
 

 

BSCS-F19-033 

03-134162-065 Mohammad Abdullah 

03-134162-084 Moiz Uddin 

 

Automated Diagram Generator Using 

Natural Language Processing 

 

In partial fulfilment of the requirements for the degree of  

Bachelor of Science in Computer Science 

 

Supervisor: Nadeem Sarwar  

 

Department of Computer Sciences 

Bahria University, Lahore Campus 

 

 

July 2020 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Bahria University, 2020



i 

C e r t i f i c a t e  

 

 

We accept the work contained in the report titled 

“Automated Diagram Generator Using Natural Language Processing” 

written by 

Mohammad Abdullah 

Moiz Uddin 

 

as a confirmation to the required standard for the partial fulfilment of the degree of 

Bachelor of Science in Computer Science. 

 

 

Approved by: 

Supervisor:  Nadeem Sarwar  

   (Signature) 

 

July 20, 2020 

 

 



ii 

 

DECLARATION 

We hereby declare that this project report is based on our original work except for 

citations and quotations which have been duly acknowledged.  We also declare that it 

has not been previously and concurrently submitted for any other degree or award at 

Bahria University or other institutions. 

 

 

 

 

Enrolment Name Signature 

03-134162-065 Mohammad Abdullah  

03-134162-084 Moiz Uddin  

 

 

 

 

Date: July 20, 2020 



iii 

 

 

Specially dedicated to  

my beloved grandmother, mother, and father 

(Mohammad Abdullah) 

my beloved grandmother, mother, and father 

(Moiz Uddin) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

ACKNOWLEDGMENTS 

 

We would like to thank everyone who had contributed to the successful completion 

of this project.  We would like to express my/our gratitude to my research supervisor, 

Mr. Nadeem Sarwar for his invaluable advice, guidance, and his enormous patience 

throughout the development of the research. 

 

Besides, We would also like to express my gratitude to our loving parents and 

friends who had helped and encouraged me.  

 

 

 

Mohammad Abdullah 

Moiz Uddin 

 

 

 

 



v 

Automated Diagram Generator using Natural Language Processing 

 

 

ABSTRACT 

 

 

In today’s world, Natural Language Processing (NLP) plays an important role in 

fields such as business, education, sports, marketing, or anywhere that involves 

human activity. Diagrams are the most important process in information system 

design and software engineering. Designing is a part of five generic activities of 

software development. Software Engineer needs to generate software diagrams like 

Entity Relationship, use case, class diagrams. These diagrams help us to display the 

contents of the data. They also help us to visualize how the data of our system is 

connected and make relations among them. In this project, we develop an application 

by applying NLP techniques which is helpful to generate a software diagram. For 

this purpose, we are using a structural approach of parsing the sentences (Sentence 

Segmentation) and tag the chunk of words into different parts of speech (POS 

Tagger). It can also be used to map these words into functionalities, entities, 

attributes, and relationships. We are using different types of NLP toolkits. The most 

important advantage of this project is to reduce the human effort and saves a lot of 

time.



vi 

TABLE OF CONTENTS 

 

DECLARATION ii 

ACKNOWLEDGEMENTS iv 

ABSTRACT v 

TABLE OF CONTENTS vi 

LIST OF TABLES viii 

LIST OF FIGURES ix 

 

 

CHAPTERS 

1 INTRODUCTION 1 

1.1 Background 1 

1.2 Problem Statements 2 

1.3 Aims and Objectives 2 

1.4 Scope of Project 3 

2 LITERATURE REVIEW 4 

2.1 Related Work 5 

2.2 Limitation 9 

3 DESIGN AND METHODOLOGY 10 

3.1 Design 10 

3.1.1 Use Case Diagram 10 

3.1.2 Sequence Diagram 15 

3.1.3 Domain Model 16 

3.1.4 Class Diagram 17 

3.1.5 Relational Data Model 18 

3.2 Methodology 19 

3.2.1 Tools & Techniques 20 

3.2.2 Elements of ER-Diagram 22 



vii 

4 IMPLEMENTATION 24 

4.1 Hardware 24 

4.2 Programming Language (Python) 24 

4.2.1 Frontend 24 

4.2.2 Backend 25 

5 RESULTS AND DISCUSSIONS 26 

5.1 Home Screen Layout 26 

5.2 Main Screen Layout 27 

5.3 Case Study 1 (Valid Software Requirements) 28 

5.3.1 Insert Software Requirements 28 

5.3.2 Sentence Segmentation (Tool) 29 

5.3.3 POS Tagger (Tool) 30 

5.3.4 Choose Specific Part of Speech 31 

5.3.5 Choose a color pattern for ERD 32 

5.3.6 Generated ERD 33 

5.4 Case Study 2 (Valid Software Requirements) 34 

5.4.1 Insert Software Requirements 34 

5.4.2 Sentence Segmentation (Tool) 35 

5.4.3 POS Tagger (Tool) 36 

5.4.4 Choose Specific Part of Speech 37 

5.4.5 Choose a color pattern for ERD 38 

5.4.6 Generated ERD 39 

5.5 Evaluation 40 

6 CONCLUSION AND RECOMMENDATIONS 42 

6.1 Future Work 42 

6.2 Conclusion 42 

REFERENCES 43 

APPENDICES 45 

 



viii 

LIST OF TABLES 

 

 TABLE TITLE PAGE 

Table 3.1: Insert Software Requirements 11 

Table 3.2: Split Requirements into Sentences 11 

Table 3.3: Build Sentences with POS Tags 12 

Table 3.4: Select Specific Part of Speech Tag 12 

Table 3.5: Choose Colors 13 

Table 3.6: Generating Software Diagram 13 

Table 3.7: Save Diagram 14 

Table 3.8: Print Diagram 14 

Table 5.1: Case Studies Confusion Matrix 40 

Table 5.2: Accuracy of Case Studies 41 



ix 

LIST OF FIGURES 

 

