

03-134151-046 ZeeshanMaqsood

03-14151-042 Usama Waseem

03-134151-047 Abdul Rehman

SMART CITY

In partial fulfilment of the requirements for the degree of

Bachelor of Science in Computer Science

Supervisor: Numan Aslam

Department of Computer Sciences

Bahria University, Lahore Campus

October 2018

© Bahria University, 2018

© Bahria University, 2018

i

C e r t i f i c a t e

We accept the work contained in the report titled

“Smart City”,

written by

Zeeshan Maqsood

Usama Waseem

Abdul Rehman

as a confirmation to the required standard for the partial fulfilment of the degree of

Bachelor of Science in Computer Science.

Approved by:

Supervisor: Numan Aslam

 (Signature)

October 25th, 2018

iii

DECLARATION

We hereby declare that this project report is based on our original work except for

citations and quotations which have been duly acknowledged. We also declare that it

has not been previously and concurrently submitted for any other degree or award at

Bahria University or other institutions.

Enrolment Name Signature

03-134151-046 Zeeshan Maqsood

03-134151-042 Usama Waseem

03-134151-047 Abdul Rehman

Date : October 25th 2018

v

Specially dedicated to

My beloved Father Fiaz Maqsood Ali

Zeeshan Maqsood

my beloved parents and Teachers

(Usama Waseem)

 My beloved parents and teachers

(Abdul Rehman)

vii

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of

this project. We would like to express our gratitude to my research supervisor, Mr

NUMAN ASLAM for his invaluable advice, guidance and his enormous patience

throughout the development of the research.

In addition, we would also like to express my gratitude to our loving parent and

friends who had helped and given me encouragement.

Zeeshan Maqsood

Usama Waseem

Abdul Rehman

ix

SMART CITY

ABSTRACT

Automation plays an important role in today's human life and people's life is changing

gradually with smart living due to modern technology development and wireless

remote control. Our main goal is to build a smart city. We are going to develop an

efficient system which will automate the entire city including car parking, mosque,

traffic signals and street lights systems. Smart city project have a wide range of

customization in which we are currently covering just five modules in this project.

This project will be developed by using incremental methodology as this methodology

is used where the project is broken down into parts and developed separately. This will

consist of automating the parking system, mosques, street lights, signal and plant

watering system. We can also check status of these modules at android application.

The mosque module includes player alert timing and temperature maintaining of

mosque. The parking module will check the parking space availability. Street light

module will check the darkness and automatically on the lights. Density base signal

module and plants watering system is also included in this project. This system consist

of a hardware model consisting of all five modules implementation using aurdino and

android application showing status of these modules. Moreover, by using of this

system man power also reduced.

