ln (Zp), Ln (Zs) and Ln (Dn). 

 

139 

4.69 The coefficients of k, kc, m, and mc are estimated from the 

regression analysis along with covariances.  

 

139 

4.70 The inverted impedance (Zp) in a section view bisecting all 

Zamzama wells with inserted Zp curve in displayed wells.  

 

140 

4.71 The inverted impedance (Zs) in a section view bisecting all 

Zamzama wells with inserted Zp curve in displayed wells.  

 

140 

4.72 Cross-correlation illustrating three sand layers distribution 

based on GR and P-sonic on all wells. The three sands are 

present in the wells that are further assessed by the 

petrophysical and cut-off values. 

 

 

 

141 

4.73 Inverted Zp slice of Bottom sand of Ranikot/Khadro 

Formation.  

141 

4.74  Inverted Zp slice of Mid sand of Kadro Formation.  142 

4.75 Inverted Zp slice of Top sand of Kadro Formation.  143 

4.76 a) A gas sand body with 7 m thickness encountered at 

Zamzama-02 well after petrophysical analysis. b) Statistical 

wavelet used to generate synthetic wedge model. c) Synthetic 

wedge models with variable thickness, starting from zero till 

100 m reflects seismic tuning thickness for sand body. d) 

Around 60 m is the resolution limit for the seismic dataset 

under study. 
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4.77 ML based predicted Zp shown along an arbitrary line passing 

through all wells. The corresponding property log of Zp shown 

at each well location that show good match with high 

resolution compared to pre-stack seismic inversion. 

 

 

 

145 

4.78 ML based predicted Zs shown along an arbitrary line passing 

through all wells. The corresponding property log of Zs shown 

at each well location that reflect good match, authenticated 

the results.  

 

 

146 

4.79 ML based PHIE volumetrics passing through all wells 

delineates a reliable match with similar property of well that 

authenticated the ML results. 

 

 

146 

4.80  Three Sands-01, 02, and 03 intervals (top, middle, and 

bottom) delineated a good distribution of porosities.  

 

147 

4.81 ML based gas bearing sands passing through all wells 

delineates a reliable match with the identified gas sands facies 

of the wells authenticated the ML results. 

 

 

147 

4.82 Map illustrating the probability distribution to encounter the 

hydrocarbon bearing sand facies for the Sand-01 within 

Zamzama Gas Field. Red color depicts the highest probability 

of encountering the hydrocarbon bearing sand facies.  
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4.83 Map illustrating the probability distribution to encounter the 

hydrocarbon bearing sand facies for the Sand-02 within 

Zamzama Gas Field. Red color depicts the highest probability 

of encountering the hydrocarbon bearing sand facies.  
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4.84 Map illustrating the probability distribution to encounter the 

hydrocarbon bearing sand facies for the Sand Body 3 within 

Zamzama Gas Field. Red color depicts the highest probability 

to encounter the hydrocarbon bearing sand facies.  

 

 

 

150 

4.85 a) The synthetic wedge model has improved resolution 

employing the high-frequency (0-5-60-100 Hz) wavelet b) 

with 25 Hz peak frequency and used for CWT-DNNs based 

high-frequency seismic synthetics volume. C) High resolution 

synthetic wedge model. d) Resolution limit around 18 m.  
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4.86 a) CWT transformation seismic into real, imaginary, and 

magnitude components with facies log in the same interval at 

well location from a) seismic trace & b) high-frequency 

synthetic seismic.  

 

 

152 

4.87 Deep Neural Networks (DNNs) schematic diagram taking 

input layers as neurons with activation function (softmax) to 

get output layer.  

 

 

154 

4.88 Spectral enrichment from bandlimited to broadband in the 

convolutional model. Bandlimited trace exhibits coarser 

resolution while broadband trace reveals fine layers 

enhancing resolution.  

 

 

 

154 

4.89 a) Field seismic data shows coarser, smudge and obscure 

reflection at certain levels b) CWT-DNNs high-frequency 

volume of seismic synthetics overlain by high-frequency 

facies log reflects fine, coherent, and crisp reflections.  

 

 

 

155 

4.90 Average energy seismic attribute a) on seismic data set with 

blocky & coarser resolution, b) CWT-DNNs seismic 

synthetics with enhanced, fine demarcation of beds overlain 

by facies log.  

 

 

 

155 

4.91 Normalized seismic amplitude attribute a) field seismic data 

set, b) CWT-DNNs based HFSSV derived attribute with 

optimized layering following high-frequency facies layers 

present at wells.  

 

 

 

155 

4.92 RMS seismic attribute a) on seismic data set unable to 

distinguish fine reservoir layering, b) CWT-DNNs derived 

seismic synthetics attribute introduces high resolution 

layering matchable at wells. 

 

 

 

155 

4.93 Sweetness seismic attribute a) on seismic data set showing 

random results, b) CWT-DNNs based seismic synthetics 

attribute marks fine potential layers around the wells.  

 

 

156 

4.94 PP calculated by ML predicted method in Ranikot/Khadro 

Formation. The pink color curve shows the overburden 

gradient (OBG) while blue curve represents PP gradient (Ppg) 
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calculated from DT using Eq. (31). Maximum and minimum 

horizontal stress is also estimated, indicated by red and green 

curve. 
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4.95 Evaluation metrics for PP reflecting the performance of 

algorithms. Among all the algorithms, GBR performed well 

with correlation of 0.9.  
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4.96 PP predictions in Zamzama-03 and Zamzama-05. First two 

tracks show well log curves i.e., GR and DT. Third Track 

shows Facies and Last Track shows the predicted and 

conventionally interpreted PP. Black dotted curve shows the 

conventionally interpreted PP while black solid color depicts 

predicted PP via GBR, blue curve via RF and red curve 

predicted using LGBM algorithm. Sand gas facies marked in 

the red color into which the PP has shown the high 

significance.  
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4.97 PP predictions in Zamzama-04 and Zamzama-06. First two 

tracks show well log curves i.e., GR and DT. Third Track 

shows Facies and Last Track shows the predicted and 

conventionally interpreted PP. Black dotted curve shows the 

conventionally interpreted PP while black solid color depicts 

predicted PP via GBR, blue curve via RF and red curve 

predicted using LGBM algorithm. Sand gas facies marked in 

the red color into which the PP has shown the high 

significance. 
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4.98 PP predictions in Zamzama-07 and Zamzama-08. First two 

tracks show well log curves i.e., GR and DT. Third Track 

shows Facies and Last Track shows the predicted and 

conventionally interpreted PP. Black dotted curve shows the 

conventionally interpreted PP while black solid color depicts 

predicted PP via GBR, blue curve via RF and red curve 

predicted using LGBM algorithm. Sand gas facies marked in 

the red color into which the PP has shown the high 

significance. 
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4.99 Workflow of the 3D PP predictions through advanced ML 

model. 

163 

4.100 CWT of the seismic traces (real, imaginary, and magnitude) in 

relation with predicted PP. 
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4.101 ResNET Architecture to predict the PP. The multiple colors 

depict the convolutional layers and black box showing a 

bunch of different convolutional layers.  
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4.102 Uncertainty of PP predicted between the wells spatially via 

DNN-CWT relationship on seismic line? 
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CHAPTER 1  

INTRODUCTION 

The analysis and characterization of reservoirs are crucial in developing an 

accurate reservoir model for flow simulation, as well as assessing the field’s performance 

and improving hydrocarbon productivity while reducing costs. The reliability of the 

reservoir model is influenced by the availability and accuracy of data, as well as the 

collection, interpretation, and assignment methods used in reservoir characterization. In 

reservoir modeling, uncertainties can be reduced by improving the reservoir description 

through the integration of various available data. This includes static data such as 

geological information obtained from laboratory analyses and geologic studies, as well 

as dynamic fluid flow data like field production. In reservoir simulation, particularly for 

enhanced oil recovery, it is critical to ensure that the heterogeneity of petrophysical 

properties reflects field data for accurate flow simulation. This is necessary to generate a 

reliable reservoir model that can accurately predict reservoir behaviour and enhance oil 

recovery (Teh et al., 2012). Several data correlation and integration techniques, along 

with assessments of uncertainty, have been proposed in recent times to improve the 

estimation of reservoir properties, including porosity, permeability, and saturation. By 

using these techniques, the reliability of the reservoir model can be improved, resulting 

in more accurate predictions and reduced uncertainty. Integrated data models are more 

predictive in history matching compared to traditional approaches, as they maintain 

geoscience continuity (Huang et al., 2011). 

Conventional seismic interpretation techniques were developed over four decades 

ago for exploratory plays to describe the reservoir by detecting hydrocarbon seismic 

responses (Maurya et al., 2020). These seismic amplitude responses were based on 

procedures that were based on Post-Stack seismic amplitude analysis and were suggestive 

of direct hydrocarbon indicators (DHI). DHI plays are defined as shallow, high-porosity 

reservoirs with much lower acoustic impedance than the strata around them. These 

hydrocarbon-filled high porosity reservoirs seismic signatures might include aberrant 

high-amplitude reflections known as "bright spots". Nowadays, the oil industry is focused 

on exploring and developing deeper and more complex reservoirs. The traditional seismic 

reservoir characterization techniques show limitations in such scenarios; hence, advanced 

research and development methods are considered for better reservoir 

understanding  (Nanda, 2021). 
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Petrophysical analysis involves the examination of the physical and chemical 

properties of rocks and sediments, particularly their capacity to store and transport fluids 

like oil, and gas. This analysis plays a crucial role in the exploration and production of 

hydrocarbons and the evaluation of water resources. It involves utilizing various types of 

data, such as well logs (including resistivity, porosity, and sonic logs), core data, seismic 

data, and other relevant information, to comprehend the physical properties of rocks and 

the distribution of fluids within them (Ali et al., 2021). The petrophysical analysis aims 

to assess the hydrocarbon potential and fluid flow properties of subsurface rocks (Amigun 

et al., 2012). Petrophysical analysis can be broadly classified into two types: conventional 

and unconventional methods. Conventional petrophysical analysis is a traditional 

approach that evaluates the physical and chemical properties of subsurface rocks to assess 

their ability to store and transmit fluids, particularly hydrocarbons. On the other hand, 

unconventional petrophysical analysis is used to evaluate the physical and chemical 

properties of subsurface rocks that have smaller, more dispersed reservoirs of 

hydrocarbons and are referred to as unconventional resources (Aghli et al., 2016). The 

unconventional petrophysical analysis is typically applied to resources like shale gas and 

tight oil. Although both types of petrophysical analysis aim to determine the physical and 

chemical properties of subsurface rocks, their focus and methodology differ depending 

on the type of resource being evaluated (Muther et al., 2022). 

Since the 1970s, acoustic impedance has become a fundamental quantity that is 

still utilized in seismic reflectivity inversion and interpretation. The multiplication of 

density and acoustic velocity is commonly referred to as acoustic impedance and it is 

closely related to various rock parameters (Barclay et al., 2008). Unlike seismic 

reflectivity, which occurs at the intersections of different strata, acoustic impedance takes 

on consistent values within rock layers, providing a simple and clear link with geology 

and stratigraphy, but has a temporal limit, whereas the corresponding wells in the vicinity 

allow for the injection of higher resolution data with limited spatial coverage. Therefore, 

integrating seismic and well data is crucial for establishing a Petro-elastic relationship 

that can enhance reservoir characterization. The density, P-wave velocity (Vp), and S-

wave velocity (Vs) of the earth’s subsurface, which determine its elastic characteristics, 

are often modeled using an inversion approach (Mahgoub et al., 2018). However, this 

simple technique requires extensive computation power and time in order to resolve 

reservoirs deposited within complex geological settings. The use of advanced ML 

algorithms can help address the complexities involved in characterizing reservoir. Hence, 
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in recent times, oil and gas industries are rapidly adopting ML based solutions to help 

characterize such complex reservoirs (Liu, 2017). 

Rock physics is a field of geophysics that focuses on the study of the physical 

properties of rocks and their correlation with geological structures. It involves the study 

of how rock properties such as density, elasticity, and porosity respond to changes in 

temperature, pressure, and fluid saturation, and how they can be used to infer information 

about subsurface geology. Rock physics is a vital field in the petroleum industry, with 

applications including hydrocarbon exploration and production, as well as reservoir 

characterization (Ghosh et al., 2018; Jensen et al., 2016). Rock physics is based on the 

idea that the physical properties of rocks, such as density, elasticity, and porosity, are 

dependent on the rock’s composition, structure, and geological environment. 

Geophysicists can learn about the subsurface geology and predict how rocks will respond 

to various stimuli, such as changes in temperature, pressure, or fluid saturation by 

analyzing these properties and their changes under different conditions (Sohail and 

Hawkes, 2020; Avseth and Skjei, 2011). Rock physics helps to quantify important 

properties of a reservoir, including not only seismic data such as velocity and reflection 

amplitude, but also critical well log data like porosity, lithology, pore fluid type, 

saturation, and PP (Karimpouli et al., 2018; Sayers and den Boer, 2011). This quantitative 

analysis is crucial for the exploration and production of hydrocarbons. Well logs have a 

higher temporal (vertical) resolution, making them more accurate and consistent for 

inferring true reservoir properties in situ (Dou et al., 2009). 

Reservoir characterization is the procedure of gathering and evaluating data to 

identify the physical properties of a reservoir, including its geology, fluid content, and 

potential for production (Muther et al., 2022). In the context of reservoir characterization, 

ML techniques can be used to analyze large datasets and extract insights that might not 

be readily apparent through traditional methods. This can help to improve predictions 

about reservoir performance and increase our understanding of subsurface reservoirs. 

Some common applications of ML in reservoir characterization include seismic 

interpretation, well log analysis, and production forecasting (Anifowose et al., 2017). 

 In very recent times, ML has taken over the world of technology by the swarm. Every 

industry has incorporated complex algorithms to optimize and enhance previously 

incorporated workflows. Similarly, in the world of geoscience, ML employs advanced 

computer algorithms to assist geoscientists in comprehending the links between 

enormous volumes of geophysical or geological data or information with the complex 
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subsurface geological settings at the reservoir level (Mustafa et al., 2022; Radwan et al., 

2022; Ali et al., 2021; Ashraf et al., 2021; Rajabi et al., 2021;  Naseer, 2020a; Gorain and 

Thakur, 2015). The computer algorithm is trained using input data and then adapts 

autonomously to deliver repeatable and trustworthy quantitative seismic interpretation 

findings. The two approaches ML and geophysical inversion (GI) work on principle based 

on subsurface knowledge and feature selection to understand reservoir potential by 

integrating the sciences of statistics and physical domains (Reading et al., 2015) ML 

techniques refer to a set of algorithms that can turn data into meaningful insights, without 

relying on physics-based models. While they hold tremendous potential, ML also has its 

limitations. For instance, it often struggles to accurately predict outcomes outside the 

range of data it has been trained on (Lantz, 2019). Moreover, dealing with large amounts 

of data, which may contain irrelevant or redundant information, poses a significant 

challenge for ML applications (Géron, 2022; Lantz, 2019). Datasets used in ML often 

contain obscure or redundant information that can have a negative impact on the 

performance of the algorithms, even though this issue is not unique and ML can handle it 

in an optimized way by removing noise (Wuest et al., 2016). ML methods can provide 

practical alternatives, as these are more precise than physics-based solutions. 

Furthermore, most ML applications require a large number of features to reproduce the 

output response more effectively but might raise three primary concerns. First, the higher 

the dimensionality of the feature space that becomes prone to extrapolation. Second, the 

need for a large number of features results in an exponential increase in computational 

resources required. Third, these techniques are more susceptible to overfitting due to 

reliance on larger parameter spaces. Another significant concern with ML applications is 

the realism of the predictions (Nwachukwu et al., 2018).  

Types of ML systems are classified based on the amount of supervision with 

which they are trained, including supervised, unsupervised, and semi-supervised 

learning. In supervised learning, the algorithm is trained on a set of labelled data to 

generate a function that can map inputs to target variables. Examples of algorithms in this 

category include linear regression, K-nearest neighbours, and random forest (RF) (Chen 

et al., 2020; Zhang et al., 2020). In unsupervised learning, the training data is completely 

unlabelled, and the goal is to identify natural groupings in the dataset, such as K-means, 

hierarchical clustering, and the apriori algorithm (Liu et al., 2019). Semi-supervised 

learning deals with partially labelled data where the amount of unlabelled data is 

significantly greater than the amount of labelled data (Chapelle et al., 2006). Clustering 
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strategies are typically employed with limited guidance, and some techniques such as 

deep belief networks (DBN) combine supervised and unsupervised algorithms (Huang et 

al., 2017). However, this simple technique requires extensive computation power and 

time to resolve reservoirs deposited within complex geological settings. Advanced ML 

algorithms have emerged as an efficient means of addressing these complexities. As a 

result, the oil and gas industry has increasingly turned to ML based solutions to 

characterize complex reservoirs (Liu, 2017). 

Deep Learning (DL) is a branch of Artificial Intelligence that employs neural 

networks (NNET), featuring multiple layers to discover intricate patterns and correlations 

within datasets. In geophysics, DL has been found to be useful in a variety of applications, 

particularly in seismic and well data analysis (Korjani et al., 2016). Seismic data, which 

is collected through the study of seismic waves, can be used to create subsurface images 

of geological structures and is a crucial tool for the exploration and production of 

hydrocarbons. Applications of DL algorithms include improving the resolution of seismic 

images and enhancing their interpretation. In well data analysis, DL is used to analyze 

logs, core data, and other well measurements to better understand the subsurface geology 

and make more informed decisions about drilling and production (Zhang and Alkhalifah, 

2020). 

The Continuous Wavelet Transformation CWT is a method of analysing signals 

based on their frequency and scale, using mathematical principles. This characteristic 

makes it a useful technique in a variety of applications such as signal processing, time-

frequency analysis, and image processing.  It is an extension of the wavelet transform 

that allows for the analysis of signals with infinite length, as opposed to signals of finite 

length analyzed using the discrete wavelet transform (Naseer, 2020b). The CWT is a 

mathematical tool that can be used to analyze signals in both the frequency and time 

domains simultaneously. It can be applied in various fields, such as signal processing, 

image processing, and time-frequency analysis, as it provides information on the 

frequency content and temporal localization of the signal. CWT is widely used in 

geoscience for analyzing signals and images in various geological and geophysical 

applications, especially in seismic and well data, reservoir characterization and 

monitoring and evaluation application. In seismic data analysis, the CWT can be used to 

analyze seismic data to detect and analyze subsurface geological structures, including 

faults, salt domes, and hydrocarbon reservoirs  (Jayaswal et al., 2021). The CWT can also 

be used to improve seismic imaging by suppressing noise and enhancing signals. In the 
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context of well data analysis, CWT can be utilized to examine various logs, including 

resistivity, density, and sonic logs, to determine geological features beneath the earth’s 

surface, such as lithology, fluid saturation, and porosity. In reservoir characterization, 

CWT can be used to analyze both seismic and well data to better understand subsurface 

geological features and properties, such as lithology, porosity, and fluid saturation. As 

concerned for monitoring and evaluation, it is used to monitor and evaluate production 

from oil and gas wells by analyzing time-delay seismic data and well data to identify 

changes in subsurface geological features and fluid levels (Naseer, 2020b) 

In this research an integration of ML and CWT is focused by using the seismic 

and well data to resolve the thin sands of Ranikot/Khadro Formation of the study area 

successfully. This approach proved robust, state of the art and economical as compared 

to the conventional approaches for reservoir characterization with optimized results. 

 

1.1 Research Area 

The research area is located in the eastern portion of Kirthar Fold and Thrust Belt 

(KFTB). KFTB is spread roughly an area of 60,000 km2 in the west side of the frontal 

KFTB, eliminating the Kirthar mountain front in the east where Bhit, Badhra, Zamzama 

and Mehar gas fields are located.  The KFTB spans from Khojak Segment and Sibi 

Trough in the north to the Karachi Arc and Porali Trough in the south. The KFTB area is 

surrounded by Zarghun and Ziarat  fields in the north and Mazarani, Mehar, Zamzama,  

Bhit and Badhra fields in the east (Khan et al., 2011). 

The Zamzama Gas Field is situated in the Lower/Southern Indus Basin, in the 

Kirther Foredeep, which spans around 120 km2, and is considered the fourth largest gas 

field found in Pakistan. It is located about 200 km North of Karachi, and approximately 

8 km west of the existing Sui-Karachi pipeline as shown in Figure 1.1. The neighbouring 

Bhit gas field is located to the southwest, while the Kadanwari, Sawan, and Miano fields 

are situated to the northeast of Zamzama. On its northern side, the Mehar wells can be 

found (Qureshi et al., 2021). 

The secondary Palaeocene sandstone reservoir of Ranikot/Khadro Formation is 

focussed in this research due to challenges regarding its proper thickness, heterogeneous 

nature, and deprived quality (Jackson et al., 2004). Khadro Formation is conformably 

lying over the major Pab sandstone reservoir in the Zamzama gas field that has produced 

enormous gas and now facing depletion. Therefore, a detail assessment of Khadro 
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Formation is necessary for the optimized field production as it has produced from couple 

of wells (Zamzama-03 and Zamzama-05) in the field.  

 

Figure 1.1 Regional tectonic map of Pakistan along with division of basin. The area of interest is shown 

by red box. The subset part of picture shows the complete structure style of Zamzama Field along with the 

foot and hanging wall structure. The Mehar wells lies on the norther side of structure geometry (Khan et. 

al, 2021). 

 

Hangingwall 
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1.2 Significance of Study 

This research has a direct impact on the energy and the petroleum upstream sector 

of Pakistan. Focusing on the petroleum sector, the primary reservoir in this region was 

previously Pab Formation, which is now mostly depleted, and only small pockets of gas 

or condensate are being discovered. This mostly is economically non-viable for most 

companies.  

It was observed during production and development of the fields that other 

reservoirs such as Ranikot/Khadro Formation have proven to produce handsome volumes 

of hydrocarbons and were previously not among the primary focus for explorations; due 

to its limited thickness of deposition which is 7 m to 15 m average. However, with 

advancements in technology, it is now easier to delineate such kinds of thin beds, which 

are below seismic resolution. Despite the thin vertical thickness of the reservoir beds, the 

lateral extension of this thin bed reservoir extends basin-wide, hence has a huge potential 

for exploration.  

Identifying the regions for plausible areas of the hydrocarbon bearing facies, shall 

not only help our petroleum industry flourish but also attract international companies to 

come to this region for further exploration and development.  

Secondly, the most important issue in Pakistan during these trying times is the 

energy crisis. The government has declared an emergency in this sector to help overcome 

this issue as soon as possible, leading to a smooth run for the different sector industries 

of Pakistan. Exploring gas from such thin reservoirs using the advanced technologies 

available today, shall not only prove to be a key pillar for the economy of Pakistan but 

also has the potential alone to affix the dreadful energy crisis prevailing today.  

Moreover, the successful application of the technology on the thin reservoirs of 

Lower Ranikot/Khadro Formation can later be extended across all sedimentary basins of 

Pakistan. Having the most complex geology in the world, Pakistan faces a similar 

challenge in all the sedimentary basins to help delineate such thin beds. Allowing to work 

on this reservoir can help exploit the very similar issues being faced by the E&P 

companies, and this can drastically impact the economics of the petroleum industry.  

 

1.3 Scope of Study 

The research has included three phases, initiating from the first phase that 

included data purchase related to reports of core and well-cutting analysis. During this 
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first phase conventional geophysical interpretation approach has used to analyze the 

subsurface geology. Followed by the second phase, where detailed petrophysical 

interpretation and lithofacies identification of Lower Ranikot/Khadro Formation has been 

carried out. Whereas the final stage of the study has look into the application of advanced 

seismic inversion techniques to highlight potential sweet spots within Lower 

Ranikot/Khadro Formation across the entire region. These steps have been performed on 

the seismic cube, with well coverage, consisting of complete log suite data. The results 

obtained from this study has helped to devise and plan for further development or 

exploration wells in the recommended areas. This study has proved that the application 

of advance integrated ML approach is the recommended interpretative solution for such 

complex geological areas, which contain thin reservoirs, especially in Pakistan. The key 

steps included in this study are as follows: 

I. Seismic and well data preparation 

II. Seismic interpretation and data conditioning 

III. Well logs conditioning 

IV. Well logs calibration and wavelet extraction 

V. Rock physics modelling for wells 

VI. Wedge modelling 

VII. Relative impedance inversion 

VIII. Low frequency modelling 

IX. Simultaneous inversion 

X. Stochastic inversion 

ML driven seismic geostatistical inversion has improved results that helped to 

identify between the reservoir and non-reservoir zones along with any plausible tuning 

effects generated by thin-bed reservoirs. This technique has also assisted in delineation 

the facie distribution across the study area while demarking the potential sweet spots 

within the reservoir under study. 

 

1.4 Research Questions 

There are only 2% of the wells in Lower Indus Basin that are drilled till the 

reservoir under study (i.e., Ranikot/Khadro Formation) (Ehsan et al., 2018). Hence, it is 

vital for geoscientists to explore and develop this formation potential. The aim of this 

study is to identify potential reservoirs that have promising prospects within the Lower 
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Indus Basin, which supports the integration of petrophysical and elastic properties, 

focusing to perform reservoir characterization of the Lower Ranikot/Khadro Formation 

thin sands reservoir deposited within the KFTB region. Following questions and 

challenges have been comprehensively answered in the research: 

I. Thin reservoir, below tuning thickness. 

II. Non-availability of complete dataset within study area. 

III. Non-availability of core analysis reports for key wells used in the study. 

IV. Wellbore stability with the help of PP prediction.  

 

1.5 Problem Statement 

The key problems present in study area that are addressed in the research: 

I. Structural complexities of the anticline. 

II. Resolution limitation of seismic data for thin and heterogenous Khadro/Ranikot 

Formation. 

III. Separation of plausible sands from the non-reservoir for optimized field 

production. 

 

1.6 Research Objective 

Objectives of the study have focused on: 

I. To build a relationship between elastic properties (impedances, Vp/Vs ratio, etc.) and 

petrophysical properties (porosity, water saturation (Sw), etc.) to determine sweet 

spots. 

II. To generate facies and fluid probabilities volumes for quantitative interpretation. 

III. To analyze the lateral porosity distribution across the field, using the artificial 

neural networking technique, and correlate with the core analysis reports 

purchased.  

Apart from the primary objectives, this study has achieved the following sub 

goals: 

a. Improve the usefulness of seismic data by strengthening the physical basis of 

the use of inverted properties. 

b. Well data conditioning and calculate essential petrophysical properties (e.g., 

porosity and saturation). 

c. Build petro-elastic models to predict elastic properties (Vp, Vs, Density, etc.). 
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d. Determine the expected seismic and petro-elastic parameter response to 

hydrocarbon, lithological, and porosity variations.  

e. Estimation of Net-to-Gross (N/G) ratio using a quantitative method calibrated 

with log-derived seismic rock properties. 

f. Lithofacies estimation from inverted seismic attributes and respective well log 

data to quantify the uncertainty in the seismic lithology prediction 

(hydrocarbon saturation). 

 

1.7 Adopted Research Techniques Significance and Importance 

In recent years, ML has become increasingly essential in reservoir 

characterization due to reduced cost and time. Large datasets of seismic and wells can be 

used to train ML algorithms to uncover patterns and relationships that would be difficult 

or impossible to detect using conventional methods. ML improves accuracy and 

resolution while reducing uncertainty even when the data is incomplete or noisy. The 

conventional reservoir characterization approach is more laborious and time consuming, 

it is usually used pre-stack gathers a lot of work to complete the procedure, whereas Post-

Stack seismic data has done the same work thoroughly. Similarly, this simple and 

comprehensive strategy can be used in reservoirs with the same challenges all over the 

world. 

 

1.8 Integration of multi-scale datasets  

The data sets employed in the research work mainly comprised of high frequency 

well logs and band-limited seismic data obtained from the Directorate General of 

Petroleum Concession (DGPC). The 3D seismic data of Zamzama Gas Field (15 square 

kilometers) is integrated with seven wells lying within this seismic cube for structural 

mapping and stratigraphic distribution of properties while three wells from Mehar gas 

field is employed for 1D assessment of properties across region (figure-1.2). Therefore, 

10 wells are utilized to conduct the research work such that seven from Zamzama block 

and the remaining three wells from Mehar block.  Table 1.1 & 1.2 shows the seismic data 

and names of well used in studies. The ML approaches comprehensively optimized the 

frequency content of seismic data through advance non-linear relationships with wells 

and assess the tuned thin sands more profoundly. The heterogeneities of potential sands 

are evaluated through enhanced elastic and petrophysical properties throughout the field. 
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Table 1.1: Details of seismic data that are utilized for seismic driven thin reservoir classification. 

Seismic Data 

3D Post-Stack seismic data of Zamzama Block covering the area of 15 square 

kilometers along with partial angle stacks (Near, Mid and Far Angle stacks). 

 

Table 1.2: Details of wells data that are utilized for research purpose. 

Well Data 

Zamzama-02 Zamzama-07 

Zamzama-03 Zamazam-08-ST-02 

Zamzama-04 Mehar-01 

Zamzama-05 Mehar-02 

Zamzama-06 Mehar-03 

 

1.9 Thesis Outline 

The thesis comprises the following components for assessment of potential sands 

of Ranikot/Pab Formation. 

I. Detail structural and stratigraphic analysis of the study area. 

II. Evaluate the presence of Petroleum system surrounding KFTB. 

III.  Well properties assessment through petrophysics of Ranikot/Khadro Formation. 

IV. Well-to-seismic relationship for structural and stratigraphic framework 

delineation. 

V. Seismic attributes analysis for the Zamzama gas field having 3D seismic 

availability. 

VI. ML based rock physics modeling  

VII. ML based elastic and petrophysical properties approximation having optimized 

frequency contents.  

VIII. Facies and pore-pressure prediction and distribution using enhanced elastic and 

petrophysics properties compensating the thin reservoir heterogeneities of 

Ranikot/Khadro Formation. 
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Figure 1.2 The base map highlights the seismic data set (red rectangle) along with Zamzama (Z) and Mehar 

(M) wells utilized for the research work. 
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CHAPTER 2  

LITERATURE REVIEW 

The Kirthar Fold Belt is part of the mountain belts in Pakistan linking the 

Himalaya orogeny with the Makran accretionary wedge. This region is deforming very 

oblique/nearly parallel to the regional plate motion vector. The Kirthar Fold Belt is 

subdivided into several crustal blocks/units based on structural orientation and 

deformation style (e.g., Kallat, Khuzdar, Frontal Kirthar). 

Existing structural concepts for the area were developed for the northern Kirthar 

Fold Belt and the Sulaiman Fold Thrust Belt and based on the early concepts that 

proposed a passive roof duplex model (Banks and Warburton, 1986; Jadoon et al., 1994) 

For the southern Kirthar Fold Belt a model of basement inversion with folds in the 

sedimentary cover had been put forward (Fowler et al., 2004). However, detailed 

kinematics on how thick-skinned and thin-skinned structures link are not obvious. 

The Ranikot/Khadro Formation is of early Danian age and comprises a more 

heterogeneous sequence. It is 52.6 m– 55.4 m thick and developed during a period of 

rising base level and basin re-organization. The lower half (K3 & K4 Layers) is 

essentially non-reservoir, and dominated by well drained coastal plain muds, with minor 

ephemeral meandering stream and crevasse deposits. Estuary – shoreline – bay paleo-

environments were established in the upper half of the Ranikot/Khadro Formation (K1 & 

K2 Layers), through progressive marine inundation of the coastal flood plain. A variety 

of reservoir sand bodies are developed here. These depositional systems probably 

retained multiple riverine point sources along the coastline, as in the Pab Formation, 

leading to complex and heterogeneous reservoir architecture. These are capped by 

transgressive shallow marine limestone of the Ranikot/Khadro Formation and succeeded 

by deeper marine planktic mudstones of the Girdo Shale (Ooilithica Geoscience, 2004). 

A major change in sand provenance characterizes the Ranikot/Khadro Formation, 

with a major influx of volcanic rock fragments. These sediments were chemically 

unstable and prone to alteration, principally to chamosite / chlorotic fabrics and 

amorphous pellets. The resulting lithology comprise very fine to very coarse grained 

chamositic sublitharenites, which exhibit further decrease in mineral maturity within the 

finer grained sandstones (Ooilithica Geoscience, 2004). 

Many of the ML algorithms are employed throughout the world for its robustness 

and accuracy. Al-Mudhafar (2016) integrated ML and data analytics for clastic reservoir 
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facies and discovered that LogitBoost is the most accurate algorithm, with 100% accuracy 

in total correct facies prediction. However, the total correct percentages for Multinom 

and XGBoost were 80.24% and 70.83%, respectively. Rafik and Kamel (2017) employed 

a combination of PCA, model-based cluster analysis, and discriminant analysis to 

estimate permeability and porosity from well-log data. Three non-parametric techniques 

are investigated: ACE, GAM, and NNET to predict permeability. The strategy of ACE 

strategy demonstrates superior performance as compared to the other two methods. 