 FIGURE TITLE PAGE 

Figure 3.1: Use Case 10 

Figure 3.2: Sequence Diagram 15 

Figure 3.3: Domain Model 16 

Figure 3.4: Class Diagram 17 

Figure 3.5: Relational Data Model 18 

Figure 3.6: Proposed Methodology 20 

Figure 5.1: Home Screen Layout 26 

Figure 5.2: Main Screen Layout 27 

Figure 5.3: Insert Software Requirements 28 

Figure 5.4: Sentence Segmentation 29 

Figure 5.5: POS Tagger 30 

Figure 5.6: Choose Specific POS Tag (Noun) 31 

Figure 5.7: Choose Black and White Style 32 

Figure 5.8: Generated ERD 33 

Figure 5.9: Insert Software Requirements 34 

Figure 5.10: Sentence Segmentation 35 

Figure 5.11: POS Tagger 36 

Figure 5.12: Choose Specific POS Tag (Verb) 37 

Figure 5.13.: Select Black and White with Grey Style 38 

Figure 5.14: Generated ERD 39 



1 

CHAPTER 1 

1  

1 INTRODUCTION 

 

1.1 Background 

In this section, we discuss and review the previous work of implies with natural 

language on UML diagrams. Specifically on the Entity-Relationship Diagram. Most 

of the work has done on different software with the inclusion of relational database 

schemas like commercially used software like ERD plus, Microsoft Visio, Lucid 

chart, and many more. Different researchers used a different methodology to make a 

different tool that draws an ER Diagram. Entity-Relationship Diagram is an 

organized way to represent the relational data many researchers present many 

components based tools but draw an ER Diagram from natural language software 

requirement is a new way to draw ER Diagram model.  

Many Researchers work on UML diagrams with different strategies. Eman 

Btoush presents a method to generate an ER diagram from requirement specification 

by using natural language processing tools like sentence segmentation, tokenization, 

chunking, parsing, and then apply a heuristic rule (means to solve a problem in a 

limited time by using some shortcuts) to identify (entities, attributes, and 

relationships) [1]. 

Peter Pin-Wan Chen develop 11 rules for the ER Diagram model which is 

built from English based software description. Peter Chen develop rules for ER 

Diagram elements like entities, attributes, and relationships. It used a noun as entities, 

adjectives as an attribute and for relationship used a transitive verb [2]. P. More and 

R. Phalnikar used the NLP and domain ontology techniques to generate a RAPID 

system to develop a UML diagram from textual user requirements. Later on, 

extended to specific class diagrams [3].  

 

 

 

 

 



2 

1.2 Problem Statements 

Generating UML diagrams from software requirement specification without user 

intervention is a very difficult task because natural language text not easily cater 

when it is large. Most of the research work and laboratory base tool is to generate 

automated UML Diagrams from user requirements. But there are a lot of issues with 

these tools and methodologies which are based on conceptual models of UML 

Diagrams. Mainly focus on generating automated entity-relationship diagrams in 

UML Diagrams. The main problem in the generation of entity relation diagram from 

the software requirement specification is to handle the large size requirement text. 

Most of the irrelevant objects detect which creates noise in the generation of ER-

Diagram which also affects the accuracy of the system. 

           The elements that help to construct the entity-relationship diagram is also very 

difficult to identify. Some of the identity by applying the heuristic rules but for key 

attributes and notations, there are a lot of problems faced due to sentence structure. 

In the Automated Diagram generator, we only focus on identifying entities, attributes, 

and relationships. Further, we have a verification problem rather the generated 

diagram or model of the relational database is correct or not. Many researchers faced 

the above-mentioned problems which are related to Natural Language Text. 

 

 

1.3 Aims and Objectives 

There are several aims & objectives of this project some of them are mentioned 

below: 

i. Understanding of software requirements. 

ii. Find entities and attributes with their relationships. 

iii. Assign different colors to those entities according to the rules. 

iv. Draw a software diagram.   

v. To provide minimum human involvement. 

vi. It is helpful for beginners in the field of software designing.  

 

 

 



3 

1.4 Scope of Project  

There are some important features of this tool are segmentation of sentences, 

tokenizing, POS Tagging, chunking, parsing, and generating of the diagram. In the 

POS tagging process, we will assign different colors to the tags which identify words 

to their corresponding part of speech. This tool is very useful in the fields related to 

software development and designing. It reduces the human effort and saves time. It 

can also be used by non-technical people in small business. The main problem that 

occurs in the process of automation is how accurate the diagram you generated. The 

main audience of our system will be the one who wants to design some kind of 

software. We should not only target software development firms but also for anyone 

who wants to design a diagram for their system. Our system will be fault-tolerant 

because it will not be disturbed due to the failure of a single functionality.  



4 

CHAPTER 2 

 

2 LITERATURE REVIEW  

 

Natural language processing (NLP) is the automation processing of human natural 

language. Software requirements are regularly specified in Natural Language so its 

descriptions often need to be examined, transformed, and rationalized into a form of 

design representation during the development of software applications. Recent 

studies also focused on automating the extraction of information from natural 

language text using Natural Language Processing to build a UML Diagram [4].  

There are some natural language processing (NLP) tools, which allow 

language analysis and provides automatic support to generate different Unified 

Modeling Language (UML) diagrams. Software diagrams are the most important 

process in the field of software development, especially in the designing phase. 

Unified Modeling Language offers numerous types of diagrams that are used to 

increase the understand-ability as well as the development of an application at the 

software construction phase. These software diagrams help to arrange the software 

information like Entities and attributes as well to make relations among them. It is 

also the graphical representation of the software. Entity Relationship and Class 

diagrams are the two most important UML diagrams which plays a vital role while 

designing a system database.  

Though, obtain any type of entity-relationship model it must be required to 

identify and extract the entities and attributes from a system's requirements that 

needs a piece of expert knowledge which is a lengthy process or can take much time 

or money while designing manually. Lack of expertise creates chances of errors that 

can be difficult to resolve later. Therefore it is necessary to have a tool that can 

automatically generate an ERD diagram based on natural language requirement 

specifications. In this project, we are developing a desktop application using NLP 

techniques to generate the diagram.  We are using NLP techniques for the extraction 

of UML diagrams from natural language requirements by implementing the 

structural approach. That approach begins with translating user requirements to 

words and applying with its specific Part Of Speech (POS).  

 



5 

The parsing process is proposed and a set of syntactic heuristics rules are 

applied to identifying entities, attributes, and relationships of the target system. We 

are using one of the most popular toolkits of python for Natural Language Processing 

i.e. NLTK. We will work on PyCharm which is an open-source IDE, especially for 

python. We will make sure to provide an efficient and fast way to produce a software 

diagram from the software requirements 

 

 

2.1 Related Work 

In this section, we discuss and review the previous work of implies with natural 

language on UML diagrams. Specifically on the Entity-Relationship Diagram. Most 

of the work has done on different software with the inclusion of relational database 

schemas like commercially used software like ERD plus, Microsoft Visio, Lucid 

chart, and many more. Different researchers used a different methodology to make a 

different tool that draws an ER Diagram. Entity-Relationship Diagram is an 

organized way to represent the relational data many researchers present many 

components based tools but draw an ER Diagram from natural language software 

requirement is a new way to draw ER Diagram model.  