xi

TABLE OF CONTENTS

DECLARATION iii

ACKNOWLEDGEMENTS vii

ABSTRACT ix

TABLE OF CONTENTS xi

LIST OF TABLES xv

LIST OF FIGURES xvii

CHAPTERS

1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statements 2

1.3 Aims and Objectives 2

1.4 Scope of Project 2

1.4.1 Parking Module 3

1.4.2 Mosque Module 3

1.4.3 Street Light Module 3

1.4.4 Park watering Module 3

1.4.5 Traffic Signal Module 3

2 Software Requirement Specification 5

2.1 User Classes and Characteristics 5

2.2 Operating Environment 5

2.2.1 Software Environment 5

2.2.2 Hardware Environment 5

xii

2.3 Design and Implementation Constraints 6

2.4 Assumption and Dependencies 6

2.5 Software Requirement Chart 6

2.6 Final Deliverable of project 9

2.7 Beneficiaries of Project 10

2.8 Resources Requirements 10

3 DESIGN AND METHODOLOGY 11

3.1 Use case Diagram 12

3.1.1 Mosque Module Use case Diagram 13

3.1.2 Park Watering Module Use Case Diagram 13

3.1.3 Street light Module Use Case Diagram 14

3.1.4 Traffic signal Module Use Case Diagram 14

3.2 Use Case Description 15

3.3 Sequence Diagram 20

3.4 Collaboration Diagram 23

3.5 Domain Diagram 27

3.6 Design Class Diagram 28

3.7 Data Model 29

3.8 Methodology 31

4 IMPLMENTATION 32

4.1 Implementation 32

4.1.1 Implementation of first Stage 32

4.1.2 Second Stage 38

4.1.3 Third Stage 39

4.2 Source Codes of Hardware Modules 39

4.2.1 Mosque Module 39

4.2.2 Parking Module 41

4.2.3 Street Light Module 45

4.2.4 Park Watering Module 47

4.2.5 Traffic Signal Module 48

xiii

5 USER MANUAL 57

5.1 How to access application 57

5.1.1 Login and Registration 57

5.2 Home Screen 58

5.3 Module Description Manual 60

5.3.1 Mosque Module 60

5.3.2 Park Watering Module 61

5.3.3 Parking Module 63

5.3.4 Traffic Signal Module 64

5.3.5 Street light Module 65

6 CONCLUSION AND RECOMMENDATIONS 67

6.1 Conclusion 67

6.2 Recommendation 67

REFERENCES 68

xv

LIST OF TABLES

TITLE Page

Table 1: System Requirement Chart 6

Table 2: Use Case User Registration 15

Table 3: Use Case User login 15

Table 4: Use Case Mosque Module 16

Table 5: Use Case Park watering Module 16

Table 6: Use Case Parking Module 17

Table 7: Use Case Street light Module 18

Table 8: Use Case Signal Module 19

xvii

LIST OF FIGURES

 FIGURE TITLE PAGE

Figure 1: Smart City System Level Use Case Diagram 12

Figure 2: Mosque Module Use Case Diagram 13

Figure 3: Park watering Module Use Case Diagram 13

Figure 4: Parking Module Use Case Diagram 14

Figure 5: Street light Module Use Case Diagram 14

Figure 6: Traffic signal Module Use Case Diagram 14

Figure 7: Mosque Module Sequence Diagram 21

Figure 8: Park watering Module Sequence Diagram 21

Figure 9: Parking Sequence Diagram 22

Figure 10: Signal Sequence Diagram 22

Figure 11: Street Light Sequence Diagram 23

Figure 12: Mosque Module Collaboration Diagram 24

Figure 13: Park watering Collaboration Diagram 25

Figure 14: Parking module Collaboration Diagram 25

Figure 15: Street Light module Collaboration Diagram 26

Figure 16: Signal module Collaboration Diagram 26

Figure 17: Domain Model Diagram 27

Figure 18: Design Class Diagram 28

Figure 19: Mosque ERD Diagram 29

Figure 20: Park watering ERD Diagram 29

Figure 21: Signal Module ERD Diagram 30

Figure 22: Street Light Module ERD Diagram 30

Figure 23: Parking Module ERD Diagram 31

Figure 24: Mosque Module Diagram 33

Figure 25: Mosque Module implementation Diagram 33

xviii

Figure 26: Park watering Module Diagram 34

Figure 27: Parking Module Diagram 35

Figure 28: Street Light Module Diagram 37

Figure 29: Traffic Module Diagram 37

Figure 30: Integration of Module Diagram 38

Figure 31: Android Application Diagram 39

Figure 32: Android Login Diagram 57

Figure 33: Android Registration Diagram 58

Figure 34: Android Home Screen Diagram 59

Figure 35: Android Login details Diagram 60

Figure 36: Android Mosque Module Diagram 61

Figure 37: Android park Module Diagram 62

Figure 38: Android parking Module Diagram 63

Figure 39: Android Traffic Module Diagram 64

Figure 40: Android Street light Module Diagram 65

xix

1

CHAPTER 1

1 INTRODUCTION

1.1 Background

Automation plays an important role in today's human life and people's life is changing

gradually with smart living due to modern technology development and wireless

remote control. Technology is upgrading day by day. Everyone wants to live smart

living therefore we are upgrading city to smart city which is basically the automation

of complete city. Our project is basically the automation of complete city. This project

have a wide range of scope and customization, therefore we are going to cover just

five modules here. This will consist of automating the parking system, mosques, street

lights, plant watering system and signal module. We are also developing and android

application for checking status of all these modules. The mosque module will alert the

prayer timing, then check temperature of mosque if temperature is greater than a limit

turn on air conditioner and if less than that limit turn on heaters and the water heat up

system just few minutes before the prayer time. The car parking module will check the

availability of parking space to only allow the authorized vehicles to pass by the

barriers, and update the status in database and not allow to enter the parking if it’s full.

Street light module will check the darkness and automatically on the lights. After 12pm

streets mostly become empty. Therefore lights will be off and automatically on when

an object will be detected there. Density base signal module and plants watering

system is also included in this project. The plant watering system is basically

controlling watering system of parks. Density base signal module is controlling traffic

signal on the basis of density from side where traffic rush is more will open for more

time as compared to other sides.

2

1.2 Problem Statements

Technology is upgrading day by day. Everyone wants a smart living in their life. There

it’s necessary to upgrade smart system for city which reduced manpower. Everyone is

in hurry and does not have time to wait for checking the parking. Even we are also

facing an issue of load shedding and we cannot waste electricity. Therefore its

necessary to have a system which can control all city smartly and without manpower.

1.3 Aims and Objectives

The objective of the mission is to promote cities that provide its citizens a decent

quality of life, a clean and sustainable environment. Applying Smart Solutions to

infrastructure and services in area-based development in order to make them better.

For example, making Areas less vulnerable to disasters, using fewer resources, and

providing cheaper services it provides the guidelines for smart parking, intelligence

traffic management, Street light system and Mosque automation

 To automate the parking system

 To give alerts of prayer time

 To control temperature of mosque

 To check the density of traffic on signals

 To automate the watering system of parks

 To control all this from a single platform

 To implement street lights automation

1.4 Scope of Project

Smart city system is automation of city designed for smart living. This project will

only cover the parking system, Mosques, parks, street lights and traffic lights.

3

1.4.1 Parking Module

In this module parking system is covered. Any user need parking space he will check

the app where parking slot is available and park his vehicle. If no parking slot available

application will notify him.

1.4.2 Mosque Module

In this module we are covering Mosque automation. It will check the temperate of

mosque if it’s greater than the limit. Air conditioners will turn on automatically and if

it’s less than that limit heater and geezer will turn on automatically. In addition to this

it will also create alert user of prayer time.

1.4.3 Street Light Module

In this module we will cover the street lights system. Street lights will automatically

turned on in darken. And will be turned off after a specific time. After that if they sense

motion they will be turned on otherwise will remain turned off. This will save

electricity.

1.4.4 Park watering Module

In this module park watering system will be covered. This works on the basis of soil

dryness. If soil is dry watering will start automatically. This reduces man power.

1.4.5 Traffic Signal Module

This module will cover the traffic signals. In this we will check the traffic load. The

signal from which traffic load is high will open for more time and on other hand signal

from which traffic load is less will open for less time.

5

CHAPTER 2

2 Software Requirement Specification

2.1 User Classes and Characteristics

Smart city is divided into five modules consisting of parking module, Mosque Module,

Park watering system module. Basically all citizens are the user of this project they

can check the player time and get alert of prayer and parking space and the status of

all modules on an application.

