

Muhammad Umair Arif

01-244222-014

RESOURCE OPTIMIZE FPGA IMPLEMENTATION OF SONAR

SYSTEM

Master of science in Electrical Engineering

Supervisor: Dr Junaid Imtiaz

Co-Supervisor: Asim Altaf Shah

Department of Electrical Engineering

Bahria University Islamabad

Resource Optimize FPGA Implementation of Sonar System

 page-2 of.82

MS - 13

Thesis Completion Certificate

Student Name: Muhammad Umair Arif Registration Number: 58575

Program of Study: Masters of Science in Electrical Engineering

Thesis Title: Implementation of Linear array signal processing of FPGA in signal domain

It is to certify that the above student’s thesis has been completed to my satisfaction

and, to my belief, its standard is appropriate for submission for evaluation. I have also

conducted plagiarism test of this thesis using HEC prescribed software and found similarity

index at 12% that is within the permissible set by the HEC. For MS/MPhil/PhD.

I have also found the thesis in a format recognized by the BU for MS/MPhil/PhD thesis.

Principle Supervisor’s Signature:

Principle Supervisor’s Name:

September 1, 2024

Resource Optimize FPGA Implementation of Sonar System

 page-3 of.82

MS - 14 A

Author’s Declaration

I, Muhammad Umair Arif hereby state that my MS thesis titled “Implementation of Linear

array signal processing of FPGA in signal domain” is my own work and has not been

submitted previously by me for taking any degree from “Bahria University, Islamabad” or

anywhere else in the country / world.

At any time if my statement is found to be incorrect even after my Graduate the

university has the right to withdraw cancel my MS degree.

Muhammad Umair Arif

01-244222-014

September 1, 2024

Resource Optimize FPGA Implementation of Sonar System

 page-4 of.82

MS - 14B

Plagiarism Undertaking

 I, Muhammad Umair Arif solemnly declare that research work presented in the thesis titled

 Implementation of Linear array signal processing of FPGA in signal domain

is solely my research work with no significant contribution from any other person.

Small contribution / help whenever taken has been duly acknowledged and that complete

thesis has been written by me.

I understand the zero tolerance policy of Bahria University and the Higher Education

Commission of Pakistan towards plagiarism. Therefore, I as an author of the above titled

thesis declare that no portion of my thesis has been plagiarized and any material used is

properly referred / cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled thesis

even after award of MS degree, the university reserves the right to withdraw / revoke

my MS degree and HEC and the university has the right to publish my name on HEC /

University Website on which name of students who submitted plagiarized thesis are placed.

Muhammad Umair Arif

01-244222-014

August 28, 2024

Resource Optimize FPGA Implementation of Sonar System

 page-5 of.82

Acknowledgments

I must first and foremost express my deepest gratitude to my advisor, Mr Asim Altaf Shah for his

unyielding support, guidance, and motivation throughout this process. Their invaluable insights

and expertise has moulded this thesis into its current form.

I would like to thank my thesis committee Dr Junaid Imtiaz, Dr Atif Jafri, for their invaluable

feedback, advice and time. We would like to acknowledge that their perspective significantly

enriched this work.

I extend my sincere thanks to the lab caretaker and staff. This supportive environment was

essential for the progression of my research.

Finally, I am grateful to my family, My parents for unconditional support and constant

encouragement in everything I do.

This thesis is a reflection of the effort and support from all those amazing people Thanks,

everyone you were a part of the journey.

Muhammad Umair Arif

Resource Optimize FPGA Implementation of Sonar System

 page-6 of.82

Acronyms and Abbreviations

FPGA Field Programmable gate arrays

 Sonar Sound Navigation and Ranging

 DSP Digital Signal Processing

 FFT Fast Fourier Transform

 IFFT Inverse Fast Fourier Transform

 SP Signal Processing

 IP Intellectual properties

Resource Optimize FPGA Implementation of Sonar System

 page-7 of.82

ABSTRACT

Field Programmable Gate Array (FPGA) is an efficient and compact tool for fast processing and

computations of signals. In this project, we explore the capabilities of Sonar system implemented

on FPGA, addressing the processing time to be minimize. Sonar technology is crucial for

underwater target recognition, detection and also for other liabilities like, to check and measure

the underwater crimes. Typically, Sonar system rely on hydrophones for reliable processing. In

this project, we are implementing the 6-channel linear array beamforming on FPGA. From each

channel, data of 2048 samples were fed into the model for processing. The process begins with

the application of a Fast Fourier Transform of the input data. The resulting FFT data is then

subjected to beamforming, where desired frequency bins of the FFT result are multiplied by pre-

stored coefficients in a ROM. Finally, we take the Inverse Fast Fourier Transform to take the

signal back into its original shape. We analyze the results by comparing it with the Matlab fix

model benchmark. Our primary objective is the implementation of this linear beamforming on

FPGA utilizing minimum Hardware resources. The system successfully meets the stringent

requirement of processing the entire algorithm in under 2 milliseconds. The implementation was

carried out using the Verilog hardware description language, ensuring an optimized and reliable

solution for real-time sonar signal processing.

Resource Optimize FPGA Implementation of Sonar System

 page-8 of.82

Table of Contents

 THESIS COMPLETION CERTIFICATE 2

 AUTHOR DECLARATION 3

 PLAGIARISM UNDERTAKING 4

 ACKNOWLEDGEMENTS 5

 ACRONYMS AND ABBREVIATIONS 6

 ABSTRACT 7

1 CHAPTER 1 13

INTRODUCTION 14

 1.1 Project background 14

 1.2 Project Description 15

 1.3 Project Objective 16

2 CHAPTER 2 17

LITERATURE REVIEW 17

 2.1 Introduction 17

 2.1.1 Scope of the review 17

 2.2 Planar Array signal Processing 18

 2.2.1 Introduction 18

 2.2.2 A review of Sonar array limitations 19

 2.2.3 Areas of Working 20

 2.3 Overview of Sonar Technology 22

 2.3.1 History of Sonar Technology 22

 2.3.2 Types of Sonar System 23

 2.3.3 Differernt Sonar Principle 23

Resource Optimize FPGA Implementation of Sonar System

 page-9 of.82

 2.3.4 Application of Sonar Technology 24

 2.4 Fundemantals of FPGA Technology 26

 2.4.1 Advantages of FPGA-Based Prototyping in VLSI Design 26

 2.4.2 Leveraging FPGA Technology for Advanced Signal Processing 26

 2.5 Hardware descriptive language for FPGA 27

 2.5.1 VHDL 27

 2.5.2 Verilog 28

 2.5.3 Comparison between Verilog and VHDL 28

 2.6 Optimization techniques for FPGA implementation 29

 2.6.1 Significance of Ping-Pong Buffers in FPGA Systems 29

 2.6.2 Optimization of Performance through decomposition 30

 2.6.3 Efficient Data Handling and Signal Processing in Underwater Using FPGA 30

 2.7 Future trends and research directions 31

 2.7.1: Enhancing Underwater Security: Challenges and Innovations in Sonar Technology 31

