FINAL YEAR PROJECT REPORT

DESIGN AND SIMULATION OF AN EFFICIENT UNICAST ROUTING PROTOCOL IN MOBILE ADHOC NETWORKS (MANETS)

By

Muhammad Farrukh Amin

Bachelor of Software Engineering

Deliverable Report 1 Volume Program 1 CD

> DEPARTMENT OF COMPUTER SCIENCES & ENGINEERING BAHRIA UNIVERSITY KARACHI

ACKNOWLEDGMENTS

I wish to thank Almighty Allah who gave me the vigor and determination to complete this project. I gratefully recognize the continuous supervision and motivation provided to me by various faculty members. Cdr (R) Rashid Farooqui, Mr. Rauf Shamas, Mr. Taha Menai, Mr. Usman Waheed and Mr. Arif Ali, Mr. M. Faisal. I would also like to thank Dr. Abid Karim, for his ever-extended moral and technical support. I deeply treasure the unparallel support and forbearance that I received from my friends for their critical reviews and useful suggestions that helped me in completion of this project. I am also deeply obliged to my family for their never ending patience and support for my mental peace and to my parents for the strength that they gave me through their prayers.

ABSTRACT

A mobile ad hoc network differs from wired networks in several respects. Routing protocols are challenged by high mobility, low bandwidth, limited computing capability and limited energy which are the key characteristics of mobile nodes. The protocols for these networks must be designed to keep up with the drastically and unpredictably changing network topology, with minimized message exchanges and utilization of scarce network resources in an efficient manner.

Ad-hoc on demand Distance Vector Routing Protocol (AODV) is intended for use by mobile nodes in an ad hoc network. The dynamism of a route makes it less stable and hence less suitable for a network. The focus has been on enhancing the performance of Ad Hoc on Demand Distance Vector (AODV) routing protocol by choosing Route Fragility Coefficient (RFC) as its metric. This metric causes AODV to find a stable route. The stable route is characterized as the one which has less dynamism and in which nodes stay close to each other. Simulation results are provided to demonstrate improvement in throughput and reduction in routing protocol overhead with increased mobility. The performance metrics are measured by varying the maximum speed of the nodes and size of the network.

TABLE OF CONTENTS

1	Introduction	1
1.1	BACKGROUND	1
1.2	WIRELESS NETWORKS	2
1.2.1	MOBILE AD-HOC NETWORKS	4
1.2.2	CELLULAR NETWORKS	5
1.2.3	MULTI-HOP CELLULAR NETWORK	6
1.3	MANET	7
1.4	UNICAST VS MULTICAST:	10
1.4.2	MULTICAST ROUTING PROTOCOLS:	11
1.5	CLASSIFICATION OF ROUTING PROTOCOLS	11
1.5.1	PROACTIVE ROUTING PROTOCOLS	12
1.5.2	REACTIVE ROUTING PROTOCOLS	12
1.5.3	HYBRID ROUTING PROTOCOLS	13
1.5.4	GEOGRAPHICAL ROUTING PROTOCOLS	14
1.6	APPLICATIONS OF MANETS	15
1.7	PROBLEM STATEMENT	17
1.8	PROJECT DOMAIN	17
2	Research Objectives	18
2.1	PROJECT GOALS AND OBJECTIVES	18
2.2	DELIVERABLES	18
3	Literature Review	19
3.1	INTRODUCTION	19
3.2	AODV (ADHOC ON DEMAND DISTANCE VECTOR ROUTING PROTOCOL)	19
3.3	ABR (ANT BASED ROUTING PROTOCOL):	21
3.4	DSR (DYNAMIC SOURCE ROUTING PROTOCOL)	22
3.5	SSA (SIGNAL STABILITY-BASED ADAPTIVE ROUTING PROTOCOL)	24
4	Design	28
4.1	INTRODUCTION	28
4.2	Assumptions	28
4.3	OVERVIEW	29
4.3.1	ROUTING METRIC AND PROTOCOL OVERVIEW	30
4.3.2	ROUTING METRIC	31
4.4	CONTROL PACKETS	33
4.5	FORMAT OF CONTROL PACKETS	34
4.5.1	ROUTE REQUEST (RREQ) PACKET	34
4.5.3	ROUTE ERROR (REER) PACKET	37

4.6	ROUTE DISCOVERY	39
4.6.1	ROUTE REQUESTS	39
4.6.2	ROUTE REPLIES	42
4.7	ROUTE MAINTENANCE	43
5	Results and Simulation	45
5.1	INTRODUCTION	45
5.2	IMPLEMENTATION OF SIMULATION MODELS	45
5.2.1	IMPLEMENTATION WITH NETWORK SIMULATOR II	46
5.2.2	STRUCTURE OF NS-2	46
5.2.3	INTERNAL PACKET REPRESENTATION	47
5.2.4	SIMULATION PROCESS	48
5.2.5	WIRELESS MODEL IN NS-2	48
5.2.6	TRACING	49
5.3	RANDOM WAYPOINT MOBILITY (RW) MODEL	49
5.4	FREE SPACE PATH LOSS MODEL	50
5.5	SIMULATION SCENARIO	50
5.5.1	PERFORMANCE METRICS	51
5.6	EFFECT OF MOBILITY	51
5.6.1	SIMULATION ENVIRONMENT	52
5.6.2	EFFECT ON PACKET DELIVERY RATIO	52
5.6.3	EFFECT ON CONTROL OVERHEAD	54
5.7	EFFECT OF SCALABILITY	55
5.7.1	SIMULATION ENVIRONMENT	56
5.7.2	EFFECT ON PACKET DELIVERY RATIO	56
5.7.3	EFFECT ON CONTROL OVERHEAD	58
5.7.4	AVERAGE END-TO-END DELAY VS. SCALABILITY	59
6	Conclusion and Future Work	60

Conclusion and Future Work 6

6.1	INTRODUCTION	60
6.2	Conclusion	60
6.3		61
0.5	FUTURE WORK	

REFERENCES

62

APPENDIX A--FLOWCHARTS

APPENDIX B-DATA DICTIONARY

APPENDIX C-USER MANUAL

71 INSTALLATION OF NETWORK SIMULATOR SCENARIO FILE 72 73 CONNECTION PATTERN FILE **GENERATION OF CONNECTION PATTERN FILE** 73 **NAM 73** 74 STARTING NAM TRACE FILES ANALYSIS 77 INSTALLATION OF TRACEGRAPH 77 78 TO START TRACE GRAPH 79 TO RUN AND ANALYZE THE SCRIPT

64

68

70