2.2 Operating Environment

Smart City is embedded system so it requires both software and hardware environment.

Therefore we are developing a 12 volt hardware system with implementation of all

these modules and an android application linked with this hardware system.

2.2.1 Software Environment

For Android application development android studio will be used as a tool and java

language for development with support of xml. Different APIs used for interface

design.

2.2.2 Hardware Environment

Hardware component such as sensors, Microcontroller, raspberry pi, Arduino IDE is

used to program microcontroller.

6

2.3 Design and Implementation Constraints

Mobile application is android specified. We are developing android application only.

It uses a modular design where every feature is wrapped into a separate module and

the modules depend on each other through well-written APIs and libraries. For data

storage; system is using MYSQL/ 000 webhost where all the record of user and other

modules will be stored. For hardware we are using Aurdino microcontroller for

programing.

2.4 Assumption and Dependencies

Smart City has Database so one assumption about the product is that admin must have

access to database from Mobile Application which is compatible with our application.

Another assumption is that users must have internet connection, android mobile and

must be connected to server, so that status of availability could update on real time

using database. Internet is required for the system. Server down effect on

communication between database and mobile application.

2.5 Software Requirement Chart

Here is the software requirement chart for smart city

Table 1: System Requirement Chart

ID Priority Type Source Used in Use

case

Description

1 High Functional
End User’s

N/A Install the

application

2 High Functional
End User’s

U1 Registration for

new user

3 High Functional
End User’s

U2 Login in to

application to

7

use the

application

4 Medium Non-

Functional

End User’s U2 App user forget

password

5 Medium Functional End User’s U2 Generate new

password

6 Medium Functional End User’s N/A Delete User

7 Medium Functional
End User’s

U2 User logout

8 High Functional
End User’s

N/A Update USER

Profile

9 High Functional
End User’s

U5 Check space for

Car parking

10 Low Non

Functional End User’s

U5 Car is parked if

space is

available

11 Low Non

Functional End User’s

U5 Parking barriers

will not open if

there is no space

12 High Non-

Functional

End User’s

U5 If a car leaves

the parking.

Database will be

updated and

there will show

space for new

user.

13 High Non

Functional
End User’s

U3 An Alert

notification will

be generated on

prayer time

8

14 High Functional

End User’s

U3 Check

temperature

after every azan

15 High Functional

End User’s

U3

Auto start heater

and geezer if

temperature is

LOWER than

specific point.

16

High

Functional

End User’s

U3 Auto start fan

and AC if

temperature is

higher than

specific point.

17 High Functional

End User’s

U6 Auto start lights

when it will

detect darkness

18 High Functional

End User’s

U6

Activate another

sensor after mid

midnight for

electricity saving

19 High Functional

End User’s

U4 Start water

shower if sensor

feels the ground

dry

20 High Functional End User’s U7 Signal will be

open for the

more time in

which side the

flow of traffic is

more than the

other sides.

21 Medium Non End User’s N/A All hardware

components will

9

Functional be placed in a

model

22 High Non

Functional

End User’s N/A An demo of

project will be

working on all of

the above

modules.

23 High Non

Functional

End User’s N/A Availability of

internet is

necessary for

using the

application and

communication

b/w software

and hardware.

24 Medium Non

Functional

End User’s N/A Admin is

authorized to

update the

prayers time if

required.

25 High Non

Functional

End User’s N/A Database should

be consistent no

same

Record should

be taken by the

database.

2.6 Final Deliverable of project

Final deliverable of this project are

 Android application

 Hardware system

10

2.7 Beneficiaries of Project

Every Citizen present in the city or this geographical area will be the beneficiaries.

2.8 Resources Requirements

 We need the resources that are mentioned below:

 Formic Sheet

 Aurdino Mega

 Aurdino UNO

 Wi-Fi Module

 Android Mobile

 Sensors

 Lithium battery

 Laptop

 Color charts

 Wires

 Motors

11

CHAPTER 3

3 DESIGN AND METHODOLOGY

Following artefacts included in this Chapter

1. Use case diagram

2. Use case description

3. Sequence Diagram

4. Collaboration Diagram

5. Domain Model

6. Design Class Diagram

7. Data Model

8. Methodology

12

3.1 Use case Diagram

Use case diagram of system level at all module at system level is given below.

Figure 1: Smart City System Level Use Case Diagram

13

3.1.1 Mosque Module Use case Diagram

The use case diagram of Mosque module is given below

Figure 2: Mosque Module Use Case Diagram

3.1.2 Park Watering Module Use Case Diagram

The use case diagram of park watering system is given below.

Figure 3: Park watering Module Use Case Diagram

14

3.1.3 Street light Module Use Case Diagram

Use Case diagram of street light module is given below

Figure 5: Street light Module Use Case Diagram

3.1.4 Traffic signal Module Use Case Diagram

The use case diagram of Signal module is given below

Figure 6: Traffic signal Module Use Case Diagram

15

3.2 Use Case Description

Following are the narrative parts of every bubble in above use case diagrams.

Table 2: Use Case User Registration

Name Registration

Use-Case ID U1

Priority High

Primary Actor User

Other

participating

Actor(s)

System

Description This use case describes the event of a user registering for android

application.

Pre-condition User should not register yet

Trigger This use case initiate when a new user going to register i

Typical flow of

events

1. User gives new username and a new password

2. User will be registered.

Alternate flow

of event

Alt-1 user gives wrong username and a popup error displays

Alt-3 user gives wrong password and a popup error displays

Post condition User is successfully registered

Alternate post

condition

User isn’t register

Table 3: Use Case User login

Name Login

Use-Case ID U2

Priority High

Primary Actor User

16

Other

participating

Actor(s)

System

Description This use case describes the event when user going to login at android

application.