 2.7.2: The Role of Fractional Fourier Transform in Sonar Systems 32

 2.8 Existing Hardware Methods of Sonar System 32

 2.8.1 ASICs 33

 2.8.2 ASIPs 33

 2.8.3 FPGAs 34

3 CHAPTER 3 36

METHODOLOGY 36

 3.1 Introduction 36

 3.2 Conversion process of Matlab code 37

 3.2.1 Implementation of Multi beam Sonar using FPGA 37

 3.2.2 Matlab to Verilog Workflow 38

 3.2.3 FFT processing using Xilinx IP and Verilog for efficient utilization 39

 3.3 Selective FFT bin extraction and beamforming using Verilog 41

 3.3.1 Sequential Beamforming with selective FFT bins using Verilog 42

Resource Optimize FPGA Implementation of Sonar System

 page-10 of.82

4 CHAPTER 4 43

 IMPLEMENTATION DETAILS 43

 4.1 Introduction 43

 4.2 System Implementation 44

 4.2.1 Software Configuration 44

 4.2.2 FFT Integration 46

 4.3 Beamforming Implementation 50

 4.3.1 Implementation of Beamforming Algorithm 53

 4.4 Inverse Fast Fourier Transform Implementation 57

5 CHAPTER 5 59

EVALUATION RESULTS 59

 5.1 Results 59

 5.2 Resource Utilization 75

 5.2.1 Comparison 75

6 CHAPTER 6 78

CONCLUSION 78

7 CHAPTER 7 80

REFERENCES 80

Resource Optimize FPGA Implementation of Sonar System

 page-11 of.82

List of Figures

FIG. 2.1 SENSORS DEPLOYMENT.. 19
FIG. 2.2 ARRAY SIGNAL FIELD .. 21
FIG. 2.3 OPERATING PRINCIPLE OF SONAR ... 25
FIG. 3.1 MATLAB MODEL .. 38
FIG. 4.1 VERILOG CODE BLOCK DIAGRAM. .. 44
FIG. 4.2 DATA FLOW .. 45
FIG. 4.3 FFT CONTROLLER ... 46
FIG. 4.4 FFT IP CORE ... 47
FIG. 4.5 FFT IP CORE SETTINGS .. 48
FIG. 4.6 FFT IP CORE SETTING 2. .. 48
FIG. 4.7 RESOURCES SUMMARY WITH BIT REVERSED ORDER. ... 49
FIG. 4.8 IMPLEMENTATION DETAILS. .. 49
FIG. 4.9 FFT_OUT_CONTROLLER TO BRAMS .. ERROR! BOOKMARK NOT DEFINED.
FIG. 4.10 FFT_OUT_CONTROLLER ... 51
FIG. 4.11 FFT_BRAM IP.. 52
FIG. 4.12 BLOCK RAM IP DETAIL 1 ... 53
FIG. 4.13 BLOCK RAM IP DETAIL 2 ... 53
FIG. 4.14 BEAM FORMATION.. 55
FIG. 4.15 BEAM DATA WRITER .. 56
FIG. 4.16 IFFT CONTROLLER .. 57
FIG. 4.17 BLOCK DESIGN MODEL .. 58
FIG. 5.1 RESULT COMPARISON STAGES ... 59
FIG. 5.2 FFT OUTPUT RESULT COMPARISON (REAL VALUES) .. 60
FIG. 5.3 FFT OUTPUT RESULT COMPARISON (IMAGINARY VALUES) ... 61
FIG. 5.4 MULTIPLICATION RESULTS COMPARISON REAL OF BEAM1 ... 62
FIG. 5.5 MULTIPLICATIONS RESULTS COMPARISON IMAGINARY OF BEAM1 ... 63
FIG.5.6 MULTIPLICATIONS RESULT COMPARISON REAL OF BEAM2 .. 63
FIG. 5.7 MULTIPLICATIONS RESULT COMPARISON IMAGINARY OF BEAM2 .. 64
FIG. 5.8 MULTIPLICATIONS RESULT COMPARISON REAL OF BEAM 3 .. 64
FIG. 5.9 MULTIPLICATIONS RESULT COMPARISON IMAGINARY OF BEAM3 .. 65
FIG. 5.10 MULTIPLICATIONS RESULT COMPARISON REAL OF BEAM 5 ... 65
FIG. 5.11 MULTIPLICATIONS RESULT COMPARISON IMAGINARY OF BEAM 5.. 66
FIG. 5.12 MULTIPLICATIONS RESULT COMPARISON REAL OF BEAM 6 ... 66
FIG.E 5.13 MULTIPLICATIONS RESULT COMPARISON IMAGINARY OF BEAM 6 .. 67
FIG. 5.14 MULTIPLICATIONS RESULT COMPARISON REAL OF BEAM 7 ... 67
FIG. 5.15 MULTIPLICATIONS RESULT COMPARISON IMAGINARY OF BEAM 7.. 68
FIG. 5.16 MULTIPLICATIONS RESULT COMPARISON REAL OF BEAM 8 ... 68
FIG. 5.17 MULTIPLICATIONS RESULT COMPARISON IMAGINARY OF BEAM 8 .. 69
FIG. 5.18 MULTIPLICATIONS RESULT COMPARISON REAL OF BEAM 9 ... 69
FIG. 5.19 MULTIPLICATIONS RESULT COMPARISON IMAGINARY OF BEAM 9.. 70

file:///C:/Users/afr88/Downloads/THESIS%20DRAFT-D.docx%23_Toc176007372

Resource Optimize FPGA Implementation of Sonar System

 page-12 of.82

FIG. 5.20 IFFT RESULTS COMPARISON IFFT: MATLAB VS FPGA ... 70
FIG. 5.21 TIMING OF PROCESS SHOWING IFFT RESULT OF LAST BEAM RECEIVED. ... 72
FIG. 5.22 FFT RESULTS OF ALL 6 CHANNELS... 73
FIG. 5.23 MULTIPLICATION RESULTS MULT1 AND MULT2.. 73
FIG. 5.24 MULTIPLICATION RESULTS MULT3 AND MULT4.. 74
FIG. 5.25 MULTIPLICATION RESULT MULT5 AND MULT6 ... 74

Resource Optimize FPGA Implementation of Sonar System

 page-13 of.82

List of Table

TABLE 1 UTILIZED RESOURCES IN RESEARCH ... 76
TABLE 2 RESOURCES UTILIZED IN PRIOR WORK ... 77

Resource Optimize FPGA Implementation of Sonar System

 page-14 of.82

CHAPTER 1

INTRODUCTION

1.1: Project Background

The development of digital virtual systems is constantly replacing analog systems. Digital systems

are the true strength of current-day corporations, products, techniques, and services, and their

characteristics are increasingly enhanced by these technologies. Communication, traffic, control,

weather forecasting systems, internet and so forth Programmable Gate Array (FPGA) devices are

the applications of present-day digital technologies. These devices (FPGAs) operate at high clock

frequencies and attain high execution in computations of digital and signal processing (DSP)

algorithms. Sonar (also known as sound navigation and ranging) is a technique that uses sound

propagation to navigate and measure distances for objects and targets. We required results in

minimum time to quickly analyze and respond accordingly. FPGAs are best solutions to keep track

of fast signal processing and having the functionalities capable to work efficiently in these

conditions. Now modeling of these algorithms in a way to get the result with using minimum

resources and in less time is the challenge and the target. The thesis focuses on the implementation

of a 6-channel linear array beamforming system for SONAR, utilizing FPGA technology and

Resource Optimize FPGA Implementation of Sonar System

 page-15 of.82

programmed in Verilog HDL. The project involves critical signal processing algorithms, including

FFT, IFFT, and beamforming, implemented on FPGA to achieve real-time processing.

Beamforming is optimized using nine azimuth angles for directing acoustic signals and enhancing

detection accuracy. The system is designed to handle 444 coefficients per beam and employs

ROM-based storage and multiplexing techniques to select beams for processing.

1.2: Project Description

In this project, data is received from six different channels, organized in a linear array format,

enabling target detection and analysis in one dimension. The project is divided into three primary

stages. The first stage involves applying a 2048-point FFT to the data from each of the six channels.

This transformation converts the time-domain signals into the frequency domain for further

processing. In the second stage, beamforming is performed. This involves multiplying specific

frequency bins, corresponding to the 38 kHz - 42 kHz range, by pre-determined coefficients. The

system generates nine distinct beams, each with its own set of coefficients. The final stage is the

baseband processing. Here, the results from the beamforming stage are processed using an Inverse

Fast Fourier Transform (IFFT) to convert the data back into the time domain. Before applying the

IFFT, the sample length is extended from 74 to 2048 to match the original FFT length. The entire

computation process takes 1.07 milliseconds. The total number of clock cycles required for the

operation is determined by the input frequency, which is 112,000 samples per second. FPGA’s

parallel processing capabilities are utilized to handle large data sets in real time, ensuring efficient

Resource Optimize FPGA Implementation of Sonar System

 page-16 of.82

processing within the given 10 ms time frame. The system's accuracy and performance are verified

by comparing the FPGA results with MATLAB simulations, demonstrating the potential of FPGA for

scalable and high-performance SONAR applications.

1.3: Project Objective

This project focuses on developing and evaluating efficient low-complexity FPGA implementation

of the Sonar system. The project aims to achieve efficient signal processing by integrating key

algorithms such as FFT, IFFT, and beamforming, optimized for multiple azimuth angles. The goal

is to leverage FPGA's parallel processing capabilities to handle large data sets and real-time

computations, ensuring high-speed and accurate detection. The performance will be validated by

comparing the results with MATLAB simulations, demonstrating FPGA’s effectiveness in advanced

SONAR systems. DSPs and GPP also provide fast results, but they take more hardware resources for

operations like beam-forming. We are using VERILOG language for the implementation of the

project. VIVADO is the software we use for project designing and to simulate the simulation. For the

reference model, we use MATLAB to verify our Vivado design results.

Resource Optimize FPGA Implementation of Sonar System

 page-17 of.82

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

2.1.1 Scope of the review

We began by introducing planar array signal processing techniques, along with the operational

environment necessary for their effective implementation. Signal processing in sonar systems

can be broadly classified into two types: active and passive processing. Following this, we

discussed the challenges encountered during sonar operation, such as the need for real-time

processing, handling large volumes of data, and minimizing latency. These challenges

necessitate a thorough investigation to optimize system performance. We then elaborated on why

Field Programmable Gate Arrays (FPGAs) offer a superior solution compared to Digital Signal

Processors (DSPs). FPGAs provide significant advantages, including reduced processing time

and higher resource efficiency. This is due to their parallel processing capabilities and the ability

Resource Optimize FPGA Implementation of Sonar System

 page-18 of.82

to customize hardware configurations for specific tasks, making them ideal for real-time signal

processing in sonar systems. Moreover, we discussed various optimization techniques that can be

leveraged through the use of FPGAs to enhance the efficiency of our solution. These techniques

include pipelining, parallelism, and efficient memory management, all of which contribute to

lower latency and more effective use of hardware resources. We also explored future trends and

emerging techniques that could lead to even more compact and efficient solutions for sonar

signal processing. These advancements may include the integration of advanced algorithms and

the continued evolution of FPGA technology, which could further enhance performance and

reduce system size. Finally, we reviewed the Fast Fourier Transform (FFT) algorithm, its

functionality, and its role in signal processing. We also touched on other relevant algorithms that

contribute to the overall effectiveness of the sonar system. These algorithms are essential for

transforming data between the time and frequency domains, which is a critical aspect of signal

analysis in both active and passive sonar processing.

2.2 Planar Array Signal Processing

2.2.1 Introduction

As the name indicates, “Planar Array Signal Processing” involves processing, data carrying

signals collected from sensor arrays operating in the environment of interest (such as on the

ground, above ground, or underwater). The relationship between the environment, sensor array,

Resource Optimize FPGA Implementation of Sonar System

 page-19 of.82

and processor is illustrated in the system model in Fig 1. In passive array signal processing

technology, the sensor array has the sole task of listening to the environment. In active sonar

devices, emitters are used to illuminate the environment and sensor arrays listen for signals

emitted from the environment and/or objects of interest [1]. Sensors can be used in many ways.

Examples of sensors include:

(a) Antennas in radar, radio communications, and radio astronomy

(b) Hydrophones in sonar

(c) Geophones in seismology

(d) Ultrasonic probes and X- in medical imaging beam detectors.