Many Researchers work on UML diagrams with different strategies. Eman 

Btoush and M. M. Hammad present a method to generate an ER diagram from 

requirement specification by using natural language processing tools like sentence 

segmentation, tokenization, chunking, parsing, and then apply a heuristic rule to 

identify (entities, attributes, and relationships) [1]. 

Peter Pin-Wan Chen develop 11 rules for the ER Diagram model which is 

built from English based software description. Peter Chen develop rules for ER 

Diagram elements like entities, attributes, and relationships. It used a noun as entities, 

adjectives as an attribute and for relationship used a transitive verb [2]. P. More and 

R. Phalnikar used the NLP and domain ontology techniques to generate a RAPID 

system to develop a UML diagram from textual user requirements. Later on, 

extended to specific class diagrams [3].  

Sarita Gulia S. Gulia and T. Choudhury propose an automated UML Diagram 

generator from software requirement specification using NLP. It generates the 

activity and sequence diagram by using Stanford parser and Stanford POS tagger. It 

implements sequence and activity diagrams from user requirements. The sequence 



6 

diagram constructs with actor, object, and message. The author discovers some steps 

to identify the components of the sequence and activity diagram. For an actor it will 

use a subject, verb, and object will be detected by integrated words after the 

preposition. The message will be passed between the objects. The strategy for 

message detection used as a verb phrase in structure sentences. In the activity 

diagram, it will extract the different verbs from the requirement document. Also, 

activities derived from verbs [5].  

P. G. T. H. Kashmira and S. Sumathipala used three-module to recognize and 

more efficient ways to detect irrelevant and incomplete information. It used a 

machine learning module to make a sure minimum intervention of the user. The 

machine learning module identifies entities, attributes, and relationships by 

supervised learning. It used the different algorithms for elements of ER-Diagram. For 

the accuracy of algorithms, it used to recall and precision calculations. Which helps 

to consider the most accurate features extraction of ER-Diagram [6]. 

Nazia Omar and et all-purpose heuristic-based ER-converter which reduces 

the human effort and helps the non-technical database designers [7]. It determines the 

elements of the ER diagram by using Memory Base Shallow Parser (MBSP) [8]. It 

determines the features include an entity, attribute, relationship, cardinalities, and 

weights. For entities, attributes, and the relationship we see most methodologies the 

same but with different changes. It develops heuristic for cardinalities as an adjective 

“many” or “any” shows a maximum cardinality. Weights are labeled as a true event 

at a high confidence level. Their tool refers to semi-automated [7].  

D. K. Deeptimahanti and M. A. Babar develop a tool that generates UML 

Diagram models automatically build in java and NLP technologies to cater to the 

requirement specification. It used a tool that generates the models. The models 

generate through the NLP technique. The tool is a combination of a rational unified 

process and Iconix process. It develops the use-case diagram, conceptual model, 

collaboration diagram, and design class model [9].  

I. Song and M. Evans used the notation that is used for modeling and 

designing the relational database. It mainly focuses on cardinality. It will analyze the 

ER-Diagram method that is mostly used in the case study classified as a binary 

model, n-ary model. It will compare 10 different notations of an entity-relationship 

diagram. It collectively used different models of different researchers [10]. 



7 

N. Madnani describes the importance of Natural Language Diagram NLP. It 

discusses the problem related to NLP and solve through the NLP toolkit a few of are 

mentioned that will help a beginner to know about NLP from this paper. It also 

discusses the currently working flow that most of the researchers were written on. It 

gathered the resources of NLP which is helping to not spending time on taking 

resources from outside [11].  

N. Sarwar and I. S. Bajwa present an object role model that graphically 

shows the framework for different areas. It full fills all the essential things that could 

be possible for input. It helps all the areas that could use to show his requirement as 

graphically. It involves a comprehensive step to generate the diagram. It used 

semantic business vocabulary rules SBVR that is utilized for the data framework. It 

used SBVR parser with NLP techniques then change the SBVR metamodel to ORM 

metamodel. The author includes the extracting elements of SBVR semantic business 

vocabulary rule that is related to our work which is the extraction of a noun [12]. 

S. Geetha and G. S. Anandha Mala use an approach to present the structured 

database from Software Requirement Specification (SRS). It generates the automated 

schema from requirement but mainly focuses on identifying the key attributes 

primary key, foreign key (PK, FK). The author uses the same previous 

methodologies for the generation of the class diagram but additionally uses a schema 

generator that extracts the attribute of class and then identifies the primary key and 

foreign key. After identifying the key attribute it will represent the diagram in XML 

and load the attributes in the relational database [13].  

M. Ibrahim and R. Ahmad demonstrate the extraction of class diagram 

method and requirement analysis from Natural Language Text NLT and domain 

ontology. It develops a desktop software named. Requirement Analysis And Class 

Diagram (RACE). Domain ontology and NLP techniques used to generate an 

accurate automated class diagram. The author defines the identification rules of 

elements to help construct the automated class diagram. Wordnet and stemming 

algorithms used to validate and removing the distortion in text. The tool developed in 

C# that works on 100 words requirement [14]. 

F. Hogenboom talks about Natural Language Processing (NLP) based 

systems and applications. In all NLP system information extraction and information 

retrieval is the main focus to process the data to achieve a high accuracy level. In his 

research work, it used a statics-based approach, pattern-based approach, hybrid-



8 

based approach. Static-based approaches require a large amount of data in text to 

develop models. It is used for a data-driven approach. Contrast with the statistic 

approach pattern-based approach required human intervention to process the text 

means a knowledge-driven approach. The hybrid approach is a mixture of both 

statistics and pattern-based approaches [15].  

  R. Sajjad and N. Sarwar propose a check and balance method for UML 

diagrams models. These models create to ease the programmer the follow the flow of 

graphically that will help a lot but the model they work on is correct or not they have 

no check and balance. It used three modules to verify the software model. It extracts 

the relations through morphological analysis or solving problem from all possible 

solutions, syntax analysis, and semantic analysis. It mainly focused on elements of 

the UML class model [16]. 

