

BSCS-S19-017

03-134161-054 NAJEEB AHSAN KHAN

03-134161-057 ASAD MAHMOOD

Automated Software Testing

In partial fulfilment of the requirements for the degree of

Bachelor of Science in Computer Science

Supervisor: Dawood Akram

Department of Computer Sciences

Bahria University, Lahore Campus

January 2020

© Bahria University, 2020

i

C e r t i f i c a t e

We accept the work contained in the report titled

“Automated Software Testing”

Written by

Najeeb Ahsan Khan

Asad Mahmood

as a confirmation to the required standard for the partial fulfilment of the degree of

Bachelor of Science in Computer Science.

Approved by:

Supervisor: Dawood Akram

 (Signature)

January 27, 2020

ii

DECLARATION

We hereby declare that this project report is based on our original work except for

citations and quotations which have been duly acknowledged. We also declare that it

has not been previously and concurrently submitted for any other degree or award at

Bahria University or other institutions.

Enrolment Name Signature

03-134161-054 NAJEEB AHSAN KHAN

03-134161-057 ASAD MAHMOOD

Date : January 27, 2020

iii

Specially dedicated to

My beloved grandmother, mother and father

(Najeeb Ahsan Khan)

My beloved grandmother, mother and father

(Asad Mahmood)

iv

ACKNOWLEDGEMENTS

We would like to acknowledge our gratitude to our supervisor, Dawood Akram for his

guidance, constant attention and personal concern towards the completion of this

project. Furthermore, our appreciation also goes to our lab engineers from the

department of computer science for their time, attention and guidance. We are also

thankful to the evaluating team who evaluated our project with full dedication

pinpointed our mistakes and guided as in right way during whole project.

 In addition, we would also like to say thanks our loving parents and

friends who had helped and given encouragement.

NAJEEB AHSAN KHAN

ASAD MAHMOOD

v

AUTOMATED SOFTWARE TESTING

ABSTRACT

Before diving into the structural behaviour of software industry like Arfa technology

park it is required that software testing techniques plays vital role, just to make a

distinguish environment testing was kind of a difficult in manual manners like making

excel sheet and all. We will be making a system to overcome this problem, that will

be marking a sign of automation system. SQA’s department will be able to manage

projects, test suits and test cases online and clients will be able to check deliverable’s

quality. Real time reporting will be available along with historical data. Rigid systems

like windows and Ubuntu will be the upfront platform to use it. Sometimes, manual

testing may not be so much effective and efficient due to its inconsistency, lack of

coverage, lack of reporting time which may have bad impact on the cost of the product.

In Pakistan, software industry is using excel sheets to manage test cases and this is

really time consuming to design separate test cases and then generate the results on

excel sheets. There is no proper way of archiving previous test execution results. This

tool is required in our industry and as per our survey, people need this. We have

gathered requirements from different software houses.