Fig. 2.1 Sensors Deployment

2.2.2 A review of sonar array limitations

Resource Optimize FPGA Implementation of Sonar System

 page-20 of.82

In radar, radio communications, and radio astronomy, antennas function as electronic devices

designed to capture electromagnetic waves. In contrast, sonar, seismology, and medical imaging

rely on sound transducers such as hydrophones, geophones, and ultrasound probes—that are

engineered to respond to acoustic energy waves. Measurement vectors, collected by sensor

arrays in discrete time intervals (snapshots), provide critical information about the environment

and the target of interest, which may include details about the target's location, orientation,

movement, or the number of sources (emitters) interacting with the sensor array. [9]

The processor's role is to generate accurate estimates of these parameters by extracting relevant

information from the measurement vectors. However, the performance of the processing

algorithms is constrained by several key factors. Firstly, sensor noise, which may be isotropic or

anisotropic, affects the accuracy of the measurements. Secondly, inaccuracies in the

mathematical modeling can arise when the assumed model fails to accurately represent the

physical phenomena responsible for the sensor output.

Finally, the sensor's capacity to collect data is inherently limited by its size and the time-

bandwidth product of the event being measured. These limitations collectively impact the

precision and reliability of signal processing in these applications.[1]

2.2.3 Areas of working

We have three areas in which we conceptualize the problems of array signal processing:

Resource Optimize FPGA Implementation of Sonar System

 page-21 of.82

Object Space: The object space is characterized by a set of object parameters and environmental

factors of interest, along with numerous other influencing elements. Specifically, the precise

representation of the object's position is not directly known and must be inferred through the

estimation of an unknown signal sequence function.

Measurement (observation) area: The measurement area is defined by two key factors: the

specific types of light employed for environmental monitoring (relevant only to the operating

system), and the data utilized for the specific design pattern structure of the retrieved collection.

The data content within this space is consistently smaller than the corresponding physical space.

Estimated position: The third position in the conceptual model is defined by the estimated

parameters that determine the position of the product. These parameter estimates, in essence,

provide a solution to the array signal processing problem. [9]

Fig. 2.1 Array signal field

Resource Optimize FPGA Implementation of Sonar System

 page-22 of.82

The arrays contains single-element transducers mounted in a way that improves signal

directivity, increase the audio signal power level, improve beamforming, and aids in beam

steering and shielding. The most common types of array are linear arrays, such as discrete and

continuous elements, and planar arrays, which include circular, square, and rectangular arrays,

each containing multiple transducer elements in different configurations. Although individual

array elements are usually omnidirectional, the array itself can have multiple directions

depending on its extension or surface.

2.3 Overview of Sonar Technology

2.3.1 History of Sonar technology

Sonar technology has been developed over more than 100 years, with a long history of

advancement and innovation in underwater acoustic technologies. The origins of sonar

technology can be traced back to the nineteenth century, with significant progress made during

the twentieth century, particularly during World War I and World War II where transducers finds

an underwater applications, stands for Sound Navigation and ranging, encompasses both active

and passive Sonar, driven by the need for underwater object detection and location.

The loss of the Titanic and submarine operation during World War I were important events that

led to the advancement of sonar technology and highlighted the need for better underwater

research [4]. The development of sonar and array technology continues with the increasing

Resource Optimize FPGA Implementation of Sonar System

 page-23 of.82

demand for purposes such as underwater research, hydrology, swimming, and fisheries research,

including the exploitation of oil, gas and minerals.

2.3.2 Types of Sonar System

Passive Sonar: The main purpose of Sonar is to navigate and locate objects underwater. In this

echoes or sounds emitted by the objects and targets are listened and processed further. Passive

systems can range from a single hydrophone to several hundred hydrophones arranged in various

array geometries.

Active Sonar: We intentionally emits echoes and listened them once reflected back from the

objects and then processed on the signals, extracting the information. [4]

2.3.3 Different Sonar principles:

Single beam echo sounders:

SBES operates on the principle of transmitting and receiving updated products in the realms of

hardware, firmware, and software. Specifically, sinusoidal pulses, synchronized by the master

clock, are amplified by a power amplifier, where the sound power level is adjusted according to

the water depth and carrier frequency. At the receiver, inputs are typically time-gated to prevent

direct capture of the transmitted signal and to mitigate the effects of transmitter ringing. The

signal then passes through a band-pass filter to eliminate ship noise. Finally, the signal is

Resource Optimize FPGA Implementation of Sonar System

 page-24 of.82

processed via time-varied gain (TVG), with amplification based on the amplitude of the signal

received at varying depths. [4]

Multi beam echo sounders:

MBES operates as a single beam with a small width and a small distance between each beam.

The best MBES systems today have beam widths of 0.5° to 1° and can run more than 800 lines.

Side scan Sonar:

Side-scan sonar is a tool used to visualize the seabed and objects located on or above the

seafloor. It employs a sonar generator and the movement of a transducer through the water to

produce high-resolution, two-dimensional images of sonar patterns. The transducer can be

mounted on the underside of the vessel's hull. A side-scan sonar system may feature a single

sensor that emits an acoustic signal to the side of the platform, or it may have two sensors that

emit acoustic signals on both sides of the platform, allowing for the scanning of a wide area of

the seabed as the system moves forward through the water.

2.3.4 Applications of Sonar Technology:

 Seafloor mapping can also be used to search for wrecks of ships and airplanes. Sonar can also be

used to locate lost items, such as cargo containers and other cargo on ships, or chemical weapons

and war materiel, such as bombs and gas bombs.

Resource Optimize FPGA Implementation of Sonar System

 page-25 of.82

Marine geology uses sonar systems to identify, study, and map the seafloor, as well as to record

sub-bottom profiles. This is often achieved using low-frequency parametric sonar. Additionally,

underwater research that focuses on ambient noise, coral reef ecosystems, pollution from oil

spills and waste dumping, and marine archaeology such as the search for historical artifacts and

the study of submerged cities.

Fisheries research estimating fish species and fish biomass. Sonar systems also increase

efficiency and catching operations.

Physical oceanography used to study various ocean phenomena resulting from small local

temperature changes in shallow waters.

Fig. 2.2 Operating principle of Sonar

Resource Optimize FPGA Implementation of Sonar System

 page-26 of.82

2.4 Fundamentals of FPGA Technology

2.4.1 Advantages of FPGA-Based Prototyping in VLSI Design

Many procedures are involved in manufacturing integrated circuits form VLSI design. FPGA

prototyping (Field Programmable Gate Array) is one of the procedure of them. Because of the

importance of Simplicity, DSP hardware limitations, and FPGA customization for application-

specific I/O requirements, FPGA-based systems offer six to twelve times the performance of

traditional equivalent DSP systems. FPGA-based beam formers can provide computational

power equivalent to multiple DSPs by leveraging symmetries in sensor arrays, enabling efficient

broadcast of data to processing elements and pipelined operations for faster calculations. [13]

The advantages of FPGAs, such as strong parallelism and the ability to handle high data rate

algorithms, make them a suitable platform for real-time signal processing in high-frequency

active sonar systems.

2.4.2: Leveraging FPGA Technology for Advanced Signal Processing

FPGAs are instrumental in the heterogeneous integration of diverse "hard IP" blocks—such as

SSDs and floating-point DSPs—enabling enhanced application-specific functionality. Recent

advancements in FPGA technology, characterized by increased storage capacity, reduced power

consumption, cost efficiency, and higher gate counts, have paved the way for high-performance

Resource Optimize FPGA Implementation of Sonar System

 page-27 of.82

applications. These advancements allow FPGAs to parallelize algorithms efficiently, boosting

power efficiency, flexibility, and accuracy, which are critical for SVM-based (Support Vector

Machine) applications.[1]

In the context of digital beamforming, FPGA-based hardware implementations offer an efficient

platform for deploying advanced algorithms and techniques such as Linearly Constrained

Minimum Variance (LCMV) and Minimum Variance Distortion less Response (MVDR). When

combined with a Quick-Support Vector Machine (QS-SVM) model for Direction of Arrival

(DoA) estimation, these implementations ensure real-time execution with high throughput. The

inherent parallelism and capability to handle high data rate algorithms make FPGAs an ideal

choice for real-time signal processing in high-frequency active sonar systems. [13]

FPGAs facilitate the realization of complex algorithms in hardware, resulting in low latency and

high data rates in practical applications. In signal processing, FPGA platforms decompose

algorithms into various operations, such as multi-channel data demodulation, Fast Fourier

Transform (FFT), beamforming, matched filtering, and Constant False Alarm Rate (CFAR)

processing. These capabilities make FPGAs a powerful tool for executing sophisticated, real-

time signal processing tasks in challenging environments.

2.5: Hardware Description Language (HDL) for FPGA Programming

2.5.1 VHDL (Very large scale Hardware Description Language)

Resource Optimize FPGA Implementation of Sonar System

 page-28 of.82

VHDL was developed as part of VHSIC (Very High Speed Integrated Circuit) in the 1980s

under the auspices of the US Department of Defense. Standard language is ideal for describing

complex processes. It also includes design support that makes managing large projects easier,

allow the characteristics of combinational and sequential logics. VHDL is widely used in

industries where reliability and stability are important, such as aerospace, defense and

telecommunications.

2.5.2: Verilog

Developed by Phil Moorby of Gateway Design Automation in the mid-1980s, Verilog has

become one of the most popular HDLs due to its simplicity and ease of use. Verilog syntax is

similar to the C programming language and can be used by engineers familiar with C. Verilog

supports behavior and design, making it suitable for many levels of design abstraction. It

includes design for modeling hardware components and connections. Verilog is widely used in

the electronics, automotive and computers.