All the systems and methodologies discussed above may use extraction 

techniques of Natural Language Text to build UML diagrams using NLP Tools and 

techniques. All the above used NLP techniques with some changes to automate the 

UML diagram from Software requirement Specification. Software Requirements are 

difficult to handle mostly a large amount of text. Many researchers propose the 

laboratory base tool to check on the requirements rather it is relevant or not but this 

requires more time to give worth accuracy in text. The generation of  ER-Diagram 

through without intervention of the user is a difficult task but the researcher presents 

some limited tools and methodologies. Identify the elements from ambiguous and 

non-structured text is very difficult to produce high accuracy results. From the above 

research, we conclude that all the researchers proposed their methodologies but did 

not mention any live tool or system that generates the ER diagram automatically and 

the majority of them produce the results based on assumptions. But we present the 

automated diagram generator which specifically generates the Entity-Relationship 

Diagram from requirement specification using NLP Tools and techniques. 

 

 

 



9 

2.2 Limitation 

Ambiguity and linguistic variation are the main problems in the Automated Diagram 

Generator (ADG). Incomplete or irrelevant software requirement is complex to 

handle in one system. A heuristic approach is far better to use in-text [1]. It is harder 

to find a primary key, foreign key, and cardinality. These elements are important to 

represent the relational database design through NLT [13]. Requirement analysis is 

the main step in the software development cycle [4]. 

 

 

 

 

 

 

 

 

 

 

 

‘ 

 

 

 

 

 



10 

CHAPTER 3 

 

3 DESIGN AND METHODOLOGY 

 

3.1 Design 

In the design part, some UML diagrams show a complete flow of ADG and how it 

can design the functionalities to fulfill the project. These UML diagrams are as 

follow: 

i. Use Case Diagram 

ii. Sequence Diagram 

iii. Domain Model 

iv. Class Model 

v. Relational Data Model 

 

3.1.1 Use Case Diagram 

A use case diagram shows the functionality that occurs in a system. The invocation 

of methods is shown including the actors which can perform these functionalities 

directly or indirectly but in our scenario, there will be users. The use case Diagram of 

ADG is as follows. 

 

 

Figure 3.1: Use Case 



11 

Below there are some tables that describe the use case diagram completely 

step by step of Automated Diagram Generator (ADG).  

 

 

Table 3.1: Insert Software Requirements 

Name and ID Insert Software Requirements (U1) 

Brief description Insert the software requirements in the provided workspace area. 

In which users enter the valid software requirements. 

Morphological analysis is applied to software requirement text. 

Preconditions ADG must be open or running.  

Basic flow or 

Happy path 

Users copy the software requirements (case study) paste in the 

text area or type the software requirements. 

Trigger The user has a software requirement. 

Post-conditions Software requirements are inserted in the text area. 

 

 

Table 3.2: Split Requirements into Sentences 

Name and ID Split Requirements into Sentences (U2)  

Brief description The users split the requirements into sentences to remove the 

ambiguity. 

Preconditions U1 or Software requirements are already inserted  

Basic flow or 

Happy path 

The user selects the Sentence Segmentation option. The system 

validates the natural language text. The system eliminates the non-

word tokens. Split the software requirements into sentences. 

Alternate flows If the system does not recognize the natural language text 

(English) an error pop up to indicate user to enter English text. 

Post-conditions Text is in sentences and ready to be tokenized. 

 

 

 



12 

Table 3.3: Build Sentences with POS Tags 

Name and ID Build Sentences with POS tags (U3) 

Brief description The user operates to transform sentences with appropriate tags 

and colors. 

Preconditions Software requirements are in the form of sentences and these are 

converted into tokens.  

Basic flow or 

Happy path 

The user selects the POS tag option. The system converts 

sentences into words or tokens. The system assigns the relevant 

tags to the tokens. The system assigns different colors to each 

tagged token. The system converts the tagged tokens into 

sentences  

Post-conditions Sentences with the colors represent the part of speech tag of each 

word. 

  

 

Table 3.4: Select Specific Part of Speech Tag 

Name and ID Select Specific Part of Speech Tag (U4) 

Brief description The user can select a specific part of speech tag to understand the 

color patterns of tags. 

Preconditions Colors and tags are assigned to the sentences.  

Basic flow or 

Happy path 

Default all the POS tags are selected. Users can choose the 

specific POS tag option. The system displays only the selected 

options words. The system converts the tagged tokens into 

sentences 

Post-conditions User can see the desired category of Part of Speech.  

 

 

 

 

 

 

 



13 

Table 3.5: Choose Colors 

Name and ID Choose Colors (U5) 

Brief description The user can choose the colors for entities and attributes.  

Preconditions Colors and tags are assigned to the sentences  

Basic flow or 

Happy path 

Default colors are selected. Users can choose specific colors 

among different options. The system saves the user selection  

Post-conditions The user saves the colors for the entities and attributes to the 

system. 

 

 

Table 3.6: Generating Software Diagram 

Name and ID Generating Software Diagram (U6) 

Brief 

description 

The user gets an ER diagram from the software requirements.  

Preconditions Colors and tags are assigned to the text and also colors for entities 

and attributes are selected already  

Basic flow or 

Happy path 

The user selects the generated diagram. The system parses the 

tagged text by applying rules. The system extracts the entities and 

attributes. The system assigns the user colors to entities and 

attributes. The system makes relationships for entities and 

attributes. Displays an ER diagram. 

Post-conditions An ER diagram is generated successfully. 

 

 

 

 

 

 

 

 

 



14 

Table 3.7: Save Diagram 

Name and ID Save Diagram (U7)  

Brief 

description 

The user can save the ER diagram. 

Preconditions The diagram must be generated. 

Basic flow or 

Happy path 

User set file name. User select save for saving diagram. Users 

select no for without saving. 

Post-conditions Diagram save successfully or not.  

 

 

Table 3.8: Print Diagram 

Name and ID Print Diagram (U8) 

Brief 

description 

The user can print the ER diagram  

Preconditions The diagram must be generated. 

Basic flow or 

Happy path 

The generated diagram must be printed 

Alternate flows While printing the ER diagram printer does not work properly. 

The user connects the printer.  

Post-conditions Diagram successfully printed. 