Ahmadi et al (2014b) conducted research to forecast the permeability and porosity of 

petroleum reservoirs in northern Persian Gulf oil fields using petrophysical logs. To 

overcome the aforementioned issue, various AI approaches, such as FL and LSSVM, were 

used. It is suggested that LSSVM and FL be used in conjunction with a GA. It has been 

observed that the correlation coefficient between model estimates and relevant real data 

is greater than 0.96 for the GA-FL technique and 0.97 for the GA-LSSVM approach and 

their result is more trustworthy in the case of porosity and permeability predictions. 

Ahmadi and Chen (2019) evaluated various ML methods and suggested that the 

hybridized technique could predict the reservoir's petrophysical parameters with high 

accuracy. In the Central Indus Basin, Pakistan, few studies evaluated ML methods. 

The analytical comparison of seismic inversion with several other multivariate 

prediction methodologies based on various ML algorithms, such as linear regressions, 

RF, and NNET, was covered by Priezzhev et al., 2019. To estimate petrophysical and 

petro-elastic parameters, seismic and well data were merged. In some circumstances, the 

authors found it feasible to estimate the petrophysical reservoir parameters more correctly 

and with less interpretational bias, thanks to the nonlinear predictive operator that ML 

techniques extract. According to Otchere et al. (2022), it is essential for ML algorithms 

to have the ability to preprocess the data with the aid of feature selection, removing 

extraneous factors and effective results produced after detail training and predictions of 

ML algorithm. Ali et al (2021) used the RFR to forecast facies with an accuracy of 

83.85%, and Ahmed et al (2022) used a stacking method to combine the outputs of 

numerous models, including the ETR reservoir, with an accuracy of 87.23%.  Otchere et 

al. (2022) preferred to use GBR and RF on eight feature selection technique to model and 

characterize the shallow marine reservoir with better accuracy.  

 Yasin et al. (2021a) consolidated rock physics modelling with Post-Stack seismic 

data, as well as the use of a joint inversion ML strategy that combines SVM and particle 

swarm optimization (PSO), which assisted the author in not only capturing the thin layers 
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of clastic packages/channel sand bodies, but also providing a good match of sand and 

shale layers using a combination of low and high acoustic impedance. In contrast, the use 

of the Gaussian simulation technique allowed for the analysis of spatial changes in 3D 

porosity models displaying consistency at wells. Finally, the author summarized the 

findings by predicting sweet spots identified with high porosity, permeability, and gas 

sands in direct comparison to low elastic property values, i.e., P-wave, S-wave, and Vp/Vs 

ratio; inside Lower Goru Formation Sand-03. 

Hussain et al. (2022) used the basic concept of self-organizing maps (SOM), as 

well as the U-matrix and best matching units (BMU), to predict lithofacies and rock types 

in Zamzama Gas Field log curves. Curve normalization techniques such as normalization 

and standardization were applied to eliminate the scale value gap between various curves. 

Later, the use of a clustering technique within SOM assisted in providing realistic and 

optimized results to predict four facies’ classes validated at the well location. Likewise, 

Ahmed et al. (2022) performed ML base reservoir characterization in the nearby 

Zamzama Gas Field, which lies in Lower Indus Basin. 

Furthermore, Shakir et al. (2021) applied the Probabilistic Neural Network 

approach successfully to predict the porosities within Paleocene/Cretaceous age 

reservoirs of Mehar field, Middle Indus Basin. More than 30 internal seismic attributes 

were utilized along with external attributes of P-impedance (Zp), S-impedance (Zs), & 

Vp/Vs ratio in order to train the algorithm on the dataset. The results obtained were verified 

and tested on the blind wells. Hence, the results were spatially calculated for the whole 

survey area with maximum accuracy. 

In addition, Khan et al. (2022) applied probabilistic neural networking (PNN), a 

non-linear interpolation mathematical approach, within the Zamzama Gas Field. The 

study demonstrated algorithm training using input petrophysical parameters as seismic 

internal attributes (envelope, amplitude weighted cosine phase, amplitude weighted 

frequency, and instantaneous phase) and elastic properties/amplitude variation with offset 

(AVO) attributes as external attributes. Training and testing were conducted at specific 

wells, while petrophysical parameters such as shale volume, porosities, and saturations 

were afterward projected across the field. 

ML enables the manipulation of nonlinear data without a prior specification of the 

exact nonlinearity, offering a flexible and adaptable approach to data analysis (Poulton 

and Raiswell, 2002). ML algorithms can learn from experience by receiving multiple 

inputs without being expressly programmed to do so. The constructed model can be used 
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to make predictions such as classification, continuous value prediction, and forecasting 

future events or performance. ML and statistics have been widely used as regression tools 

(e.g., RF, one-class-support vector machine, support vector regression (SVR), genetic 

algorithm, etc. for predicting petrophysical properties such as shale volume, porosity, Sw, 

and permeability, among others (Zhang et al., 2021; Al Khalifah et al., 2020; Male et al., 

2020; Miah et al., 2020; Zhong et al., 2019; Fattahi and Karimpouli, 2016; Hampson et 

al., 2001; Helle et al., 2001a;). Among these ML tools, the RFR and ETR are highly 

effective that have seen widespread use in the estimation of reservoir properties through 

using well log variables (Zhang et al., 2021; Erofeev et al., 2019; Ahmadi et al., 2014a; 

Helmy et al., 2010; Helle et al., 2001b). There is a lack of literature comparing various 

ML approaches against conventional methods in the prediction of reservoir properties in 

carbonate reservoirs, as demonstrated by studies such as (Male et l., 2020; Helle et al., 

2001a). 

Many of the supervised/unsupervised ML algorithms approaches are employed 

for the assessments of the field's secondary reservoir, which is the primary exploration 

target at the time in the area and nearby blocks. The advance algorithms include SVM, 

DTR, RF, and GBR to highlight Ranikot/Khadro’s Formation heterogeneous thin gas 

sands facies. Based on statistical metrics, the GBR algorithm generated the best results 

by identifying and describing the thin heterogeneous sand facies. The main principle 

underlying GBR success is to generate new base learners that are maximally correlated 

with the ensemble's negative gradient of the loss function, which is achieved by a 

sequential error fitting strategy. 

According to the previous results, the developed approach can be used as an 

analogue for the regional development of thin-bedded sandstone systems in the studied 

basin. This workflow may serve as a vital example for the exploration of the remaining 

gas-bearing stratigraphic systems within the studied basin and similar basin settings.  The 

Ranikot/Khadro’s Formation heterogeneous thin gas sands facies are an important rock 

unit in the Indus Basin petroleum system because it contains an economically significant 

volume of potential reservoir rocks that are composed of sandstones. As a result, 

investigating the reservoir facies and seismic signature of the Paleocene Ranikot/Khadro 

Formation thin-bedded reservoir is useful for effective reservoir quality prediction, which 

contributes to the overall understanding of the Paleocene hydrocarbon plays. A better 

understanding of these reservoirs can be gained by accurately predicting the sand 
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distribution probability trends of these deposits using advanced imaging techniques, 

which will aid in further exploration and reservoir modeling. 

ML assisted facies classification has yielded highly effective and promising 

results, particularly for evaluating unexplored regions within the Indus Basin. The 

generated probability distribution maps can pinpoint and guide the potential exploitation 

of these reservoirs across regional and subsurface scales. Crucially, identifying the most 

suitable ML technique has the potential to significantly improve reservoir prediction and 

analysis, ultimately facilitating better reservoir management and recovery in these 

heterogeneous, thin-bedded sandstone formations. Furthermore, our analysis of physical 

property prediction indicates the potential to classify the sandstone reservoirs into three 

distinct units traceable across the entire study area. These three generated facies maps 

can serve as a valuable foundation for field development strategies, enabling more 

efficient exploitation of these thin-bedded secondary reservoirs. 

 

2.1 Generalized Geology 

Pakistan is situated in the western part of the Indian Plate is geologically complex, 

with a varied geological history. The country is characterized by several tectonic plates, 

faults, and folded mountain ranges. Pakistan is home to several sedimentary basins, which 

have been formed by tectonic activity and subsequent subsidence. Pakistan's geology is 

primarily composed of two sedimentary basins: the Balochistan Basin and the Indus 

Basin. These basins formed over a series of geological periods and came together as a 

consequence of the collision between the Indian Plate and the Eurasian Plate during the 

Paleogene era (Ghazi et al., 2015; Zhuang et al., 2015). The Indus Basin belongs to the 

Indian Plate, whereas the Baluchistan Basin is part of the Eurasian Plate. In addition to 

these two major basins, there are several smaller basins, such as the Peshawar Basin, the 

Hazara Basin, and the newly discovered Kakar Khorasan Basin (Pishin Basin), which is 

a pull-apart basin  (Kazmi and Abbasi, 2008; Kazmi and Jan, 1997). 

The Indus Basin, located in the northwestern region of Pakistan, is the largest 

sedimentary basin in the country, covering an area of over 300,000 square kilometers. 

The basin is composed of sedimentary rocks that range in age from the Early Jurassic to 

the Late Tertiary period. The basin is an important source of petroleum, natural gas, and 

coal. The Balochistan Basin, which occupies an area of approximately 100,000 square 

kilometers, is situated in the western part of Pakistan (Busby and Pérez, 2011). The basin 
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is predominantly composed of sedimentary rocks that range in age from the Early 

Permian to the Late Tertiary period. The basin contains significant reserves of natural gas 

and petroleum. The Potwar Basin is located in northern Pakistan and covers an area of 

about 30,000 square km. It is filled with sedimentary rocks ranging in age from Late 

Cretaceous to Late Tertiary (Bender and Raza, 1995). The basin is an important source 

of petroleum and natural gas. SIB is located in southern Pakistan and covers an area of 

about 10,000 square kilometers and comprises sedimentary rocks that span from the Early 

Cretaceous to the Late Tertiary period. The basin contains significant reserves of natural 

gas. These sedimentary basins are an important part of the geology of Pakistan, providing 

valuable resources and contributing to the country's economy (Busby and Pérez, 2011). 

The main sedimentary basin in Pakistan is the Indus Basin has been shown in 

Figure 2.1a. The primary element in the proto-Indus Basin that governed the 

sedimentation up to the Jurassic age is the Precambrian Indian Shield rocks of Kirana 

Hills (Sargodha High) (Asim et al., 2014). The main geographic characteristic that 

separates the  Upper Indus Basin from north of Sargodha High and Lower Indus Basin 

from southern side of Sargodha High (Kemal, 1991). The Kohat sub-basin, located 

western part of the Indus River, and the Potwar sub-basin, situated in eastern side of the 

Indus River, are additional divisions of the Upper Indus Basin  (Kadri, 1995). 

The Khairpur-Jacobabad High is an important underlying topographic feature that 

divides the Lower Indus Basin into the Central Indus Basin and the Southern Indus Basin. 

Southern Indus Basin is separated from Central Indus Basin by Upper Indus Basin via 

Sargodha High in the northern and Khairpur-Jacobabad High in the southern side. 

Southern Indus Basin is the basin that spreads into Offshore Indus Basin from Khairpur-

Jacobabad High in the southward side (Kadri, 1995). The Upper Indus basin is 

characterized by compressional tectonic forces, whereas the Central and Southern Indus 

basins are mainly affected by extensional forces in the eastern half and a fold and thrust 

belt along the western boundary (Asim et al., 2014). 

 

2.2 Southern Indus Basin 

The Zamzama Block is situated within the Kirthar Sub basin, which is part of the 

Southern Indus Basin (Figure 2.1a, b). It is located to the south of the Sukkur Rift, which 

acts as a dividing line between the Southern and Central Indus Basins. The Southern 

Indus Basin is bounded to the east by the Indian shield and to the west by the marginal 
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zone of the Indian plate. Its southern limit is determined by the offshore Murray Ridge 

(Kadri, 1995). Pakistan's Southern Indus Basin is a sedimentary basin that spans an area 

of around 95,000 square kilometres, stretching from the southern reaches of the Thar 

Desert to the Arabian Sea. The basin takes the form of a trough-like depression in the 

Earth's crust that has accumulated sediment over millions of years (Qureshi et al., 2021).  

The sedimentary formations within the Southern Indus Basin consist mainly of 

sandstones, shales, and limestones, and were laid down in a marine setting. The Southern 

Indus Basin is known to contain significant reserves of oil and gas, as well as coal and 

other minerals (Ehsan et al., 2018). The exploration and production of these resources is 

an ongoing activity and is a major contributor to the economy of Pakistan. Southern Indus 

is classified as: 

a. Thar platform. 

b. Karachi Trough. 

c. Kirthar Fold Belt. 

d. Kirthar Foredeep. 

e. Offshore Indus basin. 

 

2.2.1 Thar Platform  

The Thar Platform is a geological feature located in the Thar Desert of Pakistan. 

It is a large, flat, and relatively stable area of land that has been elevated due to tectonic 

uplift. The Thar Platform is composed of Precambrian rocks, including granites, gneisses, 

and metamorphic rocks. The platform is surrounded by the younger, less stable sediments 

of the Indus Basin. The Thar Platform is of great geological and economic significance 

(Siddiqui, 2012). It contains rich deposits of coal, as well as other minerals such as 

copper, gypsum, and salt. The Thar coal fields are considered one of the largest coal 

reserves in India and have been extensively mined. The Thar Platform is also an important 

source of groundwater, with several large-scale irrigation and drinking water projects 

underway (Qayyum et al., 2016). 

The Thar Platform is a gently sloping monocline, similar in nature to the Punjab 

Platform, and influenced by underlying basement topography. The sedimentary layers 

thin out towards the Indian Shield, which is marked by the Nagar Parkar High. Unlike 

the Punjab Platform, the Thar Platform exhibits buried structures caused by extension 

tectonics resulting from the latest counter-clockwise movement of the Indian plate 
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(Siddiqui, 2012). It is bounded by the Indian Shield to the east, merges with the Kirthar 

and Karachi Troughs to the west and is bordered to the north by the Mari-Bugti Inner 

Folded Zone. A strati-structural cross-section that traverses the Thar Platform, Karachi 

Trough, and Offshore Indus reveals the stratigraphic and structural differences between 

the two sub-basin (Quadri and Shuaib, 1986). 

 

2.2.2 Karachi Trough 

The Karachi Trough is a geological feature located off the coast of Karachi, 

Pakistan. It is a depression in the Earth's crust that extends from the coast of Pakistan to 

the Arabian Sea. Geological evidence suggests that the Karachi Trough was produced 

due to tectonic processes occurring at the interface between the Indian Plate and the 

Eurasian Plate. The trough is filled with sediments, primarily sandstones and shales, 

which were deposited in a marine environment. The Karachi Trough is of geological and 

economic significance. It has been identified as a promising area for oil and gas 

exploration and has attracted numerous drilling and exploration initiatives (Hussain et al., 

2017). 

The Karachi Trough is an embayment that extends towards the Arabian Sea, 

featuring thick early sediments that indicate the final stages of marine sedimentation. The 

area encompasses numerous narrow chains of anticlines, some of which contain gas 

deposits. The rocks of the early, middle, and late Cretaceous periods are well-preserved 

in this region, which has remained a trough throughout its geological history. The Upper 

Cretaceous is characterized by the westward progradation of a marine delta (Nabi et al., 

2019). 

One of the most intriguing aspects of the Karachi Trough is the occurrence of 

continued sediment deposition across the Cretaceous/Tertiary (K/T) boundary. The 

Korara Shales were deposited during this period, with the basal section representing 

Danian sediments. This localized phenomenon is considered a rare example of 

uninterrupted sedimentation at the end of the Cretaceous era (Shuaib, 1973). 

 

2.2.3 Kirthar Foredeep 

The Kirthar Foreland Basin, also known as the "Foredeep," is situated in Pakistan 

and is part of the Kirthar Fold Belt, a region of folded and thrust-faulted mountains and 

sedimentary basins spanning Pakistan and western India. The basin is a substantial 
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depression in the Earth's crust that has accumulated sediment from the Kirthar Mountains 

to the west. The sedimentary rocks in the basin consist mainly of sandstones, shales, and 

limestones that were deposited in a marine environment (Asim et al., 2014). The Kirthar 

Foreland Basin is considered an important source of oil and gas, with several exploration 

and production activities underway. The basin is also an important area for agriculture, 

with large-scale irrigation projects providing water for crops. The Kirthar Foreland Basin 

is a geologically complex area and has been the subject of extensive geological and 

geophysical studies (Smewing et al., 2002). 

The Kirthar Foreland Basin is situated in Pakistan and is part of the Kirthar Fold 

Belt, a region characterized by folded mountains and sedimentary basins. The basin is 

aligned in a north-south direction and has an eastern boundary that is faulted with the 

Thar Platform. Sediment accumulation in the basin has resulted in a thickness of more 

than 15,000 m, with the predominant sedimentary rock types being sandstones, shales, 

and limestones. Although continuous sedimentation is thought to have occurred, the 

Upper Cretaceous appears to be absent based on well correlations between Mari Khairpur 

and Mazarani. The Palaeocene is well developed in the depression, although it is missing 

in the Khairpur-Jacobabad High area. The basin is believed to have significant potential 

for the maturation of source rocks, similar to the Suleiman Depression (Smewing et al., 

2002). 

 

2.2.4 Kirthar Fold Belt 

The geological formation known as the Kirthar Fold Belt was created by the 

collision of the Indian Plate and the Eurasian Plate. This complex structure is made up of 

parallel mountain ranges that were formed by the folding and thrust faulting of 

sedimentary rocks. The rocks in the Kirthar Fold Belt are estimated to be between Jurassic 

and Tertiary in age, and consist of sandstones, shales, and limestones. 

The Kirthar Fold Belt is a north-south trending geological feature that shares 

structural similarities and stratigraphic equivalence with the Suleiman Fold Belt. 

Sedimentary rocks ranging in age from the Triassic to the recent were deposited in this 

region. The configuration of the Kirthar Fold Belt also signifies the closing of Oligocene-

Miocene seas. The western part of the Kirthar Fold Belt adjacent to the Balochistan Basin, 

which demarcates the western edge of the Indus Basin, has undergone significant tectonic 

disturbance. Hydrothermal activities associated with this western margin have resulted in 
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the formation of economically significant mineral deposits of baryte, fluorite, lead, zinc, 

and manganese. 

2.2.5 Offshore Indus  

The geology of the offshore Indus region is characterized by a thick sequence of 

sedimentary rocks that were deposited in the shallow waters of the delta and the 

surrounding coastal areas. These rocks contain important hydrocarbon reserves, as well 

as other important minerals. The Indus River also brings large quantities of sediment into 

the Arabian Sea, creating a dynamic and constantly changing landscape that is shaped by 

the interplay of river discharge, waves, and ocean currents (Nabi et al., 2019). 

The offshore region of the Indus basin is situated on a passive continental margin 

and has undergone two major geological periods: the Cretaceous-Eocene and the 

Oligocene-recent. Sedimentation began in the region during the Cretaceous era, with 

deltaic and submarine fan sedimentation occurring since the middle Oligocene following 

the inception of the Proto-Indus system (Siddiqui, 2012). 

The offshore Indus region is divided up into two areas, the platform and 

depression, along the Hinge Line which is parallel to 67°E Longitude. The platform 

consists of the Karachi Trough and the Thar Platform deltaic area, which are separated 

by a line that marks the boundary between the Karachi Trough and the Thar Slope 

onshore (Busby and Pérez, 2011). 

 

Figure 2.1 Geology and tectonic features of a) Pakistan and b) Southern Indus basin (Ahmed et. al., 2022). 
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2.3 Tectonic Framework 

The area of investigation is tectonically complex (Kazmi and Jan, 1997). The 

Gondwana fragments began to drift in the Jurassic period, with the Indian plate moving 

rapidly northward during the Cretaceous and then undergoing a counterclockwise 

rotation as part of the collision process. This led to the formation of the Chaman rift, a 

transform zone that resulted from renewed spreading in the Indian Ocean during the post-

collisional northward movement of the Indian plate. The compressional forces that were 

produced likely gave rise to various syntaxes, arcs, and oroclines throughout Pakistan, 

possibly in the Early Oligocene, with the pre-collisional tectonic elements of the mio-

geosyncline and the shield areas of the Indian plate likely having played a role in the 

formation of these structures. The formation of the structure was possibly influenced by 

tectonic elements that existed prior to the collision between the Indian plate and the 

Eurasian plate, particularly within the mio-geosyncline and shield areas of the Indian 

plate. These tectonic elements included the development of narrow, welt-like structures 

within geo-anticlinal areas in the western part of the Indian plate, which were initiated in 

the Jurassic period and fully emerged during the Cretaceous period. These structures, 

along with their associated intrusive and volcanic emplacements, have been compared to 

island arcs by Hunting Survey Corporation (1961) and their origin has been linked to 

worldwide oceanic ridges (Kazmi and Jan, 1997). 

 

2.4 Stratigraphic and Structural Framework of Zamzama Block 

The Kirthar Fold belt area experienced various phases of syn rift and post-rift 

sedimentation since the Jurassic period, and its rift-drift-collision history is well-

documented (Besse and Courtillot, 1988; Patriat and Achache 1984; Searle et al., 1997). 

The oldest stratigraphic unit in the region is the Shirinab Group, which includes shallow 

marine clastic and limestone formations that can be considered as syn-rift deposits 

(Figure 2.2). During the Middle-Late Jurassic, the Chiltan Limestone was deposited on a 

broad carbonate shelf of the Indian subcontinent (Dolan, 1990). In the Early Cretaceous, 

sedimentation occurred in a passive margin environment with the rising of the emergent 

Indian continent to the southeast. The deposition of thick sediments of the Goru and 

Sembar Formations took place along the edge of the passive margin due to the large 

prograding delta systems (Richard et al., 2001; Bender and Raza, 1995). During the 

deposition of the Sembar Formation, which is the most abundant source rock in the Lower 
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and Middle Indus basins and the Kirthar Fold belt, restricted marine, anoxic environments 

prevailed in the Early Cretaceous. 

In the Middle Cretaceous, the eastern part of the Indus Basin experienced 

continued transgressive-regressive cycles, resulting in the deposition of shoreface sand 

in the Lower Goru Formation. The Kirthar foredeep and fold belt area received only thin 

turbidites from sediment delivery channels to the basin floor, as the study area was too 

far from the input feeders. Consequently, the Goru Formation only deposited marine 

shales and carbonates. A major marine transgression occurred in the Turonian, which 

further reduced the clastic sediment supply to the basin, leading to sediment starvation 

and condensation in deeper areas. In the Kirthar Fold belt area, deeper water carbonates 

(Parh Limestone) were deposited throughout the Coniacian-Companian period (Richards, 

Boyce and Pringle, 2001) 

In the Late Cretaceous period, the Kirthar Foredeep and frontal section of the fold 

belt regions received a considerable amount of sand-rich turbidities known as the 

Mughalkot. These formations are clearly visible in the Southern Kirthar Fold Belt due to 

the uplifting of the Indian Shield, which occurred as the Indian Plate moved across the 

Reunion Hotspot (Gnos, 1998). During the Early Paleocene, the Indian Shield was uplifted, 

leading to the creation of shallow marine environments in multiple regions of the Kirthar Fold 

belt. This resulted in the selective accumulation of fluvio-deltaic and shallow marine sands from 

the Pab Formation and Lower Ranikot/Khadro Formation. After the deposition of shallow 

marine and fluvio-deltaic sands of the Pab Formation and the Lower Ranikot/Khadro 

Formations in many parts of the Kirthar Fold belt, there was a decrease in the sea level 

rate during the Late Palaeocene-Early Eocene, which allowed for the deposition of 

Dunghan/SML carbonates in the study area. Throughout the basin, there were regional 

transgressive and backstepping events during the Late Early Eocene, with thin shales 

containing alternating limestone units of the Ghazij Formation deposited in the eastern 

part of the Kirthar Fold belt, and thick shales deposited in deep to shallow marine 

environments in the western part of the Kirthar Fold belt area. The Kirthar Limestone 

was deposited throughout the basin during the Late Eocene under calm marine conditions. 

Due to plate collision, the Western Kirthar part of the basin was restricted for 

sedimentation during the Oligocene, which led to the development of small, isolated 

basins where sedimentation continued until the Quaternary period. 

The Zamzama structure is a large anticline that verges eastward and is oriented 

north-south. As older sediments of the Lower Indus Basin are exposed in the Kirthar 
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foredeep to the west of Zamzama, the degree of thrusting and folding increases. The 

uplift and erosion at the unconformity led to the formation of extensional faults, some 

of which might have been reactivated during the development of the Zamzama 

structure. The exact onset timing of folding at Zamzama is difficult to determine but is 

thought to have occurred in the Plio-Pliestocene. 

 

2.5 Stratigraphic and Structural Framework of Mehar Block 

On eastward portion of the Kirthar fold, there exists a movement along the 

Ornach-Nal and Chaman transform faults which occurred through collision of Oligocene 

Miocene plate has produced several different anticline structures. The presence of 

ophiolites on west slope of the Kirthar fold belt indicates occurrence of an active plate 

boundary, which can be seen through seismic events. Mafic to ultramafic rocks make up 

the rock type along plate border (Jadoon et al., 1994). 

Pre-existing normal faults with a NW-SE orientation run virtually parallel to the 

Jacobabad highs and interrupt the foredeep area in research region on south side of 

Middle Indus basin. Mazarani Thrust is the fundamental flaw that has resulted in the 

building of thrust in this area. This thrust belt has a north-south trend and is west dipping. 

Extensional faults that existed previously were reactivated and can be found between the 

cores of the Mehar Mazarani Fold structures. The trend along these former normal faults 

indicates that the thrusting in the Mehar Mazarani Fold is not happening close to the pre-

existing normal faults, since if it were, the orientation of the main mantle thrust (MMT) 

would be alongside the fault plane of the prior extensional faults (NW-SE) (Ahmed and 

Ali, 1991). 

From the Infra-Cambrian to the late Cretaceous, the Mehar Mazarani Fold Belt 

has been subjected to many tectonic processes that result in uplifting, rifting, and erosion. 

Tectonic activity also reactivated a fault that existed in the basement of this location. The 

major cretaceous source and reservoir were accumulated in a passive margin 

environment, whereas drifting in cretaceous may revive the preexisting normal strength 

and induce the rising of the area east toward north of the Mehar Mazarani Fold belt 

obsessed by the Jacobabad Highs belt. The Jacobabad highs have been eroded by late 

cretaceous sediments. Beginning from the Mehar Mazarani fold belt region towards the 

high, a wedge-shaped of oligoacene and Paleocene strata show that the paleo high 

phenomena occur during this period. During the Miocene period, the collision between 
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the Indian Plate and the Asian Plate resulted in the deposition of thick sedimentary layers 

that caused strata inversion and the formation of the Mitto anticlinal fold in the Mehar 

Mazarani fold belt (Ali et al., 2018). 

The reason behind this is separation of thick-settled Infra-Cambrian, the Mehar 

Mazarani fold belt appears to have a folded structure. Basement wrench faults in the fold 

belt's western portions, supposed towards portion of the Ornach-Chaman transform fault. 

Because of the fault and west side of the inclined basement, and the shortening caused by 

Jacobabad paleo highs, such Mehar Mazarani thrust have got an upward ramping 

structure. The ramping shape structure in this location identical to that seen in the Potwar 

basin Dhurnal section. The change of incompetent shale lithology of the Goru Formation, 

which generates narrow resultant detachment zone, causes another occurrence of back 

thrusting. To understand the complexity of this area, significant amount of research using 

3D data is required for future development and exploration (Ali et al., 2018). 

 

2.6 Generalized Stratigraphy of Zamzama Block 

The Kirthar Foredeep Basin in Pakistan is a large sedimentary basin. The 

stratigraphy of the basin is characterized by several geological formations ranging from 

Late Cretaceous to Holocene in age. The following is a more detailed generalized 

stratigraphy of the Kirthar Foredeep Basin: 

a. Upper Cretaceous: The uppermost unit in the Kirthar Foredeep Basin is composed 

of sandstone and siltstone formations of Late Cretaceous age. The sandstone 

formations in this unit are typically cross-bedded and well-sorted, indicating 

depositional environments such as alluvial fans and deltaic systems. The siltstone 

formations are typically finer grained and less well-sorted, indicating depositional 

environments such as lacustrine or shallow marine environments. 

b. Eocene - Oligocene: The next unit is characterized by the presence of sandstone, 

siltstone, and shale formations of Eocene to Oligocene age. The sandstone 

formations in this unit are typically cross-bedded and well-sorted, indicating 

depositional environments such as alluvial fans and deltaic systems. The siltstone 

formations are typically finer grained and less well-sorted. The shale formations 

in this unit are typically dark and organic-rich, indicating depositional 

environments such as deep marine environments. 



28 

  

c. Miocene: The sedimentary deposits of the Miocene epoch are prominent in the 

Kirthar Foredeep Basin and comprise sandstone, siltstone, shale, and limestone 

formations. This period is considered a significant episode of deposition in the 

region. The sandstone formations in this unit are typically cross-bedded and well-

sorted, indicating depositional environments such as alluvial fans and deltaic 

systems. The siltstone formations are typically finer-grained and less well-sorted. 

The shale formations in this unit are typically dark and organic-rich, indicating 

depositional environments such as deep marine environments. The limestone 

formations in this unit are typically biogenic in origin and indicate depositional 

environments such as shallow marine or reef environments. 

d. Pliocene - Pleistocene: The Pliocene to Pleistocene unit is characterized by the 

presence of alluvial and deltaic deposits, as well as sandstone, siltstone, and shale 

formations. The alluvial and deltaic deposits in this unit are typically coarse-

grained and well-sorted, indicating depositional environments such as river and 

delta systems. The sandstone, siltstone, and shale formations in this unit are 

typically finer-grained and less well-sorted. 

e. Holocene: The Holocene unit is characterized by the presence of recent alluvial 

and deltaic deposits, as well as wind-blown sand and silt deposits. The alluvial 

and deltaic deposits in this unit are typically coarse-grained and well-sorted, 

indicating depositional environments such as river and delta systems. The wind-

blown sand and silt deposits in this unit are typically fine-grained and well-sorted, 

indicating depositional environments such as desert and coastal environments. 
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Figure 2.2 Generalized stratigraphy of the Zamzama Block (Zafar et al., 2018). 

 

2.6.1 Sembar Formation 

In the Kirthar Sulaiman Region, the Sembar Formation is the lowermost unit of 

the Cretaceous Sequence. This formation is primarily composed of shale blocks, 

interbedded with silt stone and nodular argillaceous limestone. The shale and silt typically 

contain glauconite. The formation is 133 m thick in the type of area and 262 m thick in 

the Mughalkot section. A gradational contact with the overlying Goru formation has been 

reported, though in some places an unconformity has also been noted by (Williams, 

1959). 

 

2.6.2 Goru Formation 

The Goru Formation in the Kirthar Fold Belt is primarily made up of interbedded 

limestone, shale, and siltstone. The lower part is predominantly shaly and consists of thin-

bedded, light-colored limestone interbedded with calcareous, hard, splintery gray to 

olive-green shale. The upper part is mostly thin-bedded, light-colored porcelaneous 
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limestone with subordinate shale. It grades into the overlying Parh Limestone. At the type 

locality in Goru Village, the formation has a thickness of 538 m according to (Shah, 

2009). 

 

2.6.3 Parh Limestone 

Parh Limestone is a distinctive and consistent rock formation that can be found 

extensively throughout the Kirthar Sulaiman region. The limestone is thin-bedded and 

comes in light grey, white, or cream colours, often with a characteristic pink, purple, or 

maroon interbed of variegated shales and marls. The limestone itself is hard and can be 

lithographic to porcelaneous, often appearing as flat slabs with a concoidal fracture. In 

the type area of the Parh range, the formation is 268 m thick, while elsewhere its thickness 

ranges from 300 to 600 m. It is in conformable contact with the underlying Goru 

Formation and is overlain conformably by the Mughalkot Formation, according to 

(Kazmi, 1988). 

 

2.6.4 Mughalkot Formation 

The Mughalkot Formation is a geological formation found in Pakistan. The 

Mughalkot Formation is predominantly made up of sandstone and siltstone and is 

believed to have formed during the Eocene epoch. The sandstone typically has a medium 

to coarse grain size and consists of well-sorted, subangular to rounded grains. The 

siltstone is typically fine-grained and composed of clay and silt-sized grains. The 

formation is considered to be of fluvial origin, with the sandstone representing channel 

deposits and the siltstone representing floodplain and over bank deposits. The Mughalkot 

Formation is an important source of water and minerals in the region and is also 

considered to be a potential source of hydrocarbons. 