Pre-condition 1.User must be registered at Smart city application

2.User should not login

Trigger This use case initiate when a user going to Login

Typical flow of

events

1. User gives username and a password

2. System verifies User Credentials

Alternate flow

of event

Alt-1 User gives wrong credentials, system generate a popup error and

take user to login page

Post condition User successfully logged in

Alternate post

condition

Login failed

Table 4: Use Case Mosque Module

Name Mosque Module

Use-Case ID U3

Priority High

Primary Actor User

Other

participating

Actor(s)

System

Description This use case describes the event when User enters Mosque Module

Pre-condition Customer must open Smart application and clicks on Mosque Module

Trigger This use case initiate when a user clicks Mosque Module

17

Typical flow of

events

1.Enters the smart city application

2. Check prayer time

3.initiate alert for prayers

4.Check the Temperature status

Alternate flow

of event

Alt-1.User will not check prayer time.

Alt-2 user will not check temperature.

Post condition Successfully check prayer time

Successfully check temperature of Mosque

Alternate post

condition

User will not enter mosque module

Table 5: Use Case Park watering Module

Name Park Watering Module

Use-Case ID U4

Priority High

Primary Actor User

Other

participating

Actor(s)

Description This use case describes the park watering Module. In automatically

watering of plants is checked

.

Pre-condition 1.User must enter the park watering module to check status

Trigger This use case initiate when a user will enter park watering module to

check the status

Typical flow of

events

1. Open Smart city application.

2. Enter park watering Module.

3. Check the status of watering

18

Alternate flow

of event

Alt-3.User will not enter the park watering module

Post condition Successfully check the status of park watering system and control this

system through application

Alternate post

condition

Cannot check the status of park watering system

Table 6: Use Case Parking Module

Name Parking Module

Use-Case ID U5

Priority High

Primary Actor User

Other

participating

Actor(s)

Description This use case describes the event when user will enter the parking

module to check out parking

Pre-condition 1.user will enter the smart city application

2. User will enter parking module to check parking status.

3-if slot available he will park his vehicle.

Trigger This use case initiate when a user will enter parking module to check

parking status

Typical flow of

events

1. Open smart city application.

2.can check parking status of the parking space

3. will park his vehicle

Alternate flow

of event

Alt-3.user will not enter parking module

Post condition Successfully enter parking module

Alternate post

condition

Have not check the parking status

19

Table 7: Use Case Street light Module

Name Street light module

Use-Case ID U6

Priority High

Primary Actor User

Other

participating

Actor(s)

Description This use case describes the event when user will enter the street light

module .

Pre-condition 1.User must open Smart city application

2. User must enter the street light Module

Trigger This use case initiate when a user enter the street light Module

Typical flow of

events

1. Open smart city application.

2.Must enter street light module

3. Can check status of street lights

Alternate flow

of event

Alt-3.User has not enter the street light module

Alt-4 .User has not checked the status of lights

Post condition Successfully enter the street light module

Alternate post

condition

Has not enter the street light module and check the status

Table 8: Use Case Signal Module

Name Signal Module

Use-Case ID U7

Priority High

20

Primary Actor User

Other

participating

Actor(s)

Description This use case describes the event when user will enter the signal

module to check the status of signal

Pre-condition 1.User must open Smart city application

2. User must enter the signal module

Trigger This use case initiate when a user enter the signal module

Typical flow of

events

1.Open smart city application

2.Enter signal module

3. check the status of parking

Alternate flow

of event

Alt-3. User will not enter the signal module

Post condition Successfully enters the signal module

Alternate post

condition

Have not enter the signal module

3.3 Sequence Diagram

Sequence diagrams describe interactions among classes in terms of an exchange of

messages over time. They're also called event diagrams. A sequence diagram is a

good way to visualize and validate various runtime scenarios. These can help to

predict how a system will behave and to discover responsibilities a class may need

to have in the process of modelling a new system. There exists sequence diagram

against every use case. Following are the sequence diagrams of Smart City.

21

Figure 7: Mosque Module Sequence Diagram

Figure 8: Park Watering Module Sequence Diagram

22

Figure 9: Parking Module Sequence Diagram

Figure10: Signal Module Sequence Diagram

23

Figure 11: Street Light Sequence Diagram

3.4 Collaboration Diagram

A collaboration diagram describes a pattern of interaction among objects; it shows the

objects participating in the interaction by their links to each other and the messages

that they send to each other.

Collaboration diagrams are used to show how objects interact to perform the

behaviour of a particular use-case, or a part of a use-case. Along with sequence

diagrams, collaborations are used by designers to define and clarify the roles of the

objects that perform a particular flow of events of a use-case. They are the primary

source of information used to determining class responsibilities and interfaces. Unlike

a sequence diagram, a collaboration diagram shows the relationships among the

objects. Sequence diagrams and collaboration diagrams express similar information,

but show it in different ways. Collaboration diagrams show the relationships among

objects and are better for understanding all the effects on a given object and for

procedural design. Because of the format of the collaboration diagram, they tend to

better suited for analysis activities. Specifically, they tend to be better suited to

24

depicting simpler interactions of smaller numbers of objects. As the number of objects

and messages grows, the diagram becomes increasingly hard to read. In addition, it is

difficult to show additional descriptive information such as timing, decision points, or

other unstructured information that can be easily added to the notes in a sequence

diagram. Following are the Collaboration Diagrams of Smart city.