 

 

 

 

 

 

 

 



15 

3.1.2 Sequence Diagram 

A Sequence diagram depicts the sequence of actions that occur in a system. The 

invocation of methods in each object and the order in which the invocation occurs is 

captured in a Sequence diagram. The Sequence Diagram of ADG is as follows: 

 

 

 

Figure 3.2: Sequence Diagram 

 



16 

3.1.3 Domain Model 

The domain model shows concepts of domain related to their relationships. It is a 

package that contains all the workflows between different classes with their relations. 

The domain model of ADG is as follow:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Domain Model Figure 3.3: Domain Model 



17 

3.1.4 Class Diagram 

The class diagram shows the pattern of how we proceeds to the implementation 

phase and accomplish the final goal. It describes the logical and physical 

representation of variables with their methods or functionalities of each class. The 

class diagram of ADG is given below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Class Diagram 



18 

3.1.5 Relational Data Model  

The data model is a subset of the implementation model, which describes the logical 

and physical representation of persistent data in the system. The data model of ADG 

is given below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Relational Data Model 



19 

3.2 Methodology 

The approach (as shown in Figure 1) of our project automated diagram generator that 

generates the ER Diagram from user software requirement specification.  Software 

requirement in a textual syntactic structure which processed with natural language 

techniques. 

1. Software requirements split into sentences with no ambiguity by sentence 

segmentation technique.   

2. Split sentences are shaped on tokens. Every word of a sentence are made up as 

a token 

3. Token assigns with tags to ensure more clean sky to pick up entities, attributes, 

and relationships. 

4. Parsing technique and sematic analysis on POS tags to get the fine results.  

5. Semantic analysis and morphological analysis also apply on tags that help to 

heuristic rules to choose valid entities, attributes, and relationships. 

6. Common and proper noun candidates for entity type which identifies by event 

detection[1]. Object with informative attributes makes an entity [10]. 

7. Attributes can be identifying by event detector which may include a noun 

phrase or adjective and certain conditions[1][2]. 

8. The relationship can be identified by an event detector which includes 

transitive verb [1][2] 



20 

                 

 

Figure 3.6: Proposed Methodology 

 

 

3.2.1 Tools & Techniques 

Software and tools are used to develop the application (ADG, automated diagram 

generator) which are as follow: 

1) Sentence Segmentation 

2) Tokenization 

3) POS Tagger 

4) Parser 

5) Rules 

 

3.2.1.1 Sentence Segmentation (Tool) 

Sentence Segmentation is an analysis tool in natural language. Which is used to 

split the sentences, detect sentence boundaries, and make a noun (plural) into 

singular. Remove all ambiguity from the text. To make it easy to build tokens of 



21 

all non-words [1]. This sentence segmentation tool is a part of the ADG 

automated Diagram generator. The user fills the text area with software 

requirement then sentence segmentation removes all the punctuation and split 

the all text into sentences which further move to make tokens.  

 

3.2.1.2 Tokenization 

Tokenization is a natural language technique to divide the text into a sequence of 

words and characters. Tokenizer based on regular-expression. It breaks the 

sentences into words of tokens and then parser recognizes the root of the words 

and sentences [8]. In the ADG tokenization tool used after sentence 

segmentation to process its constituent tokens of split sentences. 

 

3.2.1.3 POS Tagger (Tool) 

Part-of-speech is a natural language processing tool that is used to differentiate 

in a text with the noun, adjective, etc. in the ADG automated diagram it is used 

to identify the noun, adjective, and verb to help in identifying elements of an ER 

diagram. This is used in the tokenization process [1]. It read the text and assigns 

a POS tag to each word [1].  

 

3.2.1.4 Parser (Tool) 

A parsing technique in natural language is used to gather the grammatical 

structure of the text in the form of sentences [1]. Natural language parser joined 

the words, sentences, etc after analysis. In the ADG parsing tool used to gather 

the pos-tags with morphological analysis. In ADG automated diagram software 

parsing used to select more competitive tags to choose for elements of the ER 

diagram. 

 

 

 

 

 

 



22 

3.2.1.5 Rules 

For Entities: In Automated Diagram Generator (ADG) entities are automatically 

identified by applying heuristic rules. Heuristic rules include a proper noun that 

may indicate the entity. a verb that acts like a noun ending withing a “gerund” 

satisfactory for the entity type. A noun such as “database”, “record”, “system”, 

“information”, “organization” and “detail” not suitable for the entity type. Proper 

noun like “Place”, “Name” not eligible for the entity type. 

For Attributes: Attributes are along with their entities that are also 

extracted from rules to automate the system. Attributes are nouns such as 

“employee id”, “identity No.”, “date”,” address”, “name”, etc. 

For Relationship: A relationship identification is also done by 

automating by applying rules. The connection between the two entities is likely 

called a relationship. In other words, a transitive verb indicates the relationship. 

A verb goes along with by a preposition such as "by", "to", "on" and "in" can 

indicate a relationship type. 

 

 

3.2.2 Elements of ER-Diagram 

By using different toolkits of natural language processing technique we will generate 

a diagram from user requirements. MBSP is a text analysis system that offers tools 

for chunking, splitting of sentences, part of speech tagging, tokenizing, and relation 

finding. We present a particular structure for generating a diagram from natural 

language in Figure 1. It begins by splitting the natural language text into sentences in 

the sentence segmentation process. Each sentence terminates with a period. It also 

eliminates the non-word tokens. These sentences then break into tokens in the 

tokenizing process. NLTK is a popular library that plays an important role in the 

completion of major parts of our project.  It has a function of word tokenizer which is 

very beneficial for the process of tokenization. This process separates each word of 

all sentences with spaces. Part of Speech (POS) Tagging is a process of labelling the 

word-tokens with its acronyms. We will also assign colors to these tokens.  The 

chunking process organizes these tag tokens into sentence units. This process is also 

used to indicate the type of tag token by selecting small chunks. The parsing process 

determines a parsing tree based on Syntactic rules or methodologies that help us to 



23 

relate sentence units with each other and generate a diagram. The most common 

elements required to generate a diagram are as follow: 

• Entities 

• Attributes 

• Relationships 

 

3.2.2.1 Entities 

An entity is an object that contains more than one attribute. An Entity type is 

derived from a noun which is discussed above that heuristic rule applies to figure 

out the proper object for the entity type. In ADG (Automated Diagram Generator) 

we presently work in entities. Later we have work on weak entities that are 

dependent upon another entity called parent entity. 