 

2.6.5 Fort Munro Formation 

This Formation is, located in the Sulaiman Range & Toba Kakar Range. It is a 

Late Eocene to Early Oligocene age formation and is composed of sandstone, shale, and 

limestone. Due to its unique lithology and extensive range, the "Fort Munro limestone 

member" is given the distinction of a formation. The rocks in the area around Bara Nai 

in the Kirthar Province consist mostly of limestone, which display a range of colors 

including blue, cream, grey, light brown, and beige. The limestone is thickly bedded, 
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massive, and has reef-like structures in the lower section. The elevated portion of the 

limestone is sandy and contains intercalations of shale and brown-weathering sandstone 

(Williams, 1959). 

 

2.6.6 Pab Formation 

The Pab Formation is a geological formation in Pakistan that is present in the Salt 

Range and the Potwar Plateau regions. It is a part of Middle Indus Basin and is composed 

of sandstone, shale, and siltstone. The formation is believed to have been deposited in 

deltaic and lacustrine environments during the Late Cretaceous to Early Eocene time 

period. The sandstone units in the Pab Formation are typically well-sorted and cross-

bedded, while the siltstone and shale units are typically finer-grained and less well-sorted. 

The Pab Formation holds significant importance as it serves as a major reservoir for 

petroleum and natural gas resources in Pakistan, thus being regarded as a crucial 

geological formation in the country. 

 

2.6.7 Ranikot/Khadro Formation 

The primary objective of this study is to characterize this Paleocene reservoir. 

Different nomenclatures have been utilized by various operators while working on this 

key reservoir. The most common name is Ranikot Formation while some called it as 

Khadro Formation. In this study the researcher used Ranikot/Khadro Formation for this 

key reservoir under study. It is abundantly spread in Kirthar and the surrounding area. On 

the Laki Cretaceous Pab Formation, it is found unevenly. The Bara Nai area in the Laki 

Range is the designated type locality for the limestone formation. The formation's 

lowermost part at the type locality is characterized by the presence of oyster shells and 

reptile bones (Shah, 2009). 

 

2.6.8 Bara Formation 

The Bara Formation is a significant geological unit in Pakistan that is located in 

the Potwar Plateau and Salt Range region. It dates back from the Middle to Late Eocene 

period and consists of sandstone, shale, and limestone. The formation was deposited in a 

shallow marine environment and is notable for its well-preserved fossils of foraminifera, 

bivalves, and gastropods. 
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Regarding its stratigraphy, the Bara Formation is commonly subdivided into 

distinct subunits based on variations in rock type and fossil content. The lower part of the 

formation is usually composed of sandstone and shale, while the upper part is mostly 

made up of limestone and shale. 

In the Kirthar Range and surrounding regions, this formation is distributed widely 

and conformably encloses the Ranikot/Khadro Formation. The type locality is located in 

the Laki Range's Bara Nai. Shale and sandstone are scattered within the formation. The 

sandstone is cross-bedded, ripple-marked, calcareous, ferruginous, and frequently 

glauconitic, with fine to coarse grain. The thickness of beds can range from a few milli 

meters to over three meters. The shale is typically carbonaceous, mushy, and gypsiferous 

(Shah, 2009). 

 

2.6.9 Laki Formation 

The formation is often found overlying the Ranikot/Khadro Formation Group and 

is prominently visible in the southern Kirthar and Sulaiman ranges. The impart 

information is in the northern Laki Range, close to Mari Nai. The formation is made up 

of lateritic clay, marl, calcareous shale, sandstone, and cream to grey limestone (Shah, 

2009). 

 

2.6.10 Kirthar Formation 

The Kirthar Formation is situated in the Kirthar fold and thrust belt of Pakistan. 

This formation dates back to the Late Cretaceous to Early Tertiary period and comprises 

intercalated sedimentary rocks such as sandstone, siltstone, shale, and limestone. It was 

formed in a shallow marine and deltaic setting and is notable for its exceptional fossil 

preservation, including ammonites, foraminifera, and bivalves. Moreover, the Kirthar 

Formation is an important source of groundwater in the region, providing water for 

various purposes, especially for irrigation. 

The Kirthar Formation is widely distributed in the Kirthar region and can be 

traced to the Waziristan and Suleiman areas of Pakistan. It conformably overlies the Laki 

Formation in the Kirthar range and the Ghazij Group in other locations. The formation 

primarily consists of fossiliferous limestone, interspersed with shale and marl. The 

limestone ranges from grey to white, is thickly bedded to massive, and exhibits nodules 

and localized algal formations. The thickness of the formation varies considerably, 
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ranging from 15 to 30 m in the western Kirthar range to as much as 1270 m in the Gaj 

River type section (Shah, 2009). 

 

2.6.11 Nari Formation 

The Nari Formation is widely exposed in the Kirthar and Sulaiman regions, with 

scattered outcrops present in tectonised thrust blocks of the Balochistan Ophiolites and 

thrust Belt. In the Kirthar province, it conformably overlies the Kirthar Formation, except 

in the Hyderabad anticlinorium, where it unconformably overlies the Kirthar and Laki 

Formations. The type section of the Nari Formation is situated in the Gaj River Gorge in 

the Kirthar Range. The thickness of the formation varies from 1045 m to 1820 m in the 

Kirthar area (Shah, 2009). 

 

2.6.12 Gaj Formation 

The Gaj Formation is a geological formation in Pakistan. It is a late Miocene to 

early Pliocene age formation composed of sandstone, siltstone, and claystone. The Gaj 

Formation was deposited in a fluvial environment and is known for its well-preserved 

fossil record, including the fossils of mammals, reptiles, and plants. The sandstone units 

in the Gaj Formation are typically well-sorted and cross-bedded, with high porosity and 

permeability. These sandstone units have the potential to act as reservoir rocks for 

hydrocarbons, although the Gaj Formation is not considered to be a major source of 

petroleum in Pakistan. 

However, in the southern portion of the Kirthar Range near Karachi, the Nari 

Formation mainly comprises yellow to brown sandstone and cream-colored or pinkish-

white argillaceous limestone. The thickness of the formation varies from around 90 m in 

Quetta to 600 m in the Kirthar area (Shah, 2009). 

 

2.6.13 Siwaliks Formation 

The Siwalik Formation is a sedimentary rock formation located in Pakistan and 

is part of the Siwalik Group. The group consists of a series of sedimentary rocks that were 

deposited during the Neogene period, spanning approximately 23 to 2.6 million years 

ago. The Siwalik Formation is primarily located in the northern region of Pakistan and 

comprises alternating layers of sandstone, conglomerate, shale, and siltstone. 



34 

  

Siwalik Formation was formed by the deposition of sediments in large alluvial 

fan systems that originated from the rising Himalayas. The sediments in the Siwalik 

Formation are typically well-sorted and contain abundant fossils, including those of 

mammals, reptiles, and plants. The fossils in the Siwalik Formation have provided 

important information about the evolution of life in the region and the environmental 

conditions that existed during the Neogene period. 

 

2.7 Petroleum System of Zamzama  

The Southern Indus Basin is a recognized hydrocarbon producing province. The 

proven reservoirs in the basin are the clastics of Cretaceous (Lower Goru and Pab 

Formation) and Palaeocene (Ranikot/Khadro) Formations, which have been charged by 

Lower Cretaceous source rocks. 

 

2.7.1 Source Rock 

Early Cretaceous fine-grained basinal shales representing distal undifferentiated 

time equivalents of the Sembar and Goru deltas are interpreted to be the source rock 

section that provides gas to the Pab Formation reservoir. 

Source rock is more than 6 km deep in Kirthar foredeep. Goru/Sembar basinal 

shales are mixed type II/III gas prone kerogen. They have good total organic carbon 

(TOC) values of 1-2 % occasionally 4 %. HI is generally <150 mg/g. 

 

2.7.2 Reservoir Rock 

The primary hydrocarbon reservoir in the Kirthar Fold belt is formed by the late 

Cretaceous age Pab Formation, and it also serves as the primary reservoir for the 

Zamzama and nearby Bhit gas fields. The gas is also present in the sandstones of the 

overlying Ranikot/Khadro Formation, which is of Palaeocene age. The Pab Formation, 

around 220 m thick in the Zamzama area, is part of a sand-rich fluviodeltaic, coastal 

plain, and shore face depositional system at a regional scale. The Pab Formation exhibits 

moderate porosity and permeability (around 8% and 150 mD, respectively) with a Net-

To-Gross (NTG) of approximately 60%. 

The Ranikot/Khadro Formation is secondary reservoir in Zamzama Gas Field. It 

is generally around 54 m gross thick and heterogeneous with poor sandstone development 
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in the upper part of the formation (NTG c. ~10-15%). Permeability in the Ranikot/Khadro 

Formation is severely affected by digenetic alteration of volcanoclastic components. 

 

2.7.3 Top Seal and Cap Rock 

The marine shales of the Girdo (Ranikot/Khadro) Formation act as the top seal 

for the Ranikot/Khadro Formation and Pab Formation reservoirs. The main thrust fault 

extends close to surface and clearly seals, otherwise the Pab Formation reservoir would 

not contain gas. There does appear to be fault leakage when permeable facies are 

juxtaposed against permeable facies. Major source, reservoir and seal rock of Zamzama 

is presented in Table 2.1. 

 

Table 2.1: Petroleum play of the Zamzama Block. 

Play Elements Formations Age 

Seal Ranikot/Khadro Formation Paleocene 

Reservoir Pab Formation  Upper Cretaceous 

Source Sembar Formation Lower Cretaceous 

 

2.8 Generalized Stratigraphy of Mehar Block 

The Mehar block is located in the western part of the Kirthar Foredeep, which is 

a sub-basin of the Lower Indus sedimentary basin. Sediments between Triassic to present 

age are exposed at various places. Sedimentation in this part of the fold belt commenced 

during the Paleozoic. This is recognized in Kalat, Wulgai and Ghazaband areas where 

Permo-Triassic boundary has been observed and documented by the hunting survey 

corporation 1960. In the study area the oldest sediments recorded belong to the Permian, 

but these sediments are never drilled by any well. Magnetic data of the study area indicate 

several basement highs and lows. Although the exact nature of the sediments overlying 

the basement is not known, it may be assumed that it is overlain by Paleozoic sediments 

(Abbasi et al., 2016). 

The study regions stayed active tectonically and consist of various phases of syn-

rift and post-rift sedimentation since Triassic time. Oldest recognized stratigraphic units 

are open marine shales and limestones of Triassic Wulgai Formation, which might be 
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considered the first syn rift deposition in area of interest. At the end of Triassic, the 

Wulgai Formation was uplifted and eroded, followed by another phase of syn rift 

sedimentation in the Early Jurassic, resulting in the deposition of the Shirinab Formation. 

There are three member of Shirinab Formation Jurassic age, named as Spingwar, Loralai 

and Anjira. Syn-rift deposition of Shirinab Formation started with the deposition of 

fluvial sandstones and shoreface and inner carbonates shelf of the Spingwar Member, 

covered by limestones and shales of the Loralai and Anjira members (Ahmad et al., 

2013). 

In the period of Middle Jurassic, the accommodation space reduced probably due 

to a fall in relative sea level or basin subsidence which create a space for deposition of 

Chiltan Formation. Deposition of Chiltan Formation remained followed by an uplift and 

erosion in the period of early Cretaceous, which similarly terminated syn-rift 

sedimentation phase. The Spingar sands are considered primary reservoir target where 

Chiltan Formation is exposed on the surface, whereas Chiltan Formation is primary target 

in some parts of Khuzdar and south Khuzdar areas (Abbasi et al., 2016). 

Fluvial systems and Marginal marine predominate in far eastern side of basin 

throughout the Early Cretaceous, depositing Sembar Formation shoreface sands and 

fluvial channels. Along through entrance of turbidites in front portion of the Kirthar Fold 

Belt, marine conditions occurred foredeep. In initial Cretaceous age, a restricted marine, 

anoxic environment occurred during the accumulation of the Sembar Formation that 

might be a more productive source rock in the Kirthar Fold Belt as well as in Lower and 

Central Indus basin (Abbasi et al., 2016). 

    Throughout the Middle Cretaceous, the transgressive-regressive cycles 

continued, depositing Lower Goru Formation shoreface sand in east section of Indus 

Basin. Only thin turbidites were transported to the basin floor through strong channels in 

the Kirthar Foredeep and Fold belt. Only carbonate and shale of marine deposit from the 

Goru Formation, mud, and carbonated calcite from the Parh Formation have been 

accumulated in Kirthar Fold belt and Foredeep since the research area was too far from 

the input sources (Bannert and Raza, 1992). 

In the Late Cretaceous, the Kirthar Foredeep and frontal sections of the fold belt 

experienced an influx of sand-rich turbidites from the southeast due to the uplift of the 

Indian Shield. Until the early Paleocene, continued raising of the shield generated shallow 

marine conditions in the frontal area of the Kirthar Fold Belt, which favored accumulation 

of near surface marine and sands of fluvial deltaic environment in Ranikot/Khadro 



37 

  

Formation and Pab Formation. Middle and Late Cretaceous layers were extensively 

eroded in east side of the Indus Basin, resulting in base Tertiary unconformity that covers 

the whole basin. A flooding episode occurred during the early Paleocene, depositing thick 

Ranikot/Khadro Formation shale in the Kirthar Foredeep and Fold Belt. This interval was 

observed with a fall in ocean stage and then rise through late Paleocene, permitting 

precipitation of carbonates of Dunghan in Kirthar Folded belt (Kazmi and Jan, 1997). 

In the west Kirthar, Dunghan carbonate are primary target in the Kalat and 

Margand area (North Kalat) where these are most likely composed of slope facies as the 

shelf edge is probably marked in the immediate northeast of the study area. Regional 

flooding was occurred throughout the basin during the Eocene, resulting in the deposition 

of thick shale from the Ghazij Formation, as well as limestone in shallow platform 

settings at highs (e.g., Khairpur Jacobabad High). The Indo-Pakistan Plate's strike with 

the Afghan Plate through the Oligocene resulted in the closure of the West Kirthar basin 

to sediment deposition. This led to the formation of isolated basins where deposition 

continued until the Quaternary period, as reported by (Kazmi and Jan, 1997). 

 

2.9 Petroleum system of Mehar block 

The petroleum system of Mehar Block is considered as on the key petroleum 

systems surrounding KFTB as briefly explained as below with major elements.  

 

2.9.1 Source Rock  

The northwest rim of Kirthar was the first proof of hydrocarbons in the Lower 

Indus Basin, and it predicted deep oil seeps. The Tajedi, Tando Alam, Khaskeli, Laghari, 

Dhabi and the Golrachi gas fields were discovered in Lower Goru sandstone. The Sari 

Song, Hundi, and Kirthar gas fields were discovered in Paleocene sandstone, while gas 

condensate was found in the late Eocene Laki Formation near Mazarani (Sultan and 

Gipson Jr, 1995). 

As a result, production, movement, and accumulation of hydrocarbons must 

followed in Lower Indus Basin. Broad research show the Sembar Formation of late 

Cretaceous age is the vital hydrocarbon generating source rock which is organic rich 

shales deposited in shelf marine environment in this region and other areas of the Indus 

Basin (Kazmi and Jan, 1997). 
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2.9.2 Reservoir Rock  

The Lower Goru Formation, which is of early Cretaceous age, is a significant 

producing reservoir. The principal reservoir of Mehar blocks found in the Pab Formation 

and Lower Goru formations is deltaic and shallow-marine sandstones with beds of shale. 

Based on such layers, the Lower Goru is divided into upper, middle, and basal and 

massive sands. Reservoir quality disintegrates as you travel west, while reservoir 

thickness increases (Khan et al., 2016). 

 

2.9.3 Seal Rock  

The system's known seals are made up of shales interbedded in (Lower Goru 

Shales) and overlaying (Upper Goru Shales) the reservoirs. Thin beds of shale are 

consisted of variable thickness are also acting as good seals in many producing fields 

(Alam et al., 2003). There is very thick sequence of shales and marl overlying the Sawan 

reservoir sands which act like local seal. Shales present in Goru Formation similarly 

behave as base and horizontal seal (Jadoon et al., 2020). 

 

2.9.4 Trap 

Trap is an essential part; without it the hydrocarbon petroleum play would be 

incomplete. The movement of hydrocarbons is stifled and sealed by impermeable rocks. 

The Zamzama structure, which is north-south trending, is a massive structure (thrusted 

anticline) that leans east, making it a big trap (Jadoon et al., 2020). The major elements 

of the Mahar Block are enlisted in Table 2.2. 

 

Table 2.2: Petroleum play of Mehar Block. 

Play Elements Formations Age 

Seal Upper Ranikot/Khadro  Paleocene 

Reservoir 
Pab Formation /Lower 

Ranikot/Khadro 
Late Cretaceous/Paleocene 

Source Sembar Shales Early Cretaceous 
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2.10 Regional Correlation of the Study Area 

The regional petroleum system covering the areas surrounding the KFTB is 

presented in Table 2.3. The key source, reservoir, seal and traps along with their ages are 

shown. The petroleum system is producing in many major fields including Bhit, Bhadra, 

Haleel, Mehar, Mubarak, etc. The study area comprising the two fields including Mehar 

and Zamzama Gas Fields focusing on the Paleocene reservoir Ranikot/Khadro 

Formation. 

 

Table 2.3: Petroleum Play of the study area (Zafar et al., 2018). 

Age Source Rocks/Formation Reservoir 

Rocks/Formation 

Seal Rocks/Formation 

 

 

Eocene 

Kirthar (Limestone/ Shale) Kirthar (Limestone) Kirthar/Laki (Shale) 

Laki/Ghazij (Limestone/ 

Shale) 

Laki/Ghazij 

(Limestone) 

Ghazij (Shale) 

 

   

Paleocene 

Lakhra (Shale) Lakhra (Sandstone) Lakra/Bara (Shale) 

 Ranikot/Khadro 

Sandstone 

Ranikot/Khadro shale 

Bara (Shale) Bara (Sandstone) Ranikot/Khadro (Shale) 

 

 

Cretaceous 

Mughalkot (Limestone) Pab (Sandstone) Mughalkot (Shale) 

Goru (Shale) Goru (Sandstone) Goru (Shale) 

Sembar (Shale) Sembar (Sandstone) Sembar (Shale) 

 

The regional correlation is constructed between Mehar-01, 02, 03, and Zamzama-

08-ST2, 04-ST3, 07, 05, 03, based on gamma ray (GR) and Sonic Compressional Wave 

(DT) logs (Figure 2.3). The main aim is to assess the depth variations of Paleocene 

reservoir Ranikot/Khadro Formations along with the sand’s depictions based on low GR 

and high DT logs. The complete suite of Mehar-01 and Mehar-02 is available that is 

utilized further in petrophysical properties estimation while Mehar-03 has limited logs. 

Similarly, all of the Zamzama wells (Zamzama-02, 03, 04, 05, 06, 07, and 08) have basic 

suit of logs therefore all the wells are employed in the processes including, petrophysics, 

elastic, and their mutual petro-elastic relationship.  
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Figure 2.3 Well correlation connecting wells of Mehar and Zamzama Blocks based on GR and DT sonic logs. 

  

4
0
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2.11 Summary  

The chapter comprised of the geologic and tectonic of the Mehar and Zamzama 

gas fields. The fields are present in the KFTB of the Lower Indus Basin which is 

significant for many of the major gas producing fields of Pakistan. Tectonically, anticline 

is cut by major thrust fault in north-south direction along with the sub-thrust in the similar 

orientation. The lateral ramps connecting the hanging and footwall caused differential 

water encroachment and pressure depletions in the gas producing wells. A valid 

petroleum system is present in the fields i.e., Mehar gas field (seal: Upper 

Ranikot/Khadro, reservoir: Pab Formation/Lower Ranikot/Khadro, source: Sembar 

Sahle) and Zamzama gas field (seal: Ranikot/Khadro, reservoir: Pab Formation, source: 

Sembar shale). The latest and robust ML techniques are employed in the recent times for 

improving the frequency contents that enable the illumination of below resolution beds 

and captured the heterogeneities. The study is focused to implement the latest techniques 

to assess the Ranikot/Khadro Formation for its thickness issues along with its 

heterogeneities. The pressure depletion needs to be evaluated by much reliable, non-

linear relationships of ML, therefore a novel approach for PP prediction is to be 

employed. 
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CHAPTER 3  

RESEARCH METHODOLOGY 

With the advent of technology and advancement in the computational world, 

today researchers are incorporating new algorithms to help solve key real-life challenges 

which were not thinkable couple of decades back. Statistical techniques have allowed to 

analyze subsurface in a manner which allows estimations of potential reservoirs facies 

which were not possible using conventional techniques. Furthermore, integration of big 

datasets over statistical approach via ML made it possible to minimize uncertainties 

associated with high success probabilities of discovering reservoirs with their true 

potentials.  

 

3.1 Research Approach 

Implementation of advanced geophysical interpretation techniques over a 

geologically complex reservoir has become a norm in the industry. Advancements in 

technology and algorithms have allowed geophysicists to analyze regions that were 

impossible to image and interpret a decade back. However, such advanced algorithms 

were based on sophisticated statistical techniques, which require intense computation 

power to execute to obtain reliable results. In this study, an optimized approach is devised 

to help address the problem statement, thereby, for the same, and elaborated workflow 

shown in Figure 3.1 which highlights the integral steps opted to successfully accomplish 

this study and a flowchart outlines the core workflow of supervised ML utilized here. The 

process starts with a dataset containing both the independent variables (input features) 

that the model will analyze and the dependent variables (target variables) that we aim to 

predict. The raw data undergoes a crucial step called feature engineering, where relevant 

features are selected, transformed, or even newly created to optimize the model's ability 

to learn patterns. Next, a portion of the data, known as the training set, is used to train the 

model. During this training phase, the model essentially learns the relationships between 

the input features and the target variables. The model's performance is then evaluated on 

a separate, unseen portion of the data called the testing set. This evaluation ensures the 

model can generalize its knowledge and doesn't simply memorize the training data. 

Finally, if the evaluation is satisfactory, the trained model can be used for prediction. In 

the prediction stage, the model takes entirely new, unseen data as input and makes 

predictions for the target variables based on the relationships it learned during training. 
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Figure 3.1 Systematic flow of the adapted step wise approach to perform the research along with the input 

data set. 

 

3.1.1 Petrophysics 

The objective of petrophysics is to assess the reservoir characteristics more 

reliably with the benefit of making the right decisions regarding drilling operations based 

on the data gathered, completion, and testing. It provides the necessary parameters that 

enable more realistic models of reservoirs, i.e., static model. Overall, the petrophysicists 

has a significant role for the success of wells and bridges various fields operation such as 

production geology, production technology, reservoir engineering, and exploration 

seismology. The rock’s physical and chemical characteristics are analyzed during 
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petrophysics as well as the fluids within the rock pores. The petrophysical properties are 

estimated by employing the well logs, while they can also be estimated in the laboratory 

by the core data as well. The petrophysics analysis retrieves both qualitatively and 

quantitatively properties quite remarkably. The volumetrics, such as water and 

hydrocarbons, the presence of shale, the identification of source rock, and the aquifer 

quantities, can be attained by the relationships among the properties obtained from 

petrophysics. The properties attained are of keen interest for petroleum engineers, 

geologists, geophysicists, and core analysists. 

Many times the seismic data becomes unable to explain various questions in 

geophysics regarding zone of interest (MacGregor and Andreis, 2012). The petrophysics 

is the study that employed variety of dataset including well logs, cores, and production 

data to obtain more realistic physical properties by integrating all the available data. The 

approach is majorly concerned with hard constraint data of well bore at a certain location 

therefore having not much reliance on seismic. The key reservoir characteristics included 

saturations, permeability, porosity, net pay thicknesses, shale volumetrics, and the 

contacts between fluids. Nowadays, the comprehensive assessment of reservoirs is made 

by carefully selecting the wireline suits for interpretation that optimize the accuracy in 

saturations, porosity, lithologies, permeability, etc.  

Primarily on evaluating the advanced ML-based models to determine the 

reservoir's petrophysical characteristics and thus build a locally validated petrophysical 

model that can be employed in future wells with good data quality control. The novel 

approach uses two wells to predict the petro-physical properties precisely and accurately. 

Several ML algorithms are used to identify the best model for accurate interpretation of 

well logs at different well locations. One-class-SVM and tree-based approaches are 

employed to analyze and quantify the uncertainties associated with borehole log data. 

ML-based algorithms such as RF and Tree-based Regression have been employed to 

estimate the reservoir properties. The heat map of ML algorithms performance has helped 

to identify the best model for accurate predictions of blind wells. Based on the statistical 

performance metrics, it was determined that the Extra Trees Regressor performed 

exceptionally well in the estimation of volume of shale and porosities as compared to 

conventional methods. This is attributed to its ability to effectively model reservoir 

properties by properly identifying patterns in the training data. Our results indicate that 

amongst tree-based regressions, the Extra trees regressor and RF are superior in terms of 

accuracy and reliability in reservoir properties prediction. The applicable ML algorithms 
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have successfully overcome the limitations of conventional methods, such as 

generalization and data range, for petrophysical prediction without the need for extensive 

use of geological or lithological characteristics of the reservoir formation with time 

efficient approach and optimized results. 

The primary objective of this research is to determine the most optimal ML model 

for efficient quality control of well log datasets and accurate prediction of petrophysical 

properties and a good comparative analysis with the conventional techniques of 

petrophysical interpretation. ML algorithms can generally be classed into supervised 

learning, unsupervised learning, and reinforcement learning. 

In this case study, an unsupervised ML approach was applied in order to identify 

the outliers. Outliers are data points usually called noise that do not fit within the data 

set's normal statistical distribution. Measurement errors, poor data acquisition methods, 

washed-out boreholes, or problems with tools and sensors can all lead to outliers, causing 

our results to be skewed. Here, several algorithms such as least squares support vector 

machines (LSSVM), isolation forest, minimum covariance, etc. were employed on the raw 

logs to calibrate the appropriate model for outlier identification and removal. The One-

Class SVM was chosen as the best outlier identifier because it removed the appropriate 

(not less, not much) number of outliers. After detecting the outliers, supervised 

algorithms such as Gradient Boosting, Extra Tree Regression, RF, Ada Boost etc. were 

used to train the inliers and predict the outliers (Chen et al., 2020). The washout zones 

affected raw well logs have been corrected via supervised ML algorithms. In the case of 

the washout zone affected density log, ETR predicts the density log, while the GBR 

predicts the missing DT log in the case of the splice zone affected DT log. Furthermore, 

the petro-physical properties like the volume of shale, effective porosities, and water 

saturations are predicted via raw logs after quality control through integrated approach 

by utilizing both unsupervised and supervised ML algorithms. The performance of others 

ML algorithms has been outdated by the ensemble (ETR and GBR) ML algorithm’s 

performance at this step (Gültekin et al., 2019). 

 

3.1.1.1 Marking Zone of Interest 

There are three important criteria that are demonstrated to recognize the zone of 

interest in a reservoir.  
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First criteria is to analyze the value of GR. It is one of the important factor that is 

used for prediction of hydrocarbons zones. A lower value of the GR shows the presence 

of clean lithology, which is the characteristic of the excellent reservoir. If the GR value 

is high in a certain zone then it cannot be marked as a clean/sand/hydrocarbon bearing 

zone (Khan et al., 2021).  

Second criteria is the identification of good porous zone which can be highlighted 

by the crossover between the neutrons and density log for identifying the area of 

hydrocarbon. The reservoir's porosity is determined with neutron and density log data. If 

both the neutron and density values continue to decrease, the crossover with both logs 

decreasing is obtained, indicating the presence of the hydrocarbon zone (Ali et al., 2019). 

Third criteria is the evaluation of resistivity log (RES). The RESs are significant 

because it reflects the presence of a reservoir filled with hydrocarbons that depend on 

electrical resistivity. There are three valuable RES logs known as Laterolog Shallow 

(LLS), Laterolog Deep (LLD) and Micro Spherical Focused Log (MSFL). If the LLD is 

greater than LLS and LLS is greater than MSFL in a certain zone than it shows the 

presence of hydrocarbon. In other word there should be a segregation among the LLD 

and LLS for existence of hydrocarbon. If there is no separation between them, that area 

may hold water (Ahmed et al., 2022). 

 

3.1.1.2 Calculation of Volume of Shale (VSH)  

The shale volume is computed from GR log data. The amount of natural 

radioactivity in the formation influences the GR log value. Because shale contains many 

radioactive materials, it has a high value of GR log. 

 

Shale volume can be estimated by using the method (equation 3.1) (Rider, 1986)  

𝑽𝑺𝑯 =
𝑮𝒓𝒍𝒐𝒈−𝑮𝒓𝒄𝒍𝒏

𝑮𝒓𝒔𝒉𝒍−𝑮𝒓𝒄𝒍𝒏
                           (3.1) 

Where, 

VSH     = Volume of shale. 

Gr log = Value of GR at interested depth.  

Grcln = Minimum GR value (Generally an average lowest value GR log). 

Grshl = Maximum GR Value (Generally an average highest value of GR log). 
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3.1.1.3 Estimation of Volume of Clean (VCL) 

The formula in equation 3.2 is used for calculation of clean volume (Rider, 1986) 

𝑽𝑪𝑳 = 𝟏 − 𝑽sh                                 (3.2) 

 

3.1.1.4 Calculation of Porosity (Ø) 

Porosity with the help of density can be calculated with the help of density log. 

Following formulation (equation 3.3) is used to evaluate porosity (Schlumberger, 1974). 

 

𝜱 =
𝝆𝒎 – 𝝆𝒃

 𝝆𝒎 – 𝝆𝒇
                (3.3) 

Where, 

ρm = Density of matrix. 

ρb = Formation bulk density. 

ρf = Fluid Density.  

Ф = porosity of rock. 

3.1.1.5 Estimation of Neutron Porosity (NPHI) 

The NPHI value is brought straight from the neutron log, which goes 

corresponding to the density log. 

 

3.1.1.6 Estimation Average Porosity (APHI)  

The total number of pores present in a rock is referred to as its porosity. These 

pores are a critical component of the reservoir for hydrocarbon buildup. The APHI is 

calculated using the density and neutron log values. The APHI of a reservoir is computed 

applying the formula given below (equation 3.4)  (Rider, 1986). 

𝑨𝑷𝑯𝑰 =
𝑵𝑷𝑯𝑰+𝑫𝑷𝑯𝑰

𝟐
    (3.4) 

 

3.1.1.7 Estimation of Sonic Porosity (SPHI) 

Sonic log is used for calculation of porosity. Need of SPHI can be used when the 

condition of bore hole is too much bad. So, the sonic log is only log that helps to know 

about correct porosity. The formula in equation 3.5 of calculation of SPHI (Rider, 1986). 

SPHI =
𝜟𝒕−𝜟𝒕 ma 

𝜟𝒕𝒇𝒍𝒅- 𝜟 tma 
      (3.5) 
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Where, 

Δt = sonic log values (μs/feet). 

Δtma = matrix travel time (μs/feet). 

Δtfld = fluid travel time (μs/feet). 

 

3.1.1.8 Estimation of Effective Porosity (PHIE) 

Fraction of connected pore spaces in relation to the bulk volume is known as 

PHIE. The PHIE is a parameter utilized in computations as it characterizes the 

interconnected pore spaces that comprise of recoverable hydrocarbon fluids. PHIE is 

computed using the equation 3.6 (Kamel and Mohamed, 2006). 

If condition of borehole is good 

𝑷𝑯𝑰𝑬 = 𝑨𝑷𝑯𝑰 ∗ 𝑽𝒄𝒍𝒏  (3.6) 

Use equation 3.7 if condition of borehole is bad (Caving), 

𝑷𝑯𝑰𝑬 = 𝑺𝑷𝑯𝑰 ∗ 𝑽𝒄𝒍𝒏   (3.7) 

As our zones of interest have undergone caving, so PHIE is calculated using sonic 

log porosity. 

 

3.1.1.9 Resistivity of water (Rw) Calculation 

Resistivity of water (Rw) is calculated with help of Pickett plot method. Pickett 

plot method represent deep resistivity on x-axis and porosity log on y-axis. The plot is 

based on the logarithmic of Archie equation. Water Saturation points (SW) will be plotted 

on a straight line with a negative slope of value m. The lower most line on the plot is 

defined by water zones. The Rw may be estimated from a location on the line because SW 

= 1. Other parallel lines with different SW can be drawn once the water line is formed, 

assuming a constant n (usually 2). Then, in terms of SW, other data can be plotted and 

evaluated. The Pickett plot is used to estimate the resistivity of water Ranikot/Khadro 

Formation. The Ranikot/Khadro Formation resistivity is estimated to be 0.076 ohm-m. 