Figure 12: Mosque Module Collaboration Diagram

25

Figure 13: Park watering Collaboration Diagram

 Figure 14: Parking module Collaboration Diagram

26

Figure 15: Street Light module Collaboration Diagram

Figure16: Signal Module Collaboration Diagram

27

3.5 Domain Diagram

A domain model is a conceptual model of the domain that incorporates both

behaviour and data. Domain Modelling is a way to describe and model real world

entities and the relationships between them, which collectively describe the problem

domain space. Derived from an understanding of system-level requirements,

identifying domain entities and their relationships provides an effective basis for

understanding and helps practitioners design systems for maintainability, testability,

and incremental development. Following is the Domain Model of Smart City.

Figure 17: Domain Model Diagram

28

3.6 Design Class Diagram

Classes are the work-horses of the design effort—they actually perform the real work

of the system. The other design elements—subsystems, packages and collaborations

simply describe how classes are grouped or how they interoperate.

Capsules are also stereotyped classes, used to represent concurrent threads of

execution in real-time systems. In such cases, other design classes are 'passive' classes,

used within the execution context provided by the 'active' capsules. When the software

architect and designer choose not to use a design approach based on capsules, it is still

possible to model concurrent behaviour using 'active' classes. Active classes are design

classes, which coordinate and drive the behaviour of the passive classes - an active

class is a class whose instances are active objects, owning their own thread of control.

Following are class diagram of Smart city.

Figure 18: Design Class Diagram

29

3.7 Data Model

The data model is a subset of the implementation model, which describes the logical

and physical representation of persistent data in the system.

 Figure 19: Mosque ERD Diagram

Figure 20: Park watering ERD Diagram

30

Figure 21: Signal Module ERD Diagram

Figure 22: Street Light Module ERD Diagram

31

Figure 23: Parking Module ERD Diagram

3.8 Methodology

Many methodologies now exist for developing projects, so to choose an appropriate

style for this project, research into the various options is necessary. We are using

incremental methodology for this project. In this methodology each phases after

requirement gathering passes through the design, implementation and

deployment phases. Here working module is produced early. Our project is

combination of different modules. Each module has separate implementation.

Therefore we are using incremental methodology for our project. The benefits of this

methodology are

 This model is less costly to changes requirement and scope.

 Easier to manage risks because risks are identified earlier.

 It is easier to test and identify the errors.

32

CHAPTER 4

4 IMPLMENTATION

4.1 Implementation

Smart city is cluster of hardware and software. With the help of this city is automated

and become modern and controlled with the help of android application. Smart city is

basically combination of different modules. Therefore we will develop the modules

separately and then combines together and implemented on a formic board. Along this

an android application will be developed and connected together through a database.

4.1.1 Implementation of first Stage

The first Stage of development process includes separate module wise development.

In this stage we developed the modules separately.

4.1.1.1 Mosque Module

In Mosque module we have done mosque automation. Which includes the

automation of geezer lights, fan and air conditioner. If temperature is less a normal

temperature it will turn on geezer and if temperature is greater than normal

temperature it will turn on Air conditioner.

33

 Figure 24: Mosque Module Diagram

Figure 25: Mosque Module implementation Diagram

34

4.1.1.2 Park Module

In park module the implementation of park module is finalized. In the park watering

system is automated. Which is controlled with the help of a sensor which detect the

moisture and if the soil is moist it stops watering and of soil is dry it start watering

plants.

Figure 26: Park watering Module Diagram

4.1.1.3 Parking Module

In this Module the parking of vehicle is automated which tell user space is available

or not. If parking is full no vehicle is allowed to enter the parking.

35

Figure 27: Parking Module Diagram

4.1.1.4 Street light Module

In street light module street lights are automated. All street light will automatically

turn on in evening and for saving electricity after 12pm it will turn off because at that

time traffic is low. Lights will only turn on when there is motion around it.

37

Figure 28: Street Light Module Diagram

4.1.1.5 Traffic Signal Module

In this module density base traffic signal is implemented. It works like the signal of

that side where traffic flow is greater will one for more time than other and the signal

where there is no traffic will not open.

38

Figure 29: Traffic Module Diagram

4.1.2 Second Stage

In second stage the integration of all modules on a microcontroller is done and they all

are implemented on a single formic board.

Figure 30: Integration of Module Diagram

39

4.1.3 Third Stage

In this stage android application is designed and developed. The android application is

software side implementation. After development of android application it is also

integrated in with hardware and the status of the hardware is checked here.

Figure 31: Android Application Diagram

4.2 Source Codes of Hardware Modules

The source code of all modules is given below

4.2.1 Mosque Module

int val;

int tempPin = A0;

int ledPin=12;

40

int ledPin1=13;

void setup()

{

Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(ledPin1, OUTPUT);

}

void loop()

{

val = analogRead(tempPin);

float mv = (val/1024.0)*5000;

float cel = mv/10;

float farh = (cel*9)/5 + 32;

Serial.print("TEMPRATURE = ");

Serial.print(cel);

Serial.print("*C");

Serial.println();

delay(1000);

/* uncomment this to get temperature in farenhite

Serial.print("TEMPRATURE = ");

Serial.print(farh);

Serial.print("*F");

Serial.println();

*/

if(cel<10.0)

{

 digitalWrite(ledPin, HIGH);

 delay(1000);

}

else if(cel>20.0)

{

 digitalWrite(ledPin1, HIGH);

 delay(1000);

}

41

else

{

 digitalWrite(ledPin, LOW);

 digitalWrite(ledPin1, LOW);

delay(1000);}

}

4.2.2 Parking Module

#include <SoftwareSerial.h>

#include <Servo.h>

SoftwareSerial ArduinoMega(25, 24);

int ir = A0;

int ir1 = A1;

int ir2 = A2;

int ir3 = A3;

int ir4 = A4;