2.5.3: Comparison of VHDL and Verilog

Both VHDL and Verilog support multiple levels of abstraction, including behavior, register

transfer Level (RTL), and gate level. VHDL's powerful types and granularity make it ideal for

large, complex models that require reliability. Verilog's simplicity and flexibility make it ideal

for rapid prototyping and re-engineering processes. Both languages are supported by a variety of

integration and simulation tools from major EDA (electronic design automation) vendors,

including Synopsys, Cadence, and Mentor Graphics.

Resource Optimize FPGA Implementation of Sonar System

 page-29 of.82

2.6 Optimization Techniques for FPGA Implementation

 2.6.1: Significance of Ping-Pong Buffers in FPGA Systems

Ping-pong buffers are important in FPGA-based systems due to their unique features and

advantages:

Continuous Data Processing: Ping-pong provides a mechanism for synchronizing data reads

and writes without causing the FPGA system to persist and make the data inconsistent.

Preventing Data Loss: By allowing the FPGA to switch between two buffers for data transfer,

ping-pong buffers help prevent data loss during high-speed processing, enhancing the system's

reliability.

Optimized Resource Utilization: These buffers increase the utilization of resources by

supporting valuable data in the system, reducing downtime and improving overall performance.

Reduced Latency: Ping-pong buffers help reduce data transfer latencies in FPGA systems,

instantly improving performance and responsiveness.

Enhanced Throughput: The use of ping-pong buffers increases data throughput by managing

continuous data, which is important for applications requiring high speed and continuous

operation. [12].

Resource Optimize FPGA Implementation of Sonar System

 page-30 of.82

2.6.2: Optimization of Performance through Decomposition

Efficient Resource Utilization: By dividing the algorithm into stages such as multi-channel data

demodulation, FFT, IFFT and matching filtering, the system effectively uses FPGA programs to

integrate and enhance the overall system.

Enhanced Processing Speed: Breaking algorithms into smaller, manageable tasks can process

larger data faster, thus improving the instantaneous performance of the system.

IP Core Integration: Basic signal processing such as FFT, IFFT, parallel and DDR controllers

use FPGA IP cores to simplify algorithm implementation and improve performance.

This optimization strategy through algorithm decomposition on FPGA-based signal improves the

performance of high-frequency active sonar systems.

2.6.3: Efficient Data Handling and Signal Processing in Underwater Using FPGA

In the context of underwater acoustic signal processing, Field Programmable Gate Arrays

(FPGAs) play a crucial role from the initial capture of the input signal through to its processing

stages. Upon receiving the input signal, the FPGA manages electronic control, orchestrating both

data and signal processing within the system. The FPGA first evaluates the incoming data to

ensure it meets specific criteria necessary for Fast Fourier Transform (FFT) processing. Once the

FPGA verifies that the data satisfies the FFT requirements, it triggers an interrupt signal to the

Digital Signal Processor (DSP), indicating that the data is prepared for further processing. This

Resource Optimize FPGA Implementation of Sonar System

 page-31 of.82

detection mechanism ensures the FPGA operates efficiently, handling the input signal with

precision and seamlessly preparing the data for communication with the DSP. By doing so, the

system maintains optimal performance and minimizes the risk of errors, ensuring reliable

operation in underwater acoustic applications

2.7: Future Trends and Research Directions

2.7.1: Enhancing Underwater Security: Challenges and Innovations in Sonar Technology

Now for advanced and more secure surveillance of underwater world, new research trends are

seen on the topic. Nowadays underwater security is more vulnerable than ground security, and

needs to improve its security level to the extent of adequate measures. Companies and

underwater Security bodies are working on to develop high rated and more advanced sonar

security systems for unseen underwater threats and risks. [2]

Due to no constant security check ins, unbridled measures, underwater crimes seems to be a easy

way to pursue a crime. To make security level more secure as capabilities of ground securities,

relevant bodies are keep working to make their underwater security system more advanced and

up to date to cater and eliminate any type of crime comes under the vicinity of water. The

common crimes observed underwater includes the smuggling of drugs and illegal weapons and

substances, and also the disposal of harmful substances that causes serious threats also to the

underwater livings.

Resource Optimize FPGA Implementation of Sonar System

 page-32 of.82

The project was carried out by a Japanese company in order to improve underwater security and

to protect the facilities near the water area, uses the Sonar system having three transducers

operating in three different frequencies to cover different area ranges to detect objects and targets

nearby and far. They also embedded a high resolution camera on different locations which can

detect images and then analyzed by a software in real time, to eliminate the background images

and noises. [2]

2.7.2: The Role of Fractional Fourier Transform in Sonar Systems

To make Sonar system more convenient and effective, we do use a Fractional Fourier Transform

for major processing operations. It gives more advantages and processing capabilities than a

conventional Fast Fourier Transform on Sonar signal processing. When using chirp signals

(which frequency increases or decreases with time) for Sonar signal processing, we do use of

Fractional Fourier Transform that has the better capability to intercept and process chirp signals

rather than Simple Fast Fourier Transform. In the presence of reverberation often Sonar systems

make use of chirp signals for processing for better detection. FrFT are also employed in radars to

detect moving targets and objects.

2.8: Existing Hardware methods of Sonar Systems

Resource Optimize FPGA Implementation of Sonar System

 page-33 of.82

2.8.1: ASIC (Application specific integrated circuit)

In the context of SONAR system hardware solutions, ASICs (Application-Specific Integrated

Circuits) provide a highly specialized approach by offering dedicated circuits tailored

specifically to the signal processing needs of the system. For SONAR applications, where high-

speed, low-latency processing of acoustic signals is critical, ASICs excel by providing optimized

performance for tasks such as beamforming, filtering, and target detection. Their architecture is

designed to maximize efficiency by focusing exclusively on these tasks, resulting in significantly

reduced power consumption and enhanced operational speed, which is crucial for large-scale,

continuous operations in commercial or military SONAR systems.

However, due to their fixed-function nature, ASICs lack the flexibility to accommodate future

updates or algorithmic changes once manufactured. This limitation makes them less ideal for

applications that require frequent upgrades or new features, particularly in evolving fields like

SONAR where processing requirements may change over time. The high design and production

costs of ASICs also mean they are best suited for long-term deployments where the performance

benefits outweigh the need for reconfigurability. In summary, ASICs offer a high-performance,

energy-efficient solution for SONAR systems that prioritize stability and efficiency over

adaptability.

2.8.2: ASIP (Application Specific Instruction set Processors)

Resource Optimize FPGA Implementation of Sonar System

 page-34 of.82

In the context of SONAR system hardware solutions, ASIPs (Application-Specific Instruction-

set Processors) offer a middle ground between the fixed-function efficiency of ASICs and the

programmability of general-purpose processors. ASIPs are equipped with customized instruction

sets that are specifically tailored to the signal processing tasks required by SONAR systems,

such as beamforming, FFT, and target detection. This customization enables high performance

while maintaining some programmability, which allows for limited adaptability and updates to

the system after deployment, such as incorporating new algorithms or enhancing processing

functions.

While ASIPs provide more flexibility than ASICs, they are not as adaptable as FPGAs, and their

partial programmability can lead to higher power consumption compared to fully optimized

ASICs. However, ASIPs are particularly useful in SONAR systems that require a balance

between efficiency and adaptability, such as systems that may need occasional updates but do

not require the full reconfigurability offered by FPGAs. ASIPs can handle specific SONAR

processing tasks efficiently while still allowing for a moderate degree of future adjustments,

making them suitable for systems where high performance and some level of flexibility are both

necessary.

2.8.3 FPGAs (Field programmable gate arrays)

In SONAR system hardware solutions, FPGAs (Field-Programmable Gate Arrays) offer a highly

flexible and reconfigurable platform, making them a preferred choice for complex signal

processing tasks. FPGAs enable the implementation of real-time updates and reconfigurations,

allowing algorithms such as FFT, IFFT, and beamforming to be optimized and adjusted even

Resource Optimize FPGA Implementation of Sonar System

 page-35 of.82

after deployment. This adaptability is particularly beneficial in SONAR systems that require

continuous evolution, such as those used in research and development, or systems deployed in

dynamic environments where algorithmic updates are necessary over time.

One of the standout advantages of FPGAs is their ability to perform parallel processing, which

makes them ideal for multi-channel SONAR systems that require high-speed, real-time

processing of multiple input channels simultaneously. This capability ensures that FPGAs can

efficiently handle the large volumes of data generated by SONAR systems and process them in a

timely manner for accurate detection, tracking, and localization.

However, this flexibility comes with trade-offs, including higher power consumption compared

to the more specialized ASICs, and the need for greater design effort to develop and optimize the

hardware architecture and algorithms. Despite these challenges, the combination of

programmability, reconfigurability, and high processing power makes FPGAs an optimal

solution for SONAR systems that demand frequent updates, scalability, and efficient real-time

signal processing capabilities.

Resource Optimize FPGA Implementation of Sonar System

 page-36 of.82

CHAPTER 3

METHODOLOGY

3.1 Introduction

The methodology for this research on "Planar Array Signal Processing and FPGA Applications

in SONAR Systems" is designed to leverage the capabilities of FPGA technology for efficient

and real-time processing of sonar signals. The project is structured around a six-channel system,

where each channel processes data streams with a length of 2048 samples. To ensure the system

meets real-time operational requirements, the total processing time is constrained to 19

milliseconds. This methodology focuses on the implementation of advanced signal processing

algorithms on FPGA hardware, optimizing the performance of planar array system. The design

process involves careful consideration of parallelism, data throughput, and computational

efficiency to achieve the desired processing speed and accuracy. The approach also incorporates

the integration of signal preprocessing steps, array signal processing techniques, and post-

processing operations, all tailored to the specific requirements of sonar systems.