 

3.1.1.10 Saturation of Water  

Sw refers to the amount of water in a formation that is not equal to the amount of 

hydrocarbon present. SW denotes the saturation of water. It's computed by adding 1 by a 

SW. In our case Archie equation 3.8 is used for calculation of saturation of water.  
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𝑺𝒘 = √
𝒂×𝑹𝒘

𝑹𝒕×𝑷𝑯𝑰𝑨𝒎

𝒏
    (3.8) 

SW = Saturation of Water. 

a = Tortuosity factor. 

m = Cementation factor. 

n = Saturation exponent. 

Rw = Resistivity of formation and water. 

PHIA = Average porosity 

 

3.1.1.11 Well Data Quality Control 

Quality control is necessary for accurate interpretations of well logs. Since well 

logs contain uncertainties that need to be removed through conventional methods or ML 

methods. Through unsupervised ML algorithms and supervised ML algorithms, the 

quality control of the well logs is performed for accurate interpretation of well logs.  

3.1.1.12 Outliers Identification and Removal through Unsupervised ML algorithm 

Unsupervised learning is a type of ML algorithm that operates on data without 

requiring explicit labels or supervision. Unsupervised learning algorithms are employed 

to find underlying or hidden patterns in the data that are difficult to notice. It includes 

clustering algorithms, or dimensionality reduction algorithms, which project high-

dimensional data onto a lower-dimensional space while preserving as much of the 

original structure as possible. The detail unsupervised ML algorithm is depicted in Figure 

3.2. There are several unsupervised algorithms such as One-Class SVM, K-means, 

Principal component analysis (PCA) etc. (Ghahramani, 2003; Dreiseitl et al., 2010; 

Alloghani et al., 2020 ; Batta et al., 2022). 
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Figure 3.2 Unsupervised learning approach inputs the data, recognized the data patterns after its training 

and evaluation and finally predict the objective features (Batta et al., 2022). 

 

3.1.1.12.1 One Class SVM 

One-Class SVM is an unsupervised learning technique used for novelty detection 

or identifying instances that are significantly different from the majority of the data. The 

basic aspect behind One-Class-SVM is to minimize the hyperplane of the specific class in 

the training data and to consider all other samples outside of the hyperplane to be outliers 

or outside the distribution of the training data. Positive numbers are treated as class +1, 

while negative integers as class -1. Samples in the training dataset are always taken as 

positive (Küçükdemirci and Sarris, 2022). 

In this case study, different well logs such as GR, Bulk Density Log (RHOB), 

NPHI, sonic (DT) and RES specifically LLD were taken to visualize the presence of 

outliers using the Pair-Plot method. The red circles show the presence of outliers, which 

can affect the petrophysical interpretation of the well logs.  

 

3.1.1.13 Splice Zone Identification and Removal through Supervised ML algorithms 

Supervised learning is the most prevalent machine-learning task. It learns a 

function that relates an input to an output using sample input-output pairs. It derives a 

function from labeled training data, which consists of a set of training instances as given 

in Figure 3.3. Classification and regression are the two subtypes of supervised learning. 
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Based on the data used to train the model, classification tasks convert discrete input 

values to output categories or labels (e.g., facies classification, reservoir rock typing). 

Regression models translate the input data to a continuous numerical output (e.g., 

continuous reservoir properties prediction) (McDonald et al., 2021). There are several 

supervised learning algorithms such as DTR, SVM, RF, BT etc. (Batta et al., 2022; 

Kotsiantis, Zaharakis and Pintelas, 2007; Caruana and Niculescu-Mizil, 2006). 

 

 
Figure 3.3 The generalized diagram representing the workflow of supervised ML approach. Input the data, 

train the algorithm based on provided features then classify it and predict the new/unknown data (Batta et 

al., 2022). 

 

3.1.1.14 Washout Zones correction through Supervised ML algorithms 

The logs normal data range is distributed in many loosely or poorly cemented 

sedimentary formations along with other conditions prevailed during wells boring. These 

scenarios create the well bore abnormality in size and hence creating the washout zones. 

The washout zones of all the wells are corrected via supervised ML algorithms. The raw 

logs are brought to their normal ranged according to the lithological characteristics.  

 

3.1.1.15 Advanced ML Methods 

Petrophysics is a crucial discipline for determining the characteristics of 

reservoirs and developing new fields. Improved drilling efficiency, data repair, reservoir 

property prediction, reservoir rock type, and other petrophysics-related tasks have all 
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benefited from the use of ML (Banas et al., 2021; Akkurt et al., 2018). The integrated 

workflow based on the advance ML technique for the prediction of petrophysical 

properties is depicted in Figure 3.4. 

 

Figure 3.4 Integrated workflow using ML techniques for the prediction of petrophysical properties. 

 

3.1.2 Seismic Data Interpretation 

Seismic data interpretation is important in the field of geophysics and geology 

because it allows us to gain insight into the subsurface of the Earth. Seismic data is 

collected by sending sound waves (or seismic waves) into the ground and measuring the 

response of these waves as they bounce off different layers of rock and sediment. It 

involves analyzing these measurements to create images of the subsurface structure of 

the Earth. This can help geoscientists to understand the location and characteristics of 

different rock formations, faults, and other geological features that may be important for 

a variety of applications, including exploration for oil and gas and mineral exploration. 

The seismic surveying approach is undoubtedly the most employed geophysical 

hydrocarbon exploration technique. This is primarily because it can detect subsurface 

structure that range in size from small to large (Björk et al., 2010). The basic aim of 

seismic interpretation is the consistent characterization of geology, and all aspects of 

interpretation work towards this objective. Refraction seismic data interpretation must be 

correct for oil and gas exploration to be effective (Herron, 2011). 
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3.1.2.1 Workflow for Seismic Interpretation 

Following workflow is adopted for completion of conventional seismic 

interpretation (Figure 3.5). 

 

Figure 3.5 Workflow adopted for Conventional seismic interpretation. 

 

3.1.2.2 Loading of Seismic Data 

A 3D seismic data cube in SEG Y format for the Zamzama Gas Field is utilized 

in the present study. The data is loaded into Discovery Geographix 2019.4 using SEG Y 

headers for inline and cross line loading. For this study, a fifteen-square-kilometer 3D 

seismic cube of the Zamzama Block is provided among its seven wells, i.e., Zamzama -

02, Zamzama-03, Zamzama-04, Zamzama-05, Zamzama-06, Zamzama-07, and 

Zamzama-08-ST-2. Also, the well data sets of Mehar-01 and Mehar-02 are employed in 

the interpretation using their log curves. The integrated workflow comprises all the 

available data sets utilized for the identification of litho-stratigraphic units as well as 

seismic tie correlations. 

3.1.2.3 Base Map 

After seismic and well data loading is complete, the base map of the given seismic 

cube of Zamzama 3D along with its wells is generated whereas Mehar wells are outside 

of this 3D seismic cube. The base map shows the orientation of the overall grid. In the 

3D cube, there are two types of lines: one is known as an inline, and the other is a cross 

line. The Cross lines start from 40 to 300, and the In lines range between 350 and 650 

shown in Figure 3.6. The orientation of inlines is from east to west, and for a cross line, 

the orientation is from north to south. 

Seismic Data 
Interpretation

Loading of 
seismic 

data
Base Map

Synthethic 
Seisogram

Fault & 
Horizan 
Marking

Time 
Contour 

Map

Velocity 
Anaysis

Depth 
Contour  

Map



54 

  

 
Figure 3.6 Extents of 3D seismic cube of Zamzama Gas Field with available wells of Zamzama (inside 3D 

seismic cube). 

 

3.1.2.4 Generating Synthetic Seismogram 

A synthetic seismogram is a 1-D forward model of acoustic energy that travels 

through the earth's horizons and has an acoustic impedance contrast. The synthetic, using 

Zamzama wells, was created by the merging of earth reflectivity series that were obtained 

from the logs such as sonic and density. The wavelet required for synthetic generation 

was extracted using 3D seismic cube of Zamzama. The degree of correspondence 

between a seismic section and a synthetic seismogram is dependent on the quality of well 

log data. DT and density (RHOB/ROHZ) logs are required to produce a synthetic 

seismogram. Before marking the horizons, a synthetic seismogram of the given wells is 

generated (Hampson et al., 2001). 
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For a well to seismic tie, a seismogram is required. Therefore, sonic and density 

logs from the Zamzama-03 and 05, along with their GR logs as references, are employed 

in well to seismic correlation. The seismic data traces surrounding the wellbore were used 

to form a wavelet, which was then convolved with the impedance log generated from the 

well's sonic and density logs to produce a final synthetic seismogram. After that, the 

synthetic was compared to the seismic data, and changes were performed using shift and 

stretch. The well-to-seismic relation was completed once the nature of synthetic and 

seismic data were matched, and work moved on to the next phase, which was the selection 

of horizons using the time depth chart correlation produced during the tie. 

The synthetic seismograms based on Zamzama-03 and Zamzama-05 are 

displayed in Figure 3.7 and Figure 3.8, respectively. The Figure 3.7 demonstrations that 

the time of Ranikot/Khadro Formation is 2195 msec in Zamzama-03 and Figure 3.8 

demonstrate the time of Ranikot/Khadro Formation that is 2125 msec for Zamzama-05 

well. 

 

3.1.2.5 Seismic to Well Tie 

The synthetic seismogram creation and execution of seismic to well tie is due to 

the reason of marking the exact reflector of horizons on the seismic section. Figures 3.7 

& 3.8 show the exact location of formations after the accomplishment of well to seismic 

ties, along with extracted wavelets, their amplitude, and the correlation coefficient. 

Therefore, the targeted formations, i.e., Ranikot/Khadro Formation, Pab Formation, and 

Fort Munro, are marked at their corresponding times throughout the seismic data of the 

research area. 
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Figure 3.7 Synthetic seismogram based on Zamzama-03 along with correlation co-efficient, wavelet and amplitude spectrum. 
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Figure 3.8 Synthetic seismogram based on Zamzama-05 along with correlation co-efficient, wavelet and amplitude spectrum. 
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3.1.2.6 Marking of Fault and Horizons 

Following the ties, the marking of the concern reflector is initiated, that is in 

correspondence with the tops present in the wells. The Time-Depth graph created through 

the seismic to well tie will then be used by software to show these formations top (depth 

domain data) on the seismic (time) accurately. The primary target of structure 

interpretation is to mark the Ranikot/Khadro Formation, Pab Formation, and Fort Munro 

formations. The research is focused on the thin bed of Ranikot/Khadro Formation but to 

fully justify the structure and to achieve the best results, Pab Formation and Fort Munro 

Formation are also interpreted. The reflectors on the seismic data are highly visible and 

can easily be identified and recognized, thus aiding in data matching, particularly during 

seismic to well tie (Khan et al., 2021). 

After the approval of reflectors at the concerned formation tops, horizons and 

faults have been marked at specific intervals in the 3D seismic cube. For consistency of 

interpretation, often every 5th line is interpreted. As every 5th line was interpreted, a 

hunting tool was used to interpolate the data across the entire cube, allowing the software 

to automatically select the appropriate horizons based on marked interpretation and 

similar reflector characteristics. Similarly, faults were interpreted along with the 

interpretation of horizons throughout the entire cube, and then fault surfaces for the entire 

data cube were created. 

 

3.1.3 Seismic Attributes 

The physical properties (amplitude, phase, frequency, etc.) extracted from the 

seismic data set are designated as seismic attributes and analyzed for enhanced 

information that might be subtle in conventional data. Such extraction of information 

leads to improved geophysical and geological interpretation (Hampson et al., 2001; 

Chopra and Marfurt, 2005). The attribute extraction is simply the boosted characteristic 

of seismic data that not only improves the reservoir’s understanding qualitatively but also 

improves the quantification of reservoir properties in the area of interest. The 

effectiveness of seismic attributes is that their sensitivity toward the geological feature or 

their enhanced property allows the interpreter to delineate the trends in deposition, 

structure, etc., thereby elaborating practicably on the reservoir properties (Raef et al., 

2015; Marfurt et al., 1998; Taner et al., 1994). 
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The quantifiable characteristics within seismic data, including the dip, polarity, 

amplitudes, frequency, and their combinations, are assessed through the implementation 

of various attributes, i.e., trace-based, frequency-based, etc. The attributes are 

implemented over a single instant of time or by selecting a window of time. It is extracted 

by using a single trace or traces’ set or on the interpreted horizon or surface employing a 

seismic dataset. The major aim of the interpreter is the assessment of enhanced reservoir 

properties that ultimately demarcate hydrocarbon potential, even by employing AVO 

attributes (Hussein et al., 2019). 

The fundamentals of seismic attribute extraction is based on Hilbert 

Transformation along with analysis of complex trace that was initially introduced by 

(Taner and Images, 2001). According to the complex trace theory, the real component is 

considered to be the actual trace while the Hilbert transformed (shift in the phase upto 

90°) version is taken as imaginary or conjugate trace component h (t). The complete 

description is elaborated in the following equation 3.9.  

𝑭(𝒕) = 𝒇(𝒕) + 𝒊𝒉(𝒕)      (3.9) 

Where: 

F(t)= Complex Trace 

f(t) = Seismic Trace 

h(t)= Hilbert’s transform 90 phase shift of f(t). 

At reservoir resolution, the extracted properties act as an influential tool for 

evaluating the fluids within pores and recognizing reservoirs’ in-situ circumstances 

(Zhang et al., 2019). The amplitude characteristic of the reservoir is a reliable predictor 

of the presence of gas in pore spaces. In addition, it provides an excellent notion of gas-

water contact. 

The average energy seismic attribute represents the sum of the envelopes among 

paraphase events (Ismail et al., 2020). Each time sample's average energy attribute is 

calculated by equation 3.10. 

𝑬(𝒂𝒗𝒈) =
𝟏

𝑵
∑ (𝑿𝒏𝟐)

𝑵

𝒏=𝟏
          (3.10) 

Where, E(avg) is defined by Average energy, N designates number of the 

samples, whereas Xn represents the values of amplitude. 

The root means square (RMS) of the amplitude (A) is directly related to reservoir 

parameters and stratigraphic events. The attribute is computed i.e., the square root of the 
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average energy sum discovered within the analysis time window. It can be stated 

mathematically as in the equation 3.11. 

𝑨(𝑹𝑴𝑺) = √
𝟏

𝒏
∑ 𝑨(𝒊)𝟐𝒏

𝒊=𝟏
                   (3.11)                        

Where n is total samples’ number and A is the sample's amplitude. The above 

relation demonstrates property, which is tremendously profound to huge values of 

amplitude, as squaring of amplitude is taken during its extraction before its averaging. 

The normalized seismic amplitude attribute is the cosine of the instantaneous 

phase and shows the lateral continuity of a bed. A vertical window is used for smoothing 

the computed variance and the observed amplitude is normalized. 

The sweetness attribute is analyzed as the proven technique for potential 

sandstone detection (Hart, 2008). It has the ability to assess sweet spots in sandstone with 

strong reflection and distinguish sands in the surrounding of shale (Zelenika et al., 2018). 

Sweetness S(t) is calculated by the implementation of equation 3.12 (Radovich and 

Oliveros, 1998). 

𝑺𝒘𝒆𝒆𝒕𝒏𝒆𝒔𝒔 =
𝑰𝒏𝒔(𝑨)

√𝑰𝒏𝒔(𝒇)
      (3.12) 

 

3.1.4 Rock Physics Modeling and Seismic Inversion 

Rock physics modeling (RPM) plays a key role in the creation of various cross-

models based on the elastic properties to assess the rock behavior and check the quality 

of the petrophysical results. The major objective regarding RPM is to increase confidence 

in evaluating the physical properties of a hydrocarbon bearing zone, including porosity, 

formation lithologies and their permeability, or dynamic characteristics including the 

contents of pore-fluids or other pressure conditions. Therefore, these properties can also 

be used to construct an important rock-physical bridge that connects the different 

geophysical domains with one another. Petrophysics and rock physics both perform 

critical role in the assessment and identification of reservoir behavior and field potential. 

Together these techniques clearly estimate rock properties necessary to generate a model 

of the subsurface. Resistivity, GR and porosity tool measurements are basically 

transformed into reservoir properties by using Petrophysics whereas the use of Rock 

physics typically converts these petrophysical outcomes into compressional and shear 

velocities, acoustic impedance, and density (Yasin et al., 2021b). Rock’s elastic 
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properties are being created and then compared with predicted logs to get accuracy and 

calibrate elastic property log trends when desired and to validate the correctness of the 

petrophysical results (Azeem et al., 2017). 

The precise and consistent RPMs effectively segregate the producing and non-

producing zones within the reservoir while handling the complications of log data due to 

poor hole conditions, i.e., washouts or missing data during logging, mud-filtration 

problems, etc. (Avseth et al., 2010). Once an accurate RPM is made, its successful usage 

is to develop the elastic properties, i.e., Vp, Vs, density, etc., of recognizing the problems 

present in the well logs, improve seismic to well tie, enhance reservoir characterization 

through seismic inversion techniques, and hence reduce the risk of doubt (Sams and 

Carter, 2017; Bisht et al., 2013). These RPMs bear the capability of reliably predicting 

the variabilities regarding lithologies and nature of pore-fluids (Mavko et al., 2020; Grana 

et al., 2012; Avseth and Odegaard, 2004), which is performed using Gassmann’s equation 

(Gassmann, 1951). 

The methodology applied in this study was to construct predictive and steady 

RPM with the employment of high-quality and consistent petrophysical properties. The 

suitable inputs used for RPM are seismic and petrophysics to integrate volumes of 

different fluids and mineral assemblages (lithologies). Elastic attributes (Vp/Vs ratio) can 

discriminate different types of lithologies and plausible sand bodies by using Gassmann’s 

relationship in the process (Reine, 2017). 

The conventional RPM technique is used to create a model of Vp/Vs ratio based 

on the input parameters including total porosity, volume of clay, rock-lithologies, pore-

fluids properties, and pore shapes intended for different minerals (quartz and clay) with 

substitutions employing through Gassmann’s theory (Gassmann, 1951). The appropriate 

tuning of RPM at a well can be applied throughout the field to synthesize elastic logs to 

replace poor quality data and any data that were not measured as long as the required 

petrophysical values are present. The significant reservoir properties taken into the RPM 

model comprises of volumetric of clay, various porosity types i.e., total, effective, 

density, etc. and total water percentages in the formation depicted in Table 3.1 

(Babasafari et al., 2020). 
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Table 3.1: Input parameters used to compute conventional RPM. 

Physical Property Value 

Temperature (°C) 130 

Pressure (PSI) 3400 

Brine salinity (g/l) 0.15 

Gas gravity 0.689 

Avg. porosity (%) 10 

Sw (%) 45 

Avg. Shale 25% 

 

The change of reservoir parameters over an area of interest, rock physics template 

(RPT) is normally constructed that delineates the following effect (Babasafari et al., 

2020): 

a. An increase in gas saturation will reduce the acoustic impedance and the Vp/Vs 

ratio.  

b. An increase in the cement volume will increase the acoustic impedance and 

the Vp/Vs ratio. 

c. An increase in porosity percentage will decrease the acoustic impedance and 

the Vp/Vs ratio. 

d. An increase in shale will increase the acoustic impedance and the Vp/Vs ratio. 

e. Increase in the formation pressure will reduce the effects of impedances along 

with attribute values of Vp/Vs ratio. 

The advantage of RPT is to plot the basic characteristics of seismic data on the 

crossplot at the available well points and color code the petrophysical logs of GR, 

porosity, SW, etc. to evaluate the elastic behavior in relation to petrophysical properties. 

Such relationships depict the lithologic properties, especially the potential sands (Figure 

3.9). The standard lines of various lithologies, along with their values, i.e., x-axis, y-axis, 

and z-axis, distinguished the lithologies and greatly affected by various parameters. 

Similar to the plotting at well location, the complete seismic cube is plotted and 
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distribution of identified lithologies throughout the area is demarcated. The cut-off values 

of elastic and petrophysical attributes at the crossplot aim to illuminate the reservoir in 

the zones of interest that is separable from the non-reservoir in the petro-elastic domain. 

Anomalies concerned with the hydrocarbon’s manifestation can be readily assessed and 

recognized over the entire seismic data. The first to introduce the RPT in relation to RPM 

was (Avseth and Odegaard, 2004). 

 

 
Figure 3.9 RPT to plot the elastic properties of identified lithologies at a given well location (Avseth and 

Odegaard, 2004). 

 

The basic purpose of this research is to acknowledge the rock RPM application 

for the missing shear sonic approximation and improvement in the poor zones of the 

density log, ensuring the accuracy of the petro-elastic relationship. It also bears the 

benefit of evaluating the borehole enlargement impacts on the density log, such as caving, 

washouts, etc. The accurate RPM of missing or poor elastic properties segregates the 

hydrocarbon/oil saturated sands from non-hydrocarbon bearing lithology. 

Hampson Russell software and ML techniques are used in combination for the 

modeling of elastic properties i.e., Vp, Vs, density, and their combination. RPM in 

conventional way chiefly needs components of rocks including minerals composition, 

pore-fluids nature, the rock frame, and their combination along with reservoirs physical 

conditions such as pressure, temperature, gas/oil densities, litho-static pressure, and pore-

pressure etc. The RPM generated in the research area comprised an unconsolidated model 

of sandstone; the pores were saturated with saline water along with gas; the Ruess-Voigt 



64 

  

equation was implemented to compute the various elastic moduli of minerals; and density 

was calculated as their volumetric average (Shakir et al., 2021). 

 

3.1.4.1 ML Based RPM 

Traditional RPM introduces significant errors due to the number of input 

requirements and many assumptions in rock physics theories, making difficulty in the 

reliable application of interpretation methods quantitatively. ML entails the research and 

development (R&D) procedures that initially learn by employing the training data set and 

then predict data. Sometimes the possibility of forecasting the best method becomes a 

challenge, while the properties of data models is heavily influenced by the characteristics 

of the data collection. To achieve the best results, each model must be trained numerous 

times with varied hyperparameter settings in order to achieve the best accuracy and 

predictability (Jiang et al., 2020). A ML approach has been adopted by (Yasin et al., 

2021a) within Central Indus Basin (CIB) to characterize the deposited reservoirs of 

Cretaceous age. (Al-Anazi and Gates, 2010) incorporated the SVM technique into the 

heterogeneous sandstone reservoir for the prediction of permeability and electrofacies. 

Following basic data conditioning, a detailed petrophysical analysis was 

performed, which assisted in characterizing the Ranikot/Khadro gas-bearing sands as 

having low clay volumes (VCL) (<30%) and Sw (<45%). True elastic logs are essential for 

establishing accurate petro-elastic relationships. So, the missing and poor elastic logs 

have been generated through integration of conventional RPM along with the advanced 

ML techniques. The ML outputs have been authenticated through conventional RPM and 

published work, and a comprehensive petro-elastic relationship has been successfully 

developed. The conclusive elastic attribute of the available wells data is plotted that 

describes the gas-sand facies by the exhibition of low Zp along with the low values of 

velocities ratio (Vp/Vs ratio). Finally, based on the best ML algorithm, the elastic volumes 

(Zp, Zs) and the key petrophysical property (PHIE) cube has been generated that 

successfully delineates the further potential present in the thin and complex reservoir. 

 

3.1.4.1.1 ML Algorithms Accuracy Measures 

The process of ML is based on the generation of algorithms allowing the computer 

to learn. It incorporates the processes of assembling algorithms which utilize the 

computer’s intelligence. Learning is a process of detecting statistical regularities or other 
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patterns in data rather than a conscious activity. Conclusively, numerous ML techniques 

will only tangentially similar to the human attitude toward learning a task. Learning 

algorithms, on the other hand, might give you an idea of how tough it is to learn in 

different settings. The expected output of ML algorithms is used to classify them into 

taxonomies (Ayodele, 2010). Despite having several algorithms to choose from which 

align and provide the desired results as anticipated, only one algorithm was finalized to 

ensure the highest correlation and accuracy is maintained while minimizing the 

uncertainties in later processes. Therefore, the following algorithms were selected and 

evaluated: 

a. Decision Tree 

b. Regression with Gradient Boosting 

c. SVM 

d. RF 

3.1.4.2 AVO Modeling and Sand Class Identification 

AVO modeling is implemented as an important tool for lithology and fluid 

characterization with in reservoir zone (Rizwan et al., 2018). It is most commonly 

referred as DHI and employed in the assessment of reservoir to reduce the risk associated 

with drilling the prospective zones (Hussain et al., 2021; Xu et al., 2019). The ideology 

of AVO modeling is based on the evaluation of variations in the reflection amplitude as 

the waves travel from source to receiver covering the offset distances (Young and 

LoPiccolo, 2003) .The amplitude variation in relation to offset occurs because of the 

changing reflection coefficients (RC) as the seismic wave's incident angle varies at the 

reflector. The Zoeppritz equation (Zeoppritz, 1919) is based on the approximation of RC 

along with its linear approximation i.e., the Aki-Richards relationship that is used widely 

(Aki, 1980) .The equations employed incident angles therefore the offsets of the field are 

converted prior to the RC estimation. The AVO classification of sand is done on the 

intercept-gradient crossplot, which delineates the rock behavior among its fluid content 

on the basis of RC that portrays variations with changing offset or angles (Durrani et al., 

2022). 
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3.1.4.3 Seismic Inverted Properties 

Seismic inversion is a method that utilizes well log data in conjunction with 

seismic reflection data to approximate subsurface acoustic and elastic characteristics. 

These properties are crucial in the interpretation of seismic sections (Krebs et al., 2009). 

The hydrocarbon industry utilizes seismic inversion methods to identify subsurface 

depths that may contain hydrocarbon-rich layers. This technique serves as a valuable tool 

in locating hydrocarbon-bearing strata (Morozov and Ma, 2009). When performing 

inversions, a geoscientist is interested in physical parameters such as impedances (Zp, Zs), 

P-wave (Vp), S-wave (Vs), as well as density (ρ), therefore RPM is normally carried for 

consistent set of elastic properties in wells to compensate any missing or poor property 

along with the comprehensive understanding of reservoir. In addition, Lame parameters 

are also considered as they are more responsive to fluid content in the rock’s pores 

(Clochard et al., 2009). Resulting parameters such as lithology can be obtained from 

inverted impedance, while other petrophysical properties such as pores, ratio between 

sand/shale, and gas saturation can be estimated by utilizing inverted volumes (Goodway, 

2001). Obtaining a trustworthy assessment regarding reservoir’s characteristics is a 

crucial component on which the decisions are taken, particularly throughout the 

developmental stages (Pendrel, 2006). 

Seismic inversion practices are widely categorized between two types: Post and 

Pre-Stack. Post-Stack Inversion is the more commonly used approach, which involves 

removing the wavelet’s impact from the seismic data as well as generating enhanced 

images of subsurface lithological properties (Chen and Sidney, 1997) .Additional method 

of Pre-Stack Inversion depends mainly on constructing models by employing well logs, 

attributes of seismic data, and incorporating important geological information (Downton, 

2005).  

The Post-Stack Inversion has many advantages. Firstly, strata delineation is 

simpler on inverted impedance in comparison to seismic dataset. Secondly, reducing 

wavelet’s effect, side-lobes, and tuning improves the subsurface layer’s resolution. 

Thirdly, the acoustic impedance is approximated directly from seismic data and is 

compared to the corresponding property of well i.e., impedance, which aids its connection 

to reservoir’s features. Fourthly, geostatistical methods can be utilized to relate porosity 

to acoustic impedance, and these impedance volumes can be transformed into porosity 

volumes. Fifthly, acoustic impedance can be utilized for the identification of discrete 
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reservoir’s region. Sixthly, it requires minimum time-frame than the process of Pre-Stack 

Inversion. The major limitation of the Post-Stack seismic inversion is the lack of shear 

wave computation; therefore, it shows the limitations to distinguish fluid effects more 

appropriately (Maurya et al., 2020; Morozov and Ma, 2009; Russell and Hampson, 1999). 

Similarly, the elastic attributes that employ the Vs are profound to the pore’s fluid 

and are assessed from Pre-Stack Inverted properties (Moncayo et al., 2012). Pre-Stack 

Inverted elastic characteristics involve transforming seismic reflection data to 

impedances (p, and s), density (ρ), and Vp/Vs ratio by the incorporation of well logs along 

with the interpreted horizon on the refection amplitudes of seismic. The two key 

properties including Zp and Vp/Vs ratio are regarded as trustworthy for predicting reservoir 

properties away from well locations, depending on the target depth and acquisition 

configuration (Carrazzone et al., 1996). The inverted attributes obtained from Pre-Stack 

technique offers numerous assistances, i.e., (i) providing impedances including both “p” 

and “s” along with density (ρ) of the layers simultaneously, overcoming the interface 

property of seismic data, (ii) enhancing the resolution of subsurface layers by reducing 

wavelet effects, tuning, and side lobes, (iii) allowing direct comparison of approximated 

acoustic impedance to similar well-log quantities, therefore creating a bridge between 

well and seismic and hence the reservoir properties, and (iv) evaluating additional 

information based on petro-elastic relationship to discriminate various lithologies and 

fluids effects compared to Post-Stack Inversion techniques (Gholami, 2016).  

 

3.1.4.4 Pre-Stack Inversion 

In simultaneous inversion, the vital elastic characteristics of rocks including 

compressional and shear impedances (Zp, Zs), Vp/Vs ratio, as well as density (ρ) are 

approximated. Considering the saturated clastic rocks, the shear and compressional 

impedances studied together provide efficient identification of reservoir lithological and 

fluid contends differentiation. The Castagna equation (equation 3.13) is based on the 

development of a linear relationship among the velocities i.e., P and S-wave regarding 

the background trend (Castagna et al., 1985). Similar case is developed in the Gardner’s 

equation (Gardner et al., 1974) that depicted a linear association between velocity and 

density (background trend) (equation 3.14). Thereby, during the process of simultaneous 

inversion these linear relationships are employed to build a connection among the 

variables (equations 3.15 and 3.16). 
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𝑽𝒑(𝒎/𝒔) = 𝟏. 𝟏𝟔𝑽𝒔 + 𝟏𝟑𝟔𝟎   (3.13) 

𝝆(𝒈/𝒄𝒄) − 𝟏. 𝟕𝟒𝑽𝒑𝟎. 𝟐𝟓     (3.14) 

𝒍𝒏 𝒁𝒔 = 𝒌𝒍𝒏 𝒁𝒑 + 𝒌𝒄 + 𝜟𝑳𝒔    (3.15) 

𝒍𝒏 𝝆 = 𝒎𝒍𝒏 𝒁𝒑 + 𝒎𝒄 + 𝜟𝑳𝑫     (3.16) 

Where coefficients (𝑘, 𝑘𝑐, 𝑚 𝑎𝑛𝑑 𝑚𝑐) are approximated by the help of well log 

properties available in the drilled wells. In the above equations, ∆LS and ∆LD delineate 

the deviance from background trend due to presence of hydrocarbons. 

From the combination of all the above equations and employing Fatti’s version 

(Fatti et al., 1994) of the Aki-Richards equations (Aki, 1980) the equation for 

simultaneous inversion is derived. The equation estimates the refection amplitudes that 

are based on the incident angles. The relationships between the Zp, Zs and density 

according to Fatti’s equation is presented as follows for the simultaneous inversion:  

𝑻(𝜽) =  ĉ𝟏𝑾(𝜽) 𝑫𝑳𝑷 +  ĉ𝟐𝑾(𝜽) 𝑫𝑳𝑺 +  𝑾(𝜽)𝒄𝟑 
𝑫𝑳𝑫           (3.17) 

Where, 

ĉ𝟏 =  (
𝟏

𝟐
) 𝒄𝟏 + (𝟏/𝟐) 𝒌𝒄𝟐 + 𝒎𝒄𝟑  (3.18) 

ĉ𝟐 =  (𝟏/𝟐) 𝒄𝟏       (3.19) 

𝒄𝟏 =  𝟏 + 𝒕𝒂𝒏𝟐𝜽    (3.20) 

𝒄𝟐 =  −𝟖𝜸 𝒕𝒂𝒏𝟐𝜽   (3.21) 

𝒄𝟑 =  −𝟎. 𝟓𝒕𝒂𝒏𝟐𝜽 𝟐𝜸𝒔𝒊𝒏𝟐𝜽  (3.22) 

γ = Vp/Vs       (3.23) 

W(𝜃) is the wavelet at angle 𝜃, D is the differentiation derivative operator, and Lp 

= ln (Zp), Ls = ln (Zp) and LD = ln (Dn). Equation (3.17) represents the linear equation 

system that solves through the matrix inversion technique to give the vector 

[LP  ∆LS  ∆LD]T = [ln (𝑍𝑃𝑛
)  0  0]T, in which Zp0 (initial-impedance) is iterated to get a 

solution by the method of conjugate gradient (Hampson et al., 2005). The components of 

equation 3.17 are given in equations 3.18-3.23 respectively. Note that if the angle is zero 

then this equation reduces to zero-offset (Post-Stack) Inversion. In equation, we invert 

for Lp, Ls and LD. In practice, simultaneous inversion involves the following steps:  

1. From common midpoint gathers common midpoint gathers (CMP) gathers, we 

have the following information:  

i. A set of N angle traces.  

ii. A set of N wavelets for each angle set  



69 

  

iii. Initial model values for Zp 

2. Calculate the coefficients values for k and m using well-log data.  

3. Start with initial model guess i.e., [𝐿𝑝 𝛥𝐿𝑆 𝛥𝐿𝐷]
T

= [𝑙𝑛(𝑍𝑃𝑛
) 0 0]

T
. 