 

3.2.2.2 Attribute 

An attribute is a property that describes the characteristics of an entity. In ADG 

(automated Diagram Generator) attribute can be defined by heuristic rules which 

may choose adjective or noun phrase as an attribute as we discussed above. An 

entity must have a primary key attribute that is uniquely defined in the relational 

database. An attribute that is the primary key of one entity and relates to another 

entity is being defined as a foreign key of that entity. In ADG (Automated 

Diagram Generator) we only work in the identification of finding attributes by 

heuristic rules. 

 

3.2.2.3 Relationship 

A relationship is an association between entities and their attributes. In ADG 

(Automated Diagram Generator) we work on finding a relationship by applying 

heuristic rules which are discussed above. A transitive verb from software 

requirement might be a relationship between two entities. Adding more in a 

relationship described as cardinality. They are in the form of 1:1, 1:M, M: M. it 

will help in modelling of relational database design. 

 

 

 



24 

CHAPTER 4 

 

4 IMPLEMENTATION 

 

The implementation part or development phase of a project is a process to shaped 

designs into productive products. ADG is a software system or a desktop application 

so there are some technical constraints used in the development phase. These 

constraints are: 

1. Hardware 

2. Programming Language (Frontend and Backend) 

 

4.1 Hardware 

For Developing there is need of PC or personal Laptop with minimum 250 to 500 

GB Hard drive with 4 GB RAM for smooth running of libraries or toolkits of natural 

language processing and for the tools on which ADG developed.  

 

 

4.2 Programming Language (Python) 

We are using Python as a programming language for our project ADG. Python is a 

vast programming language. It is secure, speedy, and easy for developers because of 

its standard libraries which help the developers in developing. It is a fundamental 

technology that good in scratch programs including games, entertainment, business 

applications. it supports all operating systems. ADG software develops in python. In 

python, many GUI frameworks used to develop GUI for applications but for ADG 

we are using PyQt5 for frontend and PyCharm 2019.2.4 for the backend.  

 

4.2.1 Frontend 

PyQt5 is a python toolkit used for GUI frameworks. It has both the designer tool 

(from which you can drag and drop the objects and saves time) as well as 

programming surface (typically code for objects. We used different designer tools of 

PyQt5 for frontend. 

 

 



25 

4.2.2 Backend 

In our project, we integrate PyQt5 with PyCharm community 2019.2.4 which is the 

best programming environment for python. PyQt5 gives a lot of libraries for 

designing like for shapes that are used in the building of the ER diagram. Also some 

kind of functionality for applying colors for the POS Tagger tool. Basic python 

libraries including nltk etc are also used for backend. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



26 

CHAPTER 5 

 

5 RESULTS AND DISCUSSIONS 

 

5.1 Home Screen Layout 

There is a welcome screen with the message of  “Welcome to Automated Diagram 

Generator”. It also contains the menu bar which contains a “File menu”. The file 

menu contains two action bars “New Project” or “Exit”. Exit action bar terminates 

the systems or application whereas the other action bar take user to the next screen 

where the main components of ADG are present. 

 

 

Figure 5.1: Home Screen Layout 

 

 

 

 

 



27 

5.2 Main Screen Layout 

There are several objects in this screen consisting of three columns. In the first 

column, there are three buttons (for sentence segmentation, POS Tagger, and 

Generate ERD) with a combo box (to select colors for ERD). In the second column, 

there are two text fields or areas, one is for input (valid software requirement) and 

the other is for results of sentence segmentation as well as for POS tagger. The third 

and the final column of the screen have some color bars reflecting the assignment of 

a specific color to the text concerning their category of the tag.      

 

 

Figure 5.2: Main Screen Layout 

 

 

 

 

 

 

 



28 

5.3 Case Study 1 (Valid Software Requirements) 

In this case study, we are using simple requirements which are based on entities and 

relationships. This example shows how the entities are extracted from requirements 

and make relationships with each other.  

 

 

5.3.1 Insert Software Requirements 

First, we add the valid software requirements in our input text field as shown in 

figure 5.3. Before inserting these requirements all the buttons are disabled and 

inserting the requirements only sentence segmentation is enabled.  

“Assume that an employee may work in up to two departments or may not be 

assigned to any department. Each department contains phone numbers and 

employees have these phone numbers.” 

 

 

 

Figure 5.3: Insert Software Requirements 

 



29 

5.3.2 Sentence Segmentation (Tool) 

This tool converts the input requirements into sentences and removes the ambiguity 

by singularizing the plural words (e.g. in this example it will convert “departments” 

to department) because it will help in the process of extraction especially for entities. 

By clicking on the “Sentence Segmentation” button we perform the tool and it shows 

the results in the resultant text field. By doing segmentation, the POS tagger is 

enabled. 

 

 

Figure 5.4: Sentence Segmentation 

 

 

 

 



30 

5.3.3 POS Tagger (Tool) 

This tool uses the tokenization of the sentences and gives them POS tags with the 

help of the built-in library. Then assign specific colors to these tags. These colors 

concerning their part of speech tag can be shown in the third column. All these color 

bars represent their POS tag. Now the choose color and/or select a specific part of 

speech and/or even generate an ER diagram. 

 

 

Figure 5.5: POS Tagger 

 

 

 

 



31 

5.3.4 Choose Specific Part of Speech 

Select a specific POS tag by selecting the desired bar. In this case, we select “Noun” 

so it displays the result in the resultant text field. 

 

 

Figure 5.6: Choose Specific POS Tag (Noun) 

 

 

 

 

 

 

 

 

 

 

 

 



32 

5.3.5 Choose a color pattern for ERD 

Select a color pattern for ERD in this case we select the “Black and White” which is 

also a standardized color pattern. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Choose Black and White Style 



33 

5.3.6 Generated ERD 

Generated the ER diagram in a standardized black and white pattern. This case study 

takes one to two seconds to extract the entities, attributes, and relationships and 

generate the ERD. 

 

 

Figure 5.8: Generated ERD 

 

 

 

 

 

 

 

 

 

 



34 

5.4 Case Study 2 (Valid Software Requirements) 

In this case study, we are using software requirements for UPS which is an 

information system for having up-to-date processing of data for the current location 

of each shipped item. which are based on entities and relationships? This example 

shows how the entities are extracted from requirements and make the relationships 

with each other and also it shows the attributes as well. For that, we repeat a similar 

kind of steps that are used in a previous example.   