String slot1;

String slot2;

String slot3;

int sensorValue = 0;

int sensorrValue = 0;

int ssensorValue = 0;

int seensorValue = 0;

int sennsorValue = 0;

int servoPin = 9;

int servooPin = 8;

int i = 0;

int j = 0;

Servo servo;

Servo servoo;

42

String Data = "";

int dat = 0;

void setup() {

 delay(1000);

 Serial.begin(9600); // Starts the serial communication

 ArduinoMega.begin(115200);

 pinMode(24, OUTPUT);

 pinMode(25, INPUT);

 pinMode (ir,INPUT);

 pinMode (ir1,INPUT);

 pinMode (ir2,INPUT);

 servo.attach(servoPin = 9);

servoo.attach(servooPin = 8);

}

void loop(){

ssensorValue = analogRead(ir1);

 seensorValue = analogRead(ir2);

 sennsorValue = analogRead(ir3);

 if (ssensorValue<500 && seensorValue<500 && sennsorValue<500)

 {

 servo.write(0);

 delay(100);

 }

 else

{ sensorValue = analogRead(ir);

 if (sensorValue <600) // entrance Gate

 {

 for (int i=0;i<90;i++)

 servo.write(i);

 delay(50);

 delay(5000);

 } }

43

 if(sensorValue >600)

 {

 for (int i=90;i>0;i--)

 servo.write(i);

 delay(500);

 }

 sensorrValue = analogRead(ir4);

 if (sensorrValue <600) // exit Gate

 {

 for (int j=0;j<=90;j++)

 servoo.write(j);

 delay(30);

 delay(3000);

 }

 if(sensorrValue >600)

 {

 for (int j=90;j>0;j--)

 servoo.write(j);

 delay(60);

 }

int seensorValue=analogRead(A1);

 Serial.println(seensorValue);

 delay(1);

if (analogRead(A1)<500)

 {

 Serial.print("Slot 1 Occupied ");

 Serial.println();

 slot1 = "Occupied";

 }

 else

 {

 Serial.print("Slot 1 empty");

 Serial.println();

44

 slot1 = "empty";

delay(250);}

 if (analogRead(A2)<500)

 {

 Serial.print("Slot 2 Occupied ");

 Serial.println();

 slot2 = "Occupied";

 }

 else

 {

 Serial.print("Slot 2 empty");

 Serial.println();

 slot2 = "empty";

 delay(250);

 }

 if (analogRead(A3)<500)

 {

 Serial.print("Slot 3 Occupied ");

 Serial.println();

 slot3 = "Occupied";

 }

 else

 {

 Serial.print("Slot 3 empty");

 Serial.println();

 slot3 = "empty";

 delay(250); }

45

 // Data += "slot1=" + slot1+ "slot="+ slot2+ "slot="+ slot3;

 Data = slot1 + "-" + slot2 + "-" + slot3 + "-" "END";

 //Data = "slot1 = empty -";

 Serial.println(Data);

 ArduinoMega.println(Data);

 ArduinoMega.println("\n");

 Data = "";

 delay(2000); //Post Data at every 2 seconds

}

4.2.3 Street Light Module

int led = 2;

int led1 = 4;

int led2 = 7;

int led3 = 13;

int ldr = A0;

int ir = A1;

int ir1 = A2;

int ir2= A3;

void setup()

{

 Serial.begin (9600);

 pinMode (led,OUTPUT);

 pinMode (led1,OUTPUT);

 pinMode (led2,OUTPUT);

 pinMode (led3,OUTPUT);

 pinMode (ldr,INPUT);

 pinMode (ir,INPUT);

}

void loop()

{

46

 Serial.println(analogRead(A0));

 int ldrStatus = analogRead (ldr);

 if (ldrStatus >=800)

 {

 digitalWrite(led, HIGH);

 analogWrite(led,255/4);

 digitalWrite(led1, HIGH);

 analogWrite(led1,255/4);

 digitalWrite(led2, HIGH);

 analogWrite(led2,255/4);

 digitalWrite(led3, HIGH);

 if (analogRead(A1)>500) // IR 1 CODE

 {

 digitalWrite(led,HIGH);

 analogWrite(led,255/4);

 }

 else

 {

 digitalWrite(led,HIGH);

 delay(3000);// micro second

 }

 if (analogRead(A2)>500) // IR 1 CODE

 {

 digitalWrite(led1,HIGH);

 analogWrite(led1,255/4);

 }

 else

 {

 digitalWrite(led1,HIGH);

 delay(3000);// micro second

47

 }

 if (analogRead(A3)>500) // IR 1 CODE

 {

 digitalWrite(led2,HIGH);

 analogWrite(led2,255/4);

 }

 else

 {

 digitalWrite(led2,HIGH);

 delay(3000);// micro second

 }

 }

 else

 {

 digitalWrite(led, LOW);

 digitalWrite(led1, LOW);

 digitalWrite(led2, LOW);

 digitalWrite(led3, LOW);

 }

}

4.2.4 Park Watering Module

int led =13;

void setup()

{

 pinMode(led,OUTPUT);

 Serial.begin(9600);

}

void loop()

{

 int sensorValue= analogRead(A0);

 Serial.println(sensorValue);

 delay(1000);

 if(sensorValue >=600)

 digitalWrite(led,HIGH);

 else

 digitalWrite(led,LOW);

