

FINAL YEAR PROJECT REPORT

SMART STICK FOR BLIND PEOPLE

In fulfillment of the requirement For degree of BS (COMPUTER SCIENCES)

By

HAMMAD AHMED MUSAB SIKANDER MUHAMMAD RAAFAY 57190 (BSCS) 57169 (BSCS) 57197 (BSCS)

SUPERVISED

BY

MISS AMNA IFTIKHAR

BAHRIA UNIVERSITY (KARACHI CAMPUS)

SPRING-2022

DECLARATION

We hereby declare that this project report is based on our original work except for citations and quotations which have been duly acknowledged. We also declare that it has not been previously and concurrently submitted for any other degree or award at Bahria University or other institutions.

Signature	:	Hommad.
Name	:	Hammad Ahmed
Reg No.	:	57190
Signature	:	Muzak.
Name	:	Musab Sikander
Reg No.	:	57169
Signature	:	Ren
Name	:	Muhammad Raafay
Reg No	:	57197
Date	:	06-07-22

The copyright of this report belongs to Bahria University according to the Intellectual Property Policy of Bahria University BUORIC-P15 amended on April 2019. Due acknowledgement shall always be made of the use of any material contained in, or derived from, this report.

4

© 2022 Bahria University. All right reserved.

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express our gratitude to our project supervisor, Miss Amna Iftikhar for her invaluable advice, guidance and her enormous patience throughout the development of this project.

In addition, we would also like to express our gratitude to our loving parents who have helped and given us encouragement.

SMART STICK FOR BLIND PEOPLE

ABSTRACT

According to a survey conducted in 2020, approximately 39 million individuals worldwide are blind, while 237 million have MSVI which is an abbreviation of Moderate to Severe Vision Impairment. Major issue for blind persons is avoiding impediments on their way to their destination. Such folks require support from persons with good eyesight or from a regular walking cane. When you consider them, you'll see that they can't travel to their desired location without the assistance of others or a smart device. They confront numerous hurdles in their daily life. To address these and other issues experienced by blind people, we devised the idea for this system, which is to design and develop a smart stick that can assist them in their everyday tasks and allow them to travel more simply and confidently. This smart stick for blind persons is made up of a number of electronic components that allow it to function. Multiple ultrasonic sensors, a gyroscope, a GPS module, an LDR sensor, a water sensor, a fire sensor, and other electronic components are among them. Every component has its own significance like the ultrasonic sensor is helpful in detecting obstacles in the blind's way, gyroscope will be used to monitor the orientation of the stick in case of any sort of trouble, GPS module is used to send the blind's location to any of his relatives in case of an emergency, and the three sensors will be used to detect different events in order to give the blind an alert. We've also linked this smart stick to a smartphone application, to enhance its functionality and use.

TABLE OF CONTENTS

DECLARATION	ii
APPROVAL FOR SUBMISSION	iii
ACKNOWLEDGEMENTS	v
ABSTRACT	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	x
LIST OF FIGURES	xi
LIST OF APPENDICES	xili

CHAPTER

1	INTI	RODUCTION			
	1.1	BACKGROUND	14		
	1.2	PROBLEM STATEMENTS	14		
	1.3	AIMS AND OBJECTIVES	14		
	1.4	SCOPE OF PROJECT	15		
2	LITERATURE REVIEW				
	2.1	BACKGROUND	16		
	2.2	RELATED WORK	16		
	2.3	COMPARISON TABLE WITH EXISTING STUDY	18		
	2.4	CHAPTER SUMMARY	19		
3	DESIGN AND METHODOLOGY				
	3.1	PROPOSED METHODOLOGY	20 20		
	3.2	PROCESS MODEL	20		
	3.3	MODULES/COMPONENTS DISCUSSION	22		
		3.3.1 Arduino NANO	22		
			44		

	3.3.2	Ultra-sonic Sensors (JSN-SR04T)	23
	3.3.3	ESP8266	24
	3.3.4	Gyroscope	24
	3.3.5	MP3 Player Module	25
	3.3.6	GPS Module (SKM-53)	25
	3.3.7	Buck Converter (LM-2596)	26
	3.3.8	Soil Moisture Sensor	26
	3.3.9	Flame Sensor Module	27
	3.3.10	LDR Sensor Module	27
	3.3.11	Battery Level Indicator Module	28
	3.3.12	BMS 3S Module	28
3.4	PROJE	CT DIAGRAM	29
	3.4.1	SEQUENCE	30
	3.4.2	CONTEXT	31
	3.4.3	USE CASE	31
	3.4.4	FLOWCHART	32
IMPL	EMENTA	ATION	33
4.1	MODULE DEVELOPMENT		
	4.1.1	Obstacle Detection	33
	4.1.2	Fire/ Flame Detection	34
	4.1.3	Water Detection	35
	4.1.4	Dark Environment Detection	35
	4.1.5	Emergency Alert Through Emergency Button	36
	4.1.6	Emergency Alert Through Gyroscope	37
	4.1.7	Location Tracking	39
	4.1.8	Blynk Module	39
4.2	GUI AND SOURCE CODE		
	4.2.1	Source Code (Arduino Module)	41
	4.2.2	Source Code (ESP8266 Module)	45
	4.2.3	Web Dashboard/Interface	51
	4.2.4	Mobile Dashboard/Interface	52
4.3	RESUL	T AND DISCUSSION	52

		4.3.1	Success Criteria	52
		4.3.2	Degree of Success	53
		4.3.3	Performance Analysis	53
5	TESTI	ING ANI	D EVALUATION	54
	5.1	TEST PLAN		54
		5.1.1	Testing	54
		5.1.2	Major Types of Testing	54
		5.1.3	Other Types of Testing	55
	5.2	TESTING MODULES		57
		5.2.1	Testing of Ultrasonic-Sensor Modules	57
		5.2.2	Testing of Gyroscope Module	57
		5.2.3	Testing of GPS Module	57
		5.2.4	Testing of Soil Moisture Sensor Module	57
		5.2.5	Testing of Flame Sensor Module	58
		5.2.6	Testing of LDR Sensor Module	58
	5.3	TEST CASES AND EVALUATION		
		5.3.1	Test Case for Obstacle Detection	58
		5.3.2	Test Case for External Environment Detection	60
		5.3.3	Test Case for Emergency Alert Sent to Guardian	60
		5.3.4	Test Case for Location Tracking	62
		5.3.5	Test Case for Blynk Application	62
6	CONC	LUSION	AND FUTURE WORK	64
	6.1	CONCL	USION	64
	6.2	FUTUR	E WORK	64
REFERI	ENCES			(=
				65
APPENI	DICES			67