Resource Optimize FPGA Implementation of Sonar System

 page-37 of.82

3.2 Conversion process of MATLAB code

3.2.1: Implementation of Multi beam Sonar using FPGA

As FPGA is a much better option to run and simulate digital circuits, so we do need to convert

MATLAB codes usually into Verilog, to make them appropriate to modeled on Field

Programmable Gate Arrays devices. Complex digital circuits and algorithms have an enormous

amount of addition and multiplication operations that accelerate the processes needed to execute

algorithms. Modern FPGAs have DSP blocks that can process a large number of addition and

multiplication operations in no time. The process of conversion of MATLAB codes into Verilog

is a little complicated. As MATLAB works in the floating-point format, but FPGA deals with fixed

point values. We need to cater to this problem of conversion of floating-point values into fixed

numbers so that FPGA configures the results accurately in fixed point. This project mainly has

three parts,

I) The first one is to take FFT of desired bins,

II) The second is the beamforming process, and

III) The third and last is to take the IFFT of the previous step results.

Developing a Multi-Beam Sonar System based on Field Programmable Gate Arrays will provide

real-time processing and parallel computations of multiplication and addition. We need to optimize

our solution as much so that our system uses minimum resources for the implementation. An

effective and reliable Sonar System can be implemented by careful consideration of memory

Resource Optimize FPGA Implementation of Sonar System

 page-38 of.82

requirements and hardware selection.

Fig. 3.1 MATLAB Model

3.2.2: Matlab to Verilog workflow

The figure provides an overview of the FPGA architecture designed for the SONAR system,

detailing the various blocks integrated into the design. It includes both custom blocks developed

in Verilog and IPs such as FFT, IFFT, and beamforming algorithms. Different controllers have

been implemented to ensure the smooth and continuous flow of data processing.

In the beamforming section, we utilize delay vectors represented by beamforming coefficients,

where each beam corresponds to a specific direction of focus for signal reception or

transmission. A total of 9 beams are implemented, with each beam containing 444 coefficients.

Resource Optimize FPGA Implementation of Sonar System

 page-39 of.82

These coefficients are stored across 6 ROMs per beam, with each ROM holding 74 coefficients.

This results in a delay vector matrix of [9x6x74], where beamforming allows the system to

enhance the detection and localization of underwater objects by amplifying signals from target

directions and minimizing interference from others.

Multiplexers are used to select the desired beam for multiplication with FFT bins. For example,

selecting beam 1 is done by setting the multiplexer control line to '0001,' wiring the beam for the

multiplication process. Demultiplexers are employed to route the results from each beam to its

corresponding storage location, with 9 RAMs dedicated to storing the results for each beam. This

structured approach allows for precise control over beam selection and data flow in the system.

The given MATLAB code consists of 4 codes, in which the step-by-step process of the Sonar

system has been accumulated. As discussed earlier there are three main steps in the whole process.

Taking The Fast Fourier Transform of the signal, then operation of beamforming is done, and last,

signals are converted back into their originated form. Our Sonar system consists of 6 sensors,

which means, data is coming from six different sensors forming a single row or column. Usually

writing MATLAB code for digital operations or for complex algorithms takes less time as

MATLAB provides just simple commands for complex algorithms like for Fast Fourier Transform

"FFT" command is used for incoming signals. The input signal is composed of 16 bits. The input

length of each signal consists of 2048 samples.

3.2.3: FFT processing using Xilinx IP and Verilog for efficient utilization

Resource Optimize FPGA Implementation of Sonar System

 page-40 of.82

In FPGA, FFT algorithm takes complex input in which the most significant half bits are imaginary

and the least significant half bits are real parts. So, we consider an input as both a real and

imaginary part. Also input to the FFT is of 32 bits, 16 for real, and 16 for imaginary. As MATLAB

values are in floating point, so first, the input values we have for signals of 2048 samples will

converted to fixed point number, to make them capable of going into the process of FFT. In

Verilog, we don’t have a simple command for FFT, but we do have a Xilinx IP for FFT in Vivado.

The IP is customizable, we can use it to take FFT of 1024 length, 2048 length or length bigger

than it or lesser than it. We have also an option to change the bit width of input signals. The Xilinx

FFT IP of Vivado consists of many signals evaluating different phases capturing in our input

signals. It works like a Master and Slave interface. It acts like a Slave when taking input, while

signals act like a Master at that stage. Like While at the output, the core acts like a Master and we

are receiving the operated form of signals, so we act like a Slave. We can use more than one FFT

IP in our project, but to keep it resource-efficient, we reuse the FFT core, which takes very less

resources.

 We store our actual inputs of six signals into the Block RAMs. Inputs are kept inside RAMs in

the. Coe format. So, we have 6 block Rams before FFT IP in our design to store inputs. Now as

our signal original form is analogous, so we need to change it in binary format to make it eligible

for the FPGA process. We do take the help of ADC modules in starting of our project design. We

have use Verilog language syntax in our design, where needed. So, each input passes through ADC

modules first, then they stored in their block Rams. Each input starts their way as with each positive

edge of clock. So, we do need to keep them in different states before reaching into a single FFT

core. We make six controllers, one to each block Ram. Counters in each controller summed their

Resource Optimize FPGA Implementation of Sonar System

 page-41 of.82

rotation to a bigger value as we move from top to bottom in block Ram controllers. First signal

input goes straight into FFT core, without goes into any wait state.

 All the remaining inputs are under wait at that time. At the time we get the output from FFT of

first signal, wait for the second signal input will get over. Now the second signal goes into the FFT

core for the processing, and the remaining signal counters are still under the wait condition. Again

after, we get the FFT results for the second input, the third input start to go into the FFT core and

like this way, the whole process will go on till the last FFT output of channel 6 comes out from

the core. To control these controllers, we do use another controller named "big controller” that

smooth the process of signal processing.

3.3: Selective FFT bin extraction and beamforming using Verilog

As per the requirement of the project, we don’t need the whole FFT results of signals for further

processing. From 2048 output FFT length we just need to take out bins ranging from 697-769. So,

we make another controller named "bins controller" to do the task of filtering out the desired bins.

These bins we are required for beamforming process. So, what we do basically here in

beamforming, is to multiply the desired bins of FFT result with the coefficients values we have

stored in (ROMS). So, to do the whole process of taking FFT of six different channels by utilizing

a single FFT core is much complicated than taking the FFT in MATLAB. It just requires a single

command to do the task. Otherwise for filtering bins just require a four-line code to do it, in

MATLAB. For beamforming process in MATLAB requires just some commands too for a

multiplication process. Now in Verilog it requires a little work to do. Firstly, we store the desired

Resource Optimize FPGA Implementation of Sonar System

 page-42 of.82

bins into separate six memories.

3.3.1: Sequential Beamforming with selective FFT bins using Verilog

 Bins controller doing the work of bridge for signals from FFT IP core to these memories, where

bins will get stored. As per the description of the project there are nine angles from which the data

is coming. Practically, we use the term beams for angles. These desired bins will have to be

multiplied with each one of beams. So, each beam should consist of six ROMS holding the

coefficients, so that it multiplied with its corresponding RAMS of desired bins. We have total of

9 beams, and each beam comprised of 6 ROMS holding the coefficients. In that way bins will be

multiplied with each beam one by one. To keep the design resource efficient, we used six complex

multipliers for whole multiplication. Angle 1 coefficients first multiplied with desired bins

memories, with the help of complex multipliers, then angle 2 coefficients will get under way for

the multiplication with desired bins memories. So, angle coefficients multiplied serially, one after

one. This way, it takes little time, but we can save much resources, which we can’t with parallel

computations. To control the multiplication process, we designed one more controller named

“multiply-controller”, and 6 Multiplexers, for alternately and timely selection for multiplications.

Multiply controller vary from 9 different states, in each stage the desired coefficients of a beam

get multiplied with the desired bins.

Resource Optimize FPGA Implementation of Sonar System

 page-43 of.82

CHAPTER 4

IMPLEMENTATION DETAILS

4.1: Introduction

The implementation phase of the thesis focuses on translating the theoretical concepts and design

methodologies discussed in the preceding chapters into a practical, functional system. This

chapter details the step-by-step process of implementing a planar array signal processing system

within a SONAR application, using Field Programmable Gate Arrays (FPGAs) as the primary

platform. Given the inherent complexity and high computational demands of SONAR systems,

particularly in real-time signal processing scenarios, FPGAs present a compelling solution. They

offer parallel processing capabilities and the flexibility to customize digital circuits for specific

tasks, making them an ideal choice for handling the rigorous requirements of multi-beam

SONAR systems.

Resource Optimize FPGA Implementation of Sonar System

 page-44 of.82

Fig. 4.1 Verilog Code Block diagram.

4.2: System Implementation

The architecture of multi-beam sonar implemented on FPGA may vary depending on the specific

project requirements. In this project linear array multi-beam sonar is implemented, in which data

is coming from six different channels.

4.2.1: Software Configuration

For each channel, the input data first passes through an Analog digital converter, which converts

that signal to a 16-bit digital signal and the length of each signal is 2048 samples. After passing

through ADC these 2048 samples are stored in the memories (Block RAM) placed after each

channel.

Resource Optimize FPGA Implementation of Sonar System

 page-45 of.82

For controlling the writing and reading of data from and into memories we make memory

controllers to control the flow of data.