 

5.4.1 Insert Software Requirements 

Same as before we insert the valid software requirements. These are: 

“UPS prides itself on having up-to-date information data on the processing and 

current location of each shipped item. To do this, UPS relies on a company-wide 

information system. Shipped items are the heart of the UPS product tracking 

information system. Shipped items can be characterized by item number, weight, 

dimensions, insurance amount, destination, and final delivery date. Shipped items 

are received into the UPS system at a single retail center. Retail centers are 

characterized by their type, ID, and address. Shipped items are sent to their 

destination via standard UPS transportation events. These transportation events are 

characterized by a schedule number. a type and a delivery route.” 

 

 

 

 

 

 

 

 

 

Figure 5.9: Insert Software Requirements 



35 

5.4.2 Sentence Segmentation (Tool) 

This tool converts the input requirements into sentences and removes the 

ambiguity similar to in section 5.3.2. 

 

 

 

Figure 5.10: Sentence Segmentation 

 

 

 

 

 

 

 



36 

5.4.3 POS Tagger (Tool) 

POS tagger the tokenize of the sentences and give them POS tags as well as specific 

colors just as in section 5.3.3. 

 

 

Figure 5.11: POS Tagger 

 

 

 

 

 



37 

5.4.4 Choose Specific Part of Speech 

Select a specific POS tag by selecting the desired bar. In this case, we select “Verb” 

so it displays the result in the resultant text field with blue color. 

 

 

Figure 5.12: Choose Specific POS Tag (Verb) 

 

 

 

 

 

 

 

 

 

 

 



38 

5.4.5 Choose a color pattern for ERD 

Select a color pattern for ERD in this case we select the “Black and White with Grey” 

in which entities are filled with grey color. 

 

 

 

Figure 5.13: Select Black and White with Grey Style 

 

 

 

 

 

 

 

 

 

 



39 

5.4.6 Generated ERD 

Generated the ER diagram in black and white with a grey pattern. This case study 

takes 3 to 4 seconds to generate an ERD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

From the above layouts, we show the results of our software system that 

generates an ERD by integrating the POS Tagger and Sentence Segmentation. It also 

showed some other functionality like choosing a pattern and choosing a specific part 

of speech tags. Processing time for generating a diagram depends on the length of the 

case study. A case study with words up to 50 will take a fraction of a second. 

Similarly case study with words in the range of 100 to 200 will take 2 to 3 seconds of 

processing time.  

 

 

 

 

 

Figure 5.14: Generated ERD 



40 

5.5 Evaluation 

Generating Entity-Relationship Diagram with software requirements quite easy but 

to check and evaluate the results as output either correct or not is the main problem 

or deficiency where most of the automated system failed. To evaluate the results we 

have used precision and recall formulas to check the accuracy level or by other 

means to check accuracy by taking expert feedback on consecutive extracted or 

generated ER Diagrams from ADG. 

 

 

Table 5.1: Case Studies Confusion Matrix 

Case 

Studies 

Features True 

Positive 

False 

Positive 

False 

Negative 

True 

Negative 

Sample 1 

Entities 3 0 0 3 

Attributes 11 0 1 12 

Relationships 3 0 0 3 

Sample 2 

Entities 3 0 0 3 

Attributes 8 0 1 9 

Relationships 3 0 0 3 

Sample 3 

Entities 3 0 1 4 

Attributes 10 1 2 13 

Relationships 3 0 0 3 

Sample 4 

Entities 3 0 1 4 

Attributes 13 1 2 16 

Relationships 3 0 1 4 

Sample 5 

Entities 3 1 1 5 

Attributes 12 1 3 16 

Relationships 3 1 1 5 

 

 

To determine the accuracy we use the formulas of precision (TP/TP+FP),  

recall (TP/TP+FN), and accuracy (TP+TN/TP+TN+FN+FP). The accuracy level 

checked basis on elements of ER Diagram which are now part of data to be 

processed by the algorithms.  



41 

Table 5.2: Accuracy of Case Studies 

Case Studies Recall Precision Accuracy 

Sample 1 94.44 100 97.22 

Sample 2 93.33 100 96.66 

Sample 3 84.21 94.11 90.00 

Sample 4 82.60 95.00 89.58 

Sample 5 78.26 85.71 84.61 

 

 

In the above table 5.2, we have samples of five different case studies and 

their complexity will be increase with their numbers. As in the first, we have 97% 

accuracy just because of their text (software requirement) is short. The issue arises 

when we have a large English text valid software requirements then we probably fail 

to maintain accuracy factor because extraction from a large scale or complex 

software requirements can be difficult as there is still a lot of work that is needed to 

handle the extraction of such case studies.  In the future, we maintain our accuracy 

for large text software requirements also to fully reduce the user intervention. 

 



42 

CHAPTER 6 

 

6 CONCLUSION AND RECOMMENDATIONS 

 

6.1 Future Work 

In ADG automated diagram generator future work will be extended to work on 

cardinality [14]. More accurate our first step is software requirement which is to be 

suitable for the text area. The most important factor is accuracy in the generation of 

ER-Diagram it is not possible without a verification system that encounters the 

software requirement [17].  

This could be possible from heuristic rules but for a short project or short 

software specification. For this Artificial intelligence (AI) and Machine learning is 

used for a better understanding of software requirements. For nouns, we used SBVR 

(Semantic Business Vocabulary Rules) the extraction method of elements of ER 

Diagram [12][2]. 

 

6.2 Conclusion 

Design ER Diagram from software requirement specification. Entity-Relationship 

Diagram is a high-level technique to represent a relational database as visually. 

Extract the meaningful information from software requirements without user 

intervention is complex but the heuristic rule may help for short projects. In 

Automated Diagram Generator ADG, we generate the ER-Diagram automatically 

without user involvement.  

The methodology used in Automated Diagram Generator (ADG), software 

requirements splits into sentences then tokenization applies to transformed sentences 

which are further assigned tags by POS-tags. User can pick their desire POS-Tags 

which are available side-by-side to this above Software tool. POS-Tags preliminary go 

to its constituent parser. Parsing is the main module to generate the ER diagram which 

is a combination of POS-tags, Tokens, and heuristic rules. in the generation of ER-

Diagram, two formats will be used “Black and White” or “Black and Grey”. The 

generation of ERD according to time varies as per the length of software requirements.