4. Apply the inversion. 

5. Calculate the final values of Zp, Zs and density (𝜌), equations 3.24-3.26:  

𝒁𝒑 = 𝒆𝒙𝒑 (𝑳𝒑 )        (3.24) 

𝒁𝑺 = 𝒆𝒙𝒑 (𝒌𝑳𝒑 + 𝒌𝑪 + 𝜟𝑳𝑺 ) (3.25) 

𝝆 = 𝒆𝒙𝒑 (𝒎𝑳𝒑 + 𝒎𝑪 + 𝜟𝑳𝑫 ) (3.26) 

Note that the initial guess model representing the initial model of Zp, while ∆LS 

and ∆LD are initialized with zero values in this iteration. 

 

3.1.4.5 Low Frequency Model 

The computation of low frequency model (LFM) is the next step of the inversion. 

It was created by incorporating low frequencies from well data interpolated within 

stratigraphic framework following marked horizons (Ali et al., 2018; Russell and 

Hampson, 1991; Russell, 1991). Thus, the low frequency component (0-15 Hz) is 

incorporated to obtain the absolute acoustic impedance in inversion algorithm (Russell 

and Hampson, 1991) . The model based seismic inversion technique uses an initial model 

(LFM) on the basis of impedances information (using combination of sonic DT, sonic 

DTS, and density logs), structural information (horizon data) and the interpolation of 

properties between wells following the structural and stratigraphic patterns. The initial 

model contributes to the structural delineation and overall compaction trend without 

incorporating the seismic data (Ray and Chopra, 2016). The initial model is established 

by using all wells of Zamzama Gas Field along with the developed stratigraphic model 

using low frequencies upto 15 Hz.  

 

3.1.4.6 Pre-Stack Simultaneous Seismic Inversion (PSSI) 

PSSI delineated an effective benefit over the process that involves two-steps, such 

as Post-Stack model based inversion (PMBSI), and produces a wide range of information 

that can be reliably considered to differentiate between producing and non-producing 

reservoir zones. The process of PSSI depends on the angle and generates inverted elastic 

properties including Zp, Zs, density (ρ), and ratio of the p-wave to the S-wave (Vp/Vs ratio). 
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It is a proven technique for assessing reservoir’s complex scenarios that are hindered by 

the application of Post-Stack  (Sams and Carter, 2017; Hampson et al., 2005). Generally, 

the PSSI technique handles the effects among the variables that are noise sensitive and 

creates solutions that are non-unique. The implication of Fatti’s equation in the research 

area for PSSI provided beneficial results as it has the ability for efficiently handling the 

attenuation effects at larger angles by extracting and utilizing the wavelets at that angles  

(Hampson et al., 2005 ; Fatti et al., 1994 ; Russell and Hampson, 1991). 

For the background ratio Vs/Vp ratio, expressed as c, is selected as 0.5 depicting 

the wet sands of the reservoir along with the shales, and it provided effected outcomes in 

the inversion process. Employing the method of pre-whitening was preferred as it 

provided individual values considering each parameter. For each elastic property, the 

adjusted values are Zp=1, Zs=0.01, and density (ρ)=0.01 and the process was run with 

considering 25 iterations. Various quality control (QC) steps have been taken for the 

accuracy and validity of the inverted elastic volumes, including error analysis, estimated 

by the difference of actual and measured properties in the presence of background trend 

at wells while displaying the respective well properties on the inverted model for 

qualitative QC on the inverted sections. 

 

3.1.4.7 Injecting High Frequencies using DL and CWT 

Another artificial intelligence method based on DL integrated with CWT is 

employed for attaining enhanced seismic resolution with improved frequency ranges. In 

this integration of DL with CWT incorporated seven wells that is available in a 3D seismic 

cube, containing suitable information including well logs, formation tops, reservoir 

parameters, etc. Two wells Zamzama 05 & 07 has kept blind in this process while rest of 

the wells such as Zamzama 02, 03, 04, 06 & 08-ST-02 have been used in training. As the 

wells are penetrated through the Ranikot/Khadro Formation with two wells i.e., 

Zamzama-03 & 05 found commercial gas pay 6.5 m and 6 m respectively, establishing 

reservoir potential. The thin sands are evaluated for qualitative and quantitative 

interpretation such as seismic attributes and inverted properties. The seismic attributes 

extracted from conventional seismic data along with inverted attributes revealed 

limitations in the thin gas sands facies delineation. The ML approach applied in the above 

sections comprehensively modeled the elastic logs, the inverted attributes and 

petrophysical properties (PHIE and gas sands). The seismic frequency is improved by the 
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employment of DL techniques in combination with the seismic real, imaginary, and 

magnitude attributes assessed through CWT.  The synthetic wedge model, delineating 

tunning thickness of about 60 m, utilizing the wavelet extracted from seismic data proves 

the seismic resolution limitation for thin Ranikot/Khadro Formation sands (~7 m) 

reservoir characterization. An advanced technique of DNNs is combined with CWT’s real, 

imaginary, and magnitude components that built a relationship between the well's high-

frequency RC and creates high-frequency synthetic seismic.  

The high-frequency synthetics are matched with seismic traces at well locations 

and populated throughout the cube by having a relationship through DNNs with seismic 

traces. The high-resolution synthetics become capable of resolving the tuned thin 

Ranikot/Khadro Formation sands which are confirmed by creating a new synthetic wedge 

modeling. Seismic attributes extracted after CWT & Deep Neural Network (DNN) 

approach has reflected an improved image of thin sands after injecting high frequencies 

into seismic dataset. The detailed workflow for attaining high-frequency volumes using 

CWT-DNNs relation is depicted in Figure 3.10a & b. 
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Figure 3.10 Workflow employed in current research a) to produce results from field seismic. b) high-

frequency synthetic seismic volume (HFSSV) from CWT and DNNs to produce high frequency attributes 

& facies through validation at well locations. 

 

Figure 3.11 demonstrates a computational neural network that is employed in the 

DL. The intermediate network layer also referred to as a "hidden layer," contains neurons 

that receive values from the input layer and transmit them to those intermediate neurons. 

The output layer receives the sums of one or maybe more hidden layers and presents the 

final output to users. In order to harmonize terminology with NNET, neurons’ outputs are 

referred to as activations, and the synapses are often indicated by weights. 
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Figure 3.11 Computational Neural Network (a) Neurons and Synapses (b) Compute weighted sum for each 

layer. 

 

3.1.5 A Novel approach to PP Prediction based on Conventional Well logs using 

Advanced ML Approach 

PP is crucial for evaluating geo-mechanical properties of any reservoir. Similarly, 

ensuring safe and efficient drilling operations and optimizing reservoir characterization 

and production are equally imperative. 

This study highlights the effects of PP, vertical stress and horizontal maximum 

and minimum stress that are identified through empirical equations and calibrated with 

measured pressure data at well locations, these geo-mechanical properties are then 

identified on other wells through advanced ML algorithms such as ETR, RFR, GBR and 

DTR.  In second stage, for the spatial variations of PP in the thin Ranikot/Khadro 

Formation Sand Reservoir across the entire subsurface area, a 3D PP prediction is 

conducted using CWT. The relationship between the CWT and geo-mechanical properties 

is then established through supervised ML models on well locations to predict the 

uncertainties in PP.  

To assess the effectiveness of ML algorithms each of seven wells' datasets is 

trained individually, with one well used as a blind for validation while the others serve 

for training. The ML model divided the augmented logs into two groups: 70% training 

data and a 30% testing dataset. Among all intelligent regression techniques developed 

using petrophysical properties and elastic properties for PP prediction, GBR has provided 

exceptional results which have been validated by evaluation metrics based on R2 score 

i.e., 0.41 between the calibrated and predicted PP. Via DNN, the relationship is 
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established between CWT resultant traces and predicted PP to analyze the spatial 

variation. As a result, PP or other geo-mechanical properties are stimulated through the 

3D seismic data accurately. The algorithms have also contributed in predicting the 

uncertainty of PP between the wells spatially which can also be affirmed through 

comparison between the predicted and measured PP. The comprehensive approach 

presented here provides strong and reliable for the evaluation of modern formations, 

effectively minimizing uncertainties. It also enables efficient multi-well interpretation in 

complex reservoirs, paving the way within the realm of ML. 

A key variable in several drilling and exploration procedures, such as well design, 

well stability analysis, and mud program design, is PP (Yu et al., 2020; Bahmaei and 

Hosseini 2020; Zhang et al., 2020; Hu et al., 2013). When drilling, imprecise estimation 

of PP can lead to critical consequences, including unwarranted drilling mud seepage into 

the formation being drilled, unexpected influxes of formation fluid into the well, and the 

eventual occurrence of well blowouts, posing significant risks to both the drilling rig and 

the well crew (Zhang et al., 2020 ; Mahetaji et al.,2020 ; Maddahi et al., 2020) . PP can 

be considered a safe pressure when the hydrostatic pressure of the drilling fluid within 

the wellbore falls below the formation pressure and fracture pressure (FP) of the 

formation (Richards et al., 2020; Darvishpour et al., 2019). 

 

3.1.5.1 PP Importance 

Numerous researchers have used a variety of techniques recently to precisely 

forecast and estimate the PP. (Terzaghi et al., 1996) marked a significant milestone by 

initiating the earliest research into PP prediction. As a pivotal part of this research, an 

empirical equation was formulated to compute PP. An experiment was devised to explore 

the influence of rock compaction on overburden pressure (OBP), with the aim of 

comprehending its effects. The proposed theory posited that all stress effects, 

encompassing alterations in elastic wave velocity, were classified as effective stresses. It 

further emphasized that the OBP was offset by the PP generated by vertical stresses. 

In 1975, Eaton introduced a crucial advancement by presenting two empirical 

models geared towards PP prediction. These models hinged on data from compressional 

pressure wave, shear wave, and RES (Farsi et al., 2021; Shen et al., 2017; Yoshida et al., 

1996). 
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As per the review of previous literature, it came to light that these equations only 

accurately forecast the key parameter for the field whose data were utilized to build the 

empirical equations. (Abad et al., 2021 ; Naveshki et al., 2021). In order to address the 

problem, plenty of research has been recently conducted to create predictive models for 

predicting various factors in the energy sector using AI approaches (Hazbeh et al., 2021). 

Abdelaal et al. (2021) formulated three distinct models, encompassing SVM, functional 

networks, and RF, for the purpose of projecting PP during the drilling process. This was 

achieved by leveraging a dataset containing 3100 drilling records. The input variables 

employed in the proposed model encompassed the rate of penetration (ROP), mud flow 

rate (Q), standpipe pressure (SPP), and rotation speed (RS). Upon comparing the 

predictive outcomes of the diverse models suggested, it was discerned that the RF 

algorithm exhibited the highest degree of prediction accuracy across all four models (with 

an R2 value of 0.98 and AAPE of 2%) (Abdelaal et al., 2021). 

The focus of this study is on pre-drill planning and improved geo-mechanical 

parameters estimation for monitoring the reservoir (Ranikot/Khadro Formation) and field 

development in the study region. Estimating changes in the stresses of subsurface 

geological strata, OBP, PP, and FP for subsequent drillings, as well as analyzing borehole 

stability. The information that is available to calculate the reservoir geo-mechanical 

parameters consists of CWT traces of 3D seismic data and wireline logs containing the 

Caliper (CALI), GR, RHOB, Vp, Vs of seven wells drilled in the Ranikot/Khadro 

Formation Reservoir Zone of Zamzama. Initially the CWT is implemented on 3D seismic 

data. At different in-lines and crosslines, the information of CWT traces consists of real, 

imaginary and their corresponding magnitudes are extracted in time domain. On the 

second hand, wireline logs play a role in computing PP using empirical equations such 

as the Eaton method, which relies on sonic transit time measurements. 

In this research, five intelligent regression techniques for PP prediction using 

petrophysical properties and elastic properties are developed. The five advanced ML 

algorithms are SVM, multi-linear regressions, GBR, RFR and DTR. The models are 

created using a set of nine input parameters that have the greatest impact on the PP, 

followed by a feature importance analysis. To assess the efficacy of ML models, each 

dataset from the seven wells is individually used for training. During this process, one 

well is kept as a blind dataset for validation, while the remaining wells are utilized for 

training the models, which are further validated through evaluation metrics consisting of 

root mean squares, R2 score and absolute mean squares. In order to select the predictive 
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model that offers the highest precision in terms of predictions, a comprehensive 

assessment is undertaken. This evaluation involves a thorough comparison of the 

statistical metrics employed to gauge the models' performance throughout both the 

training and testing phases. For spatial variations of PP through the seismic volume, the 

relationship is established between CWT resultant traces and predicted PP through DNN 

and the PP or other geo-mechanical properties are stimulated through the 3D seismic data 

accurately.  

 

3.1.5.2 Dataset and Methodology 

Following are the steps starting from data set to the integration of DL with CWT 

for assessing PP and geomechanical properties of Ranikot/Khadro Formation. 

  

3.1.5.2.1 Data Acquisition 

 This study aims to predict PP in the Zamzama Field, utilizing valuable well log 

data from seven wells i.e., Zamzama-02, Zamzama-03, Zamzama-04, Zamzama-05, 

Zamzama-06, Zamzama-07, and Zamzama-08. This analysis focuses on the 

Ranikot/Khadro Formation thin bed of the reservoir zone, where GR, RHOB, CALI, and 

Vp (DT) well logs are evaluated. For the spatial distribution of PP, a 3D Post-Stack 

seismic cube containing 244 in-lines ranging from 382 to 626 and 147 in-lines ranging 

from 113 to 260 is utilized. The well log and seismic 3D data were provided by DGPC. 

For, CWT, sampling rate is taken as 2.0ms, frequency band ranges from 4Hz to 35Hz and 

no of scales for is 31. 

 

3.1.5.2.2 Data Processing 

In the training dataset, all seven wells are utilized, with one of them kept as a 

blind well to evaluate the model's performance. This research applies a data split of 70-

30% is utilized: 70% for training the model and the remaining 30% for prediction 

evaluation. The main aim of this study is to accurately predict geo-mechanical properties, 

using ML based method, compared with that of conventional techniques. These 

predictions are then extended to the seismic volume to quantify uncertainties in PP. 

The quality and reliability of the input data used to train the algorithms is critical 

to the accuracy of the predictions, therefore we have used conditioned logs i.e., rock 
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physics based logs to develop a model predicting PP. Several supervised ML algorithms 

i.e., regression techniques such as RF, GBR, ETR, and DTR are employed in order to 

predict the geo-mechanical properties and PP. Furthermore, spatial variations of PP 

within the seismic volume are analyzed by establishing a relationship between CWT 

resultant traces and predicted PP via DNN. The 3D seismic data effectively stimulates 

PP and other geo-mechanical properties. 

 

3.1.5.3 Supervised ML 

In the realm of ML, supervised learning is a prominent task, in which function is 

acquired to establish the link between inputs and outputs using the pair. This function is 

built using labeled training data and relevant features, enabling predictions of unknown 

attributes (Manzoor et al., 2023). 

 

3.1.5.4 Input Data 

The ML model development demands the data samples along with multiple 

features and target variable. After initial quality check, we can optimize our data which 

helps in improving the accuracy and effectiveness of the models. Furthermore, it aids in 

simplifying the model's complexity, enhancing its interpretability and suitability for real-

world applications (Kuhn and Johnson, 2013). 

 

3.1.5.5 Feature Extraction 

Within the realm of ML, the selection of training features profoundly influences 

a model's performance. When selecting them, it is important to consider the target feature 

and the correlation between the training and the target feature (Zheng and Casari, 2018; 

Müller and Guido, 2016). 

 

3.1.5.6 Predictions and validation 

In ML, predictions are made by applying a trained model to a dataset and using 

the model's output to make a prediction for each data point in the dataset. The quality of 

these predictions can be evaluated using a variety of performance metrics, depends upon 

the data nature (Hastie et al., 2009).  

The workflow for supervised ML algorithm is shown in Figure 3.12. 
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Figure 3.12 Flowchart Illustrating the Process of Supervised ML. After taking an input dataset, requires 

features are extracted, learning algorithm. Model is developed using training data and evaluated based on 

testing data used as blind dataset, thus predictions are made.                                     

 

3.1.5.7 Continuous Wavelet Transform (CWT) 

In order to structure Post-Stack seismic data into vectors or matrices suitable for 

NNET. CWT is performed on the raw Post-Stack seismic data, generating seismic spectra 

through the application of. Prior to executing the wavelet transformation, several 

pertinent parameters concerning the Post-Stack seismic data are supplied to the CWT 

process. 

Sampling rate of Post-Stack seismic data: If the Post-Stack seismic data sampling 

rate is 2.0ms, then frequency sampling rate which is the required parameter for CWT will 

be 200s. 

Frequency band of Post-Stack seismic data: The amplitude spectrum provides 

information about the frequency bands (lower and higher limit). In this case, lower and 

higher frequency is 4 and 35Hz respectively.  

Number of scales: Number of scales is dependent upon the quantity of data. If the 

rows of data for DL model are fewer, the number of scales should be lower in order to 

avoid overfitting in data. Constraining the number of scales will give less certain results. 
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In this case, the optimal number of scales is considered as 31scales. The CWT performs 

a convolution with the Post-Stack seismic data using a wavelet function, like a Ricker 

wavelet. The CWT spectra contain the energy of the signal both in time and in frequency 

and provide the hidden information inside the Post-Stack seismic data in the form of an 

imaginary part of seismic data and the real part of seismic data and their corresponding 

magnitudes. In this way, we can make full use of the frequency content of the original 

Post-Stack seismic data. The spectrum ranges from 8–50 Hz at a frequency within a 

specific time window as shown in Figure 3.13. 

 

Figure 3.13 CWT of the seismic traces i.e., real, imaginary, and magnitude part. 

 

3.1.5.8 Conventional Approach for PP Prediction 

PP is a critical parameter essential for drilling planning, as well as geo-

mechanical and geological analyses. It characterizes the pressures exerted by fluids 

within the pore spaces of permeable formations. It spans a spectrum from hydrostatic 

pressure to significantly elevated levels, even reaching 48% to 95% of the overburden 

stress. Instances of abnormal PP occur when it departs from the hydrostatic pressure, 

taking the form of either lower or higher values. The term "overpressure" is used to denote 

situations where PP surpasses the standard levels (Zhang, 2011). 

The anticipation of PP builds upon the foundational principles encapsulated 

within Biot's effective stress laws (Biot, 1941; Terzaghi et al., 1996). These principles 

propose that the PP within a formation is influenced by both the overburden stress and 

the effective stress. The relationship among 𝑝𝑝 and overburden stress (σV) is given as 

follows (equation 3.27): 

𝒑𝒑 = 𝝈𝑽 − 𝝈𝒆/𝜶            (3.27) 

Here, σe represents the vertical effective stress, and α corresponds to the Biot 

effective stress coefficient, traditionally considered as 1. 
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For the efficient computation of hydrostatic pressure (pn), equation 3.28 is used 

(Zhang, 2011). 

𝒑𝒏 = 𝒑𝒇𝒈𝒉              (3.28) 

In this equation, pn represents hydrostatic pressure, g is the acceleration due to 

gravity, ρf stands for fluid density, and h indicates the vertical height of the fluid column. 

While dealing with one-dimensional scenarios, the formulations for vertical 

effective stress and vertical PP, initially introduced by Biot in 941, can be expressed as 

follows (equation 3.29): (Terzaghi et al., 1996; Biot, 1941): 

𝝈𝒆 = 𝝈𝑽 − 𝜶𝒑   (3.29) 

Here, p denotes PP, σV represents vertical stress, σe stands for vertical effective 

stress, and α signifies Biot's effective stress coefficient. 

Under conditions of normal pressure, the relationship between the normal vertical 

effective stress (σn) and the normal or hydrostatic pressure (pn) is given by equation 3.30: 

𝝈𝒏 = 𝝈𝑽 − 𝜶𝒑𝒏   (3.30) 

σn denotes the normal vertical effective stress, while σV indicates overburden or vertical 

stress. 

Figure 3.14 depicts the relationship between hydrostatic pressure, formation PP, 

overburden stress, and vertical effective stress in relation to the true vertical depth (TVD) 

within a standard oil and gas exploration well.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 A graphical representation of Hydrostatic pressure, PP, overburden stress, and effective stress 

in a borehole (Zhang, 2011). 
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3.1.5.9 Eaton’s Method 

Eaton (1975) introduced an empirical formula for forecasting PP gradient using 

sonic compressional transit time. Both of these factors necessitate a normal compaction 

trend line (NCTL) and overburden pressure (OBP), which can either be well-specific or 

derived from local or regional models. The equation 3.31 is given as: 

𝑷𝒑𝒈 = 𝑶𝑩𝑮 − (𝑶𝑩𝑮−𝑷𝒏𝒈)(
𝜟𝒕𝒏

𝜟𝒕
)𝟑           (3.31) 

Where Ppg signifies the PP gradient, OBG denotes the overburden pressure 

gradient, and Png represents the hydrostatic PP gradient. Δ𝑡𝑛 denotes the sonic transit time 

derived from the normal compaction trend at the investigated depth, and Δt signifies the 

sonic transit time acquired from well logging or seismic interval velocity. The traditional 

procedure for predicting PP via Eaton's method follows the workflow shown in Figure 

3.15.  

 
Figure 3.15 PP estimation through conventional workflow. The parameters are required accordingly to 

generate the PP on wells. 
 

3.2 Summary  

The chapter comprises many interesting algorithms both conventional and ML for the 

assessment of below resolution varied reservoir sands. The logs processing is done for 

outliers and washout zone corrections using ML techniques, including One Class SVM 

and supervised ML. The supervised ML algorithm, i.e., ETR, is observed as the best one 

for washout zone correction after various technique evaluations through MAE, MSE, 

RMSE, R2, RMSLE, and MAPE. The ML algorithm is developed to approximate 
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petrophysics by keeping wells blind, and a decent match is observed with outcomes 

obtained through conventional techniques. A workflow is selected for detailed seismic 

structural interpretation and the generation of time and depth structural maps for the 

reservoir Ranikot/Khadro Formation. The inverted properties approximation is made via 

the simultaneous pre-stack seismic inversion technique using the available 3D seismic 

and well data. A comprehensive rock physics modeling based on ML techniques is 

devised for the estimation of elastic responses that tend to separate the facies in the petro-

elastic domain. High frequency synthetic seismic volume (HFSSV) from CWT and DNNs 

is generated to produce high frequency attributes and facies that are validated at well 

locations. A novel approach to an advanced ML model is developed for PP predictions, 

integrating CWT and RESNET techniques.  



83 

  

CHAPTER 4                                                                                                      

RESULTS AND DISCUSSION 

 

4.1 Petrophysics 

Petrophysics provides the depiction of physical reservoir parameters including 

porosity, volumetrics, fluids, etc. This research outcomes makes it possible to document 

the geological formations in a borehole and makes it easier to measure and identify the 

fluids and lithologies present in a reservoir.  

4.1.1 Facies Analysis 

Reservoir facies study is a critical step in the oil and gas development process. 

Conventionally the reservoir facies have been interpreted based on cut-off defined in 

Table 4.1.  

 

Table 4.1: Petrophysical cut-off ranges employed for reservoir facies (Khan et al., 2022). 

Facies Volume of Clay Sw 

Shale >0.35 -Nil- 

Gas Sand <=0.35 <=0.45 

Wet Sand <=0.35 >0.45 

 

4.1.2 Outlier Removal of Zamzama Gas Field 

The outlier removal is the key step for attaining consistency in the dataset. The 

exceptional or out-of-range values are identified in each well and then removed so that 

the data is cleaned for further processing. 

4.1.2.1 Outlier Removal of Zamzama-02 

The pair-plot is drawn between the different well logs (GR, RHOB, NPHI, DT, 

RES) to visualize the presence of outliers. The red circle in Figure 4.1 shows the presence 

of outliers which can affect the petrophysical interpretation of the well logs. The red 

circled outliers can be removed through ML methods or traditional method. 
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Figure 4.1 Pair-plots between different well logs representing the appropriate outliers. Outliers are 

highlighted with red circles in the zone of interest. 

 

In quest to identify and remove these outliers, algorithms such as isolation forest, 

Minimum Covariance, One-class-SVM, etc. were employed on the input logs. 

Furthermore, box plots were used to clearly visualize the data distribution through their 

quartiles as illustrated in Figure 4.2. The boxes depict the interquartile range (IQR) of the 

data and extend from the first quartile (Q1) to the third quartile (Q3). The midpoint of the 

box represents the median of the data. The quantity of outliers varies from algorithm to 

algorithm as mentioned in the Table 4.2. Basically, the Heat maps are used to visualize 

patterns or correlations of data points in a matrix (McDonald et al., 2021). One-Class-

SVM outdated all other algorithms as it provided an appropriate number of outliers as 

delineated in the Table 4.2. 
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Figure 4.2 Box Plots for RHOB, NPHI, DT, RES depicting outliers with data distribution in quartiles using 

several unsupervised algorithms i.e., Isolation Forest, Local outlier factor, One-class SVM, Minimum 

covariance and standard deviation filter. 

 

The overall outliers by the application of various ML algorithms are summarized 

in the Table 4.2.  

 

Table 4.2: Summary of outliers and inliers of the utilized well logs dataset identified by various employed 

ML algorithms. 

    

 

After the removal of the outliers from measured logs, the pair-plots were re-

evaluated, which clearly exhibited that the outliers have successfully been removed 

through One-Class SVM as given in Figure 4.3. 
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Figure 4.3 Pair-plots between well logs to visualize the data distribution after successful outlier removal 

through One-Class-SVM approach. 

 

The ID view of logs after the identification, removal, and optimization of logs via 

SVM technique is illustrated in Figure 4.4. 

 

 
Figure 4.4 The logs depict the removal of outliers while following the similar trends in comparison to 

original logs. 
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4.1.2.2 Outlier Removal of Mehar-01 

Following the similar process, the outliers of Mehar-01 is assessed and removed 

as illustrated in Figure 4.5. Green and blue scatter points indicate the zone of interest 

points of Mehar-01 respectively. The abnormality of data points is encircled that need to 

be removed and optimized before evaluating the petrophysical interpretation (Figure 4.5).  

 

 
Figure 4.5 Pair-plots between different well logs representing the appropriate outliers. Outliers are 

highlighted with red circles in the zone of interest. 

 

A comparison is made at the box plot to view the data distribution through their 

quartiles in Figure 4.6, while a brief summary of the outliers and inliers using various ML 

algorithms are presented in Table 4.3. The outliers are removed after following the similar 

procedure and depicted in the pair-plot (Figure 4.7). The similar approach is implemented 

for all of the available wells of Zamzama along with the Mehar.  
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Table 4.3: Pair-plots between well logs to visualize the data distribution after successful outlier removal 

through One-Class-SVM approach. 

 

 

Figure 4.6 Box Plots for RHOB, NPHI, DT, RES depicting outliers with data distribution in quartiles using 

several unsupervised algorithms i.e., Isolation Forest, Local outlier factor, One-class SVM, Minimum 

covariance and standard deviation filter. 
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Figure 4.7 Pair-plots between well logs to visualize the data distribution after successful outlier removal 

through One-Class-SVM approach. 
 

4.1.3 Splice Zone Identification and Removal through Supervised ML 

Algorithms of Zamzama Field 

The splice zones are the missing zone that are needed to be predicted via 

interpolation method or advanced approach (Figure 4.8). The interpolation method does 

not reflect the prediction of true data. Alternative of this approach, the advanced method 

is the supervised ML algorithms. After the outlier's removal, the splice zones on the well 

logs are removed through the visual inspections. The splice zones are predicted by using 

the associated non splice well logs through supervised ML algorithms. The density log 

associated with washout zones is removed and predicted by associated available well logs 

through supervised ML algorithms. 
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Figure 4.8 The spliced zones identification on the available well logs of Zamzama Field. 

 

The best ML algorithm is identified through evaluation metrics applied on the 

different sample datasets extracted from training datasets.  

 

4.1.3.1 Splice Zones approximation of Zamzama-02 

The splice zone affected raw well logs have been corrected via supervised ML 

algorithms. All the other ML algorithms have been outdated by the RFR and ETR. The 

first track shows the zone of Ranikot/Khadro Formation and Pab Formation, second track 

shows the GR, third track consists of corrected density and measured density, fourth track 

is the corrected NPHI and measured NPHI, the fifth track is the crossover between 

corrected NPHI and corrected density, sixth track is the deep resistivity and last track is 

the corrected p-sonic (DT) and measured sonic (Figure 4.9). 
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Figure 4.9 The corrected spliced zone is bounded by the red rectangle while the red logs are the predicted 

through supervised ML techniques. 
 

The best ML algorithm is identified through evaluation metrics applied on the 

different sample datasets extracted from training datasets. In the case of the splice zone 

affected density log, ETR predict the density log (Figure 4.10). In the case of the splice 

zone affected NPHI log, RFR predict the missing NPHI log quit reliably (Figure 4.11). 

In the case of the splice zone affected DT log, ETR predict the missing DT log (Figure 

4.12). 
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Figure 4.10 Various ML algorithms and their evaluation metrics indicating best technique of ETR for the 

prediction of RHOB log. 

 

 

 
Figure 4.11 Implemented ML algorithms with best technique for prediction of NPHI log i.e., RFR. 
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Figure 4.12 ML algorithms with best technique for prediction of DT log such as ETR. 

 

4.1.3.2 Splice Zones approximation of Mehar-01 

The splice zone of Mehar-01 is done by adopting a similar approach. The models 

were trained using 60% of the data from Mehar-01 well, and the performance was 

validated using the remaining 40% of the data. The predicted DT (compressional wave 

velocity) and RHOB values are shown in red, while the measured logs are shown in blue 

in Figure 4.13. The trained models were then applied to the blind well, Mehar-02, to 

predict the DT and RHOB values, as shown in Figure 4.14. The first track shows the 

Ranikot/Khadro Formation zone and the gamma-ray, CALI, and bitesize measurements. 

The corrected density values can be compared to the measured density values in the 

RHOB (fourth) track, and the corrected and measured sonic values are depicted in the DT 

(sixth) track.  
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Figure 4.13 Modeled and measured well log curves in training well i.e., Mehar-01. Blue color shows the 

measured curves while red color depicts corrected RHOB and DT in fourth and sixth track. 

 

 

Figure 4.14 Modeled and measured Well log curves in testing well i.e., Mehar-02. Blue color shows the 

measured curves while red color depicts corrected RHOB and DT in third and fifth track. 
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4.1.4 Washout Zones Correction through Supervised ML Algorithms of 

Zamzama Field 

The Zamzama-02 density log is corrected via various algorithms, but best suited 

ML technique is selected for final approximation i.e., ETR Figure 4.15. The first track 

shows the zones of Ranikot/Khadro Formation and Pab Formation, second track shows 

the GR, third track is CALI and bitesize, fourth track consists of corrected density and 

measured density (mainly at the bounded area by the red box). The Fifth track is NPHI, 

sixth track is the deep resistivity and last track is the corrected p-sonic log. The NPHI, 

RES, and DT are employed to estimate the washout zones in the supervised ML technique.  

 

 
Figure 4.15 Washout zones are corrected mainly at the red box bounding the corrected logs. 

 

The selection of best method, i.e., ETR is made after detail evaluation of various 

ML technique as shown in the Figure 4.16. For all of the available wells, the technique is 

employed that effectively enhances the raw logs and brings them to their normal ranges.  
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Figure 4.16 Selection of best ML algorithm of ETR after evaluating various techniques. 

 

4.1.4.1 Petrophysical interpretation of Zamzama-02 using conventional approach 

The Ranikot/Khadro Formation at Zamzama-02 observed plausible gas sand body 

at 3420 m. The logs i.e., LLD, along with cross-over supported the interpreted potential 

sand body. According to Figure 4.17, the first track shows the zone of Ranikot/Khadro 

Formation and Pab Formation, second track shows the GR, third track consists of RHOB, 

forth track consists of the p-sonic (DT) while fifth trach comprises of deep resistivity 

(RES). The approximated clay volumetrics depicted low clay contents at the 

Ranikot/Khadro Formation level, hence provide a clue of good sand. Similarly, a cross-

over is also observed while good PHIE is present (about 15%). In this sand interval, low 

Sw is estimated while the facies are identified as gas sands in the last track.   
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Figure 4.17 Petrophysical interpretation of Zamzama-02 well indicated a potential sand body in the 

Ranikot/Khadro Formation. 
 

4.1.4.2 Petrophysical interpretation of Zamzama-03 using conventional approach 

Complete log suits are available for Zamzama-03 well. Well, Zamzama-03 is 

drilled at the depth of 4032 m, the last formation that is encounter in well is Fort Munro. 

As the Ranikot/Khadro Formation is our interested formation, therefore the petrophysical 

analysis is performed focusing on it (Figure 4.18). The similar arrangement of tracks is 

kept for Zamzama-03 as for Zamzama-02.  

The petrophysical interpretation showed the hydrocarbon is present at the Pab 

Formation at some location and Ranikot/Khadro Formation shows two gas bearing zones 

at top of the formation named as Sand-01 and Sand-02. The result of two intervals is 

shown in the Table 4.4. A decent amount of gas is present at the Ranikot/Khadro 

Formation with good porosities (15-18%) (Khan et al., 2023).  
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Figure 4.18 Petrophysical analysis of Ranikot/Khadro Formation on Zamzama-03 along with the two 

interested sand of Ranikot/Khadro Sand-01 and Sand-02 at the top of Ranikot/Khadro Formation. 

 

4.1.4.3 Petrophysical interpretation of Zamzama-04 using conventional approach 

The petrophysical interpretation of Zamzama-04 delineated a few minor streaks 

of prospective sands that is evident by the low GR values with high deep resistivity within 

Ranikot/Khadro Formation. The effective porosities are also very low with minor streak 

of low Sw i.e., depicted in the “Sw” track. Majorly, the Ranikot/Khadro Formation is 

significantly dominated by high content of shale (Figure 4.19).  

 

4.1.4.4 Petrophysical Interpretation of Zamzama-05 using Conventional 

Approach 

The logs available in Zamzama-05 are stable and the logs quality is good in the 

Ranikot/Khadro Formation. There is a considerable potential sand body at the top part of 

Ranikot/Khadro Formation that is interpreted with low GR values while contains less clay 

volumetrics. The PHIE range upto 13% in the potential sand body where low Sw is 

observed (Figure 4.20).  
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Figure 4.19 Minor potential sands with low porosity and comparatively high-Sw in Ranikot/Khadro 

Formation. The Ranikot/Khadro Formation is dominated by shales majority. 

 

 
Figure 4.20 The Ranikot/Khadro Formation bears plausible sand body where high PHIE with low Sw is 

observed. 
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4.1.4.5 Petrophysical interpretation of Zamzama-06 using conventional approach 

The Zamzama-06 well is not significant regarding the potential sand body. Less 

sand’s concentration is evaluated at the Ranikot/Khadro Formation level as depicted by 

the high GR values. Effective porosities are fine but these zones are majorly comprises 

of water, therefore the gas saturations are negligible (Figure 4.21).    

 
Figure 4.21 Zamzama-06 well contains no significant potential sands with negligible gas saturations. 

 

4.1.4.6 Petrophysical interpretation of Zamzama-07 using conventional approach 

There are few streaks of sands in the Ranikot/Khadro Formation that are 2 to 3 m 

thick, however theses are filled with water with less concentration of gas. The PHIE is 

good upto 10% in the sands interval while the logs quality is fine (Figure 4.22). 

 

4.1.4.7 Petrophysical Interpretation of Zamzama-08 using Conventional 

Approach 

The Ranikot/Khadro Formation of Zamzama-08 is also potentially insignificant 

as depicted by the interpreted Sw curve. Overall, the formation is filled with shales with 

certain streaks of sandstones. The porosity is fair to good in the sand streaks while the Sw 

in the Ranikot/Khadro Formation is about 50% (Figure 4.23).  
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Figure 4.22 Few sand streaks are depicted within Ranikot/Khadro Formation with low VCL while the Sw 

curve showed no significance regarding the potential within sands. 

 

Figure 4.23 Zamzama-08 depicts fair to good porosities at certain locations with low clay volumetrics 

but the Sw is high in these streaks, i.e., above 50%. 
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A brief summary of the interpreted Ranikot/Khadro Formation is enlisted in Table 

4.4 as follows. Basically, the Ranikot/Khadro Formation sands are divided into three sand 

types as Sand-01, 02 and 03. 

Table 4.4: Petrophysical results of Ranikot/Khadro Formation. 

Wells Sands Avg. SW 

(fraction) 

Avg. Clay 

(fraction) 

Avg. PHIE  

(fraction) 

Avg. 

Thickness  

(m) 

 

Zamzama-02 

Sand-01 0.37 0.22 0.08 1.7 

Sand-02 0.16 0.055 0.15 6.1 

Sand-03 X X X X 

 

Zamzama-03 

Sand-01 0.281 0.177 0.16 6 

Sand-02 0.272 0.17 0.19 6 

Sand-03 X X X X 

 

Zamzama-04 

Sand-01 X X X X 

Sand-02 0.39 0.19 0.05 2 

Sand-03 X X X X 

 

Zamzama-05 

Sand-01 0.244 0.147 0.18 6 

Sand-02 0.40 0.27 0.03 1 

Sand-03 X X X X 

 

Zamzama-06 

Sand-01 0.90 0.23 0.12 2 

Sand-02 X X X X 

Sand-03 X X X X 

 

Zamzama-07 

Sand-01 0.80 0.24 0.0973 2 

Sand-02 X X X X 

Sand-03 Bad bore-hole condition 

 

Zamzama-08 

Sand-01 0.50 0.24 0.18 1 

Sand-02 0.60 0.18 0.17 2 

Sand-03 X X X X 

 

4.1.4.8 Petrophysical Interpretation of Mehar-01 using Conventional Approach 

Complete log suits are available for Mehar 01 well. Well, Mehar-01 is drilled at 

the depth of 3999 m, the last formation that is encounter is Mehar-01 is Mughalkot. The 

formation tops of Mehar 01 are show in Table 4.5. The complete log data is only available 
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till Ranikot/Khadro Formation, so petrophysical analysis is only done on Ranikot/Khadro 

Formation in Mehar-01 the depth of formation is starting from 3228m and end on 3560m. 

 

Table 4.5: Borehole Stratigraphy of Mehar-01. 

Formations Formation Age Formation 

Tops (m) 

Thickness  

(m) 

Siwalik Miocene/ 

Pleistocene 

17 813 

Gaj Miocene 830 445 

Upper Nari Oligocene 1275 576 

Lower Nari Oligocene 1851 152 

Kirthar Limestone Eocene 2003 354 

Ghazij Eocene 2357 87 

Sui main Limestone Eocene 2444 618 

Dunghan Paleocene 3062 166 

Ranikot/ Khadro Paleocene 3228 332 

Pab Formation Late Cretaceous 3560 113 

Mughalkot Late Cretaceous 3673 132 

 

 

In Mehar-01 only Ranikot/Khadro Formation is marked as shown in Figure 4.24. 

In Mehar-01, the hydrocarbon is saturated all over the Ranikot/Khadro Formation in 

various layers. Reservoir Facies have been interpreted in the facies column after applying 

Table 4.1 petrophysical cut-offs systematically. The petrophysical properties summary 

of Mehar-01 well is presented in Table 4.6. 
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Figure 4.24 Petrophysical interpretation of Mehar-01 depicting interpreted petrophysical properties 

(clay/shale volume, PHIE, and Sw) in their respective tracks while 2nd, 4th, 5th, and 6th tracks show the 

measured GR, RHOB, DT and RES logs respectively as well. Modeled RHOB and DT are represented by 

red color curves whereas blue represents measured logs. In the PHIE track light brown color reflects PHIE 

whereas in Sw track blue color shows the water. Facies track reflects the respective facies after applying 

petrophysical cut off ranges. 

 

 

Table 4.6: Result of reservoir zones marked on Ranikot/Khadro Formation based on Mehar-01 well. 

Ranikot/Khadro Formation 

Zone 1 (3239m- 3247m) 

Thickness(m) VSH (%) PHIA (%) PHIE (%) SW (%) SH (%) 

8 61 13 10 51 49 

Zone 2 (3518m-3538m) 

Thickness(m) VSH (%) PHIA (%) PHIE (%) SW (%) SH (%) 

20 23 14 9 38.60 62.40 

 

4.1.4.9 Petrophysical Interpretation of Mehar-02 using Conventional Approach 

Complete log suits are available for Mehar-02. Mehar-02 is drilled at the depth of 

4300 m, the last formation that is encounter is Mehar-02 is Pab Formation. The formation 
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tops of Mehar-02 are shown on the Table 4.7. The complete log data is only available till 

Pab Formation, so petrophysical analysis is done on Ranikot/Khadro Formation and Pab 

Formation in Mehar-02. 

Table 4.7: Borehole Stratigraphy of Mehar-02. 

Formations Formation Age Formation 

Tops (m) 

Thickness 

(m) 

Siwalik Miocene/ Pleistocene 0 895 

Gaj Miocene 895 375 

Upper Nari Oligocene 1270 593 

Lower Nari Oligocene 1863 154 

Kirthar Eocene 2017 353 

Ghazij Formation Eocene 2370 71 

Sui Main Limestone Eocene 2441 602 

Dunghan Paleocene 3043 581 

Ranikot/Khadro Paleocene 3624 298 

Pab Formation Late Cretaceous 3922 316 

 

Ranikot/Khadro Formation is lies at the depth of 3622 to 3922 m and the 

hydrocarbon is saturated at the bottom of Ranikot/Khadro Formation (Figure 4.25). The 

summary of petrophysical properties within identified zone in Mehar-02 is presented in 

Table 4.8. 

 
Figure 4.25 Petrophysical interpretation of Mehar-02 is shown in VCL, PHIE, and Sw tracks while 2nd, 4th, 

5th, and 6th tracks show the measured GR, RHOB, DT and RES logs respectively. Modeled RHOB and DT 

are represented by red color curves whereas blues represents measured logs. In the PHIE track light brown 

color reflects PHIE whereas in Sw track blue color shows the water. Facies track reflects the respective 

facies after applying petrophysical cut off ranges. 
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Table 4.8: Result of reservoir zones marked on Ranikot/Khadro Formation based on Mehar-02. 

Ranikot/Khadro Formation 

Zone 1 (3842m-3857m) 

Thickness (m) VSH (%) PHIA (%) PHIE (%) SW (%) SH (%) 

17 38 13.5 9.5 43.79 56.21 

Zone 2 (3860m -3890m) 

Thickness (m) VSH (%) PHIA (%) PHIE (%) SW (%) SH (%) 

30 22.59 14 10.3 38.60 62.40 

Zone 3 (3900m- 3917m) 

Thickness(m) VSH (%) PHIA (%) PHIE (%) SW (%) SH (%) 

17 35 12.5 8.3 54 46 

 

4.1.5 Advanced ML Methods  

Many of the advance novel ML techniques have been applied for evaluating the 

key petrophysical properties including porosities, volumetric, and saturations of wells. 

4.1.5.1 Petrophysical Properties Estimation on Blind Well Mehar-02 

Among the use of traditional approaches, powerful ML is applied to identify 

petrophysical properties. The optimal model for a precise interpretation of well logs at 

various well locations is determined using a variety of ML models. The best model for 

accurate prediction of blind wells has been found using the heatmap of ML algorithm 

performance. To test the effectiveness of ML methods, dataset of Mehar-01 is trained, 

whereas Mehar-02 is kept blind to validate the results. After quality control using 

supervised and unsupervised learning algorithms, the petrophysical parameters such as 

the amount of shaly content, effective porosities, and Sw is predicted using raw logs. Many 

algorithms are used to test the Mehar-01, whereas, the Extra Trees Regressor has outdated 

all the other algorithms for the predictions of volume of shale and effective porosities at 

the blind well Mehar-02. Whereas the RFR has best performance among all the other 

algorithms for the predictions of Sw. 

The Extra Trees Regressor is an ensemble supervised ML approach that employs 

decision trees. This class implements a meta estimator that uses averaging to improve 
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predicted accuracy and minimize overfitting by fitting several randomized decision trees 

(also known as extra-trees) on different sub-samples of the dataset. Extra trees is an 

ensemble-based technique which uses a cluster of decision trees to generate an average 

output (Hui et al., 2021). It operates by taking a vast number of decision trees to predict 

an average of the parameter of interest (Genuer et al., 2017; Geurts, et al., 2006; Breiman, 

2001). Based on these groups, the prediction models are run by performing the 

computational algorithm. Finally, the accuracy of the results is analyzed using a 

coefficient of determination and mean squared error (Hui et al., 2021). 

When it comes to predicting Sw, the RFR has outperformed all previous 

algorithms. The RF algorithm utilizes many decision trees to predict the average values 

of a parameter of interest by training the decision trees on random data sets (Otchere et 

al., 2022). RF is a commonly used algorithm as it is robust, minimizes the overfitting 

risk, and is easily interpretable (Breiman, 2001). This is due to its ability to estimate the 

relationship between the input variables with the target and subsequently prioritize the 

correlated features (Otchere et al., 2022). 

 

4.1.5.1.1 Cross Validation 

K-fold cross-validation is a popular ML technique for model evaluation and 

performance estimates. The study employs a random subsampling cross-validation 

strategy because the available dataset is limited and must be efficiently utilized for both 

model training and testing. The initial dataset is partitioned into K subsets or folds of 

roughly equal size at random. The model is trained for each fold using training data from 

the remaining K-1 folds. After training with the training set, the model is tested on the 

held-out fold. The performance metrics are calculated in order to assess the model's 

performance on this fold. K folds, each serving as the testing set once, iteratively. At each 

fold, the testing subset represented by (K=i), i ranges from 0 to 9. The procedure is 

repeated K times, with each fold serving as a testing set only once. The model's overall 

performance is estimated by averaging the performance metrics from each iteration. Their 

means reflect the score of algorithms as mentioned before. The K Fold cross validation 

helps in avoiding overfitting and estimate good results. Figure 4.26 reflects the highest 
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R2 value and least MSE for optimized 10 folds authenticating the outputs and validate the 

opted workflow performance. 

 

Figure 4.26 Expressed K-fold Cross validation against each fold from 0-9 folds respectively for (a) Shale 

volume, (b) PHIE and (c) Sw. It represents statistical measures at each fold for the respective petrophysical 

property along with mean and standard deviation of K-folds. 

 

The performance of various algorithms was evaluated using statistical metrics 

such as mean absolute error (MAE), root mean squared error (RMSE), and R2, etc. as 

demonstrated in Figure 4.27, and Figure 4.28, and revealed that the ETR performed the 

best for predicting volume of shale and effective porosities with a maximum correlation 

coefficient of 1. Similarly, the evaluation metrics for predicting the Sw has also been 

calculated, as shown in Figure 4.29, indicating the correlation coefficients and errors for 

each model, and declared RFR as the best model. 

 

Figure 4.27 Evaluation metrics for volume of shale reflecting the performance of algorithms (Akram et 

al., 2024). 
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Figure 4.28 Evaluation metrics for PHIE highlighting the statistical measures. 

 

Figure 4.29 Evaluation metrics of Sw indicating performance of deployed algorithms. 
 

4.1.5.1.2 Feature Importance 

The feature importance describes the input features that have a significant impact 

on the model's predictions. High-significance characteristics have substantial 
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relationships with the target variable. GR reflects the strong characteristics that provide 

useful insights into the volume of clay. Because the other parameters have 0% feature 

relevance, they are useless for predicting VCL (Figure 4.30a). In Figure 4.30b GR, DPHI, 

density represents the prominent characteristics that provide useful information regarding 

PHI. VCL -Linear, GR, and the other features have zero feature importance, indicating that 

they are unhelpful for predicting PHIE. Density and PHIE display the strong features that 

provide useful information regarding Sw in Figure 4.30c. 

 

Figure 4.30 (a) Feature Importance Plot: ETR for volume of clay predictions, (b) PHIE predictions (c) RFR 

for Sw predictions. 

 

The petrophysical properties estimated in Mehar-01 were further validated 

through the implementation of models that showed the best performance in Mehar-02 

and after the feature importance study. The volume of shale, Sw, and effective porosities 

was predicted in Mehar-02 as a blind well. The results exhibit a strong correlation 

between the predicted and measured properties, as seen in Figure 4.31 (a, b, c), with the 

predicted curves shown in red and the conventional petrophysical properties shown in 

blue for comparison in Mehar-02. 
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Figure 4.31 The predicted and conventially interpreted petrophysical properties pf Mehar-02 (a). Predicted 

and conventially interpreted volume of shale (b). Predicted and conventially interpreted effective properties 

(c). Predicted and conventially interpreted Sw. Blue color shows the conventially interpreted curves while 

red color depicts predicted properties. 

 

To assess the model's generalizability to new data and avoid overfitting, cross 

plots were created to evaluate the performance between the estimated petrophysical logs 

and predicted petrophysical logs. The plot in Figure 4.32 demonstrated that the R2 score 

of the interpreted properties, between conventional petrophysics and ML approach for 

volume of shale, PHIE, and Sw i.e., 0.99, 0.913 & 0.928 respectively.  

Figure 4.32 Regression plots comparing the predicted and measured petrophysical properties and illustrate 

the high correlation amongst modeled and conventionally calculated properties, hence validating the 

results. 
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4.1.5.2 Petrophysical Properties Estimation on Blind well Zamzama-08 

A similar way is adopted for predicting the various petrophysical properties at 

blind well location of Zamzama-08 by considering the relevant petrophysical properties 

of Zamzama-04 and Zamzama-05. The Figure 4.33 shows the estimation of shale volume 

on Zamzama-08 (blind well) through training of Shale volumetrics present in Zamzama-

04 and Zamzama-05 (training well). A good match is observed at the blind well location 

between the shale volume estimated using conventional approaches with the ML 

technique predicted blindly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.33 Volume of Shale is predicted on blind well Zamzama-08 by training Zamzama-04 and 

Zamzama-05. 

 

Similarly, PHIE and Sw are modeled in blind well Zamzama-08 as depicted in 

Figure 4.34 and Figure 4.35. The evaluation metrics are created to identify the 

performance between the calculated petrophysical logs and predicted petrophysical logs 

(Figure 4.36). The plots show the R2 score between the volume of shale and predicted 

volume of shale is 0.92, the R2 score between the PHIE and predicted PHIE is 0.89 and 

the R2 score between the Sw and predicted Sw is 0.775. 
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Figure 4.34 PHIE is predicted on blind well Zamzama-08 by training Zamzama-04 and Zamzama-05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4.35 PHIE is predicted on blind well Zamzama-08 by training Zamzama-04 and Zamzama-05. 
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Figure 4.36 Cross plots comparing the predicted and measured petrophysical properties, representing high 

correlation between them, hence validating the results. 

 

4.1.6 Facies Analysis in Mehar-01 

Using conventional and ML approaches, researchers investigated numerous 

methods for improving the accuracy and validation of this analysis. ML methods are 

increasingly being used in reservoir analysis. The goal was to discover and rank the best 

ML tools for estimating facies. Comparing conventional methods to ML techniques can 

improve reservoir facies analysis. The study represented the usage of techniques such as 

DTC, as well as the use of ML tools for predictive modeling. To assess the accuracy and 

performance of these algorithms in blind wells or unseen data, after 10 K-fold evaluation 

and statistical measurements (Figure 4.37). 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 4.37 K-fold cross validation highlight the measures at each fold for facies prediction. 
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DTC is the best algorithm for facies classification in which overall score is 1 at 

training well Mehar-01. The model performances are measured through Accuracy, area 

under curve (AUC), Recall, Precision, F1, Kappa, and Matthew’s correlation coefficient 

(MCC) shown in the Figure 4.38. 

Figure 4.38 Evaluation metrics represent the measures at each fold for facies prediction. 

 

4.1.6.1 Confusion Matrix 

The confusion matrix is drawn between each type of facies. Here 462 values of 

shale facies (class 0), 118 values of gas sand (class 1), and 12 values of wet sand (class 

2) are accurately predicted at training well (Figure 4.39a). Whereas Confusion matrix 

shows accurately predicted 72 values of shale facies, 24 values of gas sand and 2 values 

of wet sand along with 100 % accuracy while only 10 values were falsely predicted for 

wet sand (Figure 4.39b) at blind well. 

Figure 4.39 Confusion metrics highlight the measures at each fold for facies prediction in (a) training well 

and (b) blind well. 
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DTC appeared as the best algorithm for predicating reservoir facies, and it has 

been further validating its results at the blind well Mehar-02. In Figure 4.40 is quite 

evident that the modeled reservoir facies are in quite align with the conventionally 

interpreted facies, hence validating the results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.40 Comparison of the facies predictions after ML with conventionally interpreted facies (4th 

Track) at the well showing a high correlation amongst the predicted results (5th Track). 

 

Al-Mudhafar (2020) integrated ML and data analytics for clastic reservoir facies 

and discovered that LogitBoost is the most accurate algorithm, with 100% accuracy in 

total correct facies prediction. However, the total correct percentages for Multinom and 

XGBoost were 80.24% and 70.83%, respectively. Rafik and Kamel, (2017) employed a 

combination of PCA, model-based cluster analysis, and discriminant analysis to estimate 

permeability and porosity from well-log data. Three non-parametric techniques are 

investigated: alternating conditional expectations (ACE), generalized additive models 

(GAM), and NNET to predict permeability. The strategy of ACE strategy demonstrates 

superior performance as compared to the other two methods. Ahmadi et al., (2014a) 

conducted research to forecast the permeability and porosity of petroleum reservoirs in 

northern Persian Gulf oil fields using petrophysical logs. To overcome the 
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aforementioned issue, various AI approaches, such as fuzzy logic (FL) and LSSVM, were 

used. It is suggested that LSSVM and FL be used in conjunction with a genetic algorithm 

(GA). It has been observed that the correlation coefficient between model estimates and 

relevant real data is greater than 0.96 for the GA-FL technique and 0.97 for the GA-

LSSVM approach and their result is more trustworthy in the case of porosity and 

permeability predictions. Ahmadi and Chen, (2019) evaluated various ML methods and 

suggested that the hybridized technique could predict the reservoir's petrophysical 

parameters with high accuracy. In the Central Indus Basin, Pakistan, few studies 

evaluated ML methods.  Ali et al., (2021) used the RFR to forecast facies with an accuracy 

of 83.85%, and Ahmed et al., (2022) used a stacking method to combine the outputs of 

numerous models, including the ETR reservoir, with an accuracy of 87.23%. 

In nutshell, this research highlights effectiveness of ML models in removing 

outliers from raw well logs and modeling the missing and bad well logs in an optimized 

and systematic ways. The ML has the ability to provide more accurate and reliable 

predictions compared to traditional techniques, making it a promising tool for the industry 

after testing and validation with excellent results. However, ML-based methods require 

large amounts of high-quality training data, and the accuracy of predictions depends on 

the quality of the training data and the complexity of the model.  

For improving accuracy, efficiency, and decision-making, the use of ML 

techniques in petrophysical analysis has major implications. ML offers a data-driven 

strategy, the integration of many data sources, improved interpretation, and potential 

automation by utilizing cutting-edge algorithms and analyzing enormous volumes of 

well-structured data. These ramifications help petrophysicists comprehend subsurface 

formations more thoroughly, characterize reservoirs more accurately, and make wiser 

decisions. 

 

4.2 Seismic Interpretation 

The entire 3D seismic cube has been interpreted, including the marking, and 

picking of the Ranikot/Khadro Formation, Pab Formation, and Fort Munro horizons, as 

well as fault marking. For the stratigraphical variation of formations throughout the field, 

an arbitrary line is displayed in the seismic section. Figure 4.41 represents the arbitrary 

line that is passed from all the well locations of the Zamzama Gas Field along with their 
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GR curve and with the interpreted horizons of the Ranikot/Khadro Formation, Pab 

Formation, and Fort Munro Formations.  

Figure 4.42 shows an inline 401 in which all the three horizons of Ranikot/Khadro 

Formation, Fort Munro, and Pab Formation, along with the major faults, have been 

illustrated. On the east side of this data cube, there is a significant north-south trending 

reverse fault that was considerably younger and disturbs formations up to Cretaceous age. 

The one major thrust fault shown in black and two minor thrusts that terminated in the 

major fault have been marked. On the east side, there is another major thrust fault that 

has been shown in light blue. The direction of the line is west to east, while the direction 

of the major fault is dipping from northeast to southwest. 

  

Figure 4.41 Display of arbitrary Seismic section along with showing of all well of Zamzama Gas Field. 

 

 
Figure 4.42 Seismic section along with synthetic traces based on Zamzama-05 and inline is 401. 
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The Zamzama Field is a north-south oriented, elongated thrust-related anticline 

that slopes gently towards the west. Based on vintage 3D seismic data interpretation, the 

field structure is divided into four compartments, such as Zamzama Far North, Core 

North, Core South, and East, with varying degrees of pressure compartmentalization. The 

major thrust bounds the anticline to the east, separating the hanging wall from the 

footwall structure. The thrust was previously thought to extend for around 40 km, 

dividing the main part of the field (hanging wall structure) from a less developed footwall 

anticline. Both the hanging wall and footwall structures contain two separate 

culminations. This interpretation suggests that the main bounding thrust connects several 

earlier thrust segments and separates the Zamzama-08 lateral ramp from the footwall 

structure. Smaller thrusts on the crestal hanging wall are considered to define individual 

compartments. 

 

The Zamzama-08 well was initially drilled to evaluate the sub-thrust structure's 

potential. However, a pressure survey conducted in 2003 showed that the well was 

already depleted, indicating partial communication with the crestal hanging wall wells 

(Jackson et al., 2004). This suggested that the footwall was partially in pressure 

communication with the hanging wall and that the main thrust was leaky. 

 

The new subsurface imaging has drastically altered the structural interpretation of 

the Zamzama Field. It suggests that the main thrusts defining the field are much less 

continuous than previously believed and generally do not connect directly. The main 

thrust is split into two segments by a significant lateral ramp located in the Zamzama 

East-1 well site, which connects the hanging wall with the footwall. An arbitrary seismic 

line from the crestal part of the Core South region of the field northwards along the 

Zamzama relay ramp displays continuous reflectors, and pressure data confirms 

structural continuity (Khan et al., 2022). The small en-echelon thrusts in the crestal 

hanging wall are short (<5km) and have an oblique-slip component to their thrusting. In 

the previous interpretation, these thrusts connected with the main thrust at their northern 

end but still allowed for tortuous connectivity across the Pab Formation reservoir via 

twisted pathways around the end of the crestal thrusts across the Core South region of the 

field. 

 



120 

  

4.2.1 Computation of Time Contour Maps 

After the marking of faults and horizons of interested formations, the next step is 

to compute the time contour maps. Basically, fault polygons are usually digitized after 

plotting our interpretation on the base map, and then time contour maps are prepared, as 

seismic data is typically obtained in the time-domain. The time contour maps of 

Ranikot/Khadro Formation are shown in Figure 4.43. There are a couple of major thrust 

faults, depicted by the black color, dipping toward the western side, along with the minor 

faults that dip oppositely, resultant of a compressional regime and enclosing the hanging 

wall. The contour interval of the time map is kept at 0.025 sec. All the wells penetrated 

in the core area where the major faults separated the hanging wall from the footwall.  

Figure 4.43 Two-way travel time map of Ranikot/Khadro Formation along with major and minor faults. 

All wells are drilled in the hanging wall of the anticline. 
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Time contour map on Figure 4.43 shows that low time values are present where 

the wells penetrated in the crestal portion of the anticline. These low time values depict 

the shallow portion of anticline i.e., the hinge zone while the time contour values increase 

towards east-west direction (limbs of anticline). The increase in time values is observed 

in western side where a gentle dipping of the anticlinal is observed.  

 

4.2.2 Computation of Depth Contour Maps 

After making the time contour map the next step is to know the exact velocity of 

the formations. The exact velocity of formations is picked from check shot data that is 

basically a time-depth relationship. Velocity of interested formations Ranikot/Kadro 

Formation, Pab Formation and Mughalkot were assessed through their time and depth 

relationships from well ties.  

After knowing the velocity next step is generating depth contouring map. The 

depth is calculated with the help of simple formula (S = VT/2), where S = depth of the 

surface, V is the velocity in m/sec, while T signifies the 2-way travel time in ms. 

The structure of the Ranikot/Khadro Formation is represented in true vertical 

depth sub-sea (TVDSS) and depicts the range, i.e., 3305 to 3660 m, in the main thrusted 

region of the core area (Figure 4.44). The arrangement of faults surrounding the hinge 

zone delineated the intensity of the tectonic activity in a compressional way and created 

major thrusts along with minor faults. The anticlinal structure elongated in the direction 

from north toward south and terminated in the direction of east-west. The depth counter 

map of the Ranikot/Khadro Formation is prepared with a contour interval of 25 m. The 

shallowest part (crestal zone) of the anticline, i.e., zones where wells were drilled, is 

depicted with low values that gradually increase in the east-west direction. 

 

 

 

 

 

 

 

 



122 

  

Figure 4.44 Depth contour map of Ranikot/Khadro Formation clarify the wells penetration at the crest of 

anticline with the illustration of fault polygons. 

 

4.3 Seismic Attribute  

The seismic section of arbitrary line covering all the available wells i.e., Zamzama-02, 

03, 04, 05, 06, 07, and 08 is displayed in Figure 4.45. The seismic data resolution is 

coarser regarding the gas-bearing sand facies within Ranikot/Khadro Formation along 

with the obscure reflection at various levels.  
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Figure 4.45 Field seismic data shows coarser, smudge and obscure reflection at certain levels. 

 

The extracted average energy attribute at Ranikot/Khadro Formation is 

represented in Figure 4.46. The attribute is coarser, and the gas sands are below seismic 

tuning thickness; thereby, the gas sands are not resolved. Such limitations restricted the 

distinction of various lithofacies, i.e., gas sands, wet sands, and shale. 

 

Figure 4.46 Average energy seismic attribute on seismic data set with blocky & coarser resolution. 

 

Similar to the Average energy attribute, RMS-amplitude extracted property 

doesn’t clarify the gas sand facies, and the attribute is blocky with no obvious 

identification of thin potential sands Figure 4.47. 
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Figure 4.47 RMS seismic attribute on seismic data set unable to distinguish fine reservoir layering. 

 

The normalized seismic amplitude within the Ranikot/Khadro Formation is still 

unable to recognize the presence of plausible sands as the lower frequency content of the 

seismic data is not capable of resolving it (Figure 4.48). 

 

Figure 4.48 Normalized seismic amplitude attribute extracted on field seismic data set. 

 

Overall, the Ranikot/Khadro Formation is thin enough with the sand’s intervals 

of few meters therefore it is not visible in conventional seismic data interpretation i.e., 
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sweetness (Figure 4.49). For enhanced resolution the ML algorithm is developed that is 

comprehensively elaborated in discussion section. 

Figure 4.49 Sweetness seismic attribute on seismic data set showing random results. 

 

4.4 RPM and Seismic Inversion 

The RPM plays a vital role in the identification and prediction of elastic behavior 

of reservoir properties. It generates a relationship between petrophysical and elastic 

attributes and assess the reservoir characteristics in the petro-elastic domain. The 

approximated elastic properties are employed in the inverted elastic properties so that a 

more reliable picture is attained that better understand the pay reservoir facies.  

4.4.1 ML Based RPM 

For the successful prediction of the missing logs, i.e., S-wave and optimization of 

density logs, in order to compensate for bad borehole conditions, a petro-elastic definition 

is reliably established over the cross plot between elastic properties, i.e., Zp plotted along 

the x-axis and Vp/Vs ratio on the y-axis. The plotted elastic properties are colored with 

identified lithofacies that were recognized through conclusive cut-offs on petrophysical 

properties like SW and Vclay (VCL) (Hussain et al., 2022; Durrani et al., 2022; Khan et al., 

2022; Shakir et al., 2021) (Figure 4.50). Petrophysical cutoff ranges for all reservoir 

lithofacies can be defined using detailed petrophysical analysis. Whereas hydrocarbon 

bearing sands with low values of SW ≤ 0.45 and VCL ≤ 0.30 reflect the corresponding 

elastic ranges of Zp (7500-10500 g/cc*m/s) and Vp/Vs ratio (1.45-1.6). 
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Figure 4.50 RPM based cross-plot between elastic attributes such as Zp along the x-axis and Vp/Vs ratio on 

the y-axis, colored with lithofacies (gas-sand, wet-sand, limestone, and shale) present within 

Ranikot/Khadro Formation, depicts their specific elastic ranges. 

 

SVM, DTR, RF, and GBR ML algorithms were used to predict the missing logs 

and compensate for the rock physics modelling in an efficient and effective manner in 

the current research work. Each algorithm showed good results with the measured logs. 

However, GBR shows consistently good results in all carried out predictions of the Zp and 

Zs. The R2 score against each prediction made using the corresponding algorithm depicts 

the quality of the match attained. The higher the R2 score reflects the good correlation 

with the measured log.  

 

4.4.1.1 One Dimensional (1D) elastic Properties Prediction using ML 

By incorporating the ML workflow of SVM, DTR, RF, and GBR, the predictions 

were carried out for each elastic property by training the algorithm with the available 

dataset. Results are shown individually for each well, reflecting each elastic property 

predicted using different algorithms to evaluate the R2 score. 
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Figure 4.51 Prediction of Zp at well location of Zamzama-02 using different ML algorithms by training 

from Zamzama-04 & 07. Blue is measured while orange is the predicted log. High R2 score depicts the 

accuracy of between measured and predicted logs. 

 

 

Figure 4.52 Prediction of Zp at Zamzama-04-ST3 by employing different ML algorithms trained from 

Zamzama-02 & Zamzama-05. Blue is measured while orange is the predicted log. A decent match, i.e., 

modeled (orange) and measured (blue) logs, is attained. 
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Figure 4.53 Prediction of Zp at Zamzama-05 trained from Zamzama-02 & Zamzama-04. A reliable trend 

is accomplished amongst measured (blue) and predicted (orange) logs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.54 Prediction of Zp at well location of Zamzama-07 trained from Zamzama-02, Zamzama-04-ST3 

& Zamzama-05. A consistent match is observed for DTR, RF, and GBR with above 0.9 R2 score. 
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Figure 4.55 Prediction of Zp at well location of Zamzama-08-ST2 training from Zamzama-05, Zamzama-

06 & Zamzama-07. GBR shows a very good correlation along with trend matching between measured 

(blue) and predicted log (orange). 

 

 

           
Figure 4.56 Prediction of Zs Zamzama-02 using similar ML algorithms of Zp and trained from Zamzama-

04-ST3, Zamzama-06 & Zamzama-07. GBR showed the highest correlation of measured (blue) and 

predicted (orange) log. 
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Figure 4.57 Prediction of Zs Zamzama-04-ST3 using ML algorithms trained from Zamzama-02 & 

Zamzama-05. High correlation between measured (blue) and predicted (orange) logs. 

 

 

  
Figure 4.58 Prediction of Zs Zamzama-05 using ML algorithms trained from Zamzama-02 & Zamzama-

04. GBR showed high correlation between measured (blue) and modeled (orange) logs. 
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Figure 4.59 Prediction of Zs Zamzama-07 using ML algorithms trained from Zamzama-02, Zamzama-04-

ST3 & Zamzama-05. Measured (blue) and predicted (orange) showed good correlation. 

 

 

 
Figure 4.60 Prediction of Zs well location Zamzama-08-ST2 using ML algorithms trained from Zamzama-

05, Zamzama-06 & Zamzama-07. Measured (blue) and predicted (orange) logs showed reliable correlation. 
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4.4.1.2 ML Algorithms Accuracy Measures 

Based on the highest correlation obtained against the largest number of wells, the 

GBR was chosen as the final algorithm to characterize the thin sands of the Zamzama Gas 

Field (Table 4.9). Hence, the properties including Zp, Zs, Vp/Vs ratio, PHIE, VCL, and SW 

were trained and made comparison with actual values as follows (Figure 4.61). 

 

 
Figure 4.61 Correlation matrix showing the actual vs predicted logs against key wells used for training the 

ML algorithm. 

 

1. Zamzama-02 is trained using Zamzama-04 and Zamzama-05 

2. Zamzama-04-ST3 is trained using Zamzama-05 and Zamzama-02 

3. Zamzama-05 was trained using Zamzama-02 and Zamzama-04 
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4. Zamzama-07 is trained using Zamzama-02, Zamzama-04, and Zamzama-05 

5. Zamzama-08-ST2 is trained using Zamzama-05, Zamzama-06, and Zamzama-07 

An initial correlation matrix is observed to evaluate the variations in the plot. 

Results from Chicco et al. (2021) showed that the correlation matrix or coefficient of 

determination (R2), which does not suffer from the interpretability issues of MSE, RMSE, 

MAE, and Mean Absolute Percentage Error (MAPE), is more accurate and informative. 

Each log type is added in order to estimate the good quality match; hence the diagonal of 

each plot depicts the correlation match as shown in Figure 4.61. So, the correlation matrix 

plot is generated by evaluating actual versus predicted logs using ML. Each log type is 

added in order to estimate the good quality match; hence the diagonal of each plot depicts 

the correlation match.  

 

Table 4.9: Different ML algorithms used to get the best correlation in order to characterize the thin sands 

of Zamzama Ranikot/Khadro Formation secondary reservoir. Overall, the GBR provided the best 

correlation values at each well. 

Well Elastic Property 
ML Algorithms R2 Score 

SVM DTR RF GBR 

Zamzama-02 Zp 0.75 0.92 0.92 0.90 

Zs 0.88 0.88 0.93 0.94 

Zamzama-04-ST3 Zp 0.83 0.92 0.95 0.96 

Zs 0.95 0.95 0.98 0.98 

Zamzama-05 Zp 0.82 0.93 0.98 0.97 

Zs 0.93 0.98 0.98 0.99 

Zamzama-07 Zp 0.88 0.91 0.89 0.90 

Zs 0.93 0.90 0.89 0.89 

Zamzama-08-ST2 Zp 0.93 0.97 0.97 0.98 

Zs 0.88 0.98 0.98 0.98 

 

Therefore, it was concluded that the overall Gradient Booster Regressor provided 

the best prediction against each elastic property log at every given well location. 

The thin secondary reservoir sands of the Ranikot/Khadro Formation (Khan et al., 

2022) exhibit extreme heterogeneous behavior within the Zamzama Gas Field. The thin 

heterogeneous sands are assessed with by synthetic wedge model as detailed elaborated 

and depicted in Figure 4.76. The petrophysical analysis depicted a 7 m thick gas sand in 

the Zamzama-02 well at Ranikot/Khadro Formation level (Figure 4.76a), while the wedge 

model reflected the seismic resolving power of bed depicted thickness of around 60-65m. 

The major components employed into the synthetic wedge model including frequency, 
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velocity, and wavelet from the reservoir zone Figure 4.76b, c and d). The thin sands are 

below the seismic resolution limit, however seismic inversion is employed to observe the 

overall behavior of elastic properties. These thin sands (4-7 m thick) were successfully 

characterized across the study area with the implementation of advanced ML algorithms 

and techniques. Therefore, despite the excellent results obtained by all algorithms, GBR 

was chosen for final characterization based on the comparatively maximum correlation 

attained. 

4.4.2 AVO Modeling and Sand Class Identification 

By utilizing Vp, Vs, and ρ (measured logs) and statistical wavelet, the AVO 

modeling (process of forward modeling) is performed using the Aki-Richards 

approximation (Aki, 1980) to calculate the reflection coefficients 𝑅𝑝(𝜃) as a function of 

incident angles according to the following equations 4.1-4.2. 

𝑹𝒑(𝜽) = 𝑨
∆𝑽𝑷

𝑽𝑷
+ 𝑩

∆𝝆

𝝆
+ 𝑪

∆𝑽𝒔

𝑽𝒔
       (4.1) 

Where, 

𝑨 =
𝟏

𝟐𝒄𝒐𝒔𝟐𝜽
;  𝑩 = 𝟎. 𝟓 − ⌈𝟐 (

𝑽𝒔

𝑽𝒑
)

𝟐

𝒔𝒊𝒏𝟐𝜽⌉ ;  𝑪 = −𝟒 (
𝑽𝒔

𝑽𝒑
)

𝟐

𝒔𝒊𝒏𝟐𝜽  (4.2) 

A = Intercept, B = gradient, C = curvature 

 

The output modeled AVO synthetic traces with coverage of angle ranges of about 

30˚ is depicted in Figure 4.62 along with key logs (GR, P-wave, RHOB, and S-wave) and 

identified lithofacies.  

The lithofacies identified two bodies of sands while Sand-01 and Sand-01bottom 

is selected for AVO intercept gradient analysis to assess the class of sand. 

The AVO characteristics of seismic reflections from the interface between shales 

and gas sands is initially studied by (Rutherford and Williams, 1989). The Event 1 is 

placed at the top of the identified sand while Event 2 is kept at sand base (Figure 4.63). 

The AVO responses of the events are assessed at the amplitude vs. angle plot. 
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Figure 4.62 The modeled AVO synthetic traces along with key well logs employed for AVO modeling and 

reservoir characterization while lithofacies log identified two zones of gas sands in the Ranikot/Khadro 

Formation. 

 

The analysis of amplitude variations with angles is industrial standard for sand 

classification scheme. There are four sands classes identified using AVO analysis as 

follows: 

Class 1: The impedance of sandstone is greater than that of shale. The interface between 

shale and this type of sandstone will provide a high RC and a positive zero offset, but the 

magnitude of the amplitude will decrease in order to offset. 

Class 2: Sandstone has about identical AI with its cover (seal rock) and an amplitude that 

increases proportionately to offset. Based on the RC at zero offset, class 2 sandstone is 

separated into two classes: class 2a and class 2b. 

Class 3: Sandstone has lower AI than its cover. 

Class 4: Sandstone has negative RC at zero offset and lower impedance with amplitude 

that is decreasing against the offset. There is a change in polarity at a certain angle and 

then amplitude will be increasing proportionally to the offset. 

According to the observed amplitude responses the top of the sand depicted the 

Class 1.  

 



136 

  

 
Figure 4.63 The amplitude responses of the identified event observed at the amplitude vs. angles of incident 

crossplot. 

 

Castagna and Swan (1997) proposed AVO crossplotting wherein an estimate of 

the normal-incidence reflectivity is plotted against a measure of the offset dependent 

reflectivity. The complete classification is represented in Figure 4.64. 

Figure 4.64 a) Sand classification scheme. b) The AVO responses of Event 1 and Event 2 is plotted that 

depicted Event 1 (top sand) as Class 1 while the Event 2 as class 4. 

 

4.4.3 Low Frequency Model 

The LFM of Zp of Zamzama Gas Field passing all available wells is illustrated in 

Figure 4.65. The Zp of well logs having band-pass frequencies upto 15 Hz depicted good 

correlation with the LFM model covering Ranikot/Khadro Formation and Pab Formation 

for clear understating. The Pab Formation depicted low impedances as it is completely 
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comprising of sandstone in comparison with mixed lithologies of Ranikot/Khadro 

Formation. 

Similarly, the LFM model of Zs depicted in Figure 4.66 among the corresponding 

well logs that are filtered according to the developed model (upto 15 Hz). A good 

accordance of well property with approximated model is observed with smooth trend of 

value ranges covering both of the reservoirs of Zamzama Gas Field.   

 
Figure 4.65 Arbitrary line passing through the wells showing the low-frequency model of Zp used for Pre-

Stack Inversion study overlain by the Zamzama Field wells with similar property of impedances filtered at 

15 Hz. 

 

 
Figure 4.66 Arbitrary line passing through the wells showing the low-frequency model of Zs overlain by 

the Zamzama Field wells having Zs log. 
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4.4.4 Pre-Stack Simultaneous Seismic Inversion (PSSI) 

PSSI Figure 4.67 depicts a comprehensive evaluation of the measured impedances 

(Zp, Zs), density (ρ), Vp/Vs ratio (blue), and their inverted properties (red), along with LFM 

(background trend with black color) at the well location of the Zamzama-05. The number 

of iterations is kept at 25, which iteratively lessens the error and brings the synthetic 

(blue) traces in accordance with field seismic (red). The synthetic traces are produced by 

taking inverted curves as input and using a wavelet extracted from the reservoir zone for 

the convolution purpose; hence, analyze the synthetics for error analysis through a 

forward model. The assessment of synthetics with field seismic depicted a correlation 

coefficient of 96.19% and minimum error values of about 0.2559. The coefficients of k, 

kc, m, and mc are calculated from the regression analysis on the crossplotting of well data 

along with the calculation of covariances from the relationship between Zp, Zs, and, ρ as 

depicted in Figure 4.68 and Figure 4.69. 

The output of Pre-Stack Inversion was represented as inverted Zp and Zs cross-

sections. Calibration of inverted results with well log data showed very good matching 

within the zone of interest (Ranikot/Khadro Formation) at the well locations. Low 

impedance resides between high impedance at the reservoir level passing through wells 

fairly linked with the amount of potential fluid content present in that particular zone. 

Figure 4.67 Inversion analysis via comparison of inverted (red), measured (blue), and LFM (black) logs 

along with synthetic (red) generated from inverted logs by convolving with wavelet extracted reservoir 

zones correlation with seismic (black). 



139 

  

Figure 4.68 Regression analysis based on natural logs on Zp, Zs, and ρ, i.e., Ln (Zp), Ln (Zs) and Ln (Dn). 

 

 

 
Figure 4.69 The coefficients of k, kc, m, and mc are estimated from the regression analysis along with 

covariances. 

 

In cross-section of Zp passing through all wells, the low values entrapped within 

high values possibly the potential sands representation (Figure 4.70). Furthermore, the 

inverted attribute of Zs also correspond to the outcomes attained from Zp showing lower 

values bounded between relatively higher Zs can be the plausible sands delineation 

(Figure 4.71). Overall, the seismic resolution is not enough to fully characterize the thin 

Ranikot/Khadro Formation (4-7 m), therefore the high resolution seismic is attained via 

advance ML algorithms that effectively trace out the potential sand’s bodies on the 

inverted maps.   
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Figure 4.70 The inverted impedance (Zp) in a section view bisecting all Zamzama wells with inserted Zp 

curve in displayed wells. 

 

 
Figure 4.71 The inverted impedance (Zs) in a section view bisecting all Zamzama wells with inserted Zp 

curve in displayed wells. 

 

4.4.5 Slices within Ranikot/Khadro Formation 

Within the Ranikot/Khadro Formation, three sand bodies were identified based 

on petrophysics and were mainly characterized and entitled as Sand-01, Sand-02, and 

Sand-03, correspondingly marked at the well location (Figure 4.72) used within the study.  

The inverted Zp slice of bottom part, comprising the Sand-03 interval (15 ms 

above Pab Formation) of the Ranikot/Khadro Formation. The stratigraphic slice shows 

that form north to south there are high values of impedance at the crestal portions of the 

anticline (core area where wells drilled) instead of few locations i.e., Zamzama-05 

observed low impedance values (Figure 4.73). 
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Figure 4.72 Cross-correlation illustrating three sand layers distribution based on GR and P-sonic on all 

wells. The three sands are present in the wells that are further assessed by the petrophysical and cut-off 

values. 

 

 
Figure 4.73 Inverted Zp slice of Bottom sand of Ranikot/Khadro Formation. 

 

The inverted Zp slice of the mid sands, i.e., Sand-02, is made by first shifting the 

Ranikot/Khadro Formation’s horizon by 15 ms, and then mapping the mean of a 10 ms 
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window within the Ranikot/Khadro Formation, which shows no prominent clue for the 

potential sands. This is possibly due to the resolution limitation of seismic data regarding 

the thin gas sand beds Figure 4.74). 

Similarly, the inverted Zp slice of top sands, i.e., Sand-01 (top of Ranikot/Khadro 

Formation’s horizon up to a 15 ms window below), delineated low impedance values 

near Zamzama-04 and Zamzama-02 (Figure 4.75). 

   

 
Figure 4.74 Inverted Zp slice of Mid sand of Kadro Formation. 

 

Conclusively, the thin sands of having maximum thickness of 7 m present 

Ranikot/Khadro Formation are not able to clearly resolve on the limited frequency 

spectrum that contain dominant frequency of about 20 Hz. In Figure, the potential gas 

bearing sands are identified with integrated relationship of elastic and petrophysical 
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properties. The gas-bearing sands have comparatively large porosities (up to 8%) with 

low values of SW ≤ 0.45 and VCL ≤ 0.30 reflecting correspondingly low elastic ranges in 

Zp (7500-9500 g/cc*m/s) and Vp/Vs ratio (1.4-1.6). The potential sand is analyzed based 

on the wedge model so that resolving power of seismic data is assessed. The wedge model 

describes the shift in the amplitude of reflection events when the bed thickness decreases 

below the dominating wavelength of the seismic data (Saeed et al., 2020; Simm, 2009), 

represented by equation 4.3: 

 

 
Figure 4.75 Inverted Zp slice of Top sand of Kadro Formation. 

 

𝒁 = 𝑽𝒊/𝟐. 𝟖𝒇𝒅  (4.3) 

Z represents the tuning thickness of bed, Vi is the dominant velocity i.e., 

approximately 4000 m/s in the potential sand layers, while fd is the dominant frequency 
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within the reservoir zone that is about 20 Hz. The double-interference-wedge modeling 

concluded that constructive interference of waves having opposite polarity starts at 60 m 

of thickness, while maximum tuning thickness is observed around 40 m, having the 

highest amplitude (Figure 4.76). The synthetic seismic response is observed on the basis 

of interpreted horizons on zero-crossings at the top and base of thin Ranikot/Khadro 

Formation gas sand. Hence, such an observation depends on the shape and frequency of 

the wavelet and helps to notify the limitation of the resolving power of a seismic dataset, 

such as about 6 m of thin gas sand beds of the Ranikot/Khadro Formation. This technique 

helped to identify that seismic resolution is not much greater for Ranikot/Khadro 

Formation sands while it can resolve much thicker Pab Formation. Therefore, ML needs 

to be implemented for enhanced properties of elastic and petrophysical properties 

estimation within thin and heterogeneous reservoir Ranikot/Khadro Formation.  

 
Figure 4.76 a) A gas sand body with 7 m thickness encountered at Zamzama-02 well after petrophysical 

analysis. b) Statistical wavelet used to generate synthetic wedge model. c) Synthetic wedge models with 

variable thickness, starting from zero till 100 m reflects seismic tuning thickness for sand body. d) Around 

60 m is the resolution limits for the seismic dataset under study. 
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4.4.6 ML Based Elastic, Petrophysical and Facies Prediction 

Petrophysical interpretation confirmed the presence of the potential gas sands 

within the Zamzama-02, Zamzama-03, Zamzama-04-ST3, Zamzama-05, and Zamzama-

07 wells, whereas Zamzama-06 and Zamzama-08-ST-2 did not encounter these sands. 

The Drill Stem Test (DST) reports of Zamzama-03 and Zamzama-05 confirmed that these 

sands were successfully perforated to obtain the gas production from Ranikot/Khadro 

Formation. Henceforth, these potential gas sand bodies are assessed with ML based 

elastic (Zp, Zs) (Figure 4.77, Figure 4.78) and petrophysical volumetrics, i.e., PHIE 

(Figure 4.79), to achieve high-resolution volumetrics. These volumes have a 

comparatively higher resolution due to the increased frequency spectrum. The ML 

technique that is best employed for RPM of elastic properties is employed for the 

prediction of volumetrics. The high resolution of volumetrics beyond the known well 

location across the field is one of the primary objectives of the study. 

The best relationship for identifying the gas sand facies using the elastic logs is 

to have low GR along with low SW while having high values of PHIE (Durrani et al., 

2022; Durrani et al., 2022a).  Based on this defined criterion and with the help of key ML 

based elastic properties, the properties of gas sand facies were predicted across the whole 

volume, hence separating from the non-reservoir facies as well. 

Figure 4.77 ML based predicted Zp shown along an arbitrary line passing through all wells. The 

corresponding property log of Zp shown at each well location that shows good match with high resolution 

compared to Pre-stack seismic inversion. 
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Figure 4.78 ML based predicted Zs shown along an arbitrary line passing through all wells. The 

corresponding property log of Zs shown at each well location that reflect good match, authenticated the 

results. 

 

The PHIE volumetric is depicted on all of the wells while the wells are colored 

with same log property (Figure 4.79). A reliable match of the modeled petrophysical 

property is observed on similar properties present within the wells. The three sands i.e., 

Sand-01, Sand-02, and Sand-03 (Top, middle, and Bottom) are mapped that showed good 

porosities distribution (about 9%) throughout the field (Figure 4.80).  

 

Figure 4.79 ML based PHIE volumetrics passing through all wells delineates a reliable match with similar 

property of well that authenticated the ML results. 

 

Similarly, the gas bearing sands are approximated passing through all wells 

(Figure 4.81). The net thickness of producing sands with thickness of about 7 m is 
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enhanced by the usage of ML. The detail mapping of sands facies distribution is depicted 

in Figures 4.82-4.84. 

Figure 4.80 Three Sands-01, 02, and 03 intervals (top, middle, and bottom) delineated a good distribution 

of porosities. 

 

  

Figure 4.81 ML based gas bearing sands passing through all wells delineates a reliable match with the 

identified gas sands facies of the wells authenticated the ML results. 
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Figure 4.82 Map illustrating the probability distribution to encounter the hydrocarbon bearing sand facies  

for the Sand-01 within Zamzama Gas Field. Red color depicts the highest probability to encounter the 

hydrocarbon bearing sand facies. 
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Figure 4.83 Map illustrating the probability distribution to encounter the hydrocarbon bearing sand facies 

for the Sand-02 within Zamzama Gas Field. Red color depicts the highest probability to encounter the 

hydrocarbon bearing sand facies. 
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Figure 4.84 Map illustrating the probability distribution to encounter the hydrocarbon bearing sand facies 

for the Sand Body 3 within Zamzama Gas Field. Red color depicts the highest probability to encounter the 

hydrocarbon bearing sand facies. 

 

4.4.7 Continuous Wavelet Transform 

The primary target is to resolve the thin sands by employing the Post-Stack 

seismic data through injecting high frequencies. The seismic frequency band ranges were 
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optimized from (0-5-30-40 Hz), with 20 Hz being the dominating frequency (Figure 4.76) 

to (0-5-60-100 Hz), while after injecting high frequencies peak frequency improved to 

25 Hz, as evident by the synthetic wedge model of Zamzama-03 well (Figure 4.85). By 

applying the CWT-DNN approach after injecting high frequencies, a HFSSV has been 

generated. The results of output seismic with a sampling rate of 1 ms that drastically 

improved seismic resolution. The results of output seismic with a sampling rate of 1 ms 

drastically improved seismic resolution. 

It has been validated by the lithology log that can be distinguished between sand 

or shales as thin as 2 m. The resolution of the lithology log is substantially higher than 

that of the typical seismic data. 

Figure 4.85 a) The synthetic wedge model has improved resolution employing the high-frequency (0-5-

60-100 Hz) wavelet b) with 25 Hz peak frequency and used for CWT-DNNs based high-frequency seismic 

synthetics volume. c) High resolution synthetic wedge model. d) Resolution limit around 18 m. 

 

Different methods have been employed to organize Post-Stack seismic trace data 

into vectors or matrices for NNET. CWT is used on the original Post-Stack Seismic data 

to obtain seismic spectra (Figure 4.86). Before wavelet transformation, several 

parameters to the CWT about the Post-Stack seismic data are fed such as: 

1. Sampling rate of Post-Stack Seismic data: If the Post-Stack seismic data sampling 

rate is 2.0 ms, then the frequency sampling rate which is the required parameter 

for CWT will be 200 s. 

2. Frequency band of Post-Stack seismic data: The amplitude spectrum provides 

information about the frequency bands (0-5-30-40 Hz) for field seismic data, and 

vice versa. 

3. Number of scales: The number of scales is dependent upon the quantity of data. 

If the rows of data for the DL model are fewer, the number of scales should be 

lower to avoid overfitting data. Constraining the number of scales will give less 
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certain results. In this case, the optimal number of scales is considered as 100 

scales. 

A non-stationary complex Morlet wavelet function has been employed after 

analysis to carry out CWT for Post-Stack seismic data. The CWT spectra reveal the hidden 

geological information in the Post-Stack seismic data by enhancing the signal's energy 

and suppressing noise in time and frequency non-stationary mode (Ali et al., 2020). CWT 

disintegrates seismic data in the form of an imaginary part, the real part and their 

corresponding magnitude. The frequency band of the initial Post-Stack seismic data can 

be fully utilized in this technique. 

 

 

 

 

 

 

 

 

 

Figure 4.86 CWT transformation seismic into real, imaginary, and magnitude components with facies log 

in the same interval at well location from a) seismic trace & b) high-frequency synthetic seismic. 

 

4.4.8 Deep Neural Networks (DNNs) Technique 

NNET are based on a neuron’s computation and entail a weighted matrix of the 

input values. The synapses' value scaling and the neuron's combination of these values 

are symbolized by the weighted sums. A cascade of neurons would then perform a 

straightforward linear algebra process, outputting not only the weighted sum but rather 

the combined inputs that are subjected to a functional activity within the neuron. This 

technique seems to be a nonlinear function that only triggers a neuron to produce an 

output when the inputs exceed a certain threshold. NNET, by analogy, pertains to a non-

linear function to the input values sum. 

The following equation 4.4 is used for computation at each layer (Sze et al., 2017), 

as shown in Figure 4.87. 

𝒚𝟏 = ∑  𝟑
𝒊=𝟏 𝑾𝒊𝒋 ∗ 𝒙𝒊 + 𝒃    (4.4) 
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Where, ijW  are weights, and ix , jy  represents input and output activations. 

The neural network comprises more than two layers, i.e., one or more hidden 

layers. Nowadays days, DL typically uses layers ranging from five to over a thousand.  

Compared to shallower NNET, DNNs can learn high-level characteristics with 

greater complexity and abstraction. It employed a backpropagation approach for 

minimizing the difference between actual and predicted output by updating the weights 

of input features. Using DNNs to process visual data is one illustration of this application.  

The study's first goal is to produce high-resolution fine-layering seismic by 

injecting high frequencies in field seismic. It has been achieved by using the impedance 

log, the RC is generated at wells, and a synthetic is generated after convolving the RC 

with a high-frequency wavelet. (Choi and Alkhalifah, 2011) has adhered to the 

fundamental idea that if the source wavelet's bandwidth is increased, the seismic trace 

will have a band-extended spectrum and obtain a better resolution from the same 

reflectivity as shown in Figure 4.86. 

Alongside, CWT decomposes Post-Stack seismic field data into its real, 

imaginary, and magnitude parts (Figure 4.86a). By keeping the CWT output, as an input 

feature layer and earlier generated high-frequency synthetic as a target, the DNN 

approach is utilized to populate HFSSV. DNN employed 4 layers, including three hidden 

layers with 60, 40, and 20 neurons, respectively. 

Further study’s key objective is to utilize high-resolution seismic to populate fine 

reservoir facies volume by resolving thin gas-sand facies. In this HFSSV, after validation 

at blind wells, is disintegrated into parts in the frequency domain by using the complex 

Morlet Wavelet function (Figure 4.86b). 

In this step for DNN training, these three components are taken as input 

features/input layer by targeting high-resolution facies extracted at the well locations 

using petrophysical cutoffs. The retained DNN included three hidden layers and one 

input/features layer with 80, 60, and 40 neurons, respectively, using softmax as an 

activation function. As this activation function works best for multi-classification 

problems with DNN (Figure 4.87). The DNN generates results by keeping 70 % as 

training and the remaining 30% as testing dataset to ensure the model accuracy. 
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Figure 4.87 DNNs schematic diagram taking input layers as neurons with activation function (softmax) to 

get output layer. 

 

The CWT-DNNs model gives a higher resolution to capture fine reservoir gas-

bearing facies more distinctly (Figure 4.88). 

 

 
Figure 4.88 Spectral enrichment from bandlimited to broadband in the convolutional model. Bandlimited 

trace exhibits coarser resolution while broadband trace reveals fine layers enhancing resolution. 
 

The frequency band optimization process of spectral enhancement, which uses 

wider band wavelets to transform a narrowband trace into a broadband one. An end-to-

end ML algorithm could carry out the spectral enhancement if enough narrow band-

broadband pairs of traces are available. Comprehensive fine layers have been added to 

the enhanced frequency broadband trace, aligning the real geology found in the well RC 

with the results' veracity while bandlimited has missed this important fine. Therefore, 

after injecting high frequencies, seismic attributes are extracted, i.e., Average Energy, 

Normalized Amplitude, RMS amplitude, and Sweetness, extracted also using 
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conventional seismic data, depicted extraordinarily improved results for the CWT-DNN 

based high frequency synthetic volume (HFSSV). The identified facies of shale, 

limestone, wet and gas sands are also depicted on the wells.  

 

 
Figure 4.89 a) Field seismic data shows coarser, smudge and obscure reflection at certain levels b) CWT-

DNNs high-frequency volume of seismic synthetics overlain by high-frequency facies log reflects fine, 

coherent, and crisp reflections. 
 

 
Figure 4.90 Average energy seismic attribute a) on seismic data set with blocky & coarser resolution, b) 

CWT-DNNs seismic synthetics with enhanced, fine demarcation of beds overlain by facies log. 
 

 
Figure 4.91 Normalized seismic amplitude attribute a) field seismic data set, b) CWT-DNNs based HFSSV 

derived attribute with optimized layering following high-frequency facies layers present at wells. 
 

 
Figure 4.92 RMS seismic attribute a) on seismic data set unable to distinguish fine reservoir layering, b) 

CWT-DNNs derived seismic synthetics attribute introduces high resolution layering match able at wells. 
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Figure 4.93 Sweetness seismic attribute a) on seismic data set showing random results, b) CWT-DNNs 

based seismic synthetics attribute marks fine potential layers around the wells. 

 

4.5 PP Prediction based on Conventional well logs using Advanced ML 

Approach  

Pore pressure approximation is considered as a vital property for the effective 

modeling of reservoir and risk management. Its estimation provides an idea regarding the 

overpressure formation that hinders the drilling with severe outcomes. Many of the 

approaches (both conventional and ML based) have been employed to evaluate the 

pressures scenarios in the Ranikot/Khadro Formation.   

4.5.1 Conventional Method for PP Estimation 

PP has a crucial significance in drilling safety, efficiency, and cost-effectiveness. 

It significantly affects the behavior of subsurface materials and has important 

implications for the stability of rock formations, reservoir management, and geotechnical 

engineering. In this research, PP along with the geo-mechanical properties i.e., 

overburden pressure, horizontal minimum stress and horizontal maximum stress is 

estimated in Zamzama-06 using conventional logs i.e., GR, DT as given in Figure 4.94. 

These geo-mechanical properties lead to designation of the rock properties like their 

strength, compactness and thickness of the bed which help to optimize the drilling 

efficiency by preventing the collapse of wellbore and enlargement of hole. 
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Figure 4.94 PP calculated by ML predicted method in Ranikot/Khadro Formation. The pink color curve 

shows the overburden gradient (OBG) while blue curve represents PP gradient (Ppg) calculated from DT 

using Eq. (31). Maximum and minimum horizontal stress is also estimated, indicated by red and green 

curve. 

 

4.5.2 1D PP ML Predictions 

Conventional PP prediction and analysis techniques, while well-established and 

industry-proven for decades, suffer from time and labor intensiveness, necessitating 

specialized skills and equipment. In contrast, ML-driven interpretation capitalizes on AI 

and ML algorithms to scrutinize large datasets, revealing hidden patterns and 

relationships that may elude conventional approaches.  

ML techniques replace traditional approaches to predict geo-mechanical 

properties with precision. Various ML models are tested to identify the optimal one for 

interpreting well logs at different locations. Employing a heat map helps in the 

identification of the optimal model for precise predictions on unseen wells. To assess the 

proficiency of ML techniques, the datasets from all seven wells are utilized. One well 

function as a "blind" well for validation purposes, while the remaining wells are 

employed for model training. After quality check, raw logs are used to predict geo-

mechanical parameters, including PP, vertical stress, and horizontal maximum and 

minimum stress. Among the many algorithms used for training and testing, GBR 

outperforms all others for predicting PP and geo-mechanical properties in all blind wells. 

The different wells of Zamzama Gas Field taken into account for training and testing the 

model is mentioned in the Table 4.10. 

GBR represents an ensemble technique comprised of a sequential arrangement of 

tree models, where each subsequent model homes in on the mistakes made by its 

forerunner. This method in ML employs a process called "boosting" to amalgamate less 
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potent prediction models, usually in the form of decision trees, into a more resilient and 

precise model (Rao et al., 2019). By employing the gradient descent loss function, it 

systematically reduces errors by iteratively updating initial estimations with refined ones. 

This iterative process culminates in the development of a final model that combines all 

preliminary estimations with appropriate weights for improved accuracy (Otchere et al., 

2022). 

 

Table 4.10: List of seven wells used to train and test the data. ML algorithm i.e., GBR has performed 

exceptionally well in predicting geo-mechanical properties. 

Training Wells Blind Well Top ML Algorithm 

Zamzama-03,04,05,06,07,08 ZZ-02 GBR 

Zamzama-02,04,05,06,07,08 ZZ -03 GBR 

Zamzama-02,03,05,06,07,08 ZZ -04 GBR 

Zamzama-02,03,04,06,07,08 ZZ -05 GBR 

Zamzama-02,03,04,05,07,08 ZZ -06 GBR 

Zamzama-02,03,04,05,06,08 ZZ -07 GBR 

Zamzama-02,04,04,05,06,07 ZZ -08 GBR 

 

4.5.3 Cross Validation 

K-fold cross-validation has been extensively implemented practice for evaluating 

the efficiency of ML models. Here, an automated workflow of random subsampling 

cross-validation is employed to estimate the competence of the prominent ML algorithm 

across diverse samples. The K-fold cross-validation divides the initial dataset's random 

division into K subsets/folds of approximately equivalent size. The K-1 folds are then 

trained by the model and evaluated on the remaining fold. This step works K times 

iteratively, with each fold being engaged as the testing dataset once randomly, denoted 

by (K=i), where i changes from 0 to 9. The computed performance metrics against each 

iteration are weighed and an overall model performance is calculated by averaging the 

results across all iterations. This methodology helps prevent overfitting and provides a 

reliable estimation of the algorithm's performance. In this research, GBR consistently 

delivered the best results across different samples by testing K=05, 10, and 20, while 10 

K Folds produced the optimized results after validation. As 10-fold cross-validation 

offers a good balance between bias and variance in the performance estimate. 
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The effectiveness of algorithms was assessed through statistical measures 

including MAE, RMSE, R2, among others. The evaluation metrics for all ML algorithms 

portray correlation coefficients and errors for each model, as depicted in Figure 4.95. The 

analysis highlights that among them, the GBR exhibited superior performance in 

predicting geo-mechanical properties with a correlation coefficient of 0.9.  

 

 
Figure 4.95 Evaluation metrics for PP reflecting the performance of algorithms. Among all the algorithms, 

GBR performed well with correlation of 0.92. 

 

The geo-mechanical properties estimated in all six wells, namely Zamzama-03, 

Zamzama-04, Zamzama-05, Zamzama-06, Zamzama-07, and Zamzama-08, are 

subsequently verified using models that exhibited optimal performance on Zamzama-02, 

a well-considered as a blind test. These six wells were employed for training purposes. 

The outcomes demonstrate a strong alignment between the projected and actual 

properties, as illustrated in Figure 4.96, Figure 4.97 and Figure 4.98. The anticipated 

curves are displayed in black, while the traditional PP is shown in dashed black for 

comparison within the context of Zamzama-02. Additionally, figures also include 

alternative algorithms like RF and light gradient boosting machine (LGBM). RF predicted 

curve is depicted with blue color, while predicted curve via LGBM algorithm is shown in 

red color. Among these algorithms, GBR shows a pronounced correlation between the 

forecasted and measured PP curve. R2 score of the interpreted PP i.e., the correlation 
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between conventional and ML based approach is 0.41 in Zamzama-03 and 0.42 in 

Zamzama-05 respectively. 

 Zamzama-03 and Zamzama-05 have two top sand gas facies marked in the red 

color into which the PP has shown the high significance which indicates the potential 

fluid flow of gas in subsurface formations, suggesting that fluids are either entering or 

exiting the pores.  

 

 
Figure 4.96 PP predictions in Zamzama-03 and Zamzama-05. First two tracks show well log curves i.e., 

GR and DT. Third Track shows Facies and Last Track shows the predicted and conventionally interpreted 

PP. Black dotted curve shows the conventionally interpreted PP while black solid color depicts predicted 

PP via GBR, blue curve via RF and red curve predicted using LGBM algorithm. Sand gas facies marked in 

the red color into which the PP has shown the high significance. 
 

Zamzama-04 has sand gas facies marked in the red color into which the PP has 

shown the high significance, indicating a potential fluid flow of gas in subsurface 

formations, as it suggests that fluids are either entering or exiting the pores. Among 

several algorithms, GBR exhibits a significant correlation between the predicted and 

actual PP curve. R2 score of the interpreted PP i.e., the correlation between conventional 

and ML based approach is 0.41 in Zamzama-04 and 0.56 in Zamzama-06 respectively. 
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Figure 4.97 PP predictions in Zamzama-04 and Zamzama-06. First two tracks show well log curves i.e., 

GR and DT. Third Track shows Facies and Last Track shows the predicted and conventionally interpreted 

PP. Black dotted curve shows the conventionally interpreted PP while black solid color depicts predicted 

PP via GBR, blue curve via RF and red curve predicted using LGBM algorithm. Sand gas facies marked in 

the red color into which the PP has shown the high significance. 

 

Zamzama-07 has sand gas facies marked in the red color into which the PP has 

shown the high significance, indicating a potential fluid flow of gas in subsurface 

formations, as it suggests that fluids are either entering or exiting the pores. Among 

several algorithms, GBR demonstrates a robust correlation between the predicted and 

observed PP curve. R2 score of the interpreted PP i.e., the correlation between 

conventional and ML based approach is 0.47 in Zamzama-07 and 0.37 in Zamzama-08 

respectively. 
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Figure 4.98 PP predictions in Zamzama-07 and Zamzama-08. First two tracks show well log curves i.e., 

GR and DT. Third Track shows Facies and Last Track shows the predicted and conventionally interpreted 

PP. Black dotted curve shows the conventionally interpreted PP while black solid color depicts predicted 

PP via GBR, blue curve via RF and red curve predicted using LGBM algorithm. Sand gas facies marked in 

the red color into which the PP has shown the high significance. 
 

4.5.4 3D PP ML Predictions 

The spatial variations of PP in the thin Ranikot/Khadro Formation across the 

entire subsurface area, a three dimensional CWT is employed for the 3D PP prediction 

i.e., The Ranikot/Khadro Formation is thin enough to be visible in conventional seismic 

data, therefore CWT-DNNs model gives higher resolution to capture reservoir gas-

bearing facies more distinctly. (Zhang and Zhan, 2017) The relationship is established 

between CWT resultant traces and predicted PP on well location through DNN and the 

PP or other geo-mechanical properties are stimulated through the 3D seismic data 

accurately. The workflow for predicting the uncertainties of PP throughout the seismic 

volume is given in Figure 4.99. 
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Figure 4.99 Workflow of the 3D PP predictions through advanced ML model. 

 

In this study, seismic data is transformed into CWT features that highlight the 

hidden information from seismic data by converting it into the frequency domain i.e., 

real, and imaginary part, which further optimizes the prediction of PP throughout the area 

as shown in Figure 4.100. Likewise, the other geo-mechanical properties like poison 

ratio, horizontal stress etc. can also be predicted.  

 

Figure 4.100 CWT of the seismic traces (real, imaginary, and magnitude) in relation with predicted PP. 

 

The real part of the CWT is fed into the input layer, which is defined by the 

specified input shape of CWT organized in three dimensions of data. Following that, a 

two dimensional (2D) convolutional layer with 64 filters and a 7x7 kernel size is used 

with padding to keep the spatial dimensions. Each convolutional layer's output 

undergoes batch normalization and rely activation before being down-sampled using a 

2D max pooling layer with a pool size of 3x3 with strides of 2. 

Three residual blocks with 64 filters, a 3x3 kernel without a max-pooling layer 

and its output is followed by two residual blocks with 128 filters, a 3x3 kernel with strides 

of 2 with max-pooling layer and its output followed by six residual blocks with 256 
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filters, a 3x3 kernel with strides of 2 with max pooling layer and its output followed by 

three residual blocks with 512 filters, a 3x3 kernel with strides of 2 with max-pooling and 

global average 2D pooling is applied on the output generated by last residual block to 

convert the spatial variations in one vector that is fed into output layer having one neuron 

with no activation function is added to produce the final output as shown in Figure 4.101. 

Colors in this figure show the convolution layers like red color, cyan and blue color, black 

hollow box comprises of bunch of different convolutional layers. 

 

Figure 4.101 ResNET Architecture to predict the PP. The multiple colors depict the convolutional layers 

and black box showing a bunch of different convolutional layers. 
 

 Figure 4.102 delineates the PP between the wells spatially via DNN-CWT 

relationship, which can also be affirmed through comparison between the predicted and 

estimated PP. 

Figure 4.102 Uncertainty of PP predicted between the wells spatially via DNN-CWT relationship on 

arbitrary seismic line passing through the employed wells. 

 



165 

  

4.6 Discussions 

The area of research (Zamzama & Mehar Gas Field) lies toward the western 

section of the Kirthar Foredeep which comprises southern portion of the larger Lower 

Indus Basin (Ashraf et al., 2020; Ehsan et al., 2018). The Southern Indus Basin of 

Pakistan is a prolific hydrocarbon producer in Pakistan, bearing complete petroleum 

elements (Khan et al., 2022; Hussain et al., 2022; Ehsan et al., 2021; Ehsan and Gu, 2020; 

Ehsan et al., 2019; Mahmood, Ahmad and Ehsan, 2018).The presence of anticline 

structure provides suitable trap for placement of hydrocarbon in the hanging wall cut 

through high angle faults (Liu, 2017). A comprehensive petroleum system is available in 

the KFTB comprising Sembar and Goru shales as source and Girdo (Ranikot/Khadro) 

provides the seal in the region (Abbasi et al., 2016). Due to depositional variability and 

structural complexity in this basin, understanding reservoir rock, especially 

Ranikot/Khadro Formation is a significant problem. The Pab Formation is the primary 

reservoir and a plentiful gas producer in the Zamzama Gas Field (produced 1.7 TCF gas 

and ~9.6 MMbbls of condensate) but now in the decline phase. This field also produces 

from the Lower Ranikot/Khadro Formation, which is in stratigraphic pressure isolation 

from the Pab Formation. However, most of the production comes from Pab Formation. 

Moreover, the lateral ramps provided hanging-footwall a connection causing differential 

encroachment of saline water and created pressure depletion among the producing wells. 

Gas-Water-Contact (GWC) observed at deeper levels of the anticline at crestal portions, 

create an opportunity to drilled new wells in this field (Zafar et al., 2018). So, the 

secondary Ranikot/Khadro Formation grabs the attention here, but it is more complex in 

nature with multiple lithofacies and thin gas-baring sand layers. Although some wells 

have produced hydrocarbons, most wells did not encounter potential facies due to 

geological complexity (Munir et al., 2022; Khan et al., 2022). Previously, Jackson et al 

(2004) worked on the Ranikot/Khadro Formation with limited scope, focusing on a 

conventional approach that did not incorporate any advanced solutions. Khan et al (2022) 

and Shakir et al (2021) used Bayesian stochastic seismic inversion (BSSI) and PSSI to 

investigate the Ranikot/Khadro Formation sand layers, but they did not use advanced ML 

approaches. 

For complete reservoir characterization of thin sands of Ranikot/Khadro 

Formations, seven wells, i.e., Zamzama-02, Zamzama-03, Zamzama-04, Zamzama-05, 

Zamzama-06, Zamzama-07, and Zamzama-08-ST-2, present in 3-Dimentional cube of 
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the Zamzam gas field, were employed along with three Mehar gas field’s well, which are 

Mehar-01, Mehar-02, and Mehar-03. The well consisted of necessary information 

regarding formation tops, well logs, mineralogical literature, etc. that was further 

incorporated for well-to-seismic ties and petrophysical assessment. The analytical 

comparison of rock physics, petrophysics, seismic attributes, seismic inversion, 

petrophysical volumetrics and PP modeling with several multivariate prediction 

methodologies based on various ML algorithms was made regarding robustness, 

effectiveness, reliability, and resolution improvement. Many of the advanced ML 

approaches, such as linear regressions, RFR, DTC, GBR, ETR, DTC, and DL (NNET), 

were employed in the estimation of petrophysical and elastic properties (Priezzhev et al., 

2019). Seismic and well data sets were integrated into conventional and ML procedures, 

to accurately approximate petrophysical and petro-elastic parameters. For maximum of 

the approximated properties, it was feasible to estimate the inverted petrophysical 

reservoir parameters more accurately and with less interpretational bias using the 

nonlinear predictive operators that ML techniques extract. According to Otchere et al 

(2022), it is an essential part of the ML algorithms to have the ability to preprocess the 

data with the aid of feature selection, along with removing extraneous factors in the 

trainings and predictions. Otchere et al (2022) preferred to use GBR and RF on eight 

feature selection techniques to model and characterize the shallow marine reservoir with 

better accuracy. 

Many of the recent examples are presented based on ML techniques i.e., (Yasin 

et al., 2021a) consolidated rock physics modelling with Post-Stack seismic data, as well 

as the use of a joint inversion ML strategy that combines SVM and PSO. This technique 

assisted the author in capturing the thin clastic layers/channels of sand potential bodies 

while providing a reliable match of sand-shale packages using an arrangement of low-

high AI. In contrast, the use of the Gaussian simulation technique allowed for the analysis 

of spatial changes in 3D porosity models displaying consistency at wells. Finally, the 

author summarized the findings by predicting sweet spots identified with high porosity, 

permeability, and gas sands in direct comparison to low elastic property values, i.e., P-

wave, S-wave, and Vp/Vs ratio; inside Lower Goru Formation C-sands. Also, advance ML 

techniques are employed by recent researcher for reservoir characteristics based on petro-

elastic attributes approximation in the Indus Basin (Hussain et al., 2022; Ahmed et al., 

2022, Khan et al., 2022; Shakir et al., 2021). 
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Numerous approaches used in this study concentrates on the field's secondary 

reservoir, which is the primary exploration target at the present time in the area and 

nearby blocks, using unsupervised ML (One-Class Support Vector Machine) and 

supervised ML algorithms (ETR, DTC, RFR, and GBR) for RPM and predicting 

missing/poor logs i.e., density, S-wave etc., to properly highlighted Ranikot/Khadro 

Formation heterogeneous thin gas sands facies. The RPM approximated the missing S-

wave in Zamzama-04, Zamzama-06, and Zamzama-07 based on ML techniques and more 

accurately estimated Zs using GBR. The GBR provided accuracy of above 90% and 

severely minimizing uncertainty along with the allied costs of the procedure. The main 

principle underlying GBR success is creating new base learners that are maximally 

correlated with the ensemble's negative gradient of the loss function, which is achieved 

by a sequential error fitting strategy. The accurate prediction of Vs and hence Vp/Vs ratio 

delineated a reliable relation on petro-elastic crossplot, i.e., x= Zp, y=Vp/Vs ratio, and 

z=identified lithofacies. The gas-bearing sands having Zp values of 7500 to 9500 

(m/sec*g/cc) along with Vp/Vs ratio of about 1.4 to 1.6 expressed in the crossplot 

relationship as decisive ML characteristics. The same algorithm of GRB is employed for 

the estimation of elastic and petrophysical volumes that reflected the heterogeneous 

Ranikot/Khadro Formation more prominently regarding thin potential sands. On the basis 

of the adopted workflow assisted with ML techniques, three units of reservoir sands were 

allocated regarding Paleocene gas-bearing sand intervals, and gas-bearing sand’s 

probability distribution maps were prepared for each unit of reservoir sand body. 

Bringing into line the technique of seismic inversion with ML cutting-edge algorithms 

speeded the elastic property approximation regarding facies characterization but also 

increased the accuracy with reduced uncertainty of the process. 

Petrophysics is an important discipline for assessing reservoir characteristics and 

creating new fields. The application of ML has improved drilling efficiency, data 

correction, reservoir property prediction, reservoir rock type, and other petrophysics-

related jobs (Banas et al., 2021; Akkurt et al., 2018) . As an alternative of conventional 

approaches, advance ML i.e., one-class-SVM, RFR, ETR, GBR, DTC etc. are adopted for 

the identification of petrophysical properties. The optimal model is selected after 

assessing various ML techniques for a precise interpretation of well logs. Using a heatmap 

of ML algorithm performance, the best model for accurate prediction of blind wells was 

identified. The formation evaluation process through petrophysics reveals that One-class-

SVM helped to reduce outliers with great certainty while the missing portions in P-sonic 
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(DT) and RHOB logs, employed in the petrophysical estimation, are precisely predicted 

via GBR and ETR with 0.66 and 0.88 R2 respectively. Mehar-01's dataset is trained to 

assess the efficiency of ML approaches, while Mehar-02 is kept blind to validate the 

results. After quality control with supervised and unsupervised learning algorithms, raw 

logs are used to forecast petrophysical characteristics such as shaly content, PHIE, and 

Sw. Several approaches are utilized to train and test the Mehar-01, however the ETR has 

rendered all other algorithms obsolete for predicting shale volume and effective porosities 

at the blind well Mehar-02. Whereas the RFR outperforms all other algorithms in terms 

of Sw predictions.  

The ETR operates by taking a vast number of decision trees to predict an average 

of the parameter of interest (Geurts et al., 2006; Breiman, 2001). Based on these groups, 

the prediction models are run by performing the computational algorithm. In conclusion, 

the accuracy of the results is analyzed using a coefficient of determination and mean 

squared error (Hui et al., 2021). The RFR algorithm utilizes a large number of decision 

trees to predict the average values of a parameter of interest by training the decision trees 

on random data sets. It is one of the most commonly used algorithms due to its robustness, 

minimum overfitting risk, and is easily interpretable. This is due to its ability to estimate 

the relationship between the input variables with the target and subsequently prioritize 

the correlated features (Otchere et al., 2022). Hence providing reliable and optimized 

quality logs suitable for ML based petrophysics.  

The ML worked on these augmented logs by dividing the data into 60% training 

and 40% testing. The ETR outperformed rest of models with a correlation of 0.99 and 

0.91 among conventional and ML results. Likewise, RFR performed exceptionally well 

for Sw modeling expressing the highest 0.93 correlation. Finally, DTC modeled reservoir 

facies with the best 91% accuracy and 0.935 F1 measures at the blind well. Excellent 

calibration of >85% is met with the estimates obtained by the predictive model compared 

to conventional methods. The result of any modelling depends on the purity of the input 

data. More noise-free data helps produce more optimized results. In petrophysics, 

conventional methods were also employed so that results can be compared and later 

remove the noisy data through ML approaches. The K Fold cross validation helps in 

avoiding overfitting and estimate good results (Al-Mudhafar, 2016). The training through 

ML reflects the highest R2 value and least mean square error (MSE) for optimized 10 folds 

authenticating the outputs and validate the opted workflow performance. The feature 

importance of ML describes the input features that have a significant impact on the 
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model's predictions i.e., parameters having 0% feature relevance are useless for 

predicting VCL. Similarly, the confusion matrix is drawn between each type of facies. In 

petrophysical estimation 462 values of shale facies (class 0), 118 values of gas sand (class 

1), and 12 values of wet sand (class 2) are accurately predicted at training well. Whereas 

Confusion matrix shows accurately predicted 72 values of shale facies, 24 values of gas 

sand and 2 values of wet sand along with 100 % accuracy while only 10 values were 

falsely predicted for wet sand at blind well. Similarly, missing sonic logs in the splice 

zone and density logs due to bad holes cause misleading results (Shakir et al., 2021;  

Hussain et al., 2017). 

According to the previous results of ML attained by various researchers among 

the current study, it can be used as an analogue for the regional development of thin-

bedded sandstone systems in the vast basins globally. The current research may serve as 

a vital example for the exploration of the remaining gas-bearing stratigraphic systems 

within the studied basin and similar surrounding basinal settings. As a result, 

investigating the reservoir facies by the integration of seismic signature and well log’s 

high frequency content through ML technique highlighted the Paleocene Ranikot/Khadro 

Formation thin-bedded secondary reservoir for effective reservoir quality prediction. The 

ML based elastic attributes, i.e., Zp, Zs, and petrophysical properties (PHIE) along with 

the gas bearing sand probability distribution contributed effectively to the overall 

understanding of the Paleocene hydrocarbon plays. 

The results of the facies classification aided by the high-resolution elastic 

properties approximated by ML technique are highly effective and promising to exploit 

the untapped and unexplored regions of the Indus Basin. The generated probability 

distribution maps can spot the light and direct the exploitation of these reservoirs on a 

regional and subsurface scale. Therefore, the identification of the best fit ML could 

improve reservoir prediction and simulation for reservoir management and recovery in 

such heterogeneous thin-bedded sandstone reservoirs. In terms of physical property 

prediction, our analysis indicates that the sandstone reservoirs can be classified into 3 

units that can be traced along the studied area. These three levels, illuminated by the 

generated maps of elastic, petrophysical, and facies, can be the basis for field 

development and better exploitation of these thin-bedded secondary reservoirs that was 

beyond the seismic resolution of conventional seismic data. The class of sands is initially 

assessed through the AVO analysis of high frequency well data that demarcated the sands 

as class-2 revealing its exploration importance.  
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In nutshell, this research highlights effectiveness of ML models in removing 

outliers from raw well logs and modeling the missing and bad well logs in an optimized 

and systematic ways. The ML has the ability to provide more accurate and reliable 

predictions compared to traditional techniques, making it a promising tool for the industry 

after testing and validation with excellent results. However, ML-based methods require 

large amounts of high-quality training data, and the accuracy of predictions depends on 

the quality of the training data and the complexity of the model. 

For evaluating seismic resolution limitation, the synthetics wedge model was 

constructed at available wells to understand seismic resolution limits and resulted that 

field seismic fails to resolute thin ~ 6 m sands. Therefore, the aim was to increase the 

field seismic data itself by increasing its frequency band width through DL along with 

the integration of CWT. High frequencies have been injected carefully for attaining high 

resolution seismic which is then populated throughout the 3D cube and a high-frequency 

volume is obtained. This high frequency synthetic seismic volume (HFSSV) is obtained 

by the CWT-DNN integrated approach and thereby the enhanced attribute analysis was 

carried out. It further validated that the developed algorithm by correlating the original 

field results exhibited improved results confirmed by the production at wells. 

The field seismic and its extracted attributes reveal blocky, smeared, and 

ambiguous images at certain levels, which mostly failed to highlight thin gas sand layers 

as in this study. The geological information extracted from these extracted seismic 

attributes has not matching the overlain well information and did not produce efficient 

results. Whereas, seismic and its corresponding attributes after injecting high-frequency 

content uncover fine layers by exhibiting logical, consistent, and sharp reflections 

matching the high-resolution facies log. 

The HFSSV attribute results are matching at the producing and non-producing 

facies at well locations passing through the arbitrary line. It comprehensively shows a 

clear difference and optimization of the results produced with application of this 

techniques. Likewise, incorporation of the more available well data, core data, and other 

supportive studies data would be valuable and enhance the subsurface geological 

perspective in a more vibrant way. As a result, incorporating these enhanced and 

additional datasets with in advance integrated techniques would be the study's future 

recommendations for further research. 

Finally, the ML technique assessed thin sand beds to induce high frequencies from 

well data into the band-limited seismic data that increased the vertical resolution and 
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hence became able to resolve these thin sands. Innovative ML techniques proved its 

capability of providing broadband seismic attributes therefore minimized the requirement 

of introducing high frequencies. ML identified features by employing well-data, trained 

the property, and approximate the consistent features using the traces of seismic data, 

hence successfully permitting to assess the beds present below seismic resolving power 

among structurally complicated area.  

PP is one of the significant properties of the reservoir in terms of safe drilling, 

efficiency of the recovery, and well bore stability. It significantly affects the behavior of 

subsurface materials and has important implications for the stability of rock formations, 

reservoir management, and geotechnical engineering (Zhang and Zhan, 2017). In the 

study area, PP along with the geo-mechanical properties i.e., overburden pressure, 

horizontal minimum stress and horizontal maximum stress is estimated using 

conventional logs i.e., GR, DT. These geo-mechanical properties lead to designation of 

the rock properties like their strength, compactness and thickness of the bed which help 

to optimize the drilling efficiency by preventing the collapse of wellbore and enlargement 

of hole. ML techniques replace traditional approaches to predict geo-mechanical 

properties with precision. Various ML models were tested to identify the optimal one for 

interpreting well logs at different locations. The heat map aided in the selection of best 

model at blind wells. In every process, six wells out of seven were selected in the training 

while keeping one as blind. Among many algorithms used for training and testing, GBR 

outperforms all others for predicting PP and geo-mechanical properties especially at 

blind well location.  

The execution of K-fold cross-validation (process iterates K times) entails the 

initial dataset's random division into K subsets or folds of approximately equivalent size. 

Performance metrics are computed for each iteration, and an overall assessment of model 

performance is derived by averaging the outcomes across all iterations. This approach 

helps avoid overfitting and provides a reliable estimation of the algorithm's performance. 

In this research, GBR consistently delivered the best results across different samples, 

validated by 10 K Folds. The effectiveness of various applied ML algorithms was 

assessed through statistical measures including MAE, RMSE, R2 that suggested GBR as 

one of the best approaches for PP and its mechanical properties estimation. The outcomes 

demonstrated a strong alignment between projected and actual properties using GBR in 

comparison with RF, LGBM, etc. For the 3D PP prediction i.e., the spatial variations of 

PP in the thin Ranikot/Khadro Formation across the entire subsurface area, a 3D CWT is 
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employed. The Ranikot/Khadro Formation is thin enough to be visible in conventional 

seismic data, therefore CWT-DNNs model gives higher resolution to capture reservoir 

gas-bearing facies more distinctly (Zhang and Zhan, 2017). The relationship is 

established between CWT resultant traces and predicted PP on well locations through 

DNN and the PP or other geo-mechanical properties are stimulated through the 3D 

seismic data accurately. The real part of the CWT is fed into the input layer, which is 

defined by the specified input shape of CWT organized in three dimensions of data. 

Following that, a 2D convolutional layer with 64 filters and a 7x7 kernel size is used with 

padding to keep the spatial dimensions. Each convolutional layer's output undergoes 

batch normalization and rely activation before being down-sampled using a 2D max 

pooling layer with a pool size of 3x3 with strides of 2. Three residual blocks with 64 

filters, a 3x3 kernel without a max-pooling layer and its output is followed by two residual 

blocks with 128 filters, a 3x3 kernel with strides of 2 with max-pooling layer and its 

output followed by six residual blocks with 256 filters, a 3x3 kernel with strides of 2 with 

max pooling layer and its output followed by three residual blocks with 512 filters, a 3x3 

kernel with strides of 2 with max-pooling and global average 2D pooling is applied on 

the output generated by last residual block to convert the spatial variations in one vector 

that is fed into output layer having one neuron with no activation function is added to 

produce the final output. The convolution layers are presented with various colors like 

red, cyan and blue color, black hollow box etc. in this research work.  

The results indicate that the data-driven ML approach for estimating PP is both 

reliable and efficient compared to conventional methods. This approach only requires 

conditioned well logs and ML algorithms to accurately determine PP at well locations. 

By utilizing CWT of Post-Stack seismic data, geologists and geophysicists can obtain a 

3D PP volume through this data-driven approach, facilitated by ML algorithms. In 

contrast, the conventional methods for PP estimation have been challenging. 

 

4.7 Summary 

The integrated approach optimized the geological outputs and clarified the 

heterogeneous thin potential reservoir sands. The petrophysical and elastic properties of 

the plausible sands are summarized in Table 4.10. 
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Table 4.10: Key reservoir properties assessed through employed techniques. 

Property Value of reservoir sands 

Petrophysics (Mehar gas field) VSH (<25%), SW (<40%), PHIE (10%) 

Petrophysics (Zamzama gas field) VSH (<20%), SW (<0.35%), PHIE (10%) 

ML based P-impedance <10000 m/s*g/cc 

ML based S-impedance <4500 /s*g/cc 

ML based PHIE ≈9% 

Gas sand Facies probability >75% 

ML based PP prediction ≈4500-5000 psi 
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CHAPTER 5  

CONCLUSIONS AND RECOMENDATIONS 

5.1 Conclusion  

The thesis significantly demonstrated the advanced novel approaches of ML 

implemented successfully for the characterization of thin heterogeneous Ranikot/Khadro 

reservoir sands. The key outcomes of the employed techniques are described as follows: 

(1) Petro-elastic relationship has been comprehensively developed through ML for 

optimized understanding of the thin heterogeneous sands. Four key facies have 

been demarcated successfully including shales, wet sands, gas-sands, and 

limestone within the Ranikot/Khadro Formation where the thin reservoir sands (4 

–7 m in thickness) were par below seismic resolution but have the potential for 

hydrocarbon production. The high probabilities gas-sands zones have been 

demarcated for further field development. 

(2) The reservoir sand layers are classified into Sand-01, Sand-02, and Sand-03 

according to petrophysical characteristics and these were penetrated in all studied 

wells except Zamzama-06 and Zamzama-08-ST-02. These potential gas sand 

bodies were extended and evaluated beyond the known well location and across 

the field, marking them as the primary objective of the research with the 

implementation of advanced ML algorithms and techniques. To resolve the thin-

bed reservoirs and obtain the best possible results, we have applied four ML 

approaches including SVM, DTR, RF, and GBR. All aforementioned algorithms 

have excellent results, but the GBR outperforms the other algorithms based on the 

comparative maximum correlation and R2 attained i.e., on average above 90%. 

(3) The study presents a competent approach that highlights the effectiveness of using 

ML techniques for well logs outlier removal, prediction of missing logs, and 

petrophysical interpretation. In the context of well log data conditioning, the one 

Class-SVM algorithm emerged as the most effective, including various algorithms 

employed in handling outliers. The GBR performed best with R2 0.66 and MSE 

0.0034 to predict the missing splice zone DT log, while the ETR had R2 0.88 and 

MSE 0.0005 to optimize the bad hole RHOB log, which are essential inputs for 

accurate ML results. Among the multiple algorithms considered, the ETR 

algorithm demonstrated excellent performance with R2 > 99.9% and 0 MSE in 

modelling shale volume and PHIE, while the RFR algorithm had R2 =99.9% with 
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0 MSE and remarkably predicted Sw at the training well. While the strong 

correlations of 0.99, 0.91, and 0.93 were observed between predicted and 

conventionally measured shale volume, PHIE, and Sw respectively, after thorough 

testing and validation, using Mehar-02 as a blind well. Similarly, key reservoir 

facies have been predicted with high correlation at blind well along with excellent 

statistical measures. The results mark the effectiveness of ML models in 

petrophysical interpretation and data quality control, surpassing conventional 

approaches. 

(4) Likewise, the DNNs proved to be a flexible and more accurate AI approach. The 

workflow built an effective relationship with CWT-derived seismic properties for 

obtaining high-frequency volumes (HFV). The HFV based on CWT-DNNs 

extremely improves the seismic resolution evident by the comparison of synthetic 

wedge models i.e., conventional seismic and CWT-DNNs volumes. The attributes 

obtained from HFV are more pronounced for the thin Khadro Formation’s 

reservoir sands. This method produced high-resolution elastic (Zp, Zs, Vp/Vs ratio) 

along with petrophysical properties (VCL, PHIE, gas-sand facies) for the whole 

volume after validation at the blind wells. The CWT-DNNs approach is typically 

useful for areas where acquiring high-resolution seismic is challenging or cost-

prone. The AI-guided DNN exploited the untapped potential in acquired seismic 

volumes for improved reservoir characterization with low uncertainty.  

(5) This study concludes an efficient approach that demonstrates the efficacy of 

employing ML techniques for predicting pore-pressure. Among the various 

models developed, the GBR algorithm proved to be the most effective, achieving 

an R2 of 0.92 for PP prediction using conditioned well log data. Furthermore, 

these predictions were utilized as input, and the entire seismic volume was 

populated using the CWT-DNN relationship to accurately predict the spatial 

distribution of PP. The results indicate that the data-driven ML approach for 

precise estimating PP is both reliable and efficient compared to conventional 

methods.   
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5.2 Recommendations 

The study results are highly promising, and the blind wells corroborate the 

findings. As a result, a complete dataset should be used, and the study's findings should 

be expanded to the regional level for optimal well development.  

ML demonstrated an optimal integrated method for improved results. The results 

indicate that the high probability zones should be investigated for enhancement of 

hydrocarbon exploitation in a heterogeneous, thin reservoir.  

The Signal-to-noise ratio of the available seismic dataset need to be optimized by 

reprocessing the seismic data with the latest technology and optimized parameters. 

The shear wave component in well logging is very important log for fluid 

demarcation along with others logs that need to acquire in all future wells.  

In the future, seismic and well-log data should be collected by focusing on thin 

beds with high resolution. As a result, the issues associated with this complicated 

reservoir must be addressed in order to resolve thin potential layers. 
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