Fig. 4.2 Data Flow

To the continuous flow of data, the length of the memories should be double corresponding to the

input sample length which is 4096. While focusing on the first target of the project, we take the

FFTs of six channels by utilizing a single FFT IP from Xilinx. To control the input data while

taking FFT, there is a controller named the FFT controller. This controller is responsible for the

flow of data before reaching the FFT IP. All the memories are filled at the same time with 2048

samples, after this state machine takes the controller to the read state. Memories data out will go

directly into their corresponding inputs of the FFT controller. As all the memories have their

corresponding data out at the same time, the controller is designed to take the inputs one by one

from the memories and go to the FFT IP. There are individual valid for all the outputs of the

memories so that the data will come when their corresponding valid becomes high. At the output

Resource Optimize FPGA Implementation of Sonar System

 page-46 of.82

of the FFT controller, serial data is coming out that goes directly to the input of the FFT IP. FFT

IP takes data serially.

Fig. 4.3 FFT Controller

As our computation time is 19 milliseconds, the memory size should be 4096 locations. To

establish the continuous flow of data, data will be out from memories after it is half-filled. The

data in memory 1 will go to the read mode when the write addresses reach to 2048 location. It will

continue to write data into memory and when the write addresses reach to 4096 location it will

again start streaming out data to FFT IP. Each memory is of 16 widths as our input data is of 16

bits and 4096 locations are there in every memory.

 4.2.2: FFT Integration

Resource Optimize FPGA Implementation of Sonar System

 page-47 of.82

Xilinx provides a variety of IPs (intellectual properties). IPs make work much easier for the users

and for the digital designers. They are easier to use as coding requires much time to analyze the

design. For fast Fourier transform we set the s_axis_config_tvalid to ‘1’. Calculating the FFT of

different channels requires careful consideration. Setting an appropriate scaling range is the

important factor for efficient FFT results of six inputs. S_axis_config_tdata is used to set the range

of scaling factors and the choice to take the FFT or IFFT. There are also different events available

here in the IP. Events are used to test different scenarios of the data.

Fig. 4.4 FFT IP Core

The data of channels goes serially into the FFT core, so the memory controllers undergo wait

conditions till the transfer of the first channel data and so on. The second channel input enters in

FFT core, after we receive the output of the first input. To operational the FFT IP core there are a

few settings inside the IP core that you need to address before using it in the project. According to

the project requirements, we change the setting of the IP core.

Resource Optimize FPGA Implementation of Sonar System

 page-48 of.82

Fig. 4.5 FFT IP Core Settings

The clock frequency is 100 MHz, transform length is 2048 FFT point. Pipelined streaming, I/O is

fast but utilizes more hardware resources as compared to Burst I/O which reuses the butterfly but

saves resources.

Fig. 4.6 FFT IP Core setting 2.

Resource Optimize FPGA Implementation of Sonar System

 page-49 of.82

The input of FFT is a complex number. Before sending the data to the FFT core, we concatenate

the input 16 bits with 16 zeros for imaginaries values. As the data is a 32-bit complex number, so

input data width is 16, which means 16 bits is for the real part and 16 bits for the imaginary one.,

which makes 32 bits of total input. Phase factor width is also 16. For scaling options, we select

scaled. A proper scaling factor also be chosen according to the input data samples length. The

natural order will take more clock cycles than the bit reversed the order and it also takes more

Block RAMs but it gives more clarity to the output. If we select the bit reversed order it will take

4 Block RAMs.

Fig. 4.7 Resources summary with bit reversed order.

Fig. 4.8 Implementation details.

For the 2048 transform length, the number of clock cycles it takes is 4221. So, the latency is

42.210 microseconds.

Resource Optimize FPGA Implementation of Sonar System

 page-50 of.82

We take FFT as well as IFFT from IP core. If we want to take Fast Fourier Transform the

s_axis_config_tvalid value is said to be 0. For Inverse Fast Fourier Transform the value of the

s_axis_config_tvalid value should be 1. For IFFT computation the scaling schedule of the data

should be chosen unscaled. It will create glitches in the result if it is scaled. The FFT result of the

first input frame will take a little bit of time after the last input, it is because of the inner buffer

circulating before delivering the result.

4.3: Beamforming Implementation

 We need to take the desired bins of FFT results of 2048 samples for further operations. For this,

a controller is made named a ‘FFT_OUT_CONTROLLER’ to take desired bins i.e. 679-769

(corresponds to 38 KHz to 42 KHz frequency) of the FFT result of each channel. These bins are

then stored in Block RAMs before the process of beamforming. Six Block RAMs are utilized to

store the result of FFTs bins. Now as the data coming from the FFT IP is also serially, we need to

take the desired bins of FFT of all channels corresponding to their data. The FFT out controller is

designed in such a way that it takes out the desired bins FFTs of the first channel and then waits

till the next desired bins are available and so on. This process will carry on until the last possible

bins are captured and sent to their corresponding memories.

Resource Optimize FPGA Implementation of Sonar System

 page-51 of.82

Fig. 4.10 FFT_OUT_CONTROLLER

Fig. 4.9 FFT_OUT_CONTROLLER to BRAMs

Resource Optimize FPGA Implementation of Sonar System

 page-52 of.82

Fig. 4.11 FFT_BRAM IP

The FFT_OUT_CONTROLLER is instantiated with these block RAMs so the data is stored there.

The counter in the FFT_OUT_CONTROLLER goes to the next state in every 74 counts. As how

the block RAMs will fill down after 444 counts. Various settings of block RAM are there which

you can change according to the process need. Standalone mode type is selected and the memory

type we take is simple single Port ROM. Next, you can set the ports' width and depth according to

your requirements. In our case, we set the width to 32 and the depth to 74 locations.

Resource Optimize FPGA Implementation of Sonar System

 page-53 of.82

Fig. 4.12 Block RAM IP Detail 1

Fig. 4.13 Block RAM IP Detail 2

4.3.1: Implementation of Beamforming Algorithm

Resource Optimize FPGA Implementation of Sonar System

 page-54 of.82

For beamforming operation, there are nine beams required in the project. These beams carried

coefficients that would be multiplied with the desired FFT bins that is stored in Block RAMs. Each

beam is composed of six memories that will be multiplied by the six-channel data at a time and so

on. To store the coefficients of the beams we again used simple single Port Block RAM. Each

beam utilized six Block RAMs IPs, so a total of 54 block RAMs IPs is used to store coefficients

in the beamforming process. A multiplier controller (MULT_INPUT_CONTROLLER) is there to

control the whole multiplication process. When the last FFT bin memory is filled fully by the input

data, it will generate a tick signal that goes to the input of the multiplier controller. This enables

the read valid of both memories and the counter in the controller starts counting the addresses that

go to the read addresses of the memories. We take the help of 6 multiplexers to select the

coefficient values for multiplication. There are nine total states in a multiplier controller that cover

the multiplication of all the beams with the FFT bins. Each MUX is composed of 9 inputs. While

in the first state of a multiplier controller, select all the first inputs of the 6 muxes. In this way, it

selects the first whole beam for further process to be multiplied with the FFT bins. Same way the

second state, selects all the second inputs of the 6 muxes, the same way the whole second beam

will be selected for the multiplication, and so on.

 For multiplication, we used a complex multiplier IP from Vivado. A total of six multipliers

are used for the multiplication process. The output of the FFT bins memories goes into one input

of the multiplier, and the output of the muxes will go into the second input of the multiplier.

Muxes are used to select the values of the beams.

Resource Optimize FPGA Implementation of Sonar System

 page-55 of.82

Fig. 4.14 Beam formation.

 FFT bins and beams coefficients (stored in delay vector beam) should come to multipliers input

at the same time. A common enable is used for the bins output and coefficients output to ensure

the right flow of data to the multiplication. So, to control the flow of reading from both memories

the right event should be necessary. In this way, the multipliers get the input data in a sequence.

Resource Optimize FPGA Implementation of Sonar System

 page-56 of.82

The first six memories of beam 1 will be multiplied by the six memories of the channels FFT data,

and the results will be added up together forming an array of [n…… 74]. Likewise, 9 different

arrays will be generated. The multiplication results are added up together by using an adder IP

from Xilinx. We are having 9 added arrays at the end. After the addition, the data will be stored

again in Block RAMs (BRAM BEAM). To control the flow of data after the addition process there

is another controller (BEAM DATA WRITER) to place the data to the 9 Block RAMs (BRAM

BEAM). Each beam multiplication result will be stored in its corresponding BRAM. The multiplier

valid signal goes into the controller input. The controller starts operating the flow after it receives

a valid signal. The state of the controller goes to the next state after each memory is filled up with

the data.

Fig. 4.15 Beam data writer

Resource Optimize FPGA Implementation of Sonar System

 page-57 of.82

4.4: Inverse Fast Fourier Transform Implementation

Now in the third section of the design, we are required to do the baseband process. In the baseband,

we take the IFFT of the data. But the problem is we have only desired bins of 74 lengths by which

we cannot take the inverse Fast Fourier transform. For IFFT, the Data will be of proper length as

it is before the FFT operation. So, to take the IFFT, we have to convert the data length to 2048

again. To do this we made another controller named as “IFFT CONTROLLER”. At every state,

the data out of the controller is set to 0 till the counter reaches the 695 value. From 696 to 769

values it takes data from block RAMs and then again it puts zeros to the data till the counter again

reaches 2048 length. As how it goes to the IP to take Inverse Fast Fourier Transform.

Fig. 4.16 IFFT Controller

Resource Optimize FPGA Implementation of Sonar System

 page-58 of.82

Fig. 4.17 Block Design Model

That is the whole block design of the project by using Vivado. All the IPs and the RTL blocks are

added to the design to make a full design as per requirement.

Resource Optimize FPGA Implementation of Sonar System

 page-59 of.82

CHAPTER 5

EVALUATION RESULTS

5.1 Results

Result is analyzed and compare with MATLAB reference model at three different stages.

1) After taking FFT

2) After Multiplication

3) After taking IFFT

Fig. 5.1 Result comparison stages

Resource Optimize FPGA Implementation of Sonar System

 page-60 of.82

Values in Vivado are stored in a text file, which is subsequently imported into MATLAB. These

values are initially in fixed-point format. Therefore, they undergo conversion to floating-point

format before being compared with the MATLAB values.

In the FFT output, both MATLAB and FPGA values match, as depicted in figures 27 and 28.

However, after multiplication, there is a variance between the MATLAB and FPGA values,

illustrated in figures 45. This discrepancy, amounting to 10-5, falls within an acceptable range. The

output after the IFFT matches with max error of 0.03658 as shown in figure 46.

Fig. 5.2 FFT output result comparison (Real values)

Resource Optimize FPGA Implementation of Sonar System

 page-61 of.82

Fig. 5.3 FFT output result comparison (Imaginary values)

To validate the accuracy of the results obtained from the FPGA, it is essential to compare the

outcomes from both MATLAB and the FPGA. The primary challenge in this comparison lies in

the difference in numerical formats used by the two systems: MATLAB operates with floating-

point numbers, while the FPGA provides results in a fixed-point number system.

Since we are dealing with complex numbers, our output consists of both real and imaginary

components. To ensure a thorough comparison, we examine the real and imaginary parts

separately. Specifically, we compare the real components of the FPGA output with those from

MATLAB, and then do the same for the imaginary components. In the accompanying figure, the

results from both MATLAB and the FPGA are displayed, showing a close agreement between

the two. The observed discrepancies are minor and fall below the acceptable error threshold.

Resource Optimize FPGA Implementation of Sonar System

 page-62 of.82

To facilitate this comparison, the FPGA results are stored in files generated using Vivado. These

files are then imported into MATLAB for further analysis. In MATLAB, we plot the results,

which provides a clearer visual representation and aids in analyzing the outcomes.

For the MATLAB results, we first extract the real components from the complex output and

convert them into a fixed-point format. Subsequently, we visualize the data using graphical

representations, enhancing our ability to analyze and understand the results effectively.

Fig. 5.4 Multiplication results comparison Real of BEAM1

Resource Optimize FPGA Implementation of Sonar System

 page-63 of.82

Fig. 5.5 Multiplications results comparison imaginary of BEAM1

Fig. 5.6 Multiplications result comparison real of BEAM2

Resource Optimize FPGA Implementation of Sonar System

 page-64 of.82

Fig. 5.7 Multiplications result comparison Imaginary of BEAM2

Fig. 5.8 Multiplications result comparison Real of BEAM 3

Resource Optimize FPGA Implementation of Sonar System

 page-65 of.82

Fig. 5.9 Multiplications result comparison Imaginary of BEAM3

Fig. 5.10 Multiplications result comparison real of BEAM 5

Resource Optimize FPGA Implementation of Sonar System

 page-66 of.82

Fig. 5.11 Multiplications result comparison Imaginary of BEAM 5

Fig. 5.12 Multiplications result comparison real of BEAM 6

Resource Optimize FPGA Implementation of Sonar System

 page-67 of.82

Fig. 5.13 Multiplications result comparison Imaginary of BEAM 6

Fig. 5.14 Multiplications result comparison real of BEAM 7

Resource Optimize FPGA Implementation of Sonar System

 page-68 of.82

Fig. 5.15 Multiplications result comparison Imaginary of BEAM 7

Fig. 5.16 Multiplications result comparison real of BEAM 8

Resource Optimize FPGA Implementation of Sonar System

 page-69 of.82

Fig. 5.17 Multiplications result comparison imaginary of BEAM 8

Fig. 5.18 Multiplications result comparison real of BEAM 9

Resource Optimize FPGA Implementation of Sonar System

 page-70 of.82

Fig. 5.19 Multiplications result comparison Imaginary of BEAM 9

Fig. 5.20 IFFT Results comparison IFFT: MATLAB vs FPGA

Resource Optimize FPGA Implementation of Sonar System

 page-71 of.82

The graph above illustrates the final results of the Inverse Fast Fourier Transform (IFFT) as

computed by MATLAB and the FPGA. A minimal error is observed, which falls well within the

acceptable range, indicating that the outputs from both systems are in close agreement.

This consistency between MATLAB and FPGA results confirms the reliability of the FPGA's

performance in handling IFFT computations. By comparing the outputs from these two different

systems, we have demonstrated that the differences are negligible, underscoring the accuracy of

the FPGA's fixed-point calculations compared to MATLAB's floating-point operations. The

slight discrepancies observed are attributed to the inherent differences in numerical precision and

representation between floating-point and fixed-point systems, yet they remain minimal and do

not impact the overall validity of the results.

This level of accuracy is critical for applications that rely on precise signal processing, as even

minor errors can significantly affect performance. The close match between MATLAB and

FPGA outputs suggests that the FPGA implementation is robust and capable of delivering high-

precision results, making it a suitable choice for complex signal processing tasks where

efficiency and accuracy are paramount.

Resource Optimize FPGA Implementation of Sonar System

 page-72 of.82

Fig. 5.21 Timing of Process showing IFFT result of last beam received.

The simulation results indicate that the FPGA design model takes only 1.077 milliseconds to

compute the results, which is significantly less than our benchmark of 10 milliseconds. This

demonstrates the efficiency of our FPGA implementation in achieving fast computation times.

Given that the input sample length is 2048, the total input time is 19 milliseconds. Remarkably,

the FPGA completes the processing in under 2 milliseconds, highlighting its capability to handle

large datasets with minimal latency. This efficiency is crucial for real-time signal processing

applications, where rapid data processing is essential. The FPGA's ability to deliver results in

such a short timeframe confirms its suitability for high-speed computational tasks

Resource Optimize FPGA Implementation of Sonar System

 page-73 of.82

Fig. 5.22 FFT results of all 6 channels

Fig. 5.23 multiplication results mult1 and mult2

Resource Optimize FPGA Implementation of Sonar System

 page-74 of.82

Fig. 5.24multiplication results mult3 and mult4

Fig. 5.25 multiplication result mult5 and mult6

Resource Optimize FPGA Implementation of Sonar System

 page-75 of.82

5.2 Resource utilization

Table 1 Utilized Resources in Research

Resource Utilization Available Utilization %

LUT 3479 53200 6.54

LUTRAM 490 17400 2.82

FF 4462 106400 4.19

BRAM 61 140 43.57

DSP 15 220 6.82

IO 27 200 28.50

BUFG 2 32 6.25

MMCM 1 4 25.00

The table above provides a detailed breakdown of the FPGA resources utilized in our design,

including LUTs, BRAM, DSP blocks, and other critical components. Compared to previous

work, our design demonstrates superior resource efficiency, making it more optimized for the

intended application.

The optimization of our design is evident in the reduced usage of FPGA resources. This

efficiency is achieved through careful architectural planning and implementation, ensuring that

each component is utilized to its fullest potential without unnecessary overhead. By adhering

strictly to the architectural design, we minimized resource consumption, which not only reduces

costs but also enhances the performance and scalability of the FPGA implementation.

5.2.1 Comparison

Resource Optimize FPGA Implementation of Sonar System

 page-76 of.82

After a thorough review of numerous research papers, I have identified two highly relevant

studies that provide a meaningful basis for comparison with my research results. First paper is

“FPGA based Real time Sonar beamforming using high level Synthesis” [13]

The study by Chen and Wang (2018) presented an FPGA-based real-time sonar beamforming

solution using high-level synthesis. While their approach successfully implemented real-time

processing capabilities, it did so with relatively high resource utilization. Our research achieves a

more resource-efficient implementation, as detailed in the table below:

Table 2 Resources utilized in prior work

Resource Utilization

LUTs 11500

BRAM 190

DSP blocks 75

FF 22000

Despite differences in the number of parameters and specifications of both works, our research

demonstrates significant improvements. To ensure a fair comparison, we consider a hypothetical

scenario where all implementations use the same number of beams. Even under these conditions,

our design remains more resource efficient. This efficiency can be attributed to our optimized

architecture and efficient resource allocation strategies. Our implementation achieves lower

usage of Look-Up Tables (LUTs), Block RAM (BRAM), and DSP blocks, indicating that even if

all systems were configured to process the same number of beams, our design would still

outperform in terms of resource utilization.

Resource Optimize FPGA Implementation of Sonar System

 page-77 of.82

In contrast, our approach leverages advanced optimization techniques, such as pipeline

structuring and resource sharing, to minimize the use of LUTs, BRAM, and DSP blocks. This

not only reduces the overall footprint of the design but also allows for greater flexibility in

deploying the FPGA for other tasks, making it a more versatile and powerful solution.

In summary, the results shown in the table reflect a carefully crafted FPGA design that

outperforms previous implementations in terms of resource efficiency, without compromising on

performance or accuracy. This level of optimization makes our design particularly well-suited

for complex, resource-constrained environments.

Resource Optimize FPGA Implementation of Sonar System

 page-78 of.82

CHAPTER 6

CONCLUSIONS

 Our end target in this project is to take the IFFT. We used Vivado software for design and

Verilog language to code different modules and controllers for the system. There are three main

parts in designing the system model. First, take the Fast Fourier Transform of the input data, and

then the crucial step of beamforming architecture comes. After the designing of beamforming, we

take the IFFT of the data. The data is coming from six different input channels. Input data is 16

bits and composed of 2048 samples per channel. For beamforming, we have nine different angles,

by which each beam will multiply with desired bins of input channels forming a matrix of

[6x9x74].

For the FFT and IFFT operation, we used the available IP of fast Fourier transform in Vivado

software. We used a number of block RAMs for storing the data after occurring different

operations.