43 

REFERENCES 

 

[1] E. S. Btoush and M. M. Hammad, “Generating ER Diagrams from 

Requirement Specifications Based On Natural Language Processing,” Int. J. 

Database Theory Appl., vol. 8, no. 2, pp. 61–70, 2015, doi: 

10.14257/ijdta.2015.8.2.07. 

[2] L. Angeles, “PETER PIN-SHAN CIIEN The ER diagram was formally 

proposed in [ 4 ]. Figure l ( a ) is an example of a simple ER diagram. The 

rectangular-shaped boxes represent entity types, and the diamond-shaped 

boxes represent relationship types. For example, in Fi,” vol. 149, pp. 127–149, 

1983. 

[3] P. More and R. Phalnikar, “Generating UML Diagrams from Natural 

Language Specifications,” Int. J. Appl. Inf. Syst., vol. 1, no. 8, pp. 19–23, 2012, 

doi: 10.5120/ijais12-450222. 

[4] S. D.Joshi and D. Deshpande, “Textual Requirement Analysis for UML 

Diagram Extraction by using NLP,” Int. J. Comput. Appl., vol. 50, no. 8, pp. 

42–46, 2012, doi: 10.5120/7795-0906. 

[5] S. Gulia and T. Choudhury, “An efficient automated design to generate UML 

diagram from Natural Language Specifications,” Proc. 2016 6th Int. Conf. - 

Cloud Syst. Big Data Eng. Conflu. 2016, pp. 641–648, 2016, doi: 

10.1109/CONFLUENCE.2016.7508197. 

[6] P. G. T. H. Kashmira and S. Sumathipala, “Generating Entity Relationship 

Diagram from Requirement Specification based on NLP,” 2018 3rd Int. Conf. 

Inf. Technol. Res. ICITR 2018, pp. 1–4, 2018, doi: 

10.1109/ICITR.2018.8736146. 

[7] N. Omar, P. Hanna, and P. McKevitt, “Heuristics-based entity-relationship 

modeling through natural language processing,” Proc. 15th Artif. Intell. Cogn. 

Sci. Conf., pp. 1–12, 2004. 

[8] T. De Smedt, V. Van Asch, and W. Daelemans, Memory-based Shallow 

Parser for Python. 2010. 

[9] D. K. Deeptimahanti and M. A. Babar, “An automated tool for generating 

UML models from natural language requirements,” ASE2009 - 24th 

IEEE/ACM Int. Conf. Autom. Softw. Eng., pp. 680–682, 2009, doi: 

10.1109/ASE.2009.48. 



44 

[10] I. Song and M. Evans, “A Comparative Analysis of Entity-Relationship 

Diagrams 1 1 INTRODUCTION,” Computer (Long. Beach. Calif)., vol. 3, no. 

4, pp. 427–459, 1995. 

[11] N. Madnani, “Getting started on natural language processing with Python,” 

XRDS Crossroads, ACM Mag. Students, vol. 13, no. 4, pp. 5–5, 2007, doi: 

10.1145/1315325.1315330. 

[12] N. Sarwar and I. S. Bajwa, “Automated Generation of Express-G Models 

Using Nlp.,” Sindh Univ. Res. Journal-SURJ (Science Ser., no. March 2016, 

pp. 4–12, 2016. 

[13] S. Geetha and G. S. Anandha Mala, “Automatic database construction from 

natural language requirements specification text,” ARPN J. Eng. Appl. Sci., 

vol. 9, no. 8, pp. 1260–1266, 2014. 

[14] M. Ibrahim and R. Ahmad, “Class diagram extraction from textual 

requirements using natural language processing (NLP) techniques,” 2nd Int. 

Conf. Comput. Res. Dev. ICCRD 2010, pp. 200–204, 2010, doi: 

10.1109/ICCRD.2010.71. 

[15] F. Hogenboom, “An Overview of Approaches to Extract Information from 

Natural Language Corpora,” Language (Baltim)., 2010. 

[16] R. Sajjad and N. Sarwar, “NLP based verification of a UML class model,” 

2016 6th Int. Conf. Innov. Comput. Technol. INTECH 2016, no. August 2016, 

pp. 30–35, 2017, doi: 10.1109/INTECH.2016.7845070. 

[17] M. Elallaoui, K. Nafil, and R. Touahni, “Automatic Transformation of User 

Stories into UML Use Case Diagrams using NLP Techniques,” Procedia 

Comput. Sci., vol. 130, pp. 42–49, 2018, doi: 10.1016/j.procs.2018.04.010. 

 



45 

APPENDICES 

APPENDIX A: Design Phase List 

 

Actor: Represent role, outside of system interdepend with the system. 

 

Use Cases: Represent interaction between system and actor. 

 

Use Case Diagram: Represent the use of the functionality of the system by the actor. 

 

Sequential Diagram: It is used to show a conversation between the objects (like 

button and text field) to carry out the functionality. 

 

Domain Model: It is a model that integrates behaviour and data and shows the 

workflow of classes with relations. 

 

Class: Describe the group related object having the same attributes, operations, 

relationships, etc. 

 

Class Diagram: Describe the generalized modelling process for the building of the 

application or system. 

 

Entity: It is considered as an object or a data component. 

 

Attribute: These are assets of an entity, characterized by ellipses. 

 

Relationship: It relates to the interaction between the entities. 

 

Relational Data Model: It the combination of entity and attribute among there 

relationship. Also include the cardinalities. 

 

 

 

 



46 

 

APPENDIX B: Development Phase List 

 

Python: Used as a development language 

 

PyCharm: It is an IDE used to perform backend work in python 

 

PyQt5: It is a toolkit used for design UI with its designer tool as well as designing 

the ERD with the help of different shapes. 

 

NLTK: Famous toolkit for natural language processing used to perform for its 

techniques.  

 

Button: It is used to perform the functionality by clicking on it. 

 

Text Field: It is used to insert or type of software requirement. 

 

Combo box: It is used for selecting one option from various choices. 

 

Shapes: Shapes like rectangle, ellipse, and diamond are used to represent ERD. 

 

Rectangle: It is used to represent an entity in the generated ERD.  

 

Ellipse: It is used for attributes in the generated ERD. 

 

Diamond: It is used for relationships in the generated ERD. 

 