vi

TABLE OF CONTENTS

DECLARATION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xii

CHAPTERS

1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statements 1

1.3 Aims and Objectives 2

1.4 Scope of Project 2

2 LITERATURE REVIEW 3

2.1 Overall Description 3

2.2 Operating Environment 3

2.3 Design and implementation Constraints 3

2.4 Assumptions and dependencies 3

2.5 Other Non-functional Requirements 4

vii

2.6 Other Requirements 4

2.7 System Requirements Chart 5

3 DESIGN AND METHODOLOGY 6

3.1 Design 6

3.2 Use Case Diagram 12

3.3 Domain Model 17

3.4 Sequence Diagrams 18

3.5 Class Diagram 22

3.6 Activity Diagram 22

3.7 Fully Attributed ERD 23

4 DATA AND EXPERIMENTS (and/or IMPLMENTATION) 24

4.1 Methodology 24

4.2 Tools / Technology 25

5 RESULTS AND DISCUSSIONS (or USER MANUAL) 26

5.1 Register User 26

5.2 Login User 27

5.3 Main Page 27

5.4 Create New Project 28

5.5 View Test Suites 28

5.6 Create New Test Suite 29

5.7 View all Test Cases 29

5.8 Create New Test Case 30

5.9 New Test Run 30

5.10 Passed or Failed Test Cases 31

5.11 Graphical Report of Test Cases 31

viii

6 CONCLUSION AND RECOMMENDATIONS 32

6.1 Recommendation 32

6.2 Conclusion 32

REFERENCES 33

ix

LIST OF TABLES

 TABLE TITLE PAGE

Table 2-1: System Requirement Chart 5

Table 3-1: Registration 6

Table 3-2: Login 7

Table 3-3: Logout 7

Table 3-4: Create Project 8

Table 3-5: View All Projects 8

Table 3-6: Create Suite 9

Table 3-7: Visit Suite 9

Table 3-8: Running of Suite 10

Table 3-9: Edit Test Case 10

Table 3-10: Remove test case 11

x

LIST OF FIGURES

 FIGURE TITLE PAGE

Figure 3-1: System Use Case 12

Figure 3-2: Register 12

Figure 3-3: Login 13

Figure 3-4: Logout 13

Figure 3-5: Create Project 14

Figure 3-6: View All Projects 14

Figure 3-7: Create Suite 15

Figure 3-8: Visit Suite 15

Figure 3-9: Running of Test Suite 16

Figure 3-10: Edit Test Case 16

Figure 3-11: Remove Test Case 17

Figure 3-12: Domain Model 17

Figure 3-13: Register Sequence 18

Figure 3-14: Login Sequence 18

Figure 3-15: Logout Sequence 19

Figure 3-16: Creating Project Sequence 19

Figure 3-17: Create test suite Sequence 20

Figure 3-18: Creating test case Sequence 20

Figure 3-19: Execute Test Case Sequence 21

xi

Figure 3-20: Generate Report Sequence 21

Figure 3-21: Class 22

Figure 3-22: Activity 22

Figure 3-23: Fully Attributed ERD 23

Figure 4-1: Agile 24

Figure 5-1: Registration 26

Figure 5-2: Login 27

Figure 5-3: Main Page 27

Figure 5-4: Create Project 28

Figure 5-5: View Test Suites 28

Figure 5-6: Create New Test Suite 29

Figure 5-7: View all Test Cases 29

Figure 5-8: Create Test 30

Figure 5-9: Test Run 30

Figure 5-10: Test Cases Execution results 31

Figure 5-11: Graph Execution Report 31

xii

LIST OF SYMBOLS / ABBREVIATIONS

XLS Excel Spreadsheet

ROR Ruby on Rails

QA Quality Assurance

GUI Graphical User Interface

HW Hardware

SW Software

xiii

1

CHAPTER 1

1 INTRODUCTION

1.1 Background

Testing is an important part of the software development cycle. It is not uncommon

for developers to make errors when writing code. These mistakes can cause the web

server to crash impacting thousands of clients. To detect these kinds of errors we are

building an automated testing software in which we can perform testing of software’s

both manually and automatically. The previous versions of the software are manually

operated, and they generated results on Excel (XLS) sheets that is the major fault.

Manual system has two major drawbacks one is costly and the second one is more time

consuming and most of these testing tools have domains on the internet. But our

software will be totally free of cost and it will not generate results on XLS sheets, but

it will generate results on one click automatically. We will use ROR on mvc framework

for backend and for database connectivity we will use MySQL and for frontend we

will use react/bootstrap/GUI.

1.2 Problem Statements

To automate the manual testing software for the QA’S

2

1.3 Aims and Objectives

The objectives of the thesis are shown as following:

i) Our objective is to make such a web base software for testing purpose that can

make environment so feasible that the testing of software can be easily done

automatically and that can maintain test cases and their execution to check their

functionalities and all.

ii) Our target is to provide free testing service in minimum time span. We can also

maintain historical data.

1.4 Scope of Project

Our project is purely based on software testing program or simulation which will do

at the end software testing automatically and manually. Before In this Era it is a kind

of difficult for every QA job to do testing manually as there may come errors in the

website and QA may be unable to detect these errors and may lead to website crashes.

There are some software available to test or find bugs in the websites or software but

the available testing tools are not free of cost. So, we decided to work it that will find

bugs, track record, testing automation and this software must be free cost and it will

generate our result automatically on our one click.