}

48

4.2.5 Traffic Signal Module

#define signal1led1 2

#define signal1led2 3

#define signal1led3 4

#define signal2led1 5

#define signal2led2 6

#define signal2led3 7

#define signal3led1 8

#define signal3led2 9

#define signal3led3 10

#define signal4led1 11

#define signal4led2 12

#define signal4led3 13

#define signel1sensor1 A0

#define signel1sensor2 A1

#define signel2sensor1 A2

#define signel2sensor2 A3

#define signel3sensor1 A4

#define signel3sensor2 A5

#define signel4sensor1 A6

49

#define signel4sensor2 A7

void setup() {

 Serial.begin(9600);

 pinMode(signal1led1,OUTPUT);

 pinMode(signal1led2,OUTPUT);

 pinMode(signal1led3,OUTPUT);

 pinMode(signal2led1,OUTPUT);

 pinMode(signal2led2,OUTPUT);

 pinMode(signal2led3,OUTPUT);

 pinMode(signal3led1,OUTPUT);

 pinMode(signal3led2,OUTPUT);

 pinMode(signal3led3,OUTPUT);

 pinMode(signal4led1,OUTPUT);

 pinMode(signal4led2,OUTPUT);

 pinMode(signal4led3,OUTPUT);

 pinMode(signel1sensor1,INPUT);

 pinMode(signel1sensor2,INPUT);

 pinMode(signel2sensor1,INPUT);

 pinMode(signel2sensor2,INPUT);

 pinMode(signel3sensor1,INPUT);

 pinMode(signel3sensor2,INPUT);

 pinMode(signel4sensor1,INPUT);

 pinMode(signel4sensor2,INPUT);

}

void loop() {

 int sensor1=analogRead(A0);

50

 int sensor2=analogRead(A1);

 Serial.println(sensor1);

 Serial.println(sensor2);

 if(analogRead(A0)<400 && analogRead(A1)<400){

 signal1(20000);

 }

 if(analogRead(A0)<400){

 signal1(10000);

 }

 else

 {

 signal1(5000);

 }

 int sensor3=analogRead(A2);

 Serial.println(sensor3);

 int sensor4=analogRead(A3);

 Serial.println(sensor4);

 if(analogRead(A2)<400 && analogRead(A3<400)){

 signal2(20000);

 }

 if(analogRead(A2)<400){

 signal2(10000);

 }

 else

 {

 signal2(5000);

 }

51

 int sensor5=analogRead(A4);

 Serial.println(sensor5);

 int sensor6=analogRead(A5);

 Serial.println(sensor6);

if(analogRead(A4)<400 && analogRead(A5)<400){

 signal3(20000);

}

if(analogRead(A6)<400){

 signal3(10000);

 }

 else

 {

 signal3(5000);

 }

 int sensor7=analogRead(A6);

 Serial.println(sensor7);

 int sensor8=analogRead(A7);

 Serial.println(sensor8);

 if(analogRead(A6)<400 && analogRead(A7)<400){

 signal4(20000);

 }

 if(analogRead(A4)<400){

 signal4(10000);

 }

 else

 {

 signal4(5000); }

 }

52

 void signal1(int a){

 digitalWrite (signal1led3,HIGH);

 digitalWrite(signal1led1,LOW);

 digitalWrite(signal1led2,LOW);

 digitalWrite(signal2led1,HIGH);

 digitalWrite(signal2led2,LOW);

 digitalWrite(signal2led3,LOW);

 digitalWrite(signal3led1,HIGH);

 digitalWrite(signal3led2,LOW);

 digitalWrite(signal2led3,LOW);

 digitalWrite(signal4led1,HIGH);

 digitalWrite(signal4led2,LOW);

 digitalWrite(signal4led3,LOW);

 delay(a);

 digitalWrite(signal1led2,HIGH);

 digitalWrite(signal1led3, HIGH);

 digitalWrite(signal2led1,HIGH);

 digitalWrite(signal2led2,HIGH);

 digitalWrite(signal2led3,LOW);

 digitalWrite(signal1led1,LOW);

 digitalWrite(signal3led2,LOW);

 digitalWrite(signal3led3,LOW);

 digitalWrite(signal3led1,HIGH);

 digitalWrite(signal4led1,HIGH);

 digitalWrite(signal4led2,LOW);

 digitalWrite(signal4led3,LOW);

 delay(3000);

 }

 void signal2(int a){

 digitalWrite (signal2led3,HIGH);

 digitalWrite(signal2led1,LOW);

 digitalWrite(signal1led1,HIGH);

 digitalWrite(signal1led2,LOW);

53

 digitalWrite(signal2led2,LOW);

 digitalWrite(signal1led3,LOW);

 digitalWrite(signal3led1,HIGH);

 digitalWrite(signal3led3,LOW);

 digitalWrite(signal3led2,LOW);

 digitalWrite(signal4led1,HIGH);

 digitalWrite(signal4led2,LOW);

 digitalWrite(signal4led3,LOW);

 delay(a);

 digitalWrite (signal2led3,HIGH);

 digitalWrite(signal2led1,LOW);

 digitalWrite(signal1led1,HIGH);

 digitalWrite(signal1led2,LOW);

 digitalWrite(signal2led2,HIGH);

 digitalWrite(signal1led3,LOW);

 digitalWrite(signal3led1,HIGH);

 digitalWrite(signal3led3,LOW);

 digitalWrite(signal3led2,HIGH);

 digitalWrite(signal4led1,HIGH);

 digitalWrite(signal4led2,LOW);

 digitalWrite(signal4led3,LOW);

 delay(3000);

 }

void signal3(int a)

