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ABSTRACT

The increasing use of android mobile devices and the complexity of applications have led to

increase in malware threats9 Information7 and demanding robust security measures for

safeguarding user privacy. We investigate the use of deep learning techniques in detection of

of Android Malware considering the latest datasets. We aim to improve the system's abilitY to

accuratejy classify and detect a wider range of Android malware variants. We provide APK

anajysjs for a feature extraction mechanism capable of extracting a total of 43,377 features

from a dataset comprising 1201 each malware classes in total 13,211 malware and 1201 beniw

applications. After meticulous selection, we retain only 10,524 features, which are

subsequently used to train the neural networks. This dataset enables thorough evaluation and

validation of the proposed detection system. We make use of APK .extracted from

ANDROZOO for the purpose of dataset generation. Performance metrics which is used in this

research are detection accuracy, recall, Fl-score and precision are utilized to determme the

efficacy of the enhanced detection approach. This research explores the effectiveness of

convolutional neural network (CNN) and deep neural network (DNN) models for Android

malware detection using static features. By utilizing our own dataset, we evaluate the

performance of both models and compare their accuracy rates. Our results demonstrate that the

DNN model accuracy rate of 97%, which is outperforming the CNN model, which achieves a

slightly lower accuracy rate of 96%. Transfer Learning (TL) based model also achieves a

slightly lower accuracy rate of.94% but has the advantage to classify unseