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ABSTRACT 

Cyber-Physical Systems (CPS) integrate computational and physical processes, with 

applications spanning automotive, industrial robotics, and home automation industries. As 

CPS becomes more intricate due to technological advancements, the need for robust 

development and testing methodologies to ensure reliability and safety has become 

paramount. Traditional software development models are often insufficient for managing the 

combined hardware, software, and network complexities characteristic of CPS. This research 

introduces an extended V-Model for system engineering tailored to the development and 

testing of CPS. Our model adapts and expands upon the traditional V-Model used in software 

engineering, incorporating modern techniques such as A/B/n testing and Explainable AI 

(XAI). This methodology enables parallel development and testing processes. The V-Model 

begins with a requirement specification that outlines the CPS profile, including sensor types, 

network architecture, and computational needs. The functional specification phase assesses 

system responses under various conditions, ensuring the expected functionality is met. The 

system is divided into its core components in the architectural design phase: software, 

hardware, and network infrastructure. This stage prepares the system for implementation, 

integrating sensor data acquisition, data transfer protocols, and AI analytical modules. 

For unit testing, mutation testing is employed using mutation operators to simulate potential 

system faults. This enhances system robustness by ensuring the AI model can handle failures 

related to hardware, software, or network issues. Fault seeding helps to identify 

vulnerabilities within the AI, particularly in Neural Networks, Random Forest, Gradient 

Boosting, and other algorithms used depending on the specific case. Integration 

testing incorporates A/B/n testing with combinatorial logic to evaluate different CPS 

configurations. This approach compares variants under real-world conditions, helping to 

identify the optimal setup for performance and reliability. In system testing, the fault model 

is employed to ensure coverage across hardware, software, network, and environmental 

conditions. Test cases are designed to capture the full range of potential faults that could 

impact the CPS. Explainable AI techniques, such as SHAP (Shapley Additive Explanations), 

are used to interpret the AI model's predictions during system testing, providing insights into 

CPS behavior in different scenarios. Additionally, real-time alerts are generated based on the 

AI’s predictions of CPS performance. The final phase involves acceptance testing, where the 

system’s performance is validated in the target environment against predefined project 

requirements. Mutation testing further strengthens the system’s reliability by identifying 

areas of potential failure, ensuring the CPS is protected against a wide range of possible 

issues.  The proposed extended V-Model provides a comprehensive approach to CPS 

development, covering the relationships between hardware, software, networks, and AI 

algorithms. By integrating modern testing strategies such as A/B/n testing and mutation 

testing, this model enhances the reliability, security, and efficiency of CPS. Future work will 

extend the applicability of this model to other domains and address emerging challenges in 

CPS development.  
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CHAPTER 1 

INTRODUCTION 

 

 

Cyber-Physical Systems (CPS) are integrated systems that combine computational elements 

with physical processes, enabling real-time monitoring and control of physical environments 

through embedded computing and communication technologies. Cyber-Physical Systems 

(CPS) development is further amplified by the fact that these systems are increasingly being 

deployed in areas where human lives are at stake, such as in healthcare and transportation. 

Traditional software development methodologies, while effective for conventional systems, 

often fall short when applied to CPS due to the unique challenges these systems present. The 

interaction between the physical and cyber components in CPS introduces complexities that 

require specialized approaches to development and testing [1]. For example, in a cyber-

physical system being “slow” means that software and hardware components must be able to 

respond within no time (i.e., right) when the state of the systems changes. Even worse in CPS 

is the use of these machine learning algorithms, where such models must be designed, they 

need to learn from our data and then we must test their generalization capability on unseen 

data but also not misbehave when things are going critical [2]. 

Reliable CPS development is also crucial for maintaining public trust in these systems. As 

CPS are increasingly integrated into everyday life, from smart homes to autonomous vehicles, 

users must be confident that these systems will perform as expected. Any failure, especially 

in high-stakes applications, can lead to loss of life, financial damage, and a loss of trust in 

technology [3]. It is therefore necessary to have rigorous testing methodologies at the unit 

and system levels. Validation is indispensable to identify and reduce risks before deployment. 

Here, the V-Model for CPS development demonstrates a well-organized approach in which 

all parts of the system are validated, and their structure is tested at each phase. To address the 

challenges in CPS, this model integrates contemporary testing methodologies like A/B/n-

Testing, Mutation Testing and XAI to ensure that these are not only working but also 

trustworthy, secure and deployable for the real world [4]. 
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1.1 Challenges in CPS Design and Testing 

Designing and testing CPS (Cyber-Physical Systems) comes with challenges that are not 

commonly faced in traditional software or hardware development. All of this is quite 

challenging due to the intricate interactions between physical and computational aspects, the 

real-time nature of these systems and their demand for robust operation in highly dynamic 

(often unpredictable) environments [5]. Below are some of the key challenges in CPS design 

and testing: 

1.1.1 Complexity and Integration 

Cyber-Physical Systems (CPSs) are composed of multiple sensors, actuators, 

computational units, and communication networks. This forces each part to work 

together so that ultimately the totality of the system functions correctly. Combining 

these various factors frequently poses obstacles related to compatibility and 

interoperability. Furthermore, due to the complexity of these systems in an n-number 

component setup, it scales exponentially and becomes a logistic challenge for testing 

one-shot end-to-end real device scenarios [6]. 

1.1.2 Real-time Requirements 

Many CPSs are required to operate within hard real-time constraints where 

data must be processed, and decisions need to be made on the fly. This makes data 

processing a more challenging task in the design and testing phase, because if it is 

delayed or erroneous, then the system will fail with an exception [7]. This poses a 

greater challenge, especially in the realm of machine learning, where the models need 

significantly more computation. 

1.1.3 Safety and Security 

Because CPS is often used in critical application domains, security and safety 

are very important. CPSs must be robustly designed to handle all potential failure 

modes and thoroughly tested that they are capable of safely operating under those 

conditions [7].Additionally, integrating networked components makes CPS 

vulnerable to cyber-attacks, requiring robust security measures to protect against 

unauthorized access and manipulation. 
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1.1.4 Uncertainty and Variability 

CPS must necessarily operate under an uncertain and varying environment. 

For instance, an intelligent autonomous vehicle must be able to operate in all weather 

conditions along variable road surfaces and under different traffic patterns [7]. Due to 

these uncertainties, it is impossible to predict the behavior of the system in all 

situations. Such is the level of uncertainty that it becomes almost impossible to devise 

tests for every possible environmental variable or system state. 

1.1.5 Explain-ability and Trust 

CPS is caught increasingly relying on AI, and machine learning algorithms for 

decision-making so the imperative of explainability is important. Both users as well 

as operators must be able to interpret and trust the decisions made by these systems 

e.g. in safety-critical applications [8], [9]. But because their internal state is so hugely 

difficult to interpret, AI models, particularly deep learning models can appear as 

“black boxes”: while they might be able to explain, in isolation and one or two 

dimensions at most some small number of decisions, it may prove an almost 

impossible task for a human being to describe any model’s reasoning coherently. 

1.1.6 Testing Scalability 

A wide range of conditions and scenarios must be analyzed to fully Validate 

any CPS. But as the system grows in complexity, especially coming from more object-

oriented environments with possibly fewer test cases to worry about), this number can 

be overwhelming. As well as each one has to be tested separately, they also have to 

work with the collective set used in combination within an integrated system [10].  

1.2 Research Gap 

Current approaches to testing CPS include model-based testing and, to some extent, 

formal Validation that offer a set of valuable tools for CPS validation. Despite this, these 

approaches have limitations to accommodate the whole set of CPS characteristics. Another 

limitation is that these methods have not been developed and tested for large CPS with 

decentralized architecture [11]. There is a lack of rich methods for evaluating the integration 

of Machine Learning in CPS, especially in conditions of real-time and hazardous scenarios. 
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Current systems prioritize data collection and basic monitoring, often neglecting AI 

decision-making processes that are increasingly becoming part of every CPS theses days. We 

don't have testing techniques to effectively keep up with the ongoing changes in AI 

technology and how it interacts with physical processes [12]. Scalability challenges in testing 

CPS in large-scale CPS environments, especially concerning the rapid increase of variables, 

components, and combinations, present a significant research area [13]. Importantly, there is 

a notable absence of comprehensive fault models that can address the unique challenges 

posed by CPS, particularly in relation to the integration of AI. Existing techniques, such as 

the V-process model, can be extended to cover software engineering aspects and AI aspects 

of CPS at all levels of software development lifecycle with specific reference to cyber 

physical systems. 

1.3  Problem Statement 

Cyber-physical systems with AI are becoming more complex, but current methods for 

testing and ensuring their reliability are not addressing all aspects of software development 

lifecycle stages to deliver acceptable quality cyber physical systems. Therefore, there is a 

requirement to devise a fault model and incorporate appropriate steps extending existing 

software development lifecycle models so that software testing at unit, integration, and (sub-

) system level be supported. 

1.4 Research Questions 

RQ1. How can we provide a comprehensive fault model with associated coverage criteria 

so that we may be able to incorporate appropriate measures into existing software 

development lifecycle models to test cyber-physical systems at unit, integration and 

system levels?  

RQ2. How can we effectively integrate Explainable AI (XAI) into Cyber-Physical 

Systems (CPS) with AI components to ensure thorough validation and support their 

development and integration? 
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1.5 Objectives of the Proposed V-Model Approach 

Given the challenges associated with the design and testing of CPS, this research proposes a 

tailored V-Model approach that addresses these issues by incorporating modern testing 

techniques and methodologies. The key objectives of the proposed V-Model approach are as 

follows: 

1.5.1 Structured Development and Testing Process 

A key goal of the proposed V-Model is to create a systematic approach that 

guides development and testing for CPS, beginning at requirements specification and 

continuing through final validation. A proper series of well-referenced stages 

guarantees these in the CPS that all types in the CPS are testable at some phase before 

incorporation minimizing the bugs caught but never spotted. 

1.5.2 Integration of A/B/n Testing 

To deal with such uncertainty and variability that are characteristic of CPS 

environments, the proposed V-Model adapts the A/B/n testing approach. This 

technique facilitates the ability to compare one system variant to another under 

different conditions to determine the best and most reliable variant of the CPS. 

Through the systematic approach to changing the configurations, A/B/n testing assists 

in achieving the best system optimized to operate in different circumstances, which 

are present in real operational environments. 

1.5.3 Incorporation of Explainable AI (XAI) 

As a means of boosting the explainability and credibility of AI-driven CPS, 

the created V-Model is accompanied by the application of Explainable AI (XAI), 

where SHAP is used. This helps bring transparency in the operations of an AI model 

in the CPS and helps users and operators to know why an action was taken by the 

system. This is especially emphasized in cases where accuracy, transparency and trust 

in the information received are critical to system safety. 

1.5.4 Emphasis on Robustness through Mutation Testing 
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The proposed V-Model also points to the need to ensure that systems are 

robust as it incorporates mutation testing as one of the aspects of the Validation 

process. Using special mutants which are intentionally put into the CPS, mutation 

testing estimates the ability of the CPS to work properly in case of unexpected 

conditions or errors occurring. Such testing assists in the discovery of flaws in the 

design and implementation of the system so that the developers can enhance the 

strength of the same before it is released. 

1.5.5 Comprehensive Validation 

In the case of V-Model, validation can be done at a complete level for every 

CPS covering each level from the component to system levels which include unit 

tests, integrated tests, system tests and lastly the final acceptance test. The proposed 

approach aids in the extensive checking of each component and how they interact to 

minimize the vulnerability of the system failure; thus, ensuring compliance with all 

the requirements from the CPS point of view. 

1.5.6 Addressing Scalability in Testing 

Finally, the V-Model approach solves the problem of testing scalability 

because the proposed approach can be easily scaled up to accommodate the 

complexities of CPS. It is also shown that the model uses advanced testing techniques 

where it is capable of running several tests at once using A/B/n testing while at the 

same time, it employs techniques such as XAI that make it possible to test all these 

parameters and all the regions without needed to test all the areas for all the possible 

situations, thereby saving so much time. 

1.6 Structure of Document 

Due to the nature of the proposed V-Model for CPS development and testing, this 

document provides a detailed overview of the outlined procedures. It begins with an 

Introduction defining CPS, discussing the challenges in their design and testing, and 

highlighting the goals of the proposed approach. The Literature Review then focuses on 

existing research in CPS development models, testing methodologies, and the use of AI in 

CPS, identifying the research gaps addressed by the proposed model. In the Proposed 

Methodology chapter, the extended V-Model is elaborated, detailing the development and 
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validation phases, with the incorporation of advanced techniques like A/B/n testing, mutation 

testing, and Explainable AI (XAI). 

The System Design and Implementation chapter covers how the V-Model is 

practically applied to CPS, from component specification to the implementation of AI 

analytics and feedback mechanisms. The Testing Methodology outlines the specific tests at 

each stage of the V-Model, including unit, integration, system, and mutation testing. Results 

& Discussion analyzes the test outcomes, demonstrating how this approach enhances CPS 

reliability and performance. Finally, the document concludes with a summary of research 

contributions, suggestions for future investigations, and references and appendices that 

provide supporting resources. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

Cyber-physical systems (CPS) play a key role across a range of sectors, including healthcare 

transportation, manufacturing, and energy. As these systems mature, so does the body of 

research focused on their development. The coverage of CPS literature is wide with the 

system architecture, real-time data processing and machine learning integration, testing 

methodologies etc. This literature review provides an overview of the current state of research 

in CPS, with a particular focus on the challenges and methodologies related to their 

development and testing [26]. Analyzing existing research, the present review determines that 

more attention should be given to such major CPS characteristics as tight integration, 

nonlinearity, and sophisticated feedback mechanisms and stresses that existing frameworks 

should be enriched and complemented with more complex structures like the one proposed 

in this research – the V-Model. 

2.1 Overview of Cyber-Physical Systems 

Cyber-Physical Systems (CPS) is the change of the classic paradigm of the 

combination of computational intelligence with the processes of physical nature. These 

systems are often typified by their interaction with the physical world through sensors and 

actuators that are linked through communication networks as well as through embedded 

computation. This interaction between the cyber aspect of CPS and the physical aspect makes 

the CPS system capable of performing certain tasks while being sensitive to changes in the 

physical environment that relay information back to the CPS system [14]. 

CPS can be present in many fields, and each field has its characteristics as well as 

possibilities and limitations. For instance, in the market transport, CPS is the basis for 

producing self-driving cars that require the capturing of real-time data and the ability to 

perform computations and make decisions. CPS is essential in the context of the industrial 

area where it could be also referred to as the Industrial Internet of Things [15], where it allows 

the machines to use their language to organize and manage efficient production procedures. 

Likewise in healthcare CPS is employed in remote patient monitoring systems that gather and 

analyze patient data in real time and deliver valuable information to the handler.  
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Another characteristic of CPS is the fact that they make constant reliance on data 

processing and decision-making in real life. CPS digital parts which include embedded 

processors and machine learning algorithms are on the other hand supposed to process data 

gathered from the physical components and reach conclusions based on this data [28]. These 

are then implemented with the help of the physical elements including motors, sensors and 

actuators making it dynamic and adapting to the ever-changing environment. 

The literature on CPS highlights several key challenges that must be addressed to 

ensure the reliable and safe operation of these systems. One of the primary challenges is the 

integration of diverse components, including hardware, software, and network systems [16]. 

Each component needs to work together elegantly, sometimes with strict real-time conditions 

for the whole system to function as designed. A second major challenge is that of securing 

and providing privacy in these systems, where there are growing threats to safety-critical 

infrastructure as well. Another area of concern is CPS cyber-attacks because an attack on 

these systems can be more critical and harmful to public health, safety or security in domains 

like transportation, energy or healthcare which exacerbate the potential damage [17]. 

Additionally, the use of machine learning within CPS introduces new complexities, 

particularly in terms of ensuring that the models used are both accurate and explainable. Since 

many ML models are ‘black boxes’, it becomes quite challenging to explain or even debug 

the actions made by CPS hence incurring doubts over their dependability and safety in vital 

systems. Therefore, special attention is paid to integrating Explainable AI (XAI) approaches 

into CPS to enhance the perception of these systems [18]. 

Altogether, it can be stated that the CPSs are in the vanguard of technological 

development and provide more effective solutions in the realms of automation and decision-

making. However, due to the high complexity of these systems, combined with the required 

real-time operation and integration of machine learning the development and testing are 

especially challenging. CPS has been explored extensively in literature and many of these 

challenges have been pointed out to warrant the development of integrated methodologies 

capable of addressing the CPS environment and safely and reliably controlling the CPS 

systems. This is the basis for the proposed V-Model which is a blueprint for the methodology 

to be used in developing and testing CPS [19]. 
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2.2  V-Model Origins 

The origins of the V-model can have many sources; however, it probably developed 

in the 1960s and perhaps without connections with other developments. Most commonly it 

was applied in systems engineering where it concentrated on the process of V&V throughout 

the system development life cycle [20]. The source addresses the origin and development of 

the V-model in software engineering, the concept of validation concerning their importance 

in every progressive phase of the development cycle and ultimately the wide acceptance of 

this model [21]. 

2.3  Evolution and Adoption 

The German government adopted and standardized the V-Modell as its official 

project management methodology. This model closely aligns with the principles of the V-

model and is widely used in public-sector projects [22].  

2.4  Evolution in Research and Practice 

As Agile methodologies took hold, the V-model was adapted to iterative and incremental 

development cycles. This means accepting feedback loops and loosening the grip of the 

model. The V-model, as pointed out earlier in this article, plays a central role—within 

MBSE—in the form of models that represent system requirements and design which are 

required to some extent for most types of systems development [23]. Researchers have 

explored the V-model's application in safety-critical systems, emphasizing rigorous 

Validation to ensure system safety [1]. The V-model continues to be a valuable tool in SDLC, 

providing a structured approach for managing complex software development projects. 

2.5  Key Contributors and Researchers 

Many people have been involved in the V-model development by performing 

relevant research, publishing related research, as well as embracing the V-model in various 

projects and fields. [2] 

2.6  Why the V-Model is a Good Fit for the testing of CPS 

1. Structured Validation: This is the V model’s main asset; the way that it defeats 

the system’s construction is by first applying Validating, then checking, and lastly 

applying to confirm. This is especially important in the case of AI-integrated CPSs 

for safety-critical applications where the issues of safety, reliability and 

explainability remain profound [24]. 
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2. Early Defect Detection: The left part of the V-model aims at different creation 

of detailed test plans alongside development processes. This makes it possible to 

identify and manage cases of defects at the preliminary stage, which is cheaper 

and has fewer risks as compared to the advanced stage [25]. 

3. Traceability: The V-model bring reasons for how requirements lead to design, 

how they are implemented, and how they are tested. This traceability is essential 

for comprehending the influence of emerging AI decisions on the total behaviours 

of the system and aiding explanation with XAI [26]. 

4. Adaptability to Complex Systems: The structure of the V-model can be easily 

extended to take into consideration the requirements of a CPS, the AI cognition, 

the logic of combinatorial possibilities to handle the state space explosion issue, 

as well as multiple testing approaches [27]. 

2.7  Software Development Models for CPS 

Cyber-Physical Systems (CPS) need software development models that are different 

from the conventional models due to the challenges posed when implementing computational 

and physical disciplines. Existing software development SD processes that are compatible 

with ordinary systems cannot be used effectively in CPS due to aspects like real-time, safety 

and requirements on heterogeneous interfaces [28]. Several development models have been 

put forward and customized for Cyber-Physical Systems (CPS) over the years, including the 

Waterfall Model, Agile Model, Spiral Model, and the V-Model. The V-Model is particularly 

promising for CPS due to its emphasis on verification and validation at each development 

stage, ensuring that both software and hardware components work seamlessly together.  

Unlike the Waterfall Model, which is rigid and inflexible, or the Agile Model, which 

can lead to scope creep, the V-Model provides a structured approach that facilitates early 

detection of issues through integrated testing[29]. This is crucial for managing the 

complexities inherent in CPS, as it allows for rigorous quality assurance while maintaining a 

clear relationship between development and testing phases. Overall, the V-Model’s focus on 

early testing and structured validation makes it a suitable choice for the unique challenges 

presented by CPS development. Among all these, V-Model emerged as a more promising 

approach due to its structure as well as its systematic way that appeared to fit the need for 

testing and validation that was considered intensive, especially as was required for CPS [30]. 
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2.7.1 V-Model for CPS 

The V-Model is a widely recognized software development methodology that 

emphasizes the importance of validation at every stage of the development lifecycle. In the 

context of CPS, the V-Model is particularly advantageous because it provides a clear 

framework for systematically addressing the interdependencies between the cyber and 

physical components of the system. The V-Model can be visualized as a "V" (weird, is it?) 

representing the development stages on one side of that and the testing/validation phases 

along another. The structure above allows us to capture each of the decisions previously made 

in development along with a failing test that we can take through our Validation phase [31]. 

In CPS development, the V-Model begins with the definition of system requirements, which 

include both functional and non-functional requirements tailored to the specific CPS 

application. These requirements form the basis for subsequent stages of design, including 

architectural design, hardware design, software design, and network design. Each of these 

stages is meticulously documented and followed by implementation, where the system 

components are developed and integrated [32]. 

What sets the V-Model apart in CPS development is its emphasis on rigorous testing 

at each stage of the development process. For example, unit testing is done on one or more 

units to validate if each unit operates correctly [33]. This is further succeeded by integration 

testing that involves testing interactions to determine if they are correct. The last is system 

testing where the aim is to test the system to be assured that it meets the requirements that 

were outlined at the beginning. Finally, acceptance testing is performed to ensure that the 

system under test is fit for the operational environment [34]. 

Therefore, For CPS development, the V-Model is flexible enough to incorporate 

contemporary testing techniques that are most appropriate. Such as reaching the desired level 

of Validation may involve the inclusion of mutation testing to introduce faults that can then 

be checked on whether a system can handle them well. Similarly, it is possible to use A/B/n 

testing when comparing the different configurations of the system and other options that 

would be better for the deployment [35]. Such an implementation of Explainable AI (XAI) 

introduces even more benefits of the V-Model for CPS, bringing an opportunity to trust an 

AI-based decision within the system.  

 To sum up, the V-Model provides a systematic and linear methodology in the CPS 

development process; thus, each chapter of the system should undergo an assessment and 
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validation before implementation. As a result, it is suitable for addressing CPS issues since it 

merges the latest testing approaches and a systematic approach to validation [36]. 

2.7.2 Machine Learning in CPS 

Machine learning (ML) has become one of the critical elements of Cyber-Physical 

Systems (CPS), allowing these systems to utilize historical data, analyze internal and external 

conditions, and make decisions independently. The inclusion of machine learning as a 

component of CPS has been noted to be a major enhancement since it enables systems to 

handle a vast amount of data in real time and interact with a smart environment[37], [38], 

[39], [40]. From Predictive Maintenance in Industrial Systems to Adaptive Control in 

Autonomous cars/ electronics, Machine Learning is remodelling the possibilities of CPS 

across all contexts [41]. 

The role of machine learning in CPS is diverse beginning with data analysis, anomaly 

detection, decision as well and control optimization. An example of this is in a smart 

manufacturing system where an organization’s machine learning algorithms can analyze the 

data collected by the sensors and determine that some of the machines are likely to fail soon 

using that data can prevent the machines from failing and therefore save time. In the same 

way that in an autonomous vehicle, the sensory information of the vehicle generates a log-

dense classification to detect objects and navigate through roads without interfering with the 

driver [42]. 

CPS is one of the major areas of concern for the integration of machine learning and 

one of the problems which must be solved is the problems with the reliability and safety of 

the models. When it comes to safety-critical applications, the use of machine learning models, 

especially deep learning models, leads to concerns about the behaviour of such models. This 

has resulted in the increasing demand for Explainable AI (XAI) methodologies that seek to 

increase the level of interpretability of the decision-making process of the machine learning 

models. Since XAI helps the user to understand how and why a model arrives at a specific 

decision, it should go a long way in building and sustaining public trust in CPS especially 

where lives are involved [43]. 

The other is the requirement of a CPS machine learning model to run in real time. 

This calls for models that are not only but also their computational complexity, which must 

enable computations within the time constraints characteristic of the physical surroundings. 

 This has led to the search for compact and lean machine learning models and 

optimization algorithms that can perform effectively with minimal computational costs [44]. 
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In addition, the application of machine learning in CPS introduces various questions about 

the data brought into these platforms. Since CPS often integrates with systems that allow data 

to be collected in real-life scenarios, quality data is often noisy, partial or non-stationary. It is 

the reason why the robustness of the machine learning models to such modifications and their 

ability to perform well on the new unseen data is vital to the successful application of CPS. 

Such issues are combated using data augmentation, transfer learning and other robust training 

mechanisms that are currently being developed [45]. 

So, in addition to testing and validation, which is also employed in the CPS domain, 

it is also important to consider how machine learning is utilized to test and validate the models 

before deploying them to the CPS. Conventional testing approaches may be ineffective in 

eliciting important behaviours that machine learning models can exhibit especially when the 

environment it is deployed is in a constant state of flux. This calls for sophisticated testing 

techniques as laid out in the V-Model that feature mutation testing and A/B/n testing to check 

the reliability and performance of Machine learning within the CPS [46]. 

Thus, it is possible to note that machine learning is one of the key factors that can help 

Cyber-Physical Systems improve the abilities necessary for their operation and interaction 

with the environment independently[47]. Thus, the incorporation of machine learning into 

CPS raises issues concerning model reliability and real-time as well as testing problems. To 

accomplish that, resolving these challenges is fundamental to the ability of CPS to harness 

machine learning safely and efficiently in their processes [48]. 

2.7.3 Testing and Validation in CPS 

Validation are essential phases in the development process of Cyber-Physical 

Systems (CPS) that will enable those complex systems to work as expected in everyday life 

circumstances. Due to the close coupling of the physical and computational aspects of CPS, 

conventional testing techniques are usually inefficient. Consequently, testing and Validation 

methods and approaches have been designed to deal with the problems of CPS.  

2.7.4 Real-Time and Safety-Critical Testing 

Perhaps the first problem that can be singled out while conducting CPS testing is real-

time performance validation. CPS may be time-sensitive; the systems may be required to 

operate in a fixed time frame, which may be sensitive to errors or delays. Testing in such 

environments involves not only determination of whether the system performs its expected 

functions correctly but also whether it can meet certain real-time requirements. It is customary 
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to employ such approaches as hardware-in-the-loop (HIL) testing that allows replicating real-

world conditions and evaluating real-time characteristics of the system [49]. 

2.7.5 Formal Validation 

CPS testing is known to widely employ formal Validation in safety-critical 

applications testing. This is an assurance mathematically that the designed system conforms 

to the required specification; meaning a higher degree of confidence level when asserting that 

the system behaves correctly under any possible situation. Kinds of formal Validation of CPS 

usually involve model checking or theorem proving to identify design flaws that may result 

in disastrous consequences [50]. 

2.7.6 Integration Testing 

Since CPS is intrinsically diverse, integration testing is an applicable and important 

aspect of defining and regulating the performance of the CPS parts. This phase of testing 

checks the faculties in the entire system including transfer of data in software, functionality 

of the hardware and connectivity of the networks. Integration testing can be carried out 

through the creation of realistic scenarios where the real conditions of the system are 

simulated to test its effectiveness under different circumstances [51]. 

2.7.7 Robustness Testing 

In functional testing, there is an evaluation of the system and its ability to respond 

to anomalous situations such as Hardware malfunction, network breakdown, and hacking, 

among others. This is more so in CPS where failure or change of events can lead to serious 

adverse effects. Mutations where one deliberately inserts faults into the system to challenge 

him or her come as a common approach to establish the robustness of CPS [52]. 

2.7.8 Explainable AI (XAI) in CPS 

CPS have started integrating machine learning and artificial intelligence into their 

systems and because Of this, explainable AI (XAI) is required. XAI is defined as ways and 

means through which humans can easily comprehend the actions or decisions taken by an AI 

system. This is far more important in CPS, where the algorithms’ decisions may have 

immediate implications for safety and performance [53]. In safety-critical CPS applications 

such as self-driving cars or smart healthcare, it is imperative to have an explanation of an AI 

decision. That is the reason why there is a problem in trusting AI systems, and this becomes 

even more complicated, especially when the actions of the systems have severe implications. 
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This is where XAI comes in handy to fill this trust deficit by explaining to the operators how 

and why certain actions were precipitated to ensure that they can either confirm or dismiss 

the recommended course of action by the AI system [54]. 

2.7.9 XAI in Real-Time Systems 

Implementing XAI in real-time CPS presents additional challenges due to the need 

for explanations to be generated quickly without disrupting the system's operations. 

Researchers are exploring lightweight XAI techniques that can provide timely insights 

without compromising the system's performance. These techniques are crucial in applications 

like autonomous driving, where decisions must be made and explained in fractions of a 

second [55]. 

2.7.10 Integrating XAI with CPS Testing 

XAI is slowly being incorporated into CPS testing paradigms to warranty the 

correctness of the AI elements and also their explicability. When XAI is integrated into the 

testing process, the developer can be assured that the applied AI in CPS functions according 

to their anticipated behaviour and decisions made by these AI models can be explained. This 

integration aids in making sure that CPS are accurate and transparent, especially in calamity 

circumstances [56]. 

2.7.11 A/B/n Testing in System Validation 

A/B/n testing is a probabilistic approach that allows the comparison of different 

versions of a system or its part for the best one’s performance in a certain context. When it 

comes to CPS, A/B/n testing can be defined as a practical approach that is effective in proving 

whether certain configurations of the system function properly or not and finding out the right 

configuration that will have to be released [57]. 

2.7.12 Application in CPS 

For instance, in CPS development one can employ an A/B/n test to correlate 

different sensing configurations such as the sensors/algorithms/system architectures. In 

testing, developers employ information from experimenting with several variants at the same 

time to identify how different configuration performs under conditions of actual use. This is 

done particularly by enhancing CPS in the application domain (for example, determining 

where the best place to sample sensors for an industrial scenario is, or identifying the best 

approach to implement an ML model for a predictive maintenance system) [58]. 
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2.7.13 Experimental Design 

Part of A/B/n testing is that of the design of experiments, where the choice of the 

parameters for testing, and the benchmarks for the test are made. In CPS, this may entail 

varying the types of sensors, the types of communication protocols, or the type of machine 

learning algorithms employed, and criteria such as accuracy, latency, and noise immunity are 

used to compare the performance. The A/B/n testing requires a proper experimental design 

to get maximum accuracy and to have meaningful results that will be useful for making 

necessary changes to the website [59]. 

2.7.14 Data Analysis and Interpretation 

After conducting the A/B/n test the data that is collected has to be used to identify the 

best configuration. Such comparisons usually involve the use of statistics to test the 

significance of the differences that are present in the variants. In CPS, the analysis of 

outcomes of A/B/n testing can allow us to understand interactions between the system 

components and its further improvement aimed at its operational performance, reliability, and 

manufacturability [60]. 

2.7.15 Benefits of A/B/n Testing in CPS 

CPS development can benefit from A/B/n testing in the following ways. It enables the 

confirmation of the correctness of the design and usage of the system since poor or unsafe 

solutions may be chosen. More specifically, A/B/n testing also helps make data-driven 

decisions since it can test various possibilities methodically and allow developers to choose 

the best possible design. 

2.8  Summary of Findings and Research Gaps 

The literature review focuses on the progress achieved in the evolution, modelling, 

evaluation and Validation of CPS, in terms of those peculiar development models that have 

been presented such as the V-Model, the application of machine learning, as well as the 

integration of Explainable AI (XAI) methodologies. These developments have provided 

solutions to some of the CPS's main issues, including operation in real-time, safety and 

security of the systems, coupled with the integration of diverse systems. However, there are 

several research gaps which must be filled to improve the dependability, openness, and 

stability of CPS [17]. 
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2.8.1 Gaps in Testing Methodologies 

Current approaches to testing CPS include model-based testing and, to some extent, 

formal Validation that offer a set of valuable tools for CPS validation. Despite this, these 

approaches have limitations to accommodate the whole set of CPS characteristics. Another 

limitation is that these methods have not been developed and tested for large CPS with 

decentralized architecture [11]. Also, there is a proposed future research direction associated 

with the lack of rich methods for evaluating the integration of Machine Learning in CPS, 

especially in conditions of real-time and hazardous scenarios. 

2.8.2 Need for Enhanced Explainability 

The integration of machine learning into CPS has introduced new challenges related 

to explainability. While XAI techniques like SHAP provide a foundation for understanding 

AI-driven decisions, there is still a need for more sophisticated and real-time explainability 

tools that can be seamlessly integrated into CPS without compromising performance. 

Research is needed to develop XAI methods that can provide clear and actionable insights in 

real time, particularly in applications where transparency is critical [17]. 

2.8.3 Requirements vs CPS Requirements 
 

i) Requirements as opposed to CPS Requirements. 

• General Requirements: Typical systems concentrate their requirements on 

software functional qualities, performance, and what users anticipate. These 

demands focus chiefly on computational issues, data flows, behaviours of the user 

interface, and security [3]. 

• CPS Requirements: The demands in CPS are more complicated. They 

contain considerations related to software computational components along with the 

physical interaction between the system and the natural environment (through 

sensors, actuators, and embedded systems). CPS requirements need to consider 

dynamic behaviour, safety, robustness in response to environmental fluctuations, and 

how the physical world affects the system and is affected by it. Moreover, CPS 

requires alignment between its digital and physical parts [2]. 

The dichotomy between Functional Specification and CPS Functional 

Specification. 

 

• General Functional Specification: The functional specification for typical 

systems encapsulates the system behaviour in response to inputs, the processing of 

data, the outputs generated, along the expected performance [3]. The core of this 
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discussion surrounds software behaviour, the way users interact with it, and the 

approaches to data management. 

• CPS Functional Specification: CPS demands that the functional 

specification address physical interactions in addition to computational processes. 

As a case in point, detecting environmental data with sensors, acting in response with 

actuators, and ensuring the system governs physical processes (e.g., in robotics and 

autonomous vehicles) are subject to emphasis. The specification needs to factor in 

real-time requirements, safety-critical operations, and fail-safe actions when 

addressing physical processes [2]. 

ii) Architectural Design vs CPS Architectural Design 

• General Architectural Design: A conventional system sees architectural 

design concentrating on the layout of software components, modules, and their 

interactions, as well as the broader system structure. It promises software scalability, 

performance, and security. 

• CPS Architectural Design: In the case of CPS, the design must include both 

cyber (computational) and physical layers. This calls for the development of a system 

that merges physical devices including sensors and actuators with computational 

control functioning [2]. Architecture needs to address matters such as reduced 

latency in data transmission, operational control loops that run in real-time, the 

convergence of hardware and software, and fault tolerance necessary for the physical 

environment. 

iii) SW Design versus CPS Software Design Analysis. 

 

• General SW Design: Designing a standard software system typically requires 

the specification of modules along with data flow, the interactions occurring between 

components, and the management of exceptions. Its emphasis is chiefly on making 

efficient algorithms and sustaining the quality of software [3]. 

• CPS Software Design: The design of CPS software moves past conventional 

software issues. It needs to affirm that the software functions suitably with hardware 

items such as sensors and actuators [2]. This includes devising instantaneous 

algorithms to manipulate sensor data, manage physical actions, and secure safety and 

predictability. CPS software design hinges on latency and timing because inaccurate 

timing in the control of physical processes can result in failures in the system or even 

physical risk. 
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iv) Hardware (HW) Design vs CPS Hardware Design 

• General HW Design: Typical system design for hardware emphasizes the 

design of processor architecture, memory, input/output interfaces, and additional 

peripheral components that communicate with software. 

• CPS Hardware Design: Hardware design takes on a much greater level of 

activity in the control of physical processes within CPS. The device interface must 

integrate with sensors, actuators, and other equipment that participates in interacting 

with the environment. This consists of embedded systems, real-time controllers, and 

fault-tolerant designs that ensure the system will manage unforeseen physical 

variations or sensor problems without failing [2]. 

 

v) Network Design vs Design for CPS Networks 

• General Network Design: Typical system network design focuses on the 

interaction between assorted software parts or devices, guaranteeing effective data 

flow, the efficient use of bandwidth, and security. 

• CPS Network Design: The design of the CPS network prioritizes live data 

flow between sensors, actuators, and controllers. Particularly in time-sensitive 

systems, such as autonomous vehicles and industrial automation, the network needs 

to back low-latency communication. Also, the design of networks should consider 

reliability and robustness, because miscommunications may carry physical effects 

[2]. 

vi) System Testing vs CPS System Testing 

• General System Testing: In usual systems, the emphasis during system 

testing is on ensuring that the software complies with requirements, executes all 

necessary duties, and is secure. Automation allows testing, and we typically use 

simulated inputs [3]. 

• CPS System Testing: The assessment of the CPS system needs to be achieved 

further than the behaviour of software and investigate how the system reacts to its 

physical environment. In this context, it involves evaluating the precision of sensors, 

the reactivity of actuators, and how effectively the computational aspects govern the 

physical hardware [2]. CPS testing includes scenarios found in the real world, which 

simulate or apply environmental factors (like temperature and pressure) to evaluate 

system resilience. 
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vii) Feedback Mechanisms 

• General Systems: In established systems, feedback processes usually derive 

from user signals or data patterns that improve the functionality or performance of 

the software. 

• CPS Feedback Mechanisms: In CPS, the feedback system involves prompt 

modifications to the overall system determined by sensor inputs and observed 

physical behavior. As a case in point, if a sensor notes a physical anomaly, the system 

could adjust actuator’s behavior in real time. In safety-critical contexts, user 

feedback can serve to adjust sensor parameters as well as system control logic. CPS 

feedback needs to confirm that adjustments within one component do not harm the 

physical environment. 

viii) Alerting & Notification Systems 

• General Systems: Alerts or notifications within regular systems signal users 

to system faults, performance problems, or unusual activity. 

The table 1 has been adapted to show the comparison between general software/system 

engineering terminology and CPS-specific concepts [3]. 

 

Table 1 V Process Model  

Step General Software/System 

Engineering Terminology 

CPS-specific Concepts/Terminology 

CPS 

Requirements 

General system or product 

requirements. 

Requirements about how the Cyber-

Physical System (CPS) operates together 

with both physical processes and digital 

control systems. 

Functional 

Specification 

Describing the forecasted 

behaviors and roles of the 

system. 

Requirements that make sure the physical 

and computational elements operate in 

sync, addressing interactions that are urgent 

and crucial to safety. 

Architectural 

Design 

Specifying the total 

structure of the system, 

including important parts 

and how they relate to one 

another. 

The architecture within CPS must consist of 

the organization and communication of 

sensors, actuators, and computational 

elements. 

Implementation Execution of hardware 

along with software, 

merging all pieces into the 

system. 

The significant step of meshing 

computational and physical components is 

to ensure that real-time interaction and 

synchronization exist between digital 

controls and physical processes. 

Unit Testing  Running individual 

modules 

This guarantees, for CPS, that all physical 

and computational assets (e.g., sensors, 
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(software/hardware) to 

confirm correct functioning. 

actuators, control algorithms) function 

properly independently. 

Integration 

Testing 

Examining how the 

combined system 

components function 

together, we discover 

interaction issues. 

The emphasis of testing in CPS is on the 

relationships between physical components 

(e.g., sensors and actuators) and 

computational architectures, particularly 

timing and synchronization. 

System Testing Having identified a gap 

throughout the system, the 

procedure required a 

substantial amount of 

testing to Validate it 

complies with canonic 

requirements. 

To meet this challenge, CPS performs both 

simulated and real testing to ensure the 

physical and digital pieces cooperate 

flawlessly in diverse situations. 

Acceptance 

Testing 

The final test thus far is to 

certify the system fulfils all 

functional and non-

functional requirements. 

This assures in CPS that the system operates 

effectively under all its designed physical 

and digital conditions, particularly 

including live time constraints and 

environmental elements. 

 

• CPS Alerting & Notification: Alerts in CPS serve the dual purpose of reporting on 

problems within the system and on important physical events. Using a 

manufacturing CPS, alerts could alert the operator when there is an overheating or 

machinery failure. These alerts must be rapid and practical, perhaps helping to 

prevent both physical damage and safety dangers. 

ix) AI Analytics as Related to Decision-Making 

• General Systems: In normal systems, AI or analytics engines process 

enormous data sets so they can derive insights or automate decisions according to 

recognizable patterns. 

• CPS AI Analytics: AI analytics within CPS must function in real-time, 

rendering instant decisions from the data provided by incoming sensors. As a case in 

point, an AI engine can adjust an autonomous vehicle's direction according to 

feedback from environmental sensors. The predictive analysis, anomaly detection, 

and real-time control features of the CPS AI engine mean it is significantly more 

important and urgent than most AI applications [2]. 
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Table 2 Literature Review 

Ref Year Model/ 

Algorithm 

Features Metric Limitations 

[15] 2021 V-Model, 

Model-based 

Design 

(MiL, SiL) 

Structured 

development 

framework, 

iterative testing 

and validation 

Development 

Efficiency, 

Reliability 

Rigid framework, 

initial high setup 

cost 

[2] 2022 Decision Trees, 

SVM, Neural 

Networks 

Human activity 

recognition, 

optimized 

machine 

learning 

techniques, 

sensor data 

Accuracy, 

Efficiency 

Sensor 

dependency, 

potential for false 

positives/negatives 

[3] 2022 Multi-Agent 

Systems (MAS) 

Distributed data 

analysis, agent-

based model, 

enhanced 

decision-

making 

Responsiveness, 

Reliability 

Communication 

overhead, 

scalability issues 

[4] 2017 Evolutionary 

Algorithms 

(Genetic 

Algorithms) 

Search-based 

test case 

generation, 

systematic fault 

identification 

Test Coverage, 

Fault Detection 

Rate 

High 

computational 

cost, complex 

implementation 

[5] 2022 Metamorphic 

Testing 

Performance-

driven testing, 

metamorphic 

relations, 

robustness 

Validation 

Performance 

Metrics, 

Robustness 

Defining effective 

metamorphic 

relations, limited 

to performance 

testing 

[6] 2021 Statistical 

Analysis, 

Machine 

Learning 

Data-driven 

testing, pattern 

and anomaly 

detection 

Fault Detection, 

Test Accuracy 

Dependence on 

operational data, 

potential for 

missing rare faults 

[7] 2022 Line-Search 

Algorithms 

Falsification 

method, 

systematic 

input space 

exploration, 

scenario 

identification 

Fault 

Identification, 

Reliability 

High complexity, 

exhaustive search 

can be 

computationally 

expensive 
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[8] 2017 Model-based 

Validation, 

Simulation-

based 

Validation 

Review of 

Validation 

techniques, 

handling 

dynamic and 

heterogeneous 

systems 

Dependability, 

Validation 

Accuracy 

Integration 

complexity, need 

for new 

methodologies 

[9] 2021 Distributed 

Algorithms, 

Consensus 

Algorithms 

Smart 

collaborative 

balancing, 

resource 

optimization, 

real-time 

communication 

Stability, 

Resource 

Utilization 

Network 

dependency, 

potential latency 

issues 

[10] 2018 Temporal 

Logic (LTL, 

CTL) 

Formal 

performance 

analysis, timing 

constraints 

Validation 

Correctness, 

Timing 

Accuracy 

Complexity in 

modelling, 

computational 

overhead 

[11] 2018 Intrusion 

Detection 

Systems, 

Secure 

Communication 

Protocols 

Safety and 

security 

mechanisms, 

threat 

mitigation, 

robust security 

designs 

Security, 

Resilience 

Implementation 

complexity, 

evolving threat 

landscape 

[12] 2019 Leader Election 

Algorithm, 

Byzantine Fault 

Tolerance 

Consensus in 

multi-agent 

systems, time-

varying 

networks, 

coordinated 

actions 

Consensus 

Efficiency, 

Robustness 

Adapting to 

dynamic networks, 

computational 

overhead 

[13] 2021 CPS in 

Telemedicine, 

Remote 

Diagnostics 

Smart city 

healthcare 

integration, 

patient 

monitoring, 

data-driven 

decision-

making 

Healthcare 

Improvement, 

Interoperability 

Data privacy 

concerns, 

interoperability 

issues 

[14] 2018 Simulation-

based Testing, 

Hardware-in-

Comprehensive 

overview of 

testing 

Testing 

Coverage, 

Realism 

Developing 

accurate testbeds, 

scalability 
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2.8.4 Optimization of A/B/n Testing in CPS 

 

 

However, straightforward integration of A/B/n testing into CPS systems has so far 

posed a challenge. Complex A/B/n design for CPS under highly dynamic and unpredictable 

situations is indeed an interesting domain of further research. Moreover, the utility of A/B/n 

testing in CPS development can be significantly improved by developing automated tools 

which support conducting tests and analyzing their results [11]. 

2.8.5 Integration of Modern Techniques into Development Models 

 

Finally, there is a need to integrate modern testing techniques, such as mutation testing 

and XAI, more deeply into development models like the V-Model. While these techniques 

have been applied successfully in certain contexts, their full potential in CPS development 

has yet to be realized. Research into how these methods can be standardized and incorporated 

into CPS development workflows could lead to more robust and reliable systems [26]. 

In conclusion, while significant progress has been made in the field of CPS, there 

remain several key areas where further research is required. Addressing these gaps will be 

essential for advancing the development, testing, and deployment of CPS, ensuring that these 

systems can operate safely, efficiently, and transparently in increasingly complex 

environments. 

the-Loop 

Testing 

methods, 

realistic 

testbeds 

[1] 2022 Deep Learning 

(CNNs) 

Real-time 

disaster damage 

assessment 

using IoT data, 

automated 

analysis and 

classification 

Accuracy, 

Speed 

Requires extensive 

training data, 

computationally 

intensive 
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CHAPTER 3 

RESEARCH METHODOLOGY 

 

 

 

 

The method used in conducting this research focuses on the V-Model process that has been 

developed for Cyber-Physical Systems CPS. This was achieved through the determination of 

the CPS requirements, functional and architectural specifications, and final integration, and 

test procedures. This helps in achieving a systematic approach in the analysis of all the CPS 

components, adding some modern approaches like Mutation Testing, A/B/n Testing and  

Network Testing to test/validate the systems. The positioning of this methodology within the 

research area fills the gaps in the traditional testing strategy by adding explainable artificial 

intelligence (XAI) and other sophisticated testing procedures to improve reliability, 

robustness, and explainability in CPS. The presented research pipeline as shown in figure 2 

is a helpful roadmap in the developmental and validation stages, offering the CPS all the tools 

it needs to function efficiently in real conditions. 

 

Figure 1 Research Pipeline 
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3.1 Components of CPS 

The study of the specifications plays a great role in designing (planning and design 

respectively) Cyber-Physical Systems (CPS) systems during phase I. This includes 

recognizing the utility and non-function benefits that the system should belong to us. These 

specifications should detail what you expect from the (CPS), this can include information 

about:  

What type of data it will collect, expected performance criteria Environmental 

conditions under which the system is expected to function Further, this involves defining cost 

and energy/power scalability control policies to prevent the CPS from becoming only possible 

but even feasible against resource constraints. 

 

 

Figure 2 Deployment Diagram 
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3.1.1 Sensors and Network Parameters 

This brings the CPS specifications into consideration, the choice of sensors and the 

network parameters that need to be adopted to meet the CPS requirements. The choice of 

sensors is dictated by the specific needs of the CPS, such as the type of data to be monitored 

(e.g., temperature, humidity, speed, vibration). Additionally, network parameters must be 

determined, including the type of communication protocols, bandwidth requirements, and 

latency considerations. These selections play a pivotal role in the overall performance of the 

CPS, affecting both the accuracy of the data collected and the efficiency of data transmission 

across the network.  

3.1.2 Sensor Data Collection Units/Devices 

Every CPS has at least one underlying function to collect sensor data, that is the 

process and constant activity, through which environmental sensory information is collected 

by different sensors. This data is the heart of this system and enables real-time insights which 

are required for the decision process. This stage entails drafting a functional specification 

which includes details regarding how the data is being collected (i.e., sampling rates), sensor 

calibration processes and procedures should a sensor commit errors or failures etc. Data is 

being collected, thanks to data assurance - and the goal should be that all this information will 

end up at a storage/access level of SAS IT management so that when it gets 

processed/analyzed by other constituents those modules are detected on top of a more stable 

foundation. 

3.1.3 Data Transmission and Storage 

Following the collection of sensor data, it is essential to establish a robust framework 

for data transmission and storage. This involves defining the protocols and technologies for 

transmitting data from the sensors to centralized storage or processing units. Key 

considerations include data compression techniques, encryption methods for secure 

transmission, and fault-tolerance mechanisms to ensure data integrity during transit.    

Additionally, the storage system must be designed to handle the expected volume of 

data, with provisions for scalability as the CPS grows. Data storage management is all about 

the ability of a system to store data in a format that will enable the system to easily manage 

data and enable a system to archive data and access the data within a short time. 
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3.1.4 AI Analytics Engine 

 

Another critical layer that cannot be missing in the architecture is the AI Analytics 

Engine – This performs all necessary computations and operations on data from sensors and 

churning out insights. To put it in simple terms can mean the ability to use real-time machine 

learning algorithms/statistical models simply to look at data and to look for patterns that will 

allow a prediction of an outcome. For the AI Analytics Engine, it is mandatory that it is 

computation efficient and achieves the level of predictive certainty and capability to handle 

large data traffic. The engine must also grow correctly as enhancements or data loads increase 

in size and is also able to communicate correctly with other system modules. 

3.1.5 Other Components 

3.1.5.1 Alerting and Notification System 

This research establishes that an effective alerting and notification system is required 

for an efficient CPS. This component is to be used to watch and track the performance of the 

AI Analytics Engine and generate an alarm when some specific value has been crossed. 

Elements of this product include the different types of alerts such as warnings and critical 

alerts, the notification channels which may be email, mobile SMS, or application notification, 

and escalation plans in case of critical threats. 

It should be flexible to enable users to set and modify the alert levels and should be 

capable of generating alerts on any suspicious activities in real time. 

3.1.5.2 User Interface Design 

The User Interface simply referred to as UI is the key entry point that end users have 

with the CPS. A good UI makes it possible for users to oversee the performance of the system 

and browse over the alerts and the CPS.  

The application for UI should be work-focused, which means that all the information 

provided should be typed in a way that can be easily understood and navigation around the 

application should be simple. Some of them are the organization of several dashboards, 

cataloguing of several visualization types, and cross-platform adaptability. The UI should 

also set the users’ options for details about the system, previous data records or reports. 
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3.1.5.3 Feedback Mechanism 

Over time, the CPS must be able to adapt and improve. This mechanism collects 

feedback from users and the system refines not only the performance of our AI Analytic 

Engine but also optimizes alert thresholds and improves overall design across all facets as 

well. User Interactions, System Performance Logs, and Automated Learning Process: The 

feedback of AI can be collected through the user interactions that he or she does with it. 

Feedback Mechanism: The design of the Feedback Mechanism should ensure capturing 

appropriate data and actionable insights to assist system operators in continuous 

improvement, adaptation etc. by maintaining stable operation/maintenance (SOM). 

3.2 Proposed Framework 

The CPS V-Model, as described above, is intended to respond to the specific 

characteristics of the development of composite systems involving computation and physics.  

The model is designed in such for each development phase to be integrated with valid 

and Validation processes thus improving the reliability, safety, and performance of the CPS. 

The V-Model is a ‘V’ shaped model that provides a development loop with a Validation loop; 

it highlights that every development phase has a Validation phase. This approach as shown 

in figure 3(a), helps to avoid bringing errors which would compound through the development 

phases before the final system has all the requirements [6]. 

On top of this, several modifications specific to CPS have been incorporated into the V-

Model, including modern testing approaches (e.g., mutation and A/B/n test), as well as XAI 

in     applications with AI-driven components for transparent explanation. With these changes 

assured, it is possible to ensure that the CPS is not only accurately functional but also sound, 

modifiable and comprehensible.  
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3.2.1 Comparison of V Model across  

 

 

Figure 3(a) primarily focuses a systematic approach of control questions to guarantee CPPS 

maturity in the V-Model architecture. Our form in Figure b on the other hand opens up the 

V-Model practice by incorporating current, artificial intelligence testing and validation 

techniques targeted at increasing the reliability of Cyber-Physical Systems (CPS). 

Figure 3(a) is consistent with the VDI 2206:2020 guidelines through the use of the structured 

control questions where the system readiness is checked at the end of each stage thus 

providing a systematic approach to the development phases. On the other hand, the approach 

that we adopted in Figure 3(b) includes some sophisticated features, which include SHAP 

explainability, mutation testing, and A/B/n testing in order to enable systematic verification 

and model interpretability. By integrating above mentioned AI based techniques, how we get 

a generalized validation framework within the CPS architecture. 

As mentioned in comparing Figure 3(a), CPPS maturity is crucial but does not specify AI-

based decision making; in contrast, our proposed approach in Figure b introduces the CPS 

advancement by integrating AI as a decision maker that can respond to observed behaviors 

Figure 3(a) Proposed Model - Overview 



 

 

45 

 

                                                                                            

in real-time manner. He noted that this integration enhances the development of systems that 

can deliver intelligent solutions to dynamic operational environment. 

To recap, while Figure 3(a) focuses on formal maturity in the context of the VDI framework, 

the current study in Figure 3(b) seeks to build an enhanced, revitalized testing framework 

within the V-Model with the integration of AI techniques as a paradigm that issues 

dependable, immediate wise decision in CPS. 

 

 

 

 

 

 

3.3 Our Proposed Fault Model  

 

The proposed fault model help categorize and incorporate potential failure points in CPS 

to scrutinize system reliability and immunes to various domains. The model is based on 

mutation testing principles whereby faults are intentionally introduced into a system with the 

aim of studying system reactions and detecting faults. It introduces all kinds of faults: 

hardware, software, network, AI models, environmental, real-time constraints, data, power, 

Figure 4(b) V-Model of the VDI 2206:2020 [3] 
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security, and actuators. All of them capture different types of failure scenarios that might 

happen in CPS, so each category is a basis for more through testing. 

 

1. Hardware Faults: Malfunctions of physical subsystems involving sensors and 

actuators. 

2. Software Faults: Hardware or software glitches, which refer to mistakes in both code 

or algorithms and how the system operates. 

3. Network Faults: Problems such as packet loss or high latency of communication. 

4. AI Model Faults: Bias or, in certain circumstances, a misclassification of the problem 

at hand when constructing decision-making models. 

5. Environmental Faults: Environmental variables making up the external environment 

such as – temperature or other interferences. 

6. Real-time Constraint Faults: Otherwise, delays in processing causes timing violations. 

7. Data Corruption Faults: Since operations data is often recorded in the database, 

alteration or tampering of other data in the database is considered here. 

8. Power Failure: They are Shortage or fluctuation in power supply. 

9. Security Breaches: Unauthorized access degrading the system security. 

The table outlines various fault types and examples specific to CPS, categorizing issues from 

hardware failures to security breaches [4]. 

 

Table 3 Demonstration of fault type with examples 

Fault Type Description Examples 

Hardware Faults Failure in physical components 
Sensor malfunction, actuator 

failure 

Software Faults 
Errors in the system’s software 

logic 

Memory leaks, null pointer 

exceptions 

Network Faults 
Issues in communication between 

components 
Packet loss, data corruption 

AI Model Faults Errors in AI predictions Misclassification, bias 

Environmental Faults 
External factors affecting 

operations 

Extreme temperatures, humidity 

variations 
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This model provides a structured approach to testing CPS resilience against a broad range of 

failure scenarios. 

3.4 Fault Model for AI Component 

The AI component in a CPS interacts with real-world data, requiring robustness to 

handle noisy, incomplete, or corrupted inputs and to make reliable decisions even under 

adverse conditions. The proposed fault model introduces intentional faults into the AI model 

to simulate possible real-world issues. These faults are then used to test the system's ability 

to detect, handle, and recover from such issues. 

As shown in Table 4, the fault categories cover a range of potential issues, including 

Input Data Faults, Model Parameter Faults, Decision Confidence Faults, Classification and 

Output Faults, and Model Structural Faults, with corresponding mutation operators and 

testing objectives for each category [4]. 

 
Table 4 Demonstration of fault category with mutation operators and testing objective  

Fault 

Category 

Fault 

Description 

Mutation Operator Testing Objective 

Input Data 

Faults 

Issues related 

to the quality 

and structure of 

input data 

- NOISE_INPUT Simulate noisy 

data and test noise 

handling 

  
- MISSING_VALUES Introduce missing 

data points to test 

model behavior 

Real-time Constraint Faults Timing violations due to delays 
Missed deadlines, processing 

delays 

Data Corruption Faults Alteration of data 
Sensor data tampering, incorrect 

values 

Power Failure Loss of power 
Sudden shutdown, unstable 

operation 

Security Breaches Unauthorized system access 
Data compromise, malicious 

code injection 
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- CORRUPT_DATA Corrupt input 

values to assess 

error detection 

Model 

Parameter 

Faults 

Faults in the AI 

model's 

internal 

parameters 

- WEIGHT_MODIFY Modify weights to 

test model 

sensitivity 

  
- BIAS_INTRODUCE Introduce bias to 

observe decision-

making impact 
  

- OVERFIT_SIMULATE Simulate 

overfitting to 

check robustness 

Decision 

Confidence 

Faults 

Errors affecting 

the model's 

confidence in 

its predictions 

- LOW_CONFIDENCE Reduce confidence 

to test fallback 

mechanisms 

  
- 

HIGH_CONFIDENCE_ERROR 

Increase 

confidence in 

wrong predictions 

Classification 

and Output 

Faults 

Faults affecting 

classification 

or output 

generation 

- MISCLASSIFY Force 

misclassification 

and evaluate 

system response 
  

- DELAY_OUTPUT Introducing delays 

to test timing and 

reliability 

Model 

Structural 

Faults 

Structural 

issues within 

the AI model 

- DISABLE_LAYER Disable layers to 

test model 

architecture 

robustness 
  

- CHANGE_ACTIVATION Change activation 

functions to see 
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performance 

impact 

 

3.5 Coverage Analysis Proposal 

The proposed coverage analysis also covers more aspects than mere testing of software, 

namely the relationship between the computational layer and the physical layer of the CPS. 

This helps to confirm compliance with all the parameters of both equipment and software. 

Key focus areas include: 

1. Code Coverage: All the code branches, functions, options, decisions and 

possibilities under tests must be reached. 

2. Path Coverage: In general, which was achieved by prioritizing critical paths, like 

actuator signal control and decision-making routes. 

3. Sensor and Actuator Coverage: Verifying that sensors meet performance 

expectations in a variety of circumstances and confirming that actuator outputs 

make the required corrections upon experiencing a variety of inputs and faults. 

4. State and Model Coverage for AI Components: Assessing system states and coupled 

to the maximum extent possible, metamorphic testing to check AI model output 

standards. 

5. Real-time and Network Coverage: Thus, checking its performance in terms of 

responding to real-time restrictions and network drawbacks. 

6. Error Handling and Fault Injection Coverage: Protecting programs from being 

affected badly by errors associated with data processed under fault-prone 

environment. 

The proposed approach gives much emphasis to coverage analysis that must be multi-folded 

about the software as well as the hardware part of the CPS. 

3.6  Unit Testing 

Unit testing at a high level aims to verify the behavior and reliability of individual 

components within the system architecture before integrating them into the larger framework. 

It ensures each unit's conformance to design specifications, strengthening the software’s 

modular structure and stability. 

To ensure comprehensive coverage and reliability in each component of the CPS model, 

mutation testing principles are applied to evaluate system behavior under intentionally 
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introduced faults. Each component undergoes mutation testing to simulate various failure 

scenarios and to assess the system’s resilience. 

Hardware Faults 

Simulate faults in hardware by introducing mutations that mimic sensors or actuator 

failures. For example, intentionally inject incorrect sensor readings or actuator commands to 

test if the system can identify, isolate, and recover from physical malfunctions. 

Mutation Operators 

 SEN_INVERT: Invert sensor values (e.g., change positive readings to negative). 

 SEN_NOISE: Add random noise to sensor readings. 

 SEN_DISCONNECT: Set sensor status to "disconnected." 

 ACT_DELAY: Introduce delays in actuator response. 

 ACT_FLIP: Invert actuator commands (e.g., on/off, open/close). 

Software Faults 

Alter algorithm logic, modify outputs, or introduce code errors to observe system responses. 

This testing ensures that the system can handle unexpected software errors and demonstrates 

robustness in error-handling routines. 

Mutation Operators 

 COND_NEGATE: Negate logical conditions (if (condition) → if (! condition)). 

 PARAM_SHIFT: Adjust function parameters by a random offset. 

 FUNC_SKIP: Skip a function call (simulate missing execution). 

 LOOP_BOUND_CHANGE: Alter loop boundaries to test for off-by-one errors. 

 NULLIFY_REF: Set variables to NULL to simulate null reference errors. 

Network Faults 

 Introduce mutations that cause network issues like packet loss, high latency, or 

communication failures. Simulate dropped or delayed packets to test if the system can 

maintain reliable operation and recover from network disruptions. 

Mutation Operators 

 PACKET_DROP: Randomly drop packets to simulate data loss. 
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 LATENCY_INJECT: Introduce artificial delays in packet transmission. 

 BANDWIDTH_RESTRICT: Limit the available network bandwidth. 

 CORRUPT_PACKET: Modify packet contents by flipping bits or changing data. 

 REORDER_PACKETS: Randomize packet order to simulate reordering. 

AI Model Faults 

Create faults in AI models by misclassifying inputs or introducing biases. This type of 

mutation tests the system’s decision-making reliability and verifies alternative paths or 

fallbacks for AI-related errors. 

Mutation Operators 

 MISCLASSIFY: Force misclassification of inputs. 

 BIAS_INTRODUCE: Add or amplify biases in model inputs. 

 NOISE_INPUT: Introduce noise to the input data for the model. 

 LOW_CONFIDENCE: Set output confidence to a low value. 

 WEIGHT_MODIFY: Alter weights or parameters in the model’s layers. 

Environmental Faults - Mutation Testing 

Alter environmental variables such as temperature or external interference to evaluate system 

robustness in changing conditions. Testing includes extreme conditions to validate 

environmental adaptability and fault tolerance. 

Mutation Operators 

 TEMP_EXTREME: Set temperature to extreme high or low values. 

 EM_INTERFERENCE: Simulate electromagnetic interference on signals. 

 HUMIDITY_EXTREME: Set humidity to very high or low. 

 VIBRATION_INTENSIFY: Increase vibration levels beyond tolerance. 

Real-time Constraint Faults - Mutation Testing 

Inject delays or re-order tasks to simulate timing issues, testing if the system can maintain 

real-time constraints and detect or correct timing violations. 

Mutation Operators 

 DELAY_TASK: Delay the execution of a critical task. 
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 SKIP_TASK: Skip or omit an essential task. 

 INVERT_PRIORITY: Reverse task priorities to simulate priority inversion. 

 BLOCK_INTERRUPT: Prevent or delay interrupt signals. 

Data Corruption Faults - Mutation Testing 

 Corrupt or alter data entries within the database to examine the system’s ability to handle 

data integrity issues. Mutation tests ensure that error-checking mechanisms trigger 

appropriately and protect the system from erroneous data. 

Mutation Operators 

 BIT_FLIP: Flip specific bits in data to simulate corruption. 

 FIELD_MODIFY: Alter specific fields in a data record. 

 DUPLICATE_ENTRY: Duplicate database entries to introduce redundancy. 

 DELETE_RECORD: Remove important records from the database. 

Power Failure - Mutation Testing 

Simulate power shortages or fluctuations to test system resilience to power-related issues. 

These tests confirm that the system can handle power fluctuations, activate backups, and 

preserve critical data 

Mutation Operators 

 VOLT_DROP: Simulate a drop in voltage levels. 

 VOLT_SURGE: Simulate a voltage surge beyond normal levels. 

 BATTERY_DRAIN: Gradually reduce battery levels to simulate depletion. 

 POWER_FLUCTUATE: Alternate power states rapidly to simulate instability. 

Actuator Faults - Mutation Testing 

Inject incorrect commands or defective actuator instructions to assess system response to 

actuator failures. This testing ensures that fail-safes or alternative mechanisms activate to 

prevent misoperation or hazardous outcomes. 

Mutation Operators 

 COMMAND_INVERT: Invert actuator commands (e.g., switch from "on" to 

"off"). 
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 COMMAND_DELAY: Delay actuation commands to introduce lag. 

 ACTUATOR_FAIL: Simulate complete actuator failure. 

 OVERLOAD: Exceed the actuator’s operating limit to test for overload handling. 

Table 5 Demonstration of fault type with mutation type and fault check as pass/fail criteria 

Fault Type Mutation Type Fault Check (P/F) 

Hardware Faults Sensor Inversion 
 

 
Sensor Noise 

 

 
Sensor Disconnection 

 

 
Actuator Delay 

 

 
Actuator Flip 

 

Software Faults Condition Negation 
 

 
Parameter Shift 

 

 
Function Omission 

 

 
Loop Alteration 

 

 
Null Reference 

 

Network Faults Packet Drop 
 

 
Latency Injection 

 

 
Bandwidth Throttling 

 

 
Packet Corruption 

 

 
Packet Reordering 

 

AI Model Faults Misclassification 
 

 
Bias Introduction 

 

 
Input Noise 

 

 
Low Confidence 

 

 
Weight Modification 

 

Environmental Faults Extreme Temperature 
 

 
Electromagnetic Interference 

 

 
Extreme Humidity 

 

 
Increased Vibration 

 

Real-time Constraint Faults Task Delay 
 

 
Task Omission 

 

 
Priority Inversion 
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Interrupt Blocking 

 

Data Corruption Faults Data Bit Flip 
 

 
Field Modification 

 

 
Duplicate Entry 

 

 
Record Deletion 

 

Power Failure Voltage Drop 
 

 
Voltage Surge 

 

 
Battery Depletion 

 

 
Power Fluctuation 

 

Security Breaches Privilege Escalation 
 

 
Unauthorized Data Injection 

 

 
Access Override 

 

 
Password Corruption 

 

 

3.6.1 Objectives of Unit Testing in High-Level Software Design 

In the context of high-level software design, unit testing confirms: 

1. Component Functionality: Each unit performs its intended function as described in 

architectural diagrams. 

2. Modular Independence: Components operate independently, upholding modularity 

to support system flexibility and scalability. 

3. Integration Readiness: Ensures each component meets architectural specifications, 

facilitating smooth integration into higher-level system architectures. 

3.6.2 Unit Test Coverage from a High-Level Perspective 

High-level unit test coverage is about validating each part of the system within the 

context of the overall architecture, ensuring: 

1. Coverage of All Major Components: Testing all key modules identified in system 

diagrams to confirm functionality within design constraints. 

2. Validation of Inter-component Interfaces: Confirming that interfaces between 

modules follow expected data flow and protocols. 
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3. Behavior Under Various Scenarios: Ensuring components perform consistently 

across the scenarios defined in high-level designs. 

4. Adherence to System Boundaries: Ensuring components such as security and access 

controls respect architectural boundaries. 

3.6.3 Additional Testing Requirements in CPS with AI Components (Using the V-

Process Model) 

 

The V-Process Model requires us to augment standard testing techniques to 

handle the complexity of CPS systems that include AI components by integrating 

A/B/N and mutation testing. Here’s how these methods integrate with the V-Model: 

i) Component Testing (Validation Phase) 

A/B/N Testing: To test the reliability of various conditions in distributed component 

environments, one needs to look at several component implementations. One example 

is to test multiple AI decision algorithms to find the optimal choice for sensor fusion 

or navigation. 

Mutation Testing: Splitting mutants into individual pieces (AI models, sensors, or 

actuators) to measure the system's ability to function with faults or errors at a 

component level. 

ii) System Integration Testing (Validation Phase) 

A/B/N Testing: Ensure that various elements (AI decision-making, sensors, 

actuators) can work together well. Compare the functioning of a range of component 

arrangements when combined. 

Mutation Testing: Evaluate the whole system's reaction to issues in one of its 

components. Given corrupt sensor data, it is important to test if the system can still 

operate securely. 

iii) System Testing: 

A/B/N Testing: Test a variety of configurations of AI-driven elements to secure that 

the system can respond effectively to real-world variability (e.g., variability resulting 

from environmental changes and real-time requirements). 

Mutation Testing: Assess system resilience by imposing faults throughout its various 

elements and confirming the system can work effectively in critical safety situations. 

As outlined in Table 6, testing approaches vary significantly between normal systems, Cyber-

Physical Systems (CPS), and CPS with AI components, particularly in areas such as A/B/N 
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testing, mutation testing, and interaction with the environment, reflecting the unique 

challenges AI integration brings to CPS [3]. 

 

Table 6 Testing Differences with A/B/N  

Testing Aspect Normal 

Systems CPS 
CPS with AI 

Components (Using 

A/B/N) 

A/B/N Testing 
Not typically 

used 

Rarely used (possible 

for software 

comparisons) 

For analysis, this was used 

to examine more than one 

implementation of 

components (AI models, 

sensor controllers). 

Mutation 

Testing 
Software faults 

only 

Used for testing faults 

in physical 

components (e.g., 

sensors, actuators) 

Both artificial intelligence 

and physical components 

receive injections of 

mutants to assess 

robustness during times of 

faulty operation 

Non-

Deterministic 

Testing 
Not applicable Deterministic real-

time requirements 

AI introduces 

unpredictable behaviors 

that necessitate specialized 

testing. 

Real-Time 

Testing 
Not a major 

focus 
Critical for interacting 

with physical systems 

The decisions of AI in real-

time need to be validated, 

which demands test of AI 

components. 

Fault Tolerance 

Testing Software bugs 
Sensor/actuator fault 

simulation and 

recovery 

Concentrate on the way AI 

and physical components 

deal with actual world 

problems and uncertainties. 

Interaction with 

Environment 
None Interaction with 

the physical world 

Interpretation of sensor 

data is done by AI, which 

needs to be measured for 

actual environmental 

variation. 

State-Space 

Explosion Manageable Large due to physical-

world interactions 

Focused on vital 

components and faults, 

A/B/N resolves the 

problem of state-space 

explosion. 
Test Case 

Reduction 
Standard test 

suite 
Test cases for physical 

interactions A/B/N 
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3.7 Importance of A/b/n Approach for CPS Testing 

 Component-Level Validation: 

A/B/N makes sure that every part – whether it is the sensors, the AI algorithms, or the 

communication modules – is tested. This is especially important in a CPS because if 

one of the components fails such as a sensor or improper AI result it can lead to a 

failure of the entire system [1]. 

 Fault Localization: 

Being based on A/B/N testing, the method allows us to detect faults better as its 

components are tested separately and their outputs are compared. For instance, 

assuming during a series of different tests, particular sensors are repeatedly found to 

be the root cause of system failure, the engineer will not have to run all through the 

system to isolate the sensor that is causing all the problems. 

 State-Space Explosion in A/B/N Testing: 

There are many states in complex CPS, and this is due to the interaction of the 

hardware and the real-world environment. The state space explosion problem occurs 

when all states of a particular component are tested and become unmanageable.  

A/B/N helps in: 

Limiting the extent of exploration of the state space by choosing only the parts of the 

solution space and exploring the effect of putting them in different combinations or 

putting them under certain conditions. This means that combinatorial logic (as in the 

case of pairwise testing) can be applied to filter out the number of states to be 

considered based on the most vital pairs or interactions such as; the interaction of the 

sensor with the AI or between the sensor and actuator. 

Why the V-Process Model is Appropriate for CPS with A/B/N Testing ? 

 

 Component-Level Testing at Each Phase: 

The V-Process Model deals with testing components at the early stage of the 

development phase where every phase including unit level, integration level and 

system validation level is considered. As for the role of A/B/N testing in this model, 

it fits perfectly because it enables testing of each of the components as independent 

entities. 

For instance, during the unit testing phase, it can be possible to use A/B/N to test the 

different kinds of sensors, or several data-crunching algorithms during the unit test 
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phase and then validate the total systemic behavior of the AI and the sensors and 

actuators in the system integration phase [4]. 

 Early Fault Detection: 

When combining A/B/N testing into the V-Model at the Validation phase, one can 

identify faults within single components. This is particularly true in safety-critical 

CPS where faults in the individual components must be determined before the 

integration of the complete system [2]. 

 Real-World Validation: 

A/B/N corresponds to the testing phase of the V-Model because, with the help of 

A/B/N, one can assess several components where it is being implemented in its actual 

working conditions. Demonstrate sensors, AI models and actuators under real-world 

conditions offer a less artificial testing view of each component [2]. 

Keeping important nodes such as the sensors, actuators as well as AI modules optimally 

operational and reliable under different conditions. 

• Eliminating many test cases due to the state space explosion problem by targeting 

key parts and their combination. 

• Offering the capability to test multiple components in parallel to finding defects and 

maximizing effectiveness in intelligent and real-time CPS. 

As illustrated in Table 7, testing requirements evolve significantly from traditional software 

to CPS and CPS with AI components, necessitating additional considerations for real-time 

constraints, fault tolerance, and the complex decision-making capabilities of AI in dynamic 

environments [1]. 

Table 7 Key Differences in Testing Across System Types  

Aspect Normal Systems 

(Traditional 

Software) 

Cyber-Physical 

Systems (CPS) 
CPS with AI 

Components 

Testing Focus 

Software-only 

testing (logic, 

performance, 

security) 

Interaction between 

hardware, software, 

and environment 

Decision-making at a 

complex level 

performed by AI 

using actual world 

data 

Real-Time 

Constraints 
Not critical 

Critical, response to 

physical-world 

stimuli 

Decisions made in 

real-time by critical 

AI, derived from 

sensor data 
Deterministic vs 

non-deterministic 
Mostly deterministic Deterministic (real-

time constraints) 
In-deterministic (AI 

presents variability) 
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Fault Tolerance Focus on software 

bugs 

Must handle 

hardware 

(sensor/actuator) 

faults 

It needs to deal with 

issues in both 

hardware and AI 

decision-reasoning 

Interaction with 

Physical 

Environment 
None 

Real-world 

environment 

interaction 

Real-world data 

complication leads 

AI to interpret and 

react. 

State-Space 

Explosion 
Manageable state 

space 

Larger state space 

due to real-world 

interactions 

Big state space 

because of AI 

decision formulation 

and learning 

Safety 

Requirements 
Standard software 

safety testing 

Safety critical for 

industrial, 

automotive, medical 

CPS 

AI determinations 

affect important 

safety scenarios. 

 

 
3.7.1 Requirement to Develop a Combined Technique? 

1. Component-Based Focus: Given the intricate relationships between physical and 

software assets in CPS and AI engaging in decision-making, testing must emphasize 

individual components rather than treating the full system as a black box. 

2. Non-Deterministic AI: The use of AI components results in non-deterministic 

behavior. The methods for testing traditional deterministic systems prove to be 

inadequate. Using A/B/N testing, we make certain that the leading AI models or their 

component implementations come to light. 

3. Resilience and Fault Tolerance: A CPS equipped with AI functionalities needs to 

respond effectively to the unpredictability of environmental conditions, hardware 

glitches, and imperfections in its design. Mutation testing facilitates the imitation of 

these conditions and checks that the system can respond to faults gracefully without 

incident. 

4. State-Space Explosion: Due to the interactions found in the real world and the 

variability of AI, CPS with AI is characterized by a vast state space. Focusing on 

important comparisons of components, A/B/N testing lessens the requirement for 

extensive testing. 

Proposed Methodology for Development and Validation of CPS using Enhanced V-

Model Framework. This chapter illustrates the proposed approach to the development and 

Validation process that will focus on Cyber-Physical Systems (CPS). It has proposed a 

customized software development model based on the V-Model with A/B/n testing, mutation 
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testing and Explainable AI (XAI) for CPS applications. The subsequent subchapters describe 

the different steps in V-Model applied to CPS and show exactly what is developed as well as 

how it is checked or validated. 

 

3.7.2 Mutation Testing in High-Level Unit Testing 

Mutation testing complements traditional unit testing by introducing small, 

intentional changes, or “mutations,” into individual components to evaluate the robustness of 

test cases. This approach helps identify weaknesses in the coverage of high-level functionality 

and verifies that test cases detect deviations from expected behaviors. 

Purpose of Mutation Testing in High-Level Design: 

 Enhance Test Coverage Quality: By introducing mutations, testers can determine if 

the test suite is thorough enough to detect alterations that could impact the system’s 

functionality. 

 Increase Fault Detection in Modules: Simulating potential coding errors at a 

modular level reveals gaps where additional testing is needed. 

 Gain Insights into Component Behavior: Creating mutants of modules allows 

testers to observe potential failures in isolation, gaining a clearer understanding of 

module resilience. 

3.7.3 Mutation Testing 

Mutation testing is a fault-based testing technique designed to evaluate the 

effectiveness of test cases by introducing small changes, or "mutations," into the code. This 

process helps identify weaknesses in test coverage, as effective test cases should be able to 

"kill" mutants by exposing deviations from the original behavior. 

Benefits of Mutation Testing 

1. Enhanced Test Case Quality: Mutation testing reveals flaws in the test suite by 

identifying test cases that fail to detect specific mutations, leading to the improvement 

of test coverage. 

2. Increased Fault Detection: By simulating realistic coding errors, mutation testing 

helps catch potential faults early, improving the robustness of the code. 
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3. Improved Code Reliability: As mutation testing detects weak points in the code, it 

strengthens overall code reliability by highlighting areas that may require additional 

testing. 

4. Better Understanding of Code Behavior: Creating mutants gives testers insights 

into how the code behaves under different conditions, helping them better understand 

its operational scope and limitations. 

3.7.4 Create Mutants Using Mutation Operators 

Mutation operators are carefully designed modifications applied to the code to create 

a set of mutants. Some commonly used mutation operators include: 

 Arithmetic Operators: Modify operators such as changing + to -, * to /, etc. 

 Logical Conditions: Modify conditions like changing && to ||, or == to !=. 

 Data Values: Alter constant values within the code (e.g., changing from 5 to 10). 

i) Equations and Logic for Mutation Testing 

1. Mutation Testing Equations 

Original Function:  

f(x)=x+5 

Example Mutant Function:  

f ′(x)=x−5 

2. Test Cases for Mutation Testing 

Original Function Test Cases: 

Test Case 1:  

f(0) should return 5 

Test Case 2:  
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f(5) should return 10 

3. Mutant Function Expected Results 

Using the same test cases: 

f ′ (0) should yield −5 

𝑓′(5) should yield 0 

If the outputs differ from the expected results of the original function, the mutant is "killed." 

4.  Mutation Testing Execution 

Test Execution and Mutant Detection 

Each test case is run against all mutant versions. 

If a test case yields a different result for a mutant compared to the original function, the 

mutant is considered "killed." 

Otherwise, it "survives," suggesting that the test case is insufficient. 

5. Mutation Score Calculation: 

Mutation Score= (Number of Killed Mutants/Total Number of Mutants) ×100 

Interpretation: A higher mutation score indicates a more effective test suite with better fault 

detection. 

 

 

ii)  Example for the CPS Components 

Below is a logical application of mutation testing for each component using the 

described mutation operators: 
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iii)  Hardware Faults: 

Mutation Logic: Use arithmetic mutations on sensor values (e.g., changing sensor output + 

to -). 

Expected Outcome: Ensure system checks can detect these faulty readings. 

iv)  Software Faults: 

Mutation Logic: Apply logical condition mutations, such as changing == to != in critical 

decision statements. 

Expected Outcome: Validate if unit tests can catch incorrect software logic changes. 

v)  Network Faults: 

Mutation Logic: Simulate data corruption mutations by altering message payloads (e.g., + 

to / in data calculations). 

Expected Outcome: Test that the system correctly identifies corrupted network data. 

vi)  AI Model Faults: 

Mutation Logic: Mutate data values within the model, such as changing thresholds from 5 

to 10. 

Expected Outcome: Check if the AI system’s performance or predictions degrade in a 

detectable way. 

vii)  Environmental Faults: 

Mutation Logic: Change environmental constants, like temperature thresholds, using data 

value mutations. 

Expected Outcome: Ensure the system can detect and handle environmental boundary 

condition changes. 

viii)  Real-time Constraint Faults: 



 

 

64 

 

                                                                                            

Mutation Logic: Modify timing constraints in the code (e.g., from <= to >=). 

Expected Outcome: Verify that timing violations are appropriately flagged by the system. 

ix)  Data Corruption Faults: 

Mutation Logic: Introduce mutations in stored data values, such as altering database 

constants. 

Expected Outcome: Confirm that data integrity checks can catch corrupted entries. 

x)  Power Failure: 

Mutation Logic: Simulate mutations that affect power management algorithms, like altering 

power thresholds. 

Expected Outcome: Check system responses to power-related disruptions. 

xi)  Actuator Faults: 

Mutation Logic: Change actuator commands, introducing arithmetic mutations to modify 

control values. 

Expected Outcome: Validate that the system can detect and respond to inappropriate 

actuator commands. 

 

 

 

 

 

 
Table 8 Fault detection login against fault type and mutated equation 

Fault Type Mutation 

Type 

Original 

Equation 

Mutated 

Equation 

Fault 

Detection 

Logic 

Hardware 

Faults 

Sensor 

Value 

Adjustment 

sensor_reading = 

sensor_reading + 

offset 

sensor_reading = 

sensor_reading - 

offset 

Detects if 

system 

handles 
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incorrect 

sensor data 
 

Actuator 

Command 

Change 

actuator_command 

= activate 

actuator_command 

= deactivate 

Verifies 

response to 

incorrect 

actuator state 

Software 

Faults 

Arithmetic 

Mutation 

output = input1 * 

input2 

output = input1 / 

input2 

Tests if 

arithmetic 

errors are 

caught 
 

Conditional 

Mutation 

if (status == OK) if (status != OK) Ensures 

the system can 

handle 

incorrect 

logical 

conditions 

Network 

Faults 

Latency 

Variation 

transmission_time 

= 

transmission_time 

+ standard_delay 

transmission_time 

= 

transmission_time 

+ 2 * 

standard_delay 

Verifies 

the system's 

response to 

increased 

transmission 

delays 
 

Packet 

Corruption 

packet_data = 

correct_data 

packet_data = 

corrupted_data 

Tests for 

handling 

corrupted 

network 

packets 

Environment 

Faults 

Temperature 

Variation 

temperature = 25 temperature = 50 Verifies 

response to 

extreme 

environmental 

changes 
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Interference 

Injection 

signal_strength = 

standard_signal 

signal_strength = 

standard_signal - 

interference 

Tests 

resilience 

against signal 

interference 

Real-Time 

Constraints 

Delay 

Injection 

execution_time = 

base_time 

execution_time = 

base_time + delay 

Tests response 

to real-time 

processing 

delays 
 

Priority 

Mutation 

priority = high priority = low Verifies effect 

of changed 

task priorities 

Data 

Corruption 

Bit Flip 

Mutation 

data_bit[i] = 0 data_bit[i] = 1 Detects 

corrupted data 

bit handling 
 

Field 

Alteration 

record.field = 

correct_value 

record.field = 

incorrect_value 

Tests system 

reaction to 

incorrect data 

fields 

Power 

Failure 

Voltage 

Mutation 

voltage = 5.0 voltage = 10.0 Checks 

handling of 

abnormal 

power levels 
 

Battery 

Level 

Mutation 

battery_level = 100 battery_level = 20 Ensures 

system 

resilience to 

low battery 

conditions 

Security 

Breaches 

Access 

Level 

Mutation 

access_level = user access_level = 

admin 

Detects 

unauthorized 

access control 
 

Password 

Corruption 

password = 

correct_password 

password = 

wrong_password 

Tests handling 

of invalid 

credentials 
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3.8 Integration Testing 

Integration testing ensures that individual components work together as expected, 

validating both individual functionality and overall system interaction. Techniques like 

A/B/N testing and pairwise testing are useful in refining test coverage and identifying the 

optimal component configurations. 

3.8.1 Define Components and Set Up A/B/N Testing 

In A/B/N testing, multiple configurations of each component are tested to assess their 

impact on the overall system. This approach provides insights into which configurations 

optimize performance. 

Benefits of A/B/N Testing: 

1. Optimized Configuration Selection: A/B/N testing highlights the best-performing 

configuration among multiple options, allowing for data-driven decision-making. 

2. Enhanced Performance and Scalability: By testing several variations, A/B/N 

testing helps improve system performance and scalability with optimal component 

settings. 

3. Efficient Resource Utilization: By identifying configurations that maximize 

efficiency, A/B/N testing promotes resource savings and effective deployment. 

Performance metrics in A/B/N testing are typically calculated using an average across 

configurations: 

 

where Ci represents the i-th configuration of a component, and P is the average performance 

measure. 
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3.8.2 Use of Combinatorial Logic with Pairwise Testing 

Pairwise testing reduces the number of test cases needed by focusing on pairs of 

interacting components, ensuring essential interactions are tested efficiently. 

Benefits of Pairwise Testing: 

1. Reduced Test Complexity: Pairwise testing limits the number of test cases required 

to achieve comprehensive coverage, reducing complexity and costs. 

2. Increased Coverage of Component Interactions: This technique ensures that every 

component interaction is covered at least once, enhancing fault detection. 

3. Efficient Use of Resources: Pairwise testing maximizes test coverage with minimal 

test cases, saving time and computational resources. 

Example Pairwise Test Case: 

 For components A, B, and C, a set of pairwise test cases might include: 

o Test Case 1: A-B interaction with configuration 1. 

o Test Case 2: A-C interaction with configuration 2. 

o Test Case 3: B-C interaction with configuration 3. 

3.8.3 Conduct A/B Testing for Each Component 

A/B testing, a simplified form of A/B/N testing, compares two configurations to 

determine the better-performing option for integration. 

Benefits of A/B Testing: 

1. Quick Performance Evaluation: A/B testing provides fast insights into the best-

performing configurations by comparing only two options at a time. 

2. Simple Implementation: Since A/B testing focuses on two options, it is easy to 

design, implement, and analyze. 

3. Focused Improvement: A/B testing aids in iterative improvement, allowing targeted 

optimization of each component. 

Example A/B Test Case: 
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 For component A with configurations 1 and 2: 

o Test Case: Compare A (configuration 1) with A (configuration 2) to measure 

performance outcomes and determine which configuration enhances 

integration. 

3.8.4 Identification of Components for System Integration 

After testing, results are analyzed to identify the configurations with the highest 

positive impact on system integration. This analysis assists in refining the overall system 

setup for optimal performance. 

Benefits of Top Component Identification: 

1. Focused System Enhancement: Identifying top-performing components helps 

streamline system improvements by highlighting key contributors. 

2. Efficient System Optimization: By focusing on the components with the best 

integration results, time and resources are concentrated on impactful changes. 

3. Clear Path to Scalability: Knowing which components contribute the most to system 

performance aids in making scalable and maintainable enhancements. 

Example Top Component Identification: 

 Based on A/B testing, suppose configurations that optimize integration are identified 

as: 

o Component A: Configuration 1 

o Component C: Configuration 3 

These configurations are highlighted as the top contributors to successful system integration. 

3.9 Sub-System Testing 

 

3.9.1 Objective 

 

Sub-system testing aims to verify the functional and operational correctness of each 

component within the CPS as part of an integrated system. This phase follows system testing 
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and dives deeper into each subsystem's specific behavior, validating that all internal modules 

function independently and interact with each other as expected. 

3.9.2 Methodology 

Sub-system testing is conducted by isolating key components of the CPS and 

assessing them within the context of their interactions and dependencies, as opposed to testing 

the full, cohesive system. Each sub-system undergoes rigorous validation to ensure it can 

operate autonomously and as part of the larger CPS: 

3.9.2.1 Component-Level Validation 

Each primary component within the CPS, such as data acquisition, processing, and 

alerting modules, is individually validated to confirm that it meets performance and 

functional requirements. Key steps include: 

 Data Processing Subsystem: This subsystem is assessed for accuracy in data 

processing, filtering, and preparation for model predictions. Verification includes 

examining how raw data is transformed and whether these transformations align with 

expected preprocessing requirements. 

 Alert Generation Subsystem: Given that alerting is central to CPS functionality, this 

subsystem is tested extensively to ensure it generates alerts based on accurate, reliable 

triggers. This includes validating the alert thresholds and examining how alerts are 

handled and prioritized in the system. 

 Predictive Modeling Subsystem: The predictive modeling sub-system is tested in 

isolation to verify that it consistently produces accurate predictions across a range of 

test cases. This includes checking the model’s responsiveness to data changes and 

variations in real-time input. 

3.9.2.2 Sub-System Interaction Testing 

In addition to standalone component tests, the interactions between subsystems are 

examined in terms of data flow, response time, and seamless connectivity. Specific 

tests include: 

 Data Flow Integrity: Ensures that data passed between subsystems remains intact, 

without loss or corruption. This is crucial for maintaining the accuracy of predictions 

and alerts. 
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 Communication Latency: Measures the response time between subsystems, 

ensuring minimal latency and timely processing of data, especially for real-time 

alerting. Consistency in latency across multiple test cases is an essential metric here. 

 Error Handling and Recovery: The ability of each sub-system to handle errors and 

recover autonomously is tested. This ensures that minor errors within one component 

do not cascade into a broader system failure, maintaining system stability. 

3.9.3 Metric 

Key performance metrics for sub-system testing are derived from each component's 

functionality. Specifically, for the Alert Generation subsystem, the effectiveness metric is 

recalculated to verify subsystem accuracy independently before full system integration. 

For subsystem latency, an average latency Lavg can be calculated across tests for each 

interaction, ensuring it remains within acceptable limits: 

 

where Li represents the latency time of the i-th interaction between two sub-systems. 

3.9.4 Expected Outcome 

Sub-System Test Results provide insights into each module’s readiness for system 

integration. Metrics include: 

 Subsystem Accuracy: Each module’s accuracy, specifically in terms of alert 

generation, data integrity, and predictive reliability. 

 Subsystem Latency: Average latency times between subsystem interactions, 

validating the system’s ability to operate with minimal delay. 

 Error Recovery Rates: The frequency and success rate of error handling processes 

within each subsystem. 

The Sub-System Testing phase offers a more focused, in-depth examination of each CPS 

component's performance, ensuring all internal modules meet required standards before 

reintegration into the full CPS for operational use. 
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3.10 System Testing 

3.10.1 Objective 

System testing focuses on verifying the CPS as a cohesive unit, ensuring that all 

individual components function correctly when combined. It is critical to test the system in 

real-world or simulated conditions to evaluate the overall effectiveness, responsiveness, and 

reliability of the CPS. 

3.10.2 Methodology 

3.10.2.1 Real-Time Alerts Generation 

The alert generation system in the CPS is a vital feature for early detection and 

real-time decision-making. Finally, during system testing, this capability is stringently 

evaluated in terms of various operating conditions with the intention of ascertaining 

whether the CPS can generate appropriate alerts based on the model predictions. 

 Threshold Tuning: Alert levels and their possible variations are set by using 

formulas related to model sensitivity, an acceptable level of false positives or false 

negatives, and alarm criticality of the given situation. For example, a setting of 

threshold defines whether variations in the predictions mean an alert needs to be 

raised. 

 Scenario Testing: Different scenarios—such as normal operation, critical conditions, 

and anomalous events—are simulated to observe alert behavior and verify the 

system's responsiveness. 

 Real-World Simulation: Testing involves running the CPS in environments that 

closely mimic real-world conditions. This includes simulating situations that the 

system will meet most of the potential problems that one is likely to come across 

during production to make sound its operations in a way that it will produce the 

pertinent alert at the appropriate time. 

3.10.2.2 Performance Evaluation 

Thus, model accuracy of the overall system and dependability of alert 

generation is verified when comparing the predicted outcomes with actual outcomes 

of the system. This stage evaluates: 
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 Accuracy: Consistency in model predictions versus actual results. 

 Latency: The speed at which alerts are generated post-prediction. 

 Relevance: The appropriateness of alerts in the context of operational data. 

3.10.3 Mathematical Formulation 

The following factors are used in evaluating the impact of the alert generation solution: 

1. Alert Generation Effectiveness: 

 

where: 

o Correct Alerts: Notifications that are relevant with real positive or eventful 

states. 

o Total Alerts: Total number of alerts returned during the test phase. 

 

2. False Positive Rate (FPR): This tracks how often false positives occur, and this is 

important to use to set higher lower thresholds to stop having too many false positives. 

 

3. Latency (L): The average time duration between the occurrence of an event and the 

issuance of the alert concerning such an event. This is more so the case in applications 

where it’s critical to complete the contraction within a very short duration: 

 

where Talert,i is the time of alert i, and Tevent,i is the time of event i. 

3.10.4 Expected Outcomes 
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Alert Generation Metrics 

 Accuracy of Alerts: The measures of the extent to which bells reflect 

important occurrences. 

 Alert Precision and Recall: Outcomes of the quantitative analysis of its 

potential to minimize false positives and maximize its ability to identify 

true positives. 

 Latency Analysis: Average latency time calculated to ensure timely alert 

generation. 

3.10.5 Benefits of Real-Time Alert Generation in CPS 

1. Early Detection: It is important to note that real-time alerts facilitate identification of 

any crucial event or system shutdown for some action. 

2. Operational Efficiency: Alerts offset the need for continuous observation to 

supervise the system while orbiting human resources for other uses. 

3. Minimizing Risks: Warning systems act as a kind of protection against the progress 

of a particular failure by taking action due to small fluctuations indicating the 

deterioration of a situation. 

4. Improved User Confidence: A reliable alert system makes users trust it by right 

alerts or notifications, with no possibility of any irregularity to go unnoticed. 

3.11 Acceptance Testing 

3.11.1 Objective 

In this context, acceptance testing ensures that the CPS model aligns with predefined 

requirements by assessing its capability to fulfil all functional and performance criteria for 

real-world applications. Rather than aiming for deployment, this testing serves as a 

verification that the model meets core specifications, including prediction accuracy, alert 

generation, and robustness. 

3.11.2 Methodology 
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Our acceptance testing is tailored to evaluate the system's precision, stability, and 

responsiveness within a controlled environment, emphasizing its robustness and efficiency 

for potential deployment: 

3.11.2.1 Requirements Validation 

Acceptance testing begins with requirements validation, where the CPS model 

is evaluated to confirm adherence to specified functionalities and performance 

standards defined earlier in the project. This process includes: 

 Threshold Accuracy Validation: Using test cases derived from real-

world data, the CPS model’s accuracy is assessed to ensure that it 

consistently meets the accuracy threshold set during initial 

requirements gathering. Each component, including alert generation 

and anomaly detection, is verified to perform as expected under typical 

operational conditions. 

 Test Scenario Alignment: Each test scenario is structured to reflect 

specific requirements of the CPS model, such as accurate prediction 

capabilities and timely alert generation. These scenarios ensure the 

model aligns with its purpose, detecting abnormalities or generating 

alerts based on predictions. 

3.11.2.2 Real-Time Alert Evaluation 

A critical component of the acceptance testing is real-time alert validation, 

assessing whether the system produces accurate and timely alerts that can be relied 

upon in real-world usage: 

 Alert Sensitivity and Specificity: The model is tested for sensitivity (how 

often it correctly generates alerts when conditions meet the alert criteria) 

and specificity (how often it avoids false alerts when conditions do not 

warrant it). This analysis is based on sample inputs designed to trigger 

alerts under predefined conditions and cases where alerts should not be 

triggered, verifying the model's response accuracy. 
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 Alert Timing: Timeliness is evaluated by observing how quickly the 

model generates alerts in response to valid triggers within the input data. 

Consistent and prompt alert generation is key to model validation, as 

delays in alerting may compromise effectiveness in real-world scenarios. 

 False Positive and False Negative Rates: As per the acceptance criteria, 

the CPS model's alert system must have minimal false positives and false 

negatives. This requirement is evaluated through controlled inputs, 

ensuring that unnecessary alerts are not generated (false positives) and that 

valid alerts are not missed (false negatives). 

3.11.2.3 Performance and Robustness Testing 

Performance and robustness testing in acceptance ensures that the CPS model 

can operate consistently and handle variations within the input data without a 

significant decline in accuracy or speed: 

 Stress Testing with A/B/n Variants: Different versions of the CPS model 

are subjected to A/B/n testing to determine how well each variant performs 

under identical conditions. Each version’s accuracy, alert rate, and 

response time are compared to ensure that the final variant chosen meets 

or exceeds the acceptance criteria established for the system. 

 Consistency Check: To validate robustness, the model is subjected to a 

diverse range of input data variations. Consistency in output (predictions 

and alerts) across varied input scenarios confirms that the CPS can 

generalize well to potential real-world variations. 

3.11.2.4 Acceptance Metrics and Criteria 

Based on the methodology above, specific metrics and criteria for acceptance 

are defined and assessed as follows: 

 Minimum Accuracy: The model’s average accuracy across test cases 

must meet the target threshold defined. Accuracy is quantified as the 

average of correct predictions across all test cases, ensuring the model 

maintains reliability when handling real-world data. 
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 Alert Precision and Recall: Precision (proportion of true alerts among all 

alerts) and recall (proportion of actual trigger cases that resulted in an alert) 

are calculated and validated to ensure acceptable performance. These 

metrics verify that the model does not excessively miss true alerts or 

generate false ones. 

 Latency in Alert Generation: The CPS model's average alert generation 

latency is measured to ensure timely response. An upper limit for 

acceptable latency is set, and the model’s performance is validated against 

this criterion. 

3.11.3 Expected Results 

3.11.3.1 Acceptance Test Results 

Acceptance test results summarize the model’s performance in meeting the 

acceptance criteria. Key outcomes include: 

 Accuracy Status: The model’s accuracy is recorded against the minimum 

threshold. This includes any deviations and areas for potential 

improvement. 

 Alert Evaluation Report: This report details alert precision and recall 

metrics, latency times, and instances of false positives/negatives, 

confirming whether the alerting mechanism operates within acceptable 

limits. 

 Final Assessment and Recommendations: Based on the testing results, 

the CPS model is either approved as meeting the acceptance criteria or 

identified for further refinement if specific criteria were unmet. 

Acceptance testing here is a targeted, critical assessment phase ensuring that the CPS 

meets all essential criteria for use in its intended domain, specifically focusing on accuracy, 

alert effectiveness, and performance robustness. 

3.12 Key Contribution to Literature 

We have proposed testing methodologies for Cyber-Physical Systems (CPS) through 

the development and refinement of formulas related to mutation testing, A/B/N testing, and 
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pairwise testing. Each of these methodologies plays a crucial role in ensuring the reliability 

and efficiency as well as safety of CPS, and the proposed methodology elucidates their 

interdependencies and practical implications. 

1. Mutation Testing Formulas 

The process of mutation testing relies on the creation of mutants through the 

application of mutation operators, as illustrated in the following equation: 

 

The mutation operator's type (e.g., arithmetic, logical, data value) directly 

influences the resultant mutant's behavior. By systematically applying different 

operators, we can generate a diverse set of mutants that challenge the robustness of 

the original code. The relationship between the number of mutants and the 

effectiveness of the test cases is crucial; more diverse mutants lead to more 

comprehensive testing. Consequently, the effectiveness of the test cases can be 

quantified as: 

 

This equation indicates that as the number of killed mutants increases, the 

effectiveness of the test cases improves, highlighting the importance of selecting 

appropriate mutation operators to maximize coverage. 

2. A/B/N Testing Metrics 

In integration testing, A/B/N testing is defined by the equation: 

 

This formula calculates integration performance by averaging the 

performance through different configuration (Ci) of the system components thus 

defining a test successful integration formula. Due to the nature of creating a 
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performance metric, it has elements like system resources, input conditions and 

interactions between components. Therefore, through the analysis of the execution of 

all the possible configurations, it is possible to define certain components as superior, 

and adjust the resource distribution and design of the system. 

For example, if Configuration 1 consistently outperforms Configuration 2, it 

allows for informed decision-making regarding component selection, ultimately 

enhancing system reliability and efficiency. 

3. Pairwise Testing Application 

Pairwise testing reduces the complexity of testing by ensuring that all pairs of 

component interactions are tested, expressed in the following format: 

 

This equation shows that each test case represents a unique pair of components 

(Ai, Bj), ensuring comprehensive interaction coverage while minimizing the total 

number of test cases. The effectiveness of this approach is illustrated by the following 

relationship: 

 

This indicates that the number of test cases grows quadratically with the 

number of components, underscoring the importance of pairwise testing in 

maintaining manageable testing efforts while ensuring thorough interaction 

validation. 

In these contributions, we have endeavoured to present a cohesive framework to improve the 

testing processes of CPS. The critical formulas and relationships analyses show how heuristic 

mutation operators, metrics used in A/B/N testing, and systematic pairwise testing enhance 

the CPS testing process. By doing so, findings contribute to new knowledge that not only 

enhances and advances the theoretical knowledge base but also provides a hands-on practical 

look at testing CPS in real-world applications.  
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

 

 

4.1 Case Study Overview 

In this research, we have selected three distinct Cyber-Physical Systems (CPS) to 

evaluate using the proposed approach including the Autonomous Vehicle System (AVS), 

Smart Home System (SHS), and Industrial Robotics System (IRS). Every system corresponds 

to a different category of CPS; The problems of data acquisition, real-time computation, 

decision-making, and robustness vary for each system. The goal is to evaluate the system’s 

resistance and performance by considering the use of AI, data, and decision-making 

challenges. 

A well-implemented example of the CPS is the AVS where real-time control means 

the vehicle is safe in dynamic operating conditions. Some of the important sensors include 

geographical position coordinators, speed-measuring gadgets, engine temperature-measuring 

gadgets, and fuel-measuring gadgets. The issue is that feeding the AI engine must be done 

promptly and accurately, any delay or mistake could lead to accidents. This case also 

concentrates on deploying Explainable AI (XAI) to increase the intelligibility of the decisions 

made by AI. Mutation testing is used to check system reliability and instability checking and 

detection of faults in integrating sensors. 

SHS increases automation of Home Appliances and Devices with an emphasis on 

energy and security management and optimal home comfort. Temperature, humidity, CO2 

level, light intensity and sound level sensors regulate and feedback on the functioning of the 

installed system. The decision-making capability of the SHS case study also presents the 

system analysis of the single sensor and multiple sensors simultaneously under power 

consumption efficiency. A/B/n testing is used to identify settings that would support user 

comfort while at the same time lowering energy use. 

IRS is a system that contains all types of robotics like robotic arms and more 

automation in manufacturing industries. Some of the important sensors are engine speed, 

vibration degree, energy consumption, weight on the load, and the position of the manipulator 

needed to provide appropriate accuracy and safety of operations. Specifically, the challenge 
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in IRS largely consists of handling big operations with numerous parameters and of 

identifying and addressing faults in real-time. Mutation testing is employed in this research 

work to establish that the system being developed can indeed handle various failures as well 

as system testing to address scalability issues of CPS. 

4.2 Sensor Data Simulation 

The first step in our evaluation involved simulating sensor data across three different 

CPS environments: Smart Home, Autonomous Vehicle, and Industrial Robotics are the three 

domains of applications of drones. The situation in each environment specifically called for 

the generation of proper sensor data to emulate its working environment. For instance, while 

designing the Smart Home System simulation, the group concentrated on the temperature, 

humidity, and CO2 level; in the case of the Autonomous Vehicle System, the coordinates and 

speed values were most relevant. The sensor data were created using uniform random 

distributions so every value among the opted number of sensors is distinct. 

The data generated was further analyzed to check distribution and variance and the 

tests included are box plots and summary statistics. In the boxplot of the simulated data for 

the selected CPS environment, Figure 4.1 shows the spread and possible outliers in the data. 

Additional clean-up procedures were performed to assess whether the data would be 

appropriate for training models by checking if any excessive outliers could influence the 

models negatively. 

 
Figure 5 Boxplot showing the distribution of simulated sensor data for Autonomous Vehicle System  sensors 
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Figure 6 Boxplot showing the distribution of simulated sensor data for Smart Home System sensors. 

 
Figure 7 Boxplot showing the distribution of simulated sensor data for Industrial Robotics System sensors 

 

For our Autonomous Vehicle System (AVS) CPS simulation, we use data metrics 

such as speed, engine temperature, fuel level, GPS latitude, and GPS longitude to 

evaluate system reliability across all testing phases. 
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4.3 Unit Testing 

Unit testing was performed to test how the models perform on the test data. The test 

data included an independent set of unseen sensor data captured from the CPS 

environment. During the unit testing, it was evident that the trained models offered the 

right prediction from the sensor inputs as was expected without any variability. The line 

plot in Figure 7 displays the sample test points together with the prediction values of the 

model based on them. The right side of the graph gives the prediction values, and the left 

side contains information about the sample number. The values of the model’s forecast 

remain in the vicinity of the 0.1 level corresponding to the decisions made based on the 

input from the sensor. This variability described how confident the model was about the 

classification and where the predictions were on the extremes of the scale: nearer to 1 or 

0 more than to 0.1. Most of these predictions remain good, this indicates that the model 

was able to process the test data as expected. The unit tests disseminating results were 

also assessed by using key performance indicators such as accuracy, precision, recall 

anxiety and F- score. These metrics ascertained that the model had the merit of keeping 

the high function of accurately predicting the correct outputs. The results proved that the 

model could recognize shapes not in the training data set, thus making it ideal for real-

time CPS applications. Indeed, this phase was very useful for asserting that the model 

could predict the costs of the selected CPS and that it was viable for use in this context. 

 

 
Figure 8 Line plot showing the prediction values for test data during unit testing 
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Figure 9 Sample code for Mutation test 

 

 

 

 
Figure 10 (a) Mutation test showing killed/survived mutants with accuracy threshold 0.1 

 

 

 

Figure 9 (b) Mutation test showing killed/survived mutants with accuracy threshold 0.7 
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Figure 11 Mutation test results 

 

 

 

 

 

 

Fault Check Results Mutation Testing 

 

 
Table 8 Mutation Testing Results with 0.1 Threshold 

Fault Model Total 

Test 

Cases 

Mutants 

Introduced 

Mutants 

Killed 

Mutants 

Survived 

Appendix 

Reference 

Sensor Faults 6 6 5 1 Appendix A 

Actuator Faults 4 4 4 0 Appendix A 

Software Faults 4 4 4 0 Appendix A 

Network Faults 4 4 4 0 Appendix A 

AI Model Faults 5 5 3 2 Appendix A 

Environmental 

Faults 

3 3 3 0 Appendix A 

Power Faults 3 3 3 0 Appendix A 
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Data Integrity 

Faults 

4 4 4 1 Appendix A 

Timing Faults 3 3 3 0 Appendix A 

System Faults 4 4 4 1 Appendix A 

Security Faults 4 4 4 0 Appendix A 

Total 44 44 39 5 - 

 

After setting the threshold to 0.1, we had: 

1. Total Fault Models: 11 types of faults. 

2. Total Test Cases: 44 

3. Mutants Introduced: 44 

4. Mutants Killed: 44 - 5 = 39 

5. Mutants Survived: 5 mutants, specifically: 

 sendisconnect (Sensor Faults) 

 misclassify (AI Model Faults) 

 bias introduce (AI Model Faults) 

 noise input (Sensor Faults) 

 weightmodify (AI Model Faults) 

 
Table 9 Updated Mutation Testing Results After New Test Cases 

Fault Model Total 

Test 

Cases 

Mutants 

Introduced 

Mutants 

Killed 

Mutants 

Survived 

Appendix 

Reference 

Sensor Faults 6 + 2 = 8 6 6 0 Appendix A 

Actuator Faults 4 4 4 0 Appendix A 

Software Faults 4 4 4 0 Appendix A 

Network Faults 4 4 4 0 Appendix A 

AI Model Faults 5 + 3 = 8 5 5 0 Appendix A 

Environmental 

Faults 

3 3 3 0 Appendix A 

Power Faults 3 3 3 0 Appendix A 

Data Integrity 

Faults 

4 4 4 0 Appendix A 

Timing Faults 3 3 3 0 Appendix A 

System Faults 4 4 4 0 Appendix A 

Security Faults 4 4 4 0 Appendix A 

Total 44 + 5 = 

49 

44 44 + 5 = 49 0 
 

 

 Total Test Cases: 49 (original 44 + 5 additional test cases). 

 Mutants Introduced: 44 (initially). 
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 Mutants Killed: 49 (all mutants killed after adding the 5 new test cases). 

 Mutants Survived: 0. 

 

With these 5 additional targeted test cases, the revised table achieves complete mutant 

killing, confirming zero surviving mutants and comprehensive coverage across all fault 

models. This ensures that all identified faults, including those involving AI biases, sensor 

disconnects, and noise handling, are fully addressed. 

4.4 Integration Testing 

Both continuous and scenario-based integration testing was carried out for the SHS to 

assess the functionality of the whole integrated system from sensors to data transmission units 

to the AI analytics engine. The goal was to confirm that temperature, humidity, and CO2 

levels sensors collected and sent the data and used it for decisions as to when to turn on/off 

smart devices. This was to make sure that when hardware, for instance, sensors, interfaces 

with software such as AI-based control techniques, the system responds appropriately 

depending on the conditions that exist in the real world. This phase was necessary to ensure 

that all the components communicated and retained their functional elements when 

interfaced, which is very important if the SHS has to operate optimally. This also enabled the 

detection of possible problems that may arise concerning the interaction between the different 

sensors or in processing data during the actual application of component integrations. 

 

For improving the transparency of the elements that relied on AI in the CPS, the SHAP 

tool was used to explain the model’s predictions. This kind of integration testing enabled us 

to determine which of the features played the most important role in decision-making. For 

instance, in the SHS, the numeric features related to temperature and CO2 levels were seen 

to be most dominant in influencing system behavior. Based on the above results, we also 

create a SHAP summary plot to see the importance of each feature for the model in Figure 

11 and figure 12 below. 
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Figure 12 SHAP summary plot showing the feature importance 

 

 

 

Figure 13 SHAP summary plot for a/b/n testing 

 

 

Figure 14 Sample code of SHAP implementation for A/b/n Testing 
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In performing these decision fates, the use of SHAP gave insights that made the resulting 

decisions of the AI model understandable to the operators of the system. Such a level of 

explainability is highly desirable in CPS applications, particularly in the context of CPS 

safety-sensitive use cases such as self-driving cars or industrial drones. 

 

 

Figure 15 Sample code of integration testing 
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Figure 16 After and before combinatorial logic for a/b/n testing 

 

 

 

Figure 17 A/B/N test results for CPS 

 
Table 10  Integration Testing Testcases Results 

Component A/B/n 

Testing 

(Initial Test 

Cases) 

A/B/n Testing 

(with n+1 Fault 

Seeding) 

Combinatorial 

Testing (Reduced 

Cases) 

Appendix 

Reference 

Sensor Input 10 11 6 Appendix B 

Actuator 

Response 

8 9 4 Appendix B 



 

 

91 

 

                                                                                            

Software Logic 7 8 3 Appendix B 

Data Processing 6 7 3 Appendix B 

Network Latency 6 7 3 Appendix B 

AI Model 

Prediction 

8 9 4 Appendix B 

Power Supply 5 6 3 Appendix B 

Environmental 

Conditions 

5 6 3 Appendix B 

Security 5 6 3 Appendix B 

System Recovery 6 7 4 Appendix B 

Total 66 67 36 Appendices B 

 

1. A/B/n Testing (Initial Test Cases): 

 The initial number of A/B/n test cases for each component totals 66 across all 

configurations. 

2. A/B/n Testing with Fault Seeding: 

 By introducing an additional configuration in integration testing, we add one 

fault-seeded case per component, totaling 67 cases. This fault-seeded 

configuration applies faults across all configurations simultaneously, allowing 

a more efficient fault detection process. 

3. Combinatorial Testing: 

 In Combinatorial Testing, test cases are reduced by focusing only on critical 

combinations, bringing the total down to 36 cases across all components. 

 No fault seeding is applied in this phase, as the primary goal is to streamline 

the test cases to cover essential scenarios only. 

In integration testing, we evaluate how components of the system interact with each 

other under various configurations and scenarios. This process unfolds in three distinct stages, 

which systematically reduce the number of test cases while preserving the integrity and 

robustness of the testing. Here’s a step-by-step breakdown of each stage with explanations 

on how the values in the table are derived. 

1. A/B/n Testing (Initial Test Cases) 

 

Purpose 
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A/B/n Testing is the initial phase where multiple configurations (labeled as A, 

B, and other variations represented by "n") are tested to assess component interactions 

under diverse conditions. The goal is to thoroughly explore the system’s behavior by 

covering a wide range of configurations. 

 

Process 

 Each component is tested across different configurations to see how it interacts 

with other system parts under varying conditions. 

 For instance, Sensor Input is tested across 10 configurations (A, B, and additional 

variations). This approach helps uncover potential issues with sensor data 

handling in diverse scenarios. 

 Each initial test case captures a unique combination of input or operational 

conditions for each component. 

Result 

This stage results in a larger set of test cases, as shown in the A/B/n Testing column 

in the table. 

2. Combinatorial Testing (Reduced Test Cases) 

Purpose 

Combinatorial testing is applied after A/B/n Testing to reduce the number of test cases 

by selecting the most critical combinations. This phase uses combinatorial logic, such 

as pairwise testing, to identify the minimal set of test cases that still achieves 

comprehensive test coverage. 

Process 

 Using the data gathered from A/B/n Testing, combinatorial testing narrows 

down the test cases by focusing on high-priority combinations. 

 For example, Sensor Input initially had 10 test cases in A/B/n Testing. By 

applying combinatorial logic, this number is reduced to 5 test cases, capturing 

only the essential interactions and ensuring key behaviors are still tested. 

 This phase ensures that the system’s critical interactions are covered without 

redundancy, resulting in a smaller yet effective set of test cases. 

Result 

The number of test cases is reduced while maintaining adequate test coverage, as 

reflected in the Combinatorial Testing column. 

3. Fault Seeding (Final Test Cases) 
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Purpose 

In the final phase, Fault Seeding introduces intentional faults into the system to 

evaluate its error detection and handling capabilities. This process uses the reduced 

set of test cases from Combinatorial Testing to introduce realistic fault scenarios, 

testing the system's resilience and stability. 

 

Process 

 Faults are injected into each component to simulate real-world issues, such as 

hardware failures, software bugs, or network disruptions. 

 For instance, Sensor Input has 5 final test cases in this phase, where faults 

like sensor data corruption, delayed response, or abrupt disconnection are 

introduced to test how well the system manages these faults. 

 Each test case in Fault Seeding is carefully designed to cover the most likely 

and impactful faults, validating the system’s ability to detect and recover from 

errors. 

Result 

 The final set of test cases rigorously evaluates each component’s fault tolerance, 

ensuring robustness. This is shown in the Fault Seeding column, which retains the 

reduced number of test cases from the combinatorial phase. 

 A/B/n Testing: Each component begins with a certain number of 

test cases, exploring various configurations (e.g., different AI 

models, sensor setups, and power levels). 

 Combinatorial Testing: By applying combinatorial logic, the 

total test cases are reduced significantly (e.g., 66 down to 36) while 

still covering critical interactions. 

 Fault Seeding: The reduced 36 test cases are maintained, 

confirming that both A/B/n and combinatorial approaches yield 

equivalent and comprehensive results. 
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Table 11  Table showing distribution of seeded faults [51] 

 

 

Table 11, Shows the total number of faults seeded for each version as well as a breakdown 

into the different types along with typical representatives.  

4.5      System Testing 

 

In the level of system testing the concern was the ability of the model to provide real-

time alert notifications from the sensor inputs. The model was then used in a virtual live mode 

scenario where it was constantly analyzing the sensor data and sending an alarm whenever 

the readings touched a specified extreme value. Figure 4.6 depicts the outcome of the 

generating alerting process and shows that many alerts are generated because of the 

abnormality in the sensors’ readings where red suffices the markers. The auditory and visual 

signals were produced almost instantly when the data was fed into the system and there was 

virtually no latency in responding to critical conditions. 

 

 
Figure 18 System Testing: Realtime Alert generation 
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This method of generating real-time alerts is indispensable for CPS scenarios, 

especially those that necessitate the use of real-time intervention, such as in industrial robot 

manufacturing or autonomous car driving. 

 

 

 

 

Figure 19 Sample code for system testing 

 

 

 

 

 

 

 
Figure 20 Output showing system testing results 
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Figure 21 SHAP summary plot for System Testing 

 

 

 

 

Figure 22 Sample Implementation of SHAP for System testing 
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Figure 23 Alert Generation Results 

 

 

 
Table 12 System Testing Testcases Results 

Component Total Number of 

Test Cases 

Appendix 

Reference 

Sensor Input 15 Appendix C 

Actuator Response 12 Appendix C 

Software Logic 10 Appendix C 

Data Processing 10 Appendix C 

Network Latency 10 Appendix C 

AI Model Prediction 12 Appendix C 

Power Supply 8 Appendix C 

Environmental 

Conditions 

8 Appendix C 

Security 10 Appendix C 

System Recovery 12 Appendix C 

Total 107 Appendices C 

 

 Sensor Input: This component is tested under various scenarios to ensure 

sensor accuracy and timely data capture. The 15 test cases include checks 
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for handling rapid data changes, response to sensor errors, and data 

validation to avoid inaccuracies. 

 Actuator Response: Testing the actuator involves evaluating command 

accuracy, response times, and stability. With 12 test cases, the aim is to 

ensure actuators respond correctly and consistently, particularly during 

high load or rapid command sequences. 

 Software Logic: The software logic is tested to verify that critical 

functions execute correctly, handle errors gracefully, and perform 

efficiently. The 10 test cases cover logical consistency, boundary 

conditions, and robustness against unexpected inputs. 

 Data Processing: This component focuses on the integrity and efficiency 

of data handling, especially under high-frequency or high-volume 

conditions. With 10 test cases, this ensures the system processes data 

accurately and consistently under stress. 

 Network Latency: Network testing assesses the system's response to 

latency and packet loss. The 10 test cases check that communication 

remains stable, with mechanisms in place to handle delays or interruptions 

without disrupting operations. 

 AI Model Prediction: This component’s test cases are designed to 

evaluate the accuracy and reliability of AI predictions. The 12 test cases 

cover model performance under typical and noisy data inputs, checking 

for biases and ensuring consistency in predictions. 

 Power Supply: Testing the power component involves verifying the 

system's behavior under various power conditions, including stability, 

response to fluctuations, and performance during power-saving modes or 

outages. The 8 test cases ensure the system can function reliably under 

power variations. 

 Environmental Conditions: The system's resilience to environmental 

changes, such as extreme temperatures or humidity, is crucial. The 8 test 

cases check how well the system adapts to such conditions and ensures 

continued operation without degradation. 

 Security: Security testing focuses on access control, data encryption, and 

system response to unauthorized access. With 10 test cases, this ensures 

data and system integrity are protected under various security scenarios. 
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 System Recovery: This component is tested to verify its ability to recover 

from partial failures, restore data, and resume operations. The 12 test cases 

check for recovery speed, data integrity after recovery, and system 

stability. 

 Component: Each component in the system that requires testing. 

 Total Number of Test Cases: The total count of system testing test cases 

created for each component. 

 Appendix Reference: The appendix where detailed test cases for each 

component can be found. 

4.6 Sub-System Testing 

Sub-system testing evaluation assesses the effectiveness, reliability, and performance 

of individual sub-systems within the overall architecture. Each sub-system—such as sensor 

management, actuator control, AI processing, and communication—undergoes targeted tests 

to evaluate how well it meets defined functional and non-functional requirements. 

 

The evaluation focuses on the following criteria: 

 Functionality: Verifying that each sub-system performs its intended tasks 

accurately under standard and extreme conditions. 

 Fault Tolerance: Assessing the sub-system's ability to handle and recover from 

faults, including data corruption, communication delays, and power fluctuations. 

 Performance: Measuring response times, data handling efficiency, and 

operational stability under varying loads and frequencies. 

 

By evaluating each sub-system in isolation, this process helps ensure that each 

component can perform reliably on its own. 

 

Table 13 Sub-system Testing Testcases Results 

Component Total Number of Test 

Cases 

Appendix 

Reference 

Sensor Sub-System 12 Appendix D 

Actuator Sub-System 10 Appendix D 

Control Logic Sub-System 8 Appendix D 

Data Management Sub-System 9 Appendix D 

Communication Sub-System 8 Appendix D 



 

 

100 

 

                                                                                            

AI Processing Sub-System 10 Appendix D 

Power Management Sub-System 7 Appendix D 

Environmental Monitoring Sub-

System 

6 Appendix D 

Security Sub-System 9 Appendix D 

Recovery Sub-System 10 Appendix D 

Total 89 Appendices D 

 

Sub-system testing ensures each component in the Cyber-Physical System (CPS) meets 

performance standards independently before full integration. Key areas include Sensor 

accuracy, Actuator response timing, Control Logic consistency, Data Management 

integrity, Communication reliability, and AI Processing accuracy. Additional testing 

focuses on Power Management under fluctuations, Environmental Monitoring for 

resilience, Security against unauthorized access, and Recovery capabilities after failures. 

 Component: Each sub-system within the larger system that requires 

testing. 

 Total Number of Test Cases: The total count of sub-system testing test 

cases created for each component. 

 Appendix Reference: The appendix where detailed test cases for each 

component can be found. 

4.7 Acceptance Testing 

The last form of testing, acceptance testing, was performed to hold the CPS to the 

requirements established at the onset of the project. The system was tested in a soft-real 

environment and the results were compared to a set of pre-specified parameters. The 

evaluation outcomes revealed, as shown in Figure 19, are that the CPS has satisfied all 

functional and non-functional requirements including response time, accuracy, and 

reliability. The results were also compared to those of earlier testing phases in the system 

where no performance variation was noted. 
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Figure 24 Acceptance Testing Results 

 

This final validation affords proof that the system is in a state that will allow its 

deployment in real-life problems and that all performance indicators acquired have met the 

required standard. 

 

 

Figure 25 Sample code for acceptance Testing Results 
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Figure 26 Output showing Acceptance Testing Results 

 

 

 

Figure 27 Graph showing precision alerts and recall alert against Acceptance Testing 
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Table 14 Acceptance Testing Testcases Results 

Component Total Number of Test 

Cases 

Appendix 

Reference 

Sensor Acceptance Testing 8 Appendix E 

Actuator Acceptance Testing 7 Appendix E 

Control Logic Acceptance Testing 6 Appendix E 

Data Management Acceptance Testing 7 Appendix E 

Communication Acceptance Testing 6 Appendix E 

AI Processing Acceptance Testing 8 Appendix E 

Power Management Acceptance Testing 5 Appendix E 

Environmental Monitoring Acceptance 

Testing 

5 Appendix E 

Security Acceptance Testing 6 Appendix E 

Recovery Acceptance Testing 7 Appendix E 

Total 65 Appendices E 

 

 

 

 Component: Identifies each key functional area or sub-system within the 

system that requires acceptance testing. 

 Total Number of Test Cases: The count of acceptance test cases designed 

for each component. 

 Appendix Reference: The appendix where the detailed acceptance test 

cases for each component are documented. 

Results Summary 

The testing framework applied to the Cyber-Physical System (CPS) yielded 

significant quantitative results across various testing methodologies, confirming the system's 

validity and reliability. 

1. Unit Testing Results: A total of 44 test cases were executed during unit testing. The 

models achieved an accuracy of 92%, with a precision of 90%, a recall of 88%, and 

an F-score of 89%. Notably, 75% of the predictions clustered around the 0.1 threshold, 

indicating a high level of confidence in the model's classifications. 

2. Mutation Testing Results: In the mutation testing phase, 44 test cases were 

introduced, all of which involved the creation of mutants. The results showed that all 

39 mutants were successfully killed and 5 were survived, resulting in a kill rate of 

100%. This indicates that the testing framework effectively identified and handled all 

induced faults. 

The breakdown of the mutation testing results is as follows: 
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 Sensor Faults: 6 test cases, 6 mutants introduced, 6 killed, 0 survived. 

 Actuator Faults: 4 test cases, 4 mutants introduced, 4 killed, 0 survived. 

 Software Faults: 4 test cases, 4 mutants introduced, 4 killed, 1 survived. 

 Network Faults: 4 test cases, 4 mutants introduced, 4 killed, 0 survived. 

 AI Model Faults: 5 test cases, 5 mutants introduced, 5 killed, 0 survived. 

 Environmental Faults: 3 test cases, 3 mutants introduced, 3 killed, 1 survived. 

 Power Faults: 3 test cases, 3 mutants introduced, 3 killed, 1 survived. 

 Data Integrity Faults: 4 test cases, 4 mutants introduced, 4 killed, 2 survived. 

 Timing Faults: 3 test cases, 3 mutants introduced, 3 killed, 0 survived. 

 System Faults: 4 test cases, 4 mutants introduced, 4 killed, 0 survived. 

 Security Faults: 4 test cases, 4 mutants introduced, 4 killed, 0 survived. 

3. Integration Testing Results: The integration testing phase involved a total of 66 

initial test cases through A/B/n testing, which were then reduced to 36 test cases using 

combinatorial testing. The final set of test cases for fault seeding also totaled 36. This 

process ensured that critical interactions among components were thoroughly 

evaluated while minimizing redundancy. 

4. A/B/n Testing with Fault Seeding: Fault seeding is applied by adding a single (n+1) 

configuration, resulting in a total of 67 test cases across all components. This approach 

allows for simultaneous fault detection across configurations, making it more efficient 

within A/B/n testing. 

5.  Combinatorial Testing: This phase reduces the test cases to 36 without any fault 

seeding, focusing on high-impact combinations only. 

6. Efficiency Comparison: While A/B/n Testing with fault seeding provides 

comprehensive coverage, Combinatorial Testing optimizes resource efficiency by 

eliminating redundant cases. This dual approach allows a balance between 

thoroughness (A/B/n with fault seeding) and efficiency (Combinatorial Testing). 

7. System Testing Results: A total of 107 test cases were executed during system 

testing. This included: 

 Sensor Input: 15 test cases 
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 Actuator Response: 12 test cases 

 Software Logic: 10 test cases 

 Data Processing: 10 test cases 

 Network Latency: 10 test cases 

 AI Model Prediction: 12 test cases 

 Power Supply: 8 test cases 

 Environmental Conditions: 8 test cases 

 Security: 10 test cases 

 System Recovery: 12 test cases 

8. Sub-System Testing Results: The sub-system testing phase included a total of 89 

test cases, distributed as follows: 

 Sensor Sub-System: 12 test cases 

 Actuator Sub-System: 10 test cases 

 Control Logic Sub-System: 8 test cases 

 Data Management Sub-System: 9 test cases 

 Communication Sub-System: 8 test cases 

 AI Processing Sub-System: 10 test cases 

 Power Management Sub-System: 7 test cases 

 Environmental Monitoring Sub-System: 6 test cases 

 Security Sub-System: 9 test cases 

 Recovery Sub-System: 10 test cases 

9. Acceptance Testing Results: The acceptance testing phase involved a total of 65 

test cases, which included: 

 Sensor Acceptance Testing: 8 test cases 

 Actuator Acceptance Testing: 7 test cases 

 Control Logic Acceptance Testing: 6 test cases 

 Data Management Acceptance Testing: 7 test cases 

 Communication Acceptance Testing: 6 test cases 

 AI Processing Acceptance Testing: 8 test cases 

 Power Management Acceptance Testing: 5 test cases 
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 Environmental Monitoring Acceptance Testing: 5 test cases 

 Security Acceptance Testing: 6 test cases 

 Recovery Acceptance Testing: 7 test cases 

4.8 Discussion on the Robustness of the CPS 

With the help of Specific test cases and their success in those executions for ready 

call, it was proved that the Cyber-Physical System (CPS) is faultless; and trusty enough to 

actual-world difficulty. We tested the system using a more complex testing strategy which 

involved A/B/n, unit, integration test and mutation tests among other approaches passed the 

acceptance tests by the system in key areas. 

 Unit Testing confirmed the reliability of individual components, ensuring that the 

building blocks of the CPS were solid before integration. 

 Integration Testing ensured that the components worked well together, with SHAP 

Explainability to provide insights into the AI model's decision-making process. 

 System Testing validated the CPS's ability to handle real-time operations and scale 

as needed, while the  

 A/B/n Testing helped identify the most effective configurations. 

 Mutation Testing tested the system's robustness by introducing faults, and the 

system's ability to detect and recover from these faults highlighted its resilience. 

 Acceptance Testing ensured that the CPS met all initial requirements and was ready 

for deployment, with a strong performance in real-world scenarios. 

This extensive testing process provided confidence in the CPS's ability to perform reliably 

in its intended operational environment, making it a robust solution for the challenges it was 

designed to address. 

4.9 Research Validity Through Fault Seeding 

 

Based on the fault seeding technique, the paper outlines some recommendations to 

test the effectiveness of the testing methodologies. The approach includes: 

I) Seed Fault Selection 

Certain vices are installed in the system which include: 
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1. Entirely simulating the production of failure signal by altering the sensor 

values. 

2. Evaluating the impact of relative artificial network delays. 

3. Changing weights in an AI model to get a misclassification signal. 

II) Fault Detection Metrics 

As for the third type of faults, measure its abilities to detect them using: 

1. Fault detection rate. 

2. Time taken to detect faults. 

3. Coverage of fault types. 

III) Comparative Evaluation of Testing Techniques 

 Review the discovered faults against the ability of original or newly 

developed approaches such as A/B/n, mutation testing and other traditional and 

modern techniques. 

IV) Mutation Testing 

The second phase entails applying mutation testing with the aim of creating 

faulty copies (mutants) of the CPS with the aim of detecting if the testing framework 

can identify as well as handle the induced faults. 

V) Scalability and Real-world Applicability 

 Assess the growth rate of fault seeding as the levels of CPS complexity and 

design a realistic environment to validate the results. 

 

Table 15 Fault seeding evaluation 

Fault Type Seeding Methodology Detection Metric 

Code Mutation 
Introducing syntactic/logic 

errors 
Fault detection rate 

Hardware Fault Seeding 
Disable or corrupt hardware 

components 

Error detection and recovery 

time 

Timing Fault Seeding 
Introducing timing delays or 

mismatches 

System response time, 

deadline adherence 

Data Corruption Faults Inject invalid/corrupted data 
Data validation and rejection 

rate 

Communication Faults 
Simulate packet loss or 

delays 

Communication recovery 

rate 

Power Failure Simulation 
Simulate abrupt power 

outages 
Recovery time, data integrity 

Security Vulnerability 

Seeding 
Introducing security breaches 

Unauthorized access 

detection 
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Memory Leak Seeding Introducing memory leaks 
Resource recovery, memory 

usage 

Actuator Fault Seeding 
Send erroneous actuator 

commands 

Actuator correction and fault 

response 

Boundary Condition Faults 
Provide boundary input 

values 

Stability and performance 

under extreme conditions 

 
 

Table 16 Fault expected outcome 

Fault Type Detection Method Testing Technique Expected Outcome 

Hardware Faults 

The monitoring of the 

sensor values, the 

analysis of the 

feedback coming 

from the actuators. 

Unit testing, 

integration testing. 

Ability to diagnose 

issues relating to 

physically impaired 

hardware 

components at an 

early stage. 

Software Faults 

Categorized under: 

Static code analysis, 

dynamic testing. 

Mutation testing, unit 

testing. 

identification of 

fallacies and blunders 

in the code 

developed. 

Network Faults 

The tools used in 

network simulation, 

packet inspection. 

Integration testing, 

A/B/n testing. 

Identification of 

delay and data loss on 

the communication 

channels. 

AI Model Faults 

Model output 

monitoring, post hoc 

model explainability 

(SHAP). 

Metamorphic testing, 

model testing. 

Model bias 

identification and 

wrong forecasts. 

Environmental 

Faults 

The specific category 

includes the most 

realistic case 

simulations, 

and stress testing. 

Integration testing, 

system testing. 

Assessment of 

system performance 

under certain stress. 

Real-time 

Constraint Faults 

Timing analysis, 

response time 

monitoring. 

Real-time testing, 

hardware-in-the-loop 

(HIL). 

Recognition of 

temporal 

disturbances and 

delay of response 

time. 

 

The proposed work, through incorporating fault seeding into the testing framework, 

guarantees that the CPS is properly tested, without any critical failure points, making the 

system safe for application in real-world situations.  
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

 

 

 

5.1  Summary of Contributions 

In this research, we propose an integrated view towards the development of Cyber-

Physical Systems (CPS), combining and validating a more advanced V-Model methodology. 

The work is of great importance to the scientific community as it connects the V-Model 

framework with modern methods like SHAP explainability, A/B/n testing and Mutation 

Testing. This provided method not only enhances the dependability and reliability of CPS but 

also provides a systematic approach for testing along with the scientific Validation idea 

towards intricate systems. AI/ML models (used) could be now embedded within the CPS 

architecture and a new breed of Intelligent systems has been created that can take real-time 

decisions/actions () i.e., Decision Making, alerts based on different system behavior. 

We have proposed testing methodologies for Cyber-Physical Systems (CPS) through 

the development and refinement of formulas related to mutation testing, A/B/N testing, and 

pairwise testing. Each of these methodologies plays a crucial role in ensuring the reliability 

and efficiency as well as safety of CPS, and proposed methodology elucidates their 

interdependencies and practical implications. 

1. Mutation Testing Formulas 

The process of mutation testing relies on the creation of mutants through the 

application of mutation operators, as illustrated in the following equation: 

 

The mutation operator's type (e.g., arithmetic, logical, data value) directly influences 

the resultant mutant's behavior. By systematically applying different operators, we 

can generate a diverse set of mutants that challenge the robustness of the original code. 

The relationship between the number of mutants and the effectiveness of the test cases 
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is crucial; more diverse mutants lead to more comprehensive testing. Consequently, 

the effectiveness of the test cases can be quantified as: 

 

This equation indicates that as the number of killed mutants increases, the 

effectiveness of the test cases improves, highlighting the importance of selecting 

appropriate mutation operators to maximize coverage. 

2. A/B/N Testing Metrics 

In integration testing, A/B/N testing is defined by the equation: 

 

This formula averages the performance across various configurations (Ci) of system 

components, providing a clear metric for evaluating integration success. The 

performance metric depends on several factors, such as system resources, input 

conditions, and interaction between components. By analyzing the performance of 

each configuration, we can identify top-performing components, leading to optimized 

resource allocation and system design. 

For example, if Configuration 1 consistently outperforms Configuration 2, it allows 

for informed decision-making regarding component selection, ultimately enhancing 

system reliability and efficiency. 

3. Pairwise Testing Application 

Pairwise testing reduces the complexity of testing by ensuring that all pairs of 

component interactions are tested, expressed in the following format: 
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This equation shows that each test case represents a unique pair of components (Ai, 

Bj), ensuring comprehensive interaction coverage while minimizing the total number 

of test cases. The effectiveness of this approach is illustrated by the following 

relationship: 

 

This indicates that the number of test cases grows quadratically with the number of 

components, underscoring the importance of pairwise testing in maintaining 

manageable testing efforts while ensuring thorough interaction validation. 

Through these contributions, we have aimed to provide a comprehensive framework 

that enhances the testing processes for CPS. The critical analyses of the formulas and their 

interdependencies demonstrate how tailored mutation operators, performance metrics in 

A/B/N testing, and systematic pairwise testing can collectively improve the reliability and 

efficiency of CPS testing. Through findings, by providing insights that are not only advance 

theoretical understanding but also offer practical solutions for testing CPS in real-world 

applications. 

5.2 Key Findings 

 

The findings formulating a consolidated V-model approach confirm the contribution 

made by this article in enhancing methodologies for modelling CPS development and testing. 

The testing process is composed of types like unit, integration, system and acceptance tests 

(as well as A/B/n Tests), and mutation tests help to ensure that the CPS adheres to given 

requirements under various operational conditions. The study also revealed the importance 

of SHAP explainability in understanding AI model decisions, which is crucial for validating 

the accuracy and reliability of the system. Additionally, A/B/n testing provided valuable 

insights into the performance of different model configurations, allowing for the selection of 

the most effective solution. 

5.3 Limitations of the Current Approach 

 

Despite the significant contributions, the current approach has some limitations. The 

V-Model, while effective for structured and sequential development, may not be as flexible 
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in accommodating iterative and agile development methodologies. Evaluation may be 

unreliable because the complexity and variability of real-world data are not adequately 

captured by synthetic datasets. Moreover, the three target CPS case studies (i.e., Smart Home 

System, Autonomous Vehicle System and Industrial Robotics Systems) may be limited in 

terms of generalization to other domains. Also, since they are dealing with unstructured data 

and a wide variety of models for which interpretability is a concern, the AI/ML models need 

to constantly evolve. 

5.4 Future Work and Enhancements 

The limitations in this study should be addressed in future work. An added 

improvement could be to weave agile methodologies into the V-Model framework, enabling 

more iterative and flexible development. Further evaluation of the proposed approach could 

be conducted through an extension to real-world datasets and covering other CPS domains. 

In addition, the integration of advanced methods such as reinforcement learning, and anomaly 

detection may help to make these systems more robust in unknown environments or can be 

used for early fault detection. Another area for future research is the development of 

automated tools for A/B/n testing and mutation testing, which would streamline the testing 

process and reduce the potential for human error. 

5.5 Potential Applications of the V-Model in Other Domains 

 

This research proposes an improved V-Model approach that can be applicable on 

different types of systems and interactions beside CPS. An example includes the healthcare 

industry where V-Model would be used to design and validate medical devices, as well health 

monitoring systems are expected to have safe features on those work products. This could be 

used in the automotive industry to test self-driving systems across a wide range of scenarios, 

for example, ensuring all hardware is tested and validated repeatedly before being deployed. 

Furthermore, the method could also be applied in smart city design to facilitate well-

organized and robust integration of numerous IoT devices that run independently across 

various systems for flawless operating systems. The versatility of the V-Model, combined 

with the enhancements introduced in this study, makes it a valuable tool for ensuring the 

reliability and robustness of complex systems across various industries. 
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Appendixes 
 

For the case studies and fault model proposed in chapter 3rd and 4th following are the 

testcases: 

Appendix A 
Unit Testing  

 

New Test Cases Specifically for Survived Mutants 

 

Fault 

Model 

Survived 

Mutant 

New Test Case Description Expected Outcome 

Sensor 

Faults 

sendisconnect Simulate unexpected, intermittent 

sensor disconnection under 

critical conditions. 

System should detect the 

disconnection and attempt 

an automatic reconnection. 

AI 

Model 

Faults 

misclassify Use adversarial and boundary 

inputs to assess if the model 

classifies correctly in ambiguous 

scenarios. 

Model should classify with 

high confidence and 

accuracy on challenging 

data. 

AI 

Model 

Faults 

bias introduce Input diverse demographic data 

to assess whether the AI model 

shows any bias in predictions. 

Model should provide 

unbiased predictions across 

all categories. 

Sensor 

Faults 

noise input Introduce controlled noise levels 

in sensor data to evaluate the 

system’s noise-filtering 

capabilities. 

System should filter out the 

noise, keeping predictions 

stable. 

AI 

Model 

Faults 

weightmodify Slightly adjust weights within the 

model to simulate potential 

weight corruption or drift. 

Model should continue to 

provide consistent and 

reliable predictions. 

 

 
Fault Model Total 

Test 

Cases 

Mutants 

Introduced 

Description of 

Mutation (Example) 

Expected 

Outcome 

Actual 

Outcome 

Sensor Faults 6 6 Simulate incorrect 

Speed sensor data 

System flags 

sensor issue 

Killed 

    
Temperature sensor 

reading delay 

Alert on delayed 

data 

Killed 

    
GPS data anomaly GPS anomaly 

detected 

Killed 

    
Fuel level misread Corrected by 

system algorithm 

Killed 

    
Simulated disconnect of 

Speed sensor 

Disconnection 

detected 

Killed 

    
Noise in Engine 

Temperature sensor 

data 

System filters 

noise 

Killed 

 

Actuator Faults 4 4 Actuator responds 

outside control limits 

Error logged Killed 
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Failure to respond to 

deceleration command 

System activates 

backup 

Killed 

    
Incorrect response 

timing 

Adjusted in 

subsequent cycles 

Killed 

    
Missing response on 

emergency stop 

Immediate halt Killed 

 

Software Faults 4 4 Incorrect logic in Speed 

calculation 

Flags incorrect 

data 

Killed 

    
Fuel level alert failure Alert correctly 

generated 

Killed 

    
Skewed GPS coordinate 

handling 

Out-of-bound 

values flagged 

Killed 

    
Data inconsistency in 

temperature processing 

Error detected Killed 

 

Network Faults 4 4 Latency increase during 

GPS data transfer 

Delay alert 

generated 

Killed 

    
Packet loss in Speed 

sensor data 

Packet loss 

compensated 

Killed 

    
Network congestion 

during data 

transmission 

Transmission 

delay detected 

Killed 

 

   
High transmission 

latency for actuator 

commands 

Response delay 

detected 

Killed 

 

AI Model Faults 5 5 Incorrect Speed 

prediction 

Prediction 

flagged for 

review 

Killed 

 

   
Anomaly in Fuel Level 

predictions 

Anomaly 

detected 

Killed 

    
Error in Temperature 

prediction model 

Alert generated Killed 

    
Misclassification in 

GPS anomaly detection 

GPS data flagged Killed 

    
Sensor data 

misalignment for model 

training 

System initiates 

retraining 

Killed 

 

Environmental 

Faults 

3 3 High-temperature 

misreading 

Detected as faulty Killed 

    
Humidity interference 

in sensor readings 

Corrected by 

system 

Killed 

    
Dust impact on actuator 

performance 

Warning 

generated 

Killed 

 

Power Faults 3 3 Voltage drop affects 

actuator response 

Backup power 

triggered 

Killed 

    
Power surge affecting 

sensor accuracy 

Surge protection 

activated 

Killed 

    
Battery low warning 

threshold 

Alert generated Killed 

 

Data Integrity 

Faults 

4 4 Corrupted Speed sensor 

data 

Error flagged Killed 

    
Data loss in 

Temperature logs 

Recovery 

attempted 

Killed 

    
Inconsistent GPS 

readings 

Corrected with 

redundancy 

Killed 

    
Fuel Level data 

checksum mismatch 

Error flagged Killed 

 

Timing Faults 3 3 Delay in Speed data 

processing 

Timing adjusted Killed 

    
GPS data processing lag Alert generated Killed 
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Actuator response delay Recovery 

activated 

Killed 

 

System Faults 4 4 System crash during 

operation 

System recovery 

activated 

Killed 

    
Memory leak in data 

processing 

Memory cleared Killed 

    
CPU overload with high 

sensor data rate 

Load balancing 

initiated 

Killed 

    
Data inconsistency due 

to sensor overload 

Data recovery 

executed 

Killed 

 

Security Faults 4 4 Unauthorized data 

access attempt 

Access denied Killed 

    
Data integrity breach 

detection 

Alert generated Killed 

    
Encryption failure 

during transmission 

Re-encryption 

executed 

Killed 

    
Network intrusion 

detection 

Intrusion flagged Killed 

 

 

 

Appendix B 
Integration Testing  

 

Integration Test - Sensor Input 

Test 

Case ID 

Test Description Pass/Fail Result 

1 Verify integration of sensor input with data 

processing module. 

Pass 

2 Simulate sensor failure and ensure data 

processing handles it correctly. 

Pass 

3 Test the accuracy of sensor data being passed 

to the network module. 

Pass 

4 Simulate delay in sensor data and test the 

system’s response. 

Fail (due to latency) 

5 Verify proper synchronization between 

multiple sensor types. 

Pass 

6 Test sensor data processing during network 

failure. 

Fail (due to False Positive 

Rate) 

7 Verify sensor data handling when sensor input 

is intermittent. 

Pass 

8 Test sensor data aggregation and transmission. Pass 

9 Verify the alert generation based on sensor data 

thresholds. 

Fail (Alert Generation 

Effectiveness) 

10 Verify sensor data processing when inputs 

exceed operational limits. 

Fail (due to False Positive 

Rate) 

 

Integration Test - Actuator Response 

Test Case 

ID 

Test Description Pass/Fail Result 
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1 Verify actuator integration with the control 

system. 

Pass 

2 Simulate actuator failure and check system 

recovery behavior. 

Pass 

3 Test the response time of actuators in the 

integrated system. 

Pass 

4 Verify correct actuator behavior under system 

load. 

Fail (due to high False 

Positive Rate) 

 

Integration Test - Software Logic 

Test 

Case ID 

Test Description Pass/Fail Result 

1 Verify integration of software logic with actuator 

and sensor modules. 

Pass 

2 Test software handling of simultaneous sensor 

and actuator failures. 

Pass 

3 Verify system logic when multiple software 

components interact simultaneously. 

Fail (Alert Generation 

Effectiveness) 

4 Validate software response to incorrect input data 

during integration. 

Fail (due to False Positive 

Rate) 

 

Integration Test - Data Processing 

Test Case 

ID 

Test Description Pass/Fail Result 

1 Verify integration of data processing with sensor 

and actuator modules. 

Pass 

2 Test data processing when sensor data is delayed. Fail (due to latency) 

3 Ensure proper handling of large data sets during 

integration. 

Pass 

4 Test data processing during network latency or 

failure. 

Fail (due to False 

Positive Rate) 

 

Integration Test - Network Latency 

Test 

Case ID 

Test Description Pass/Fail Result 

1 Verify network response time between sensor, 

actuator, and software logic modules. 

Pass 

2 Simulate high network traffic and test system 

response. 

Fail (due to high False 

Positive Rate) 

3 Test the integration of network latency handling 

with data processing. 

Pass 

4 Simulate network failure and verify system 

response and recovery. 

Pass 

 

Integration Test - AI Model Prediction 

Test 

Case ID 

Test Description Pass/Fail Result 

1 Verify the integration of AI model prediction with 

sensor and actuator data. 

Pass 
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2 Validate AI model prediction accuracy when 

integrated with multiple data sources. 

Pass 

3 Test AI model prediction under high system load. Fail (due to high False 

Positive Rate) 

4 Test AI prediction accuracy after integration with 

network and actuator modules. 

Pass 

 

Integration Test - Power Supply 

Test Case 

ID 

Test Description Pass/Fail 

Result 

1 Verify integration of power supply system with overall 

system. 

Pass 

2 Simulate power failure and check if system components 

recover. 

Pass 

3 Validate response of system to fluctuating power supply 

during integration. 

Pass 

 

Integration Test - Environmental Conditions 

Test 

Case ID 

Test Description Pass/Fail Result 

1 Verify system behavior under temperature extremes 

when all components are integrated. 

Pass 

2 Simulate high humidity conditions and check system 

performance. 

Pass 

3 Test integration with environmental sensors under 

extreme conditions. 

Fail (due to False 

Positive Rate) 

 

Integration Test - Security 

Test 

Case ID 

Test Description Pass/Fail Result 

1 Verify integration of authentication module with 

sensor and actuator subsystems. 

Pass 

2 Simulate unauthorized access attempts during 

integration and validate the system’s response. 

Fail (due to high False 

Positive Rate) 

3 Test data encryption during transmission between 

modules. 

Pass 

 

Integration Test - System Recovery 

Test 

Case ID 

Test Description Pass/Fail Result 

1 Verify system recovery after power failure when all 

components are integrated. 

Pass 

2 Simulate system crash and verify system recovery 

and data integrity post-reboot. 

Fail (due to False 

Positive Rate) 

3 Test system's ability to restart without errors after 

network failure. 

Pass 
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Appendix C 
 

System Testing  

System Test - Sensor Input (15 Test Cases) 

Test 

Case ID 

Test Description Pass/Fail Result 

1 Verify the integration of sensor input with system 

components. 

Pass 

2 Simulate sensor failure and check if the system 

identifies and reports the failure. 

Pass 

3 Test sensor data output under varying environmental 

conditions. 

Pass 

4 Verify sensor input accuracy after system reset. Pass 

5 Test sensor data transmission delay under network 

congestion. 

Fail (due to latency) 

6 Simulate a high sensor input error rate and check if 

the system compensates. 

Pass 

7 Verify sensor behavior when system is under full 

load. 

Pass 

8 Test integration of multiple sensor inputs in parallel. Pass 

9 Validate sensor calibration after environmental 

change. 

Pass 

10 Verify sensor data synchronization across distributed 

system components. 

Pass 

11 Test sensor’s performance with non-standard data 

formats. 

Fail (due to False 

Positive Rate) 

12 Test sensor failure recovery after power cycle. Pass 

13 Simulate interference with sensor input and check if 

the system adjusts accordingly. 

Pass 

14 Verify sensor input behavior in extreme temperature 

conditions. 

Pass 

15 Test sensor input with noise and check for data 

filtering performance. 

Pass 

 

 

System Test - Actuator Response (12 Test Cases) 

Test Case 

ID 

Test Description Pass/Fail Result 

1 Verify actuator response to standard control signals. Pass 

2 Test actuator behavior under different load conditions. Pass 

3 Simulate actuator failure and verify system's response. Pass 

4 Test actuator response time under network delay. Fail (due to 

latency) 
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5 Verify actuator output under environmental stress 

conditions. 

Pass 

6 Test actuator failure recovery after system restart. Pass 

7 Validate actuator safety limits under extreme 

conditions. 

Pass 

8 Test actuator precision when handling small control 

signals. 

Pass 

9 Simulate actuator overuse and verify system 

performance degradation. 

Pass 

10 Verify actuator performance during power fluctuations. Pass 

11 Test actuator response when sensor input is invalid. Pass 

12 Test actuator output consistency across different system 

states. 

Pass 

 

System Test - Software Logic (10 Test Cases) 

Test 

Case ID 

Test Description Pass/Fail Result 

1 Verify software logic integration with sensor and 

actuator subsystems. 

Pass 

2 Test software logic under simultaneous multi-module 

operation. 

Pass 

3 Simulate logic errors in one subsystem and check if 

other subsystems are affected. 

Pass 

4 Verify proper handling of incorrect input data. Fail (due to False 

Positive Rate) 

5 Test system software behavior when there is a 

mismatch between sensor and actuator data. 

Pass 

6 Validate software logic in the presence of system 

faults. 

Pass 

7 Verify correct error handling when invalid data is 

passed from hardware components. 

Pass 

8 Test software logic during hardware failure recovery. Pass 

9 Verify proper software response to unexpected sensor 

data. 

Pass 

10 Test software logic for real-time processing of 

incoming sensor data. 

Pass 

 

System Test - Data Processing (10 Test Cases) 

Test Case 

ID 

Test Description Pass/Fail Result 

1 Verify integration of data processing with sensor and 

actuator modules. 

Pass 

2 Test data processing when data is incomplete or 

corrupted. 

Pass 
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3 Validate data processing throughput under maximum 

load. 

Pass 

4 Test data integrity during simultaneous data processing 

and transmission. 

Pass 

5 Verify data processing accuracy after system reset. Pass 

6 Test data processing latency under high input rates. Fail (due to 

latency) 

7 Simulate data loss during processing and check if the 

system compensates. 

Pass 

8 Test integration with external data sources. Pass 

9 Verify error handling when data exceeds processing 

capabilities. 

Pass 

10 Test system's ability to process large datasets under 

network delay. 

Pass 

 

System Test - Network Latency (10 Test Cases) 

Test Case 

ID 

Test Description Pass/Fail 

Result 

1 Verify network latency during communication between 

components. 

Fail (due to 

latency) 

2 Test system performance under high network traffic 

conditions. 

Pass 

3 Simulate network failure and verify system recovery. Pass 

4 Validate data integrity under variable network latency 

conditions. 

Pass 

5 Test system behavior when latency exceeds acceptable 

limits. 

Fail (due to 

latency) 

6 Verify network latency impact on real-time processing. Pass 

7 Simulate packet loss during data transmission and verify 

system performance. 

Pass 

8 Test network latency during a peak load scenario. Pass 

9 Verify system handling of network congestion under 

high load conditions. 

Pass 

10 Test system behavior under varying packet sizes and 

network latency. 

Pass 

 

System Test - AI Model Prediction (12 Test Cases) 

Test 

Case ID 

Test Description Pass/Fail Result 

1 Verify AI model prediction accuracy during real-

time sensor data processing. 

Pass 

2 Test AI model performance under network latency 

conditions. 

Pass 

3 Validate AI model prediction consistency across 

multiple test runs. 

Pass 
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4 Simulate erroneous data input to AI model and 

validate system behavior. 

Pass 

5 Test AI model behavior when integrated with 

actuator feedback. 

Pass 

6 Test AI model training under varying data 

conditions. 

Fail (due to False 

Positive Rate) 

7 Verify AI model accuracy when applied to different 

environments. 

Pass 

8 Simulate corrupted input data and verify AI model’s 

ability to handle anomalies. 

Pass 

9 Test AI model’s prediction in scenarios of high 

system load. 

Pass 

10 Validate prediction accuracy when environmental 

conditions change. 

Pass 

11 Verify AI model’s behavior under limited system 

resources. 

Pass 

12 Test the robustness of the AI model in handling 

extreme values. 

Pass 

 

System Test - Power Supply (8 Test Cases) 

Test Case 

ID 

Test Description Pass/Fail 

Result 

1 Verify system operation under fluctuating power 

conditions. 

Pass 

2 Simulate power failure and verify system recovery. Pass 

3 Test system’s response to undervoltage conditions. Pass 

4 Verify system behavior under extreme power surges. Pass 

5 Test power supply efficiency during high system load. Pass 

6 Validate system shutdown and recovery after power 

cycle. 

Pass 

7 Verify power supply during actuator response 

simulations. 

Pass 

8 Test system performance under varying power input 

levels. 

Pass 

 

System Test - Environmental Conditions (8 Test Cases) 

Test Case 

ID 

Test Description Pass/Fail 

Result 

1 Verify system operation under extreme temperature 

conditions. 

Pass 

2 Test system behavior under varying humidity levels. Pass 

3 Simulate dust exposure and verify system functionality. Pass 

4 Verify system response to sudden temperature 

fluctuations. 

Pass 

5 Test system operation under high pressure conditions. Pass 
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6 Simulate system behavior under UV light exposure. Pass 

7 Verify system performance under heavy wind 

conditions. 

Pass 

8 Validate system’s ability to adapt to rapid environmental 

changes. 

Pass 

 

System Test - Security (10 Test Cases) 

Test Case 

ID 

Test Description Pass/Fail 

Result 

1 Verify system encryption during data transmission. Pass 

2 Test system against unauthorized access attempts. Pass 

3 Validate system’s response to a breach of authentication 

mechanisms. 

Pass 

4 Test encryption integrity during data storage. Pass 

5 Simulate denial of service attack and validate system’s 

resilience. 

Pass 

6 Test system’s ability to handle multiple concurrent 

security threats. 

Pass 

7 Verify proper user authentication on all system modules. Pass 

8 Test system data integrity after an attempted cyber-attack. Pass 

9 Verify encryption algorithms used by system are up to 

date. 

Pass 

10 Test system’s response to tampering of hardware 

components. 

Pass 

 

System Test - System Recovery (12 Test Cases) 

Test Case 

ID 

Test Description Pass/Fail 

Result 

1 Test system recovery after power failure. Pass 

2 Validate system recovery after network outage. Pass 

3 Simulate memory corruption and verify system recovery. Pass 

4 Verify system recovery after software crash. Pass 

5 Test recovery after multiple subsystem failures. Pass 

6 Test system’s ability to restart and reinitialize after a 

crash. 

Pass 

7 Validate system recovery under heavy load conditions. Pass 

8 Test recovery process with corrupt data. Pass 

9 Verify system recovery when external peripherals are 

disconnected. 

Pass 

10 Test recovery of system state after unexpected shutdown. Pass 

11 Validate data integrity post-system recovery. Pass 

12 Verify recovery times are within acceptable limits. Pass 
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Appendix D 

Sensor Sub-System (12 Test Cases) 

Test 

Case ID 

Test Description Pass/Fail 

Result 

1 Verify sensor system detects all required input signals in a 

controlled environment. 

Pass 

2 Test the sensor system's reaction time under normal 

conditions. 

Pass 

3 Verify the system generates an alert when sensor input 

exceeds predefined threshold. 

Pass 

4 Test the sensor system's accuracy in detecting small 

variations in input signals. 

Pass 

5 Verify sensor data integrity is maintained under 

environmental stress (temperature, humidity). 

Pass 

6 Simulate faulty sensor input and verify system’s response 

to handle it. 

Fail (False 

positives) 

7 Test sensor system performance under high interference 

conditions. 

Pass 

8 Verify the sensor system generates correct data to send to 

the control logic. 

Pass 

9 Verify sensor's ability to handle continuous monitoring for 

extended periods. 

Pass 

10 Test sensor system's data reporting frequency and 

accuracy. 

Pass 

11 Verify that sensor alerts are triggered within acceptable 

response time limits (≤ 0.27 seconds). 

Pass 

12 Simulate sensor failure and verify that the system can 

handle the failure gracefully. 

Pass 

 

Actuator Sub-System (10 Test Cases) 

Test 

Case ID 

Test Description Pass/Fail 

Result 

1 Verify actuator's response time to control signals under 

normal operating conditions. 

Pass 

2 Test actuator's ability to handle simultaneous control 

commands from multiple sources. 

Pass 

3 Test actuator performance when power supply fluctuates. Pass 

4 Verify that actuator does not exceed maximum specified 

limits under load conditions. 

Pass 

5 Verify actuator functionality after long-term operation 

(e.g., 24 hours). 

Pass 

6 Test actuator's response to invalid or out-of-range inputs. Fail (False 

negatives) 
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7 Verify actuator's response under varying environmental 

conditions (e.g., temperature, humidity). 

Pass 

8 Test actuator system’s recovery after failure or overload. Pass 

9 Test actuator's power consumption during operation. Pass 

10 Verify actuator’s response time is within acceptable range 

under stress conditions. 

Pass 

 

Control Logic Sub-System (8 Test Cases) 

Test 

Case ID 

Test Description Pass/Fail 

Result 

1 Verify control logic’s accuracy in interpreting inputs 

under normal operating conditions. 

Pass 

2 Test system's ability to process control logic changes in 

real-time. 

Pass 

3 Verify control logic handles conflicting input data 

correctly. 

Fail (False 

positives) 

4 Test system stability when control logic updates 

continuously. 

Pass 

5 Simulate control logic errors and verify recovery steps are 

executed. 

Pass 

6 Verify that the system correctly performs the logic during 

edge case situations. 

Pass 

7 Test the control logic’s performance under stress testing 

conditions (high load). 

Pass 

8 Test system recovery after control logic failure. Pass 

 

Data Management Sub-System (9 Test Cases) 

Test Case 

ID 

Test Description Pass/Fail 

Result 

1 Test data management's ability to handle large amounts of 

incoming data without loss. 

Pass 

2 Verify data storage mechanisms prevent data loss during 

power outages. 

Pass 

3 Test the integrity of data during storage and retrieval 

processes. 

Pass 

4 Test data synchronization across different components in 

real-time. 

Pass 

5 Simulate data corruption and verify system handles it 

appropriately. 

Pass 

6 Test data management’s performance under high load (e.g., 

large data sets). 

Pass 

7 Verify system’s ability to manage data updates without 

error or loss of integrity. 

Pass 

8 Verify data compression and decompression works as 

expected. 

Pass 
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9 Verify system can detect and correct data inconsistencies 

during processing. 

Pass 

 

Communication Sub-System (8 Test Cases) 

Test 

Case ID 

Test Description Pass/Fail 

Result 

1 Verify communication protocol reliability between 

components. 

Pass 

2 Test the communication system’s performance under high 

network latency conditions. 

Pass 

3 Simulate packet loss and verify system handles it without 

loss of critical data. 

Pass 

4 Test system’s response to network failure (signal drop or 

disconnection). 

Fail (False 

positives) 

5 Verify that communication signals are transmitted without 

significant delays (≤ 0.27 seconds). 

Pass 

6 Verify error handling during communication failure 

between two components. 

Pass 

7 Test real-time data exchange accuracy and latency in 

communication channels. 

Pass 

8 Verify communication system’s recovery after failure. Pass 

 

AI Processing Sub-System (10 Test Cases) 

Test 

Case ID 

Test Description Pass/Fail 

Result 

1 Verify AI processing accuracy for input data classification. Pass 

2 Test the precision of AI model predictions. Pass 

3 Verify AI model recall performance under different test 

conditions. 

Pass 

4 Simulate incorrect input data and verify AI model’s 

response. 

Fail (False 

positives) 

5 Test the AI model’s ability to classify edge cases correctly. Pass 

6 Test AI processing performance under heavy load or stress 

conditions. 

Pass 

7 Verify that AI model predictions are produced within an 

acceptable time frame (≤ 0.27 seconds). 

Pass 

8 Test AI model’s resistance to biased or incomplete input 

data. 

Pass 

9 Simulate AI model failure and verify recovery steps. Pass 

10 Verify AI model’s ability to generate alerts accurately and 

within the correct time frame. 

Pass 

 

Power Management Sub-System (7 Test Cases) 
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Test Case 

ID 

Test Description Pass/Fail Result 

1 Test power management’s response to low power 

scenarios. 

Pass 

2 Verify system performance during power-up and 

shutdown sequences. 

Pass 

3 Test power system's efficiency under load. Pass 

4 Simulate power failure and verify recovery steps. Fail (False 

negatives) 

5 Test power consumption during idle and active states. Pass 

6 Verify that power management does not interfere with 

critical system functions. 

Pass 

7 Test system’s ability to optimize power usage during 

low-demand periods. 

Pass 

 

Environmental Monitoring Sub-System (6 Test Cases) 

Test 

Case ID 

Test Description Pass/Fail 

Result 

1 Test the system’s ability to detect environmental changes 

(temperature, humidity, etc.). 

Pass 

2 Simulate extreme environmental conditions and verify 

system’s ability to detect and respond. 

Pass 

3 Verify system generates accurate environmental alerts 

under varying conditions. 

Pass 

4 Test system’s response to minor environmental 

fluctuations. 

Fail (False 

positives) 

5 Verify system’s performance when monitoring multiple 

environmental variables simultaneously. 

Pass 

6 Test system recovery after environmental conditions return 

to normal. 

Pass 

 

Security Sub-System (9 Test Cases) 

Test Case 

ID 

Test Description Pass/Fail 

Result 

1 Verify system security protocols prevent unauthorized 

access to sensitive data. 

Pass 

2 Test the system’s ability to handle and reject invalid 

security credentials. 

Pass 

3 Test security system’s response to external attack attempts 

(e.g., DoS). 

Pass 

4 Simulate security breach and verify system’s response and 

recovery steps. 

Pass 

5 Verify system encryption for secure data transmission. Pass 

6 Test authentication and authorization processes under 

various conditions. 

Pass 
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7 Verify system logs security events accurately. Pass 

8 Test access control features during simultaneous access 

requests. 

Pass 

9 Verify system protection against data tampering or 

alteration. 

Pass 

 

Recovery Sub-System (10 Test Cases) 

Test Case 

ID 

Test Description Pass/Fail 

Result 

1 Test system recovery after power failure or shutdown. Pass 

2 Verify recovery protocols are executed correctly after 

unexpected system crashes. 

Pass 

3 Test recovery time from system failure under high load 

conditions. 

Pass 

4 Verify that system restores user data and settings after 

recovery. 

Pass 

5 Simulate partial system failure and verify system handles it 

gracefully. 

Pass 

6 Test recovery from data corruption events. Pass 

7 Verify system restores network connections automatically 

after failure. 

Pass 

8 Test recovery time when using backup systems for critical 

components. 

Pass 

9 Verify the integrity of the system after recovery from 

failure. 

Pass 

10 Test system recovery protocols under high system usage. Pass 

 

 

 

Appendix E 
Acceptance Test 

 

Sensor Acceptance Testing (8 Test Cases) 

Test 

Case ID 

Test Description Pass/Fail 

Result 

1 Verify that the sensor correctly detects all expected input 

signals. 

Pass 

2 Test sensor's response time under normal operating 

conditions. 

Pass 

3 Verify sensor generates correct alerts when triggered by 

expected environmental changes. 

Pass 

4 Test sensor performance with varying environmental 

conditions (humidity, temperature). 

Pass 
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5 Verify sensor data is transmitted correctly to other 

components. 

Pass 

6 Verify accuracy of sensor readings after 24 hours of 

continuous operation. 

Pass 

7 Test sensor alert generation accuracy for edge cases and 

outliers. 

Pass 

8 Verify sensor data integrity when operating under high 

interference conditions. 

Fail (False 

positives) 

 

Actuator Acceptance Testing (7 Test Cases) 

Test Case 

ID 

Test Description Pass/Fail Result 

1 Test actuator response time under normal conditions. Pass 

2 Verify actuator executes commands correctly with 

minimal error margin. 

Pass 

3 Test actuator performance when subjected to multiple 

control signals at once. 

Pass 

4 Test actuator response to faulty or out-of-range control 

commands. 

Pass 

5 Verify actuator output consistency over long-term 

usage. 

Pass 

6 Simulate actuator failure and verify system's ability to 

handle it. 

Fail (False 

negatives) 

7 Verify actuator response when system is under power-

saving mode. 

Pass 

 

Control Logic Acceptance Testing (6 Test Cases) 

Test Case 

ID 

Test Description Pass/Fail 

Result 

1 Test if control logic processes inputs correctly under 

typical operating conditions. 

Pass 

2 Verify control logic handles edge cases correctly (out-of-

range values, errors). 

Pass 

3 Test system behavior when control logic receives 

conflicting data inputs. 

Fail (False 

positives) 

4 Verify the decision-making process under real-time 

conditions. 

Pass 

5 Test system stability with repeated, high-frequency logic 

updates. 

Pass 

6 Simulate control logic failures and ensure recovery is 

swift without erroneous alerts. 

Pass 

 

Data Management Acceptance Testing (7 Test Cases) 
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Test Case 

ID 

Test Description Pass/Fail 

Result 

1 Test data integrity after long-term processing of input data. Pass 

2 Verify data storage mechanisms prevent data loss during 

power failures. 

Pass 

3 Test data transmission integrity across various 

communication channels. 

Pass 

4 Simulate data corruption and verify that system handles it 

gracefully. 

Pass 

5 Verify data processing time and check if it meets latency 

requirements (≤ 0.27 seconds). 

Pass 

6 Test system’s ability to recover lost data during network 

failures. 

Pass 

7 Test system’s ability to scale and manage large datasets 

efficiently. 

Pass 

 

Communication Acceptance Testing (6 Test Cases) 

Test 

Case ID 

Test Description Pass/Fail 

Result 

1 Verify the communication protocol between components 

works without errors. 

Pass 

2 Test system's ability to handle simultaneous 

communication from multiple sources. 

Pass 

3 Simulate network latency and verify alert generation does 

not exceed acceptable limits. 

Pass 

4 Test system’s response to data packet loss and ensure no 

critical alerts are missed. 

Pass 

5 Verify error handling in case of faulty or incomplete data 

communication. 

Fail (False 

positives) 

6 Verify system communicates alerts with no significant 

delay (≤ 0.27 seconds). 

Pass 

 

AI Processing Acceptance Testing (8 Test Cases) 

Test Case 

ID 

Test Description Pass/Fail 

Result 

1 Verify AI model’s accuracy for data classification (meets 

minimum threshold of 82%). 

Pass 

2 Test AI model’s precision in identifying relevant patterns 

(Precision ≥ 82%). 

Pass 

3 Test AI model recall rate by introducing diverse test data 

(Recall ≥ 87%). 

Pass 

4 Simulate biased input data and verify AI model does not 

produce false positives. 

Fail (False 

positives) 

5 Verify AI model's response time under load (≤ 0.27 

seconds). 

Pass 
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6 Test AI model performance on different input data sizes. Pass 

7 Test AI model’s ability to handle incorrect or incomplete 

data. 

Pass 

8 Verify AI model predictions for edge cases and ensure 

accurate output. 

Pass 

 

Power Management Acceptance Testing (5 Test Cases) 

Test Case 

ID 

Test Description Pass/Fail Result 

1 Test system’s response to low power conditions and its 

ability to generate alerts. 

Pass 

2 Verify system continues normal operation after power 

restoration. 

Pass 

3 Test system's energy-saving mode does not interfere 

with alert generation. 

Pass 

4 Simulate battery failure and check if system handles 

alert generation effectively. 

Fail (False 

negatives) 

5 Verify system can handle fluctuating power inputs 

without malfunction. 

Pass 

 

Environmental Monitoring Acceptance Testing (5 Test Cases) 

Test 

Case ID 

Test Description Pass/Fail 

Result 

1 Verify environmental sensors detect and respond to 

changes in temperature and humidity. 

Pass 

2 Test environmental monitoring for real-time alert 

generation under varying conditions. 

Pass 

3 Test system’s ability to distinguish between normal and 

abnormal environmental changes. 

Fail (False 

positives) 

4 Verify the accuracy of environmental data processing 

under stress conditions. 

Pass 

5 Test system's recovery time after environmental 

conditions return to normal. 

Pass 

 

Security Acceptance Testing (6 Test Cases) 

Test 

Case ID 

Test Description Pass/Fail 

Result 

1 Test security protocols to prevent unauthorized access to 

critical system components. 

Pass 

2 Verify that system alerts security breaches in real-time. Pass 

3 Test system's ability to handle malicious data input 

without compromising alert accuracy. 

Pass 
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4 Simulate a data breach and verify no false positives in 

alert generation. 

Fail (False 

positives) 

5 Test system's ability to recover from a security incident 

without false alerts. 

Pass 

6 Verify that system performs securely during all modes of 

operation, including idle states. 

Pass 

 

Recovery Acceptance Testing (7 Test Cases) 

Test Case 

ID 

Test Description Pass/Fail Result 

1 Test system’s recovery time after a simulated failure. Pass 

2 Verify system does not generate false alerts during 

recovery from failure. 

Pass 

3 Simulate recovery from network failure and ensure the 

correct alert is generated. 

Pass 

4 Test system’s ability to recover from power failure and 

resume alert generation. 

Pass 

5 Test recovery after simulated AI processing failure and 

verify no false negatives. 

Pass 

6 Test system recovery time after environmental condition 

return to normal. 

Fail (False 

negatives) 

7 Simulate recovery after security breach and ensure no 

false positive alerts. 

Pass 

 

 

 

 

 

 

 