{

 digitalWrite (signal2led3,LOW);

 digitalWrite(signal2led1,HIGH);

 digitalWrite(signal1led1,HIGH);

 digitalWrite(signal1led2,LOW);

 digitalWrite(signal2led2,LOW);

 digitalWrite(signal1led3,LOW);

 digitalWrite(signal3led1,LOW);

 digitalWrite(signal3led3,HIGH);

 digitalWrite(signal3led2,LOW);

54

 digitalWrite(signal4led1,HIGH);

 digitalWrite(signal4led2,LOW);

 digitalWrite(signal4led3,LOW);

 delay(a);

 digitalWrite (signal2led3,LOW);

 digitalWrite(signal2led1,HIGH);

 digitalWrite(signal1led1,HIGH);

 digitalWrite(signal1led2,LOW);

 digitalWrite(signal2led2,LOW);

 digitalWrite(signal1led3,LOW);

 digitalWrite(signal3led1,LOW);

 digitalWrite(signal3led3,HIGH);

 digitalWrite(signal3led2,HIGH);

 digitalWrite(signal4led1,HIGH);

 digitalWrite(signal4led2,HIGH);

 digitalWrite(signal4led3,LOW);

 delay(3000);

}

void signal4(int a){

 digitalWrite (signal2led3,LOW);

 digitalWrite(signal2led1,HIGH);

 digitalWrite(signal1led1,HIGH);

 digitalWrite(signal1led2,LOW);

 digitalWrite(signal2led2,LOW);

 digitalWrite(signal1led3,LOW);

 digitalWrite(signal3led1,HIGH);

 digitalWrite(signal3led3,LOW);

 digitalWrite(signal3led2,LOW);

 digitalWrite(signal4led1,LOW);

 digitalWrite(signal4led2,LOW);

 digitalWrite(signal4led3,HIGH);

 delay(a);

 digitalWrite (signal2led3,LOW);

55

 digitalWrite(signal2led1,HIGH);

 digitalWrite(signal1led1,HIGH);

 digitalWrite(signal1led2,HIGH);

 digitalWrite(signal2led2,LOW);

 digitalWrite(signal1led3,LOW);

 digitalWrite(signal3led1,HIGH);

 digitalWrite(signal3led3,LOW);

 digitalWrite(signal3led2,LOW);

 digitalWrite(signal4led1,LOW);

 digitalWrite(signal4led2,HIGH);

 digitalWrite(signal4led3,HIGH);

 delay(3000);

}

57

CHAPTER 5

5 USER MANUAL

5.1 How to access application

To access smarty city application simply install application in your mobile and open

it.

5.1.1 Login and Registration

After accessing Smart City Application, Login screen will display.

Figure 32: Android Login Diagram

58

 Enter login credentials if you are already registered at Smart city click on

Login button

 Click on ‘Register to register at smart city. After click on ‘Register’

registration form will show as in below figure

Figure 33: Android Registration Diagram

 Fill the registration form by providing user name and a new password then

click on ‘Register button it will redirect you to Login.

 By click on ‘Login’ button, you will go back to Login screen

5.2 Home Screen

 After login in application a home screen will all modules will be shown.

59

 From this you can access any module which you want to access.

 Figure 34: Android Home Screen Diagram

 You can also check your login details from top left column.

60

Figure 35: Android Login details Diagram

5.3 Module Description Manual

Here is the manual of every module separately

5.3.1 Mosque Module

 On clicking Mosque Module button you will enter mosque module.

 From there you can check prayer time, prayer alerts.

 You can also check temperature of Mosque.

 You can also check weather ac is on or geezer.

61

Figure 36: Android Mosque Module Diagram

5.3.2 Park Watering Module

1. In this module you can check park watering module status of the smart city

system.

63

Figure 37: Android park Module Diagram

5.3.3 Parking Module

 In this Module you can check the status of the parking.

64

Figure 38: Android parking Module Diagram

5.3.4 Traffic Signal Module

 In this module you can check the status of all signals as shown in the pic

below.

 The status of all traffic lights is given in this module.

65

Figure 39: Android Traffic Module Diagram

5.3.5 Street light Module

 In this Module you can check the status of street lights.

 Weather streetlight is on or off.

66

Figure 40: Android Street light Module Diagram

67

CHAPTER 6

6 CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

In past everything thing is controlled manually it very difficult to control this. The aim

of this project is to makes a city smart by automating it. And providing a single

platform to control all this and helps the user to check the status of all modules from a

single application. This will reduce man power. It giving azan alert, showing status of

different modules. It also shows the parking availability to the user. In short it

automation of city. And controlling it from single platform. This project is vast

therefore we just covered five modules in this project currently.

6.2 Recommendation

It’s necessary for user to have strong internet connection otherwise application may be

lack or works slowly. User should have little bit know how about the hardware.

68

REFERENCES

[1]https://www.researchgate.net/publication/236685572_Smart_Cities_Literature_Re

view_and_Analysis

[2] http://www.mavensystems.com/smart-city.html

 [3] http://iot-smartcities.lero.ie/wp-content/uploads/2016/12/A-Systems-Approach-

to-Smart-City-Infrastructure-A-Small-City-Perspective.pdf

[4]

https://pdfs.semanticscholar.org/f995/13aa551690d639f1480702ed953bd375668

5.pdf

 [5] https://www.smartparking.com/

[6] http://smartparkingsystems.com/en/

[7] https://cityos.io/Best-Smart-Parking-Systems

[8]https://www.siemens.com/global/en/home/products/mobility/road-

solutions/parking-solutions/intelligent-parking-solutions.html

[9] http://smarthomebus.com/dealers/Presentations/Smart%20Mosque.pdf

http://smartparkingsystems.com/en/

69