There are numerous Controllers that we design by Verilog language for controlling different types

of operations. Every step needs to be controlled by proper instructions or logic according to the

Resource Optimize FPGA Implementation of Sonar System

 page-79 of.82

requirements of the project. The processing time of computation is 10.285 milliseconds. The entire

duration from input to the IFFT completion is 1077 µs, equivalent to 1.077 milliseconds,

comfortably meeting the specified time constraint of 10.285 milliseconds.

Resource Optimize FPGA Implementation of Sonar System

 page-80 of.82

CHAPTER 7

REFERENCES

[1] Tian, Haowen & Shixu, Guo & Zhao, Peng & Gong, Minyu & Shen, Chao. (2021). Design

and Implementation of a Real-Time Multi-Beam Sonar System Based on FPGA and DSP.

Sensors. 21. 1425. 10.3390/s21041425.

[2] A. Asada, F. Maeda, K. Kuramoto, Y. Kawashim a, M. Nanri and K. Hantani, "Advanced

Surveillance Technology for Underwater Security Sonar Systems," OCEANS 2007 - Europe,

Aberdeen, UK, 2007, pp. 1-5, doi: 10.1109/OCEANSE.2007.4302220.

[3] Jacob, R., Thomas, T., & Unnikrishnan, A. (2009). Applications of Fractional Fourier

Transform in Sonar Signal Processing. IETE Journal of Research, 55(1), 16–27.

https://doi.org/10.4103/0377-2063.51320

[4] L. Bjørnø, "Developments in sonar and array technologies," 2011 IEEE Symposium on

Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related

Technologies, Tokyo, Japan, 2011, pp. 1-11, doi: 10.1109/UT.2011.5774169.

Resource Optimize FPGA Implementation of Sonar System

 page-81 of.82

[5] Abraham, Douglas. (2019). Introduction to Underwater Acoustic Signal Processing.

10.1007/978-3-319-92983-5_1

[6] A. Elfes, "Sonar-based real-world mapping and navigation," in IEEE Journal on Robotics and

Automation, vol. 3, no. 3, pp. 249-265, June 1987, doi: 10.1109/JRA.1987.1087096

[7] H. Al-Khatib et al., "The widely scalable Mobile Underwater Sonar Technology (WiMUST)

project: An overview," OCEANS 2015 - Genova, Genova, Italy, 2015, pp. 1-5, doi:

10.1109/OCEANS-Genova.2015.7271688.

[8] Jie, Zhu & Wei, Chen & Tao, Guo & Gui, Tang. (2011). Design of multi-channel data

acquisition system based on FPGA. 247 - 249. 10.1109/ICCSN.2011.6014433.

[9] S. Haykin, J.P. Reilly, V. Kezys, E. Vertatschitsch Some aspects of array signal processing

Source: IEE Proceedings F (Radar and Signal Processing), Volume 139, Issue 1, p. 1 –26 DOI:

10.1049/ip-f-2.1992.0001

[10] Tian, H.; Guo, S.; Zhao, P.; Gong, M.; Shen, C. Design and Implementation of a Real-Time

Multi-Beam Sonar System Based on FPGA and DSP. Sensors 2021, 21, 1425.

https://doi.org/10.3390/s21041425

[11] Paul Graham and Brent Nelson. 1998. FPGA-based sonar processing. In Proceedings of the

1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays (FPGA '98).

Association for Computing Machinery, New York, NY, USA, 201–208.

https://doi.org/10.1145/275107.275140.

[12] P. Chen, X. Tian and Y. Chen, "Frequency-Domain Sonar Processing in FPGAs," 2008 IEEE

Pacific-Asia Workshop on Computational Intelligence and Industrial Application, Wuhan, China,

2008, pp. 756-760, doi: 10.1109/PACIIA.2008.232.

Resource Optimize FPGA Implementation of Sonar System

 page-82 of.82

[13] J. Wang and K. Liu, "High-frequency Active Sonar Real-time Signal Processing System

Based on FPGA," 2018 IEEE International Conference on Signal Processing, Communications

and Computing (ICSPCC), Qingdao, China, 2018, pp. 1-4, doi: 10.1109/ICSPCC.2018.8567799.

[14] Chen, L., & Wang, J. (2018). FPGA-Based Real-Time Sonar Beamforming Using High-Level

Synthesis. IEEE Transactions on Instrumentation and Measurement, 67(5), 1208-1217.

Index

CCS,

Electrical Engineering

14%
SIMILARITY INDEX

9%
INTERNET SOURCES

6%
PUBLICATIONS

7%
STUDENT PAPERS

1 2%

2 2%

3 2%

4 1%

5 1%

6 1%

Sonar thesis
ORIGINALITY REPORT

PRIMARY SOURCES

www.accc.gov.au
Internet Source

Bjorno, L.. "Developments in sonar and array
technologies", 2011 IEEE Symposium on
Underwater Technology and Workshop on
Scientific Use of Submarine Cables and
Related Technologies, 2011.
Publication

Submitted to University of Limerick
Student Paper

S. Haykin, J.P. Reilly, V. Kezys, E.
Vertatschitsch. "Some aspects of array signal
processing", IEE Proceedings F Radar and
Signal Processing, 1992
Publication

usermanual.wiki
Internet Source

Submitted to Higher Education Commission
Pakistan
Student Paper

7 <1%

8 <1%

9 <1%

10 <1%

11 <1%

12 <1%

13 <1%

14 <1%

15 <1%

16 <1%

Saeed V. Vaseghi. "Multimedia Signal
Processing", Wiley, 2007
Publication

umpir.ump.edu.my
Internet Source

Submitted to University of Bolton
Student Paper

Submitted to Asia Pacific University College of
Technology and Innovation (UCTI)
Student Paper

www.mdpi.com
Internet Source

Submitted to University of Hertfordshire
Student Paper

ijisrt.com
Internet Source

Submitted to Glasgow Caledonian University
Student Paper

arizona.openrepository.com
Internet Source

Bjorno, L.. "Developments in sonar
technologies and their applications", 2013
IEEE International Underwater Technology
Symposium (UT), 2013.
Publication

17 <1%

18 <1%

19 <1%

20 <1%

21 <1%

22 <1%

23 <1%

24 <1%

25 <1%

26 <1%

www.coursehero.com
Internet Source

www.scribd.com
Internet Source

dokumen.tips
Internet Source

www.jasonmars.org
Internet Source

Submitted to 41850
Student Paper

Submitted to Derby College
Student Paper

Submitted to Florida Institute of Technology
Student Paper

Jing Zhang, Lei Huang, Long Zhang, Bo
Zhang, Zhongfu Ye. "Robust widely linear
beamformer based on a projection
constraint", 2015 IEEE International
Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2015
Publication

Lecture Notes in Computer Science, 1999.
Publication

repository.tudelft.nl
Internet Source

27 <1%

28 <1%

29 <1%

30 <1%

31 <1%

32 <1%

33 <1%

34 <1%

35 <1%

36 <1%

37 <1%

38 <1%

scholarworks.wm.edu
Internet Source

www.encyclopedias.biz
Internet Source

dl.acm.org
Internet Source

www.rspo.org
Internet Source

prr.hec.gov.pk
Internet Source

Submitted to University College London
Student Paper

ruor.uottawa.ca
Internet Source

theses.ncl.ac.uk
Internet Source

wiredspace.wits.ac.za
Internet Source

digital.library.adelaide.edu.au
Internet Source

www.geocities.ws
Internet Source

"Cryptographic Hardware and Embedded
Systems – CHES 2017", Springer Science and

39 <1%

40 <1%

41 <1%

42 <1%

43 <1%

Business Media LLC, 2017
Publication

Artde D.K.T. Lam, Stephen D. Prior, Siu-Tsen
Shen, Sheng-Joue Young, Liang-Wen Ji.
"Engineering Innovation and Design", CRC
Press, 2019
Publication

Jun Wang, Kun Liu. "High-frequency Active
Sonar Real-time Signal Processing System
Based on FPGA", 2018 IEEE International
Conference on Signal Processing,
Communications and Computing (ICSPCC),
2018
Publication

Lei Guan. "FPGA-based Digital Convolution for
Wireless Applications", Springer Science and
Business Media LLC, 2017
Publication

SHISHIR B SAHAY, T MEGHASYAM, RAHUL K
ROY, GAURAV POONIWALA, SASANK
CHILAMKURTHY, VIKRAM GADRE. "Parameter
estimation of linear and quadratic chirps by
employing the fractional fourier transform
and a generalized time frequency transform",
Sadhana, 2015
Publication

Wu-Sheng Lu, Andreas Antoniou. "Two-
Dimensional Digital Filters", CRC Press, 2020

44 <1%

45 <1%

46 <1%

47 <1%

48 <1%

49 <1%

50 <1%

51 <1%

52 <1%

Publication

digitalcommons.uri.edu
Internet Source

mafiadoc.com
Internet Source

opus.lib.uts.edu.au
Internet Source

orca.cf.ac.uk
Internet Source

repositorio.comillas.edu
Internet Source

audentia-gestion.fr
Internet Source

dokumen.pub
Internet Source

Morteza Babaee Altman, Wenbin Wan,
Amineh Sadat Hosseini, Saber Arabi Nowdeh,
Masoumeh Alizadeh. "Machine learning
algorithms for FPGA Implementation in
biomedical engineering applications: A
review", Heliyon, 2024
Publication

Stergios Stergiopoulos. "Advanced Signal
Processing Handbook - Theory and

Exclude quotes On

Exclude bibliography On

Exclude matches Off

Implementation for Radar, Sonar, and Medical
Imaging Real Time Systems", CRC Press, 2019
Publication

	THESIS DRAFT-H
	Sonar thesis