3

CHAPTER 2

2 LITERATURE REVIEW

2.1 Overall Description

2.1.1 User Classes and Characteristics

We have different classes in this project like user, project, test suit, test cases, test run,

execution class inheritance will use extensively use in this project because of the test

cases. And the main user in this case is tester.

2.2 Operating Environment

A Web based platform which can run easily on every operating system including PC

and laptops.

2.3 Design and implementation Constraints

Automated software testing is developed in react JS/bootstrap language in sublime

platform. In our project we use react for frontend and for the backend we will use ruby

on rails and for other Web content to a user language like Bootstrap, JavaScript, and

jQuery. We will provide a testing platform.

2.4 Assumptions and dependencies

We use react for frontend and for the backend we will use ruby on rails, and we will

be deployed it on the heroku cloud. All these tools are decencies and we are depending

on this these tools

4

2.5 Other Non-functional Requirements

2.5.1 Performance Requirements

Load time should be under approximately 5-10 seconds

2.5.2 Safety Requirements

Project data should not viewable without Authorization.

2.5.3 Security Requirements

Data should be same no sql injection no vulnerability.

2.5.4 Software Quality Attributes

Software quality attributes that needs to be addressed are:

• Testing should become flexible.

• Less time consuming and more efficient.

• Accurate result generator.

2.6 Other Requirements

Use my sql and all open source technologies.

5

2.7 System Requirements Chart

Table 2-1: System Requirement Chart

ID Priority Type Used use cases Description

1 High Functional U1 This user needs to register for testing

the test suits.

2 High Functional U2 Only registered users can login in

order to use the tool.

3 High Functional U3 Create Project

4 Medium Functional U4 User should be able to view the

previous projects.

5 High Functional U5 Create Suite

6 Medium Functional U6 Visit Suite

7 High Functional U7 Running of Suite

8 High Functional U8 Edit Test Case

9 High Functional U9 Remove Test Case

10 High Functional U10 Logout

6

CHAPTER 3

3 DESIGN AND METHODOLOGY

3.1 Design

3.1.1 Use case description

3.1.1.1 Registration <U1>

Table 3-1: Registration

Unique Identifier U1

Brief description This use case describes that the tester needs to register for testing the
test suits.

Priority High

Actors Tester

Flow of events

i) Basic Flow • User will open the tool.
• User will fill the required fields.
• Click on the register button.

ii) Alternative
Flow 1

• User cannot register again with same data.
• If user already exist, then user will move to login screen.

iii) Alternative
Flow 2

If all the required fields are not filled, an error message will be
displayed.

Preconditions User must have connectivity with the internet.

Post conditions User successfully registered.

7

3.1.1.2 Login <U2>

Table 3-2: Login

3.1.1.3 Logout <U3>

Table 3-3: Logout

Unique Identifier U2

Brief description Now registered users can login in order to use the tool.

Priority High

Actors Tester

Flow of events

i) Basic Flow • User enter the name and password.
• If the enter information is correct, then user move to main screen

of their account.
ii) Alternativ

e Flow 1
If the user record does not exist, then the user asked to register first.

iii) Alternativ
e Flow 2

If the user provides the wrong information, then the user asked to reenter
the information.

Preconditions • User must be registered.
• User must have connectivity with the internet.

Post conditions User successfully logged in.

Unique Identifier U3

Brief description After login if the user has done with testing and want to end the session then
user can logout.

Priority High

Actors Tester

Flow of events

i) Basic
Flow

User clicks on the logout.

Preconditions • User must be registered.
• User must have connectivity with the internet.

Post conditions User successfully logout.

8

3.1.1.4 Create Project <U4>

Table 3-4: Create Project

Unique Identifier U4

Brief description • Asked the project details like name and description of the project.
• After entering the project click on add project button. If the user

wants to cancel the project, then the user may select the cancel
button.

Priority High

Actors Tester

Flow of events

i) Basic Flow • User enters the project title and then briefly describe the project.
• If the provided data is correct, then the user will allow to move on

the next phase.
ii) Alternative

Flow
• User need to provide to both name and description.
• If the user misses any one of these then the process will not move

further.
Preconditions User must be logged in and having connection with the internet.

Post conditions User successfully create the project.

3.1.1.5 View All Projects <U5>

Table 3-5: View All Projects

Unique Identifier U5

Brief description User should be able to view the previous projects.

Priority Medium

Actors Tester

Flow of events

i) Basic Flow User also search the specific project by entering the project title

ii) Alternativ
e Flow

If user wants to view specific project, then user need to enter the title of
the specific project if he wants to view all the project then must click
on all project option.

Preconditions The searching project needs to be existed in the tool.

Post conditions Project successfully searched.

9

3.1.1.6 Create Suite <U6>

Table 3-6: Create Suite

Unique Identifier U6

Brief description User first create the test suits and then enter the test cases in the test suits.

Priority High

Actors Tester

Flow of events

i) Basic Flow User select the test case option and then select the new option from menu
bar, then select the test suits and create new test cases.

ii) Alternative
Flow

If the test cases are defective, then test suits will not be created.

Preconditions If the test case hierarchy does not create properly then it will generate
error message.

Post conditions Test suite created successfully.

3.1.1.7 Visit Suite <U7>

 Table 3-7: Visit Suite

Unique Identifier U7

Brief description User can visit the created suite.

Priority Medium

Actors Tester

Flow of events

i) Basic
Flow

User can visit the created test suits.

Preconditions Before visiting the test, suits need to be created.

Post conditions User successfully visits the test suits.

10

3.1.1.8 Running of Suite <U8>

 Table 3-8: Running of Suite

3.1.1.9 Edit Test Case <U9>

 Table 3-9: Edit Test Case

Unique Identifier U8

Brief description User can run the created test suits by selecting them one by one

Priority High

Actors Tester

Flow of events

i) Basic Flow Selected suits will appear one by one on the screen and will execute
them.

ii) Alternative
Flow

Mark as pass, failed or skip by the user.

Preconditions Test suits need to be created.

Post conditions Shows result that how many test cases have been passed, failed or skip
by the user.

Unique Identifier U9

Brief description User will edit the test case in which error have been find during the time
of running

Priority High

Actors Tester

Flow of events

i) Basic Flow User will remove errors one by one from the test case that have been
occurred while at the time running

ii) Alternativ
e Flow

Marked them as a passed or skip after removing errors

Preconditions Test case must have run before the editing of the test case

Post conditions Results will come out

11

3.1.1.10 Remove Test Case <U10>

Table 3-10: Remove test case

Unique Identifier U10

Brief description User will remove the extra use case or that have been skipped at the time
of running.

Priority High

Actors Tester

Flow of events

i) Basic Flow If test case will not working even after removing the errors or user feels
that the test case is extra, then it has the authority to remove that test
case.

ii) Alternative
Flow

If test case will start working properly then marked the test case as
passed

Preconditions Test case must have any error

Post conditions Successful should marked as a passed and the test cases which have error
or not working properly should marked as failed and remove that test
case

12

3.2 Use Case Diagram

 Figure 3-1: System Use Case

3.2.1 Register (U1)

Figure 3-2: Register

13

3.2.2 Login (U2)

 Figure 3-3: Login

3.2.3 Logout (U3)

Figure 3-4: Logout

14

3.2.4 Create Project (U4)

 Figure 3-5: Create Project

3.2.5 View All Projects (U5)

 Figure 3-6: View All Projects

15

3.2.6 Create Suite (U6)

 Figure 3-7: Create Suite

3.2.7 Visit Suite (U7)

 Figure 3-8: Visit Suite

16

3.2.8 Running of Test Suite (U8)

 Figure 3-9: Running of Test Suite

3.2.9 Edit Test Case (U9)

 Figure 3-10: Edit Test Case

17

3.2.10 Remove test case (U10)

 Figure 3-11: Remove Test Case

3.3 Domain Model

 Figure 3-12: Domain Model

18

3.4 Sequence Diagrams

3.4.1 Registration

 Figure 3-13: Register Sequence

3.4.2 Login

 Figure 3-14: Login Sequence

19

3.4.3 Logout

Figure 3-15: Logout Sequence

3.4.4 Creating Project

 Figure 3-16: Creating Project Sequence

20

3.4.5 Create Test Suite

 Figure 3-17: Create test suite Sequence

3.4.6 Create Test Case

 Figure 3-18: Creating test case Sequence

21

3.4.7 Execute Test Case

 Figure 3-19: Execute Test Case Sequence

3.4.8 Generate Report

 Figure 3-20: Generate Report Sequence

22

3.5 Class Diagram

Figure 3-21: Class

3.6 Activity Diagram

 Figure 3-22: Activity

23

3.7 Fully Attributed ERD

Figure 3-23: Fully Attributed ERD

24

CHAPTER 4

4 DATA AND EXPERIMENTS (and/or IMPLMENTATION)

4.1 Methodology

We will use agile methodology in this project because we are working on review-based

teaching method, so we need to actively involve our customer (user) after every

iteration. After every development iteration, customer can see the result and

understand if he/she is satisfied with that functionality or not. It advocates planning,

development, early delivery, and continual improvement, and it encourages rapid and

flexible response to change. It is a lightweight process framework and the most widely

used one. We will gather requirements from industry survey, document all

requirements, implement using ROR, MYSQL, Bootstrap and jQuery/GUI.

Figure 4-1: Agile

25

4.2 Tools / Technology

Mention all the HW/SW tools/technologies required for the project along with their

availability.

These are the tools required for the completion of this project

• MySQL (For Database)

• ROR (For backend)

• Bootstrap (For frontend)

• Ram 8GB

• Hardisk 500GB

• Processor: Intel(R) Core (TM) i7-7500U CPU @ 2.70GHz 2.90GHz

26

CHAPTER 5

5 RESULTS AND DISCUSSIONS (or USER MANUAL)

5.1 Register User

 Figure 5-1: Registration

27

5.2 Login User

 Figure 5-2: Login

5.3 Main Page

 Figure 5-3: Main Page

28

5.4 Create New Project

 Figure 5-4: Create Project

5.5 View Test Suites

 Figure 5-5: View Test Suites

29

5.6 Create New Test Suite

 Figure 5-6: Create New Test Suite

5.7 View all Test Cases

 Figure 5-7: View all Test Cases

30

5.8 Create New Test Case

 Figure 5-8: Create Test

5.9 New Test Run

 Figure 5-9: Test Run

31

5.10 Passed or Failed Test Cases

 Figure 5-10: Test Cases Execution results

5.11 Graphical Report of Test Cases

Figure 5-11: Graph Execution Report

32

CHAPTER 6

6 CONCLUSION AND RECOMMENDATIONS

6.1 Recommendation

Automated software testing is basically recommended for QA’s. Testers can build

test suites of tests that covers every feature in software application. Every software

tester’s group tests its products, yet delivered software always has defects. Test

engineers strive to catch them before the product is released but they always become

puzzled in and they often reappear, even with the best manual testing processes. Test

Automation software is the best way to increase the effectiveness, efficiency and

coverage of your software testing and also time efficient. Automation testing basically

runs tests significantly faster than human users.

6.2 Conclusion

Automated software testing is a necessity if QA’s are to meet the fast-paced

development deadlines of today's software markets. More and more development

organizations are following Microsoft Corporation's lead and implementing the build-

a-day approach. In the past, build dates were set and builds occurred at specific

intervals that were measured in days, weeks, or months. That cost the industries lots

of time and also coast effective. But the automated software testing will provide a

platform that will help them to resolve their issues and generate reports automatically.

33

REFERENCES

Journal Papers:

[1] Grano G, Titov TV, Panichella S, Gall HC. How high will it be? Using machine

learning models to predict branch coverage in automated testing. In: Fontana FA,

Walter B, Ampatzoglou A, Palomba F, eds. 2018 IEEE Workshop On Machine

Learning Techniques for Software Quality Evaluation (MaLTeSQuE).

Campobasso, Italy: IEEE Computer Society; 2018:19-24.

[2] Grano G, Titov TV, Panichella S, Gall HC. Replication Package - Branch Coverage

Prediction in Automated Testing. https://doi.org/10.5281/zenodo. 2548323; doi

10.5281/zenodo.254832; 2019.

Conference Papers:

[3] Claus, K and R. Rudolf. (2017). A Journey from Manual Testing to Automated

Test Generation in an Industry Project. 2017 IEEE International Conference on

Software Quality, Reliability and Security Companion (QRS-C) 591--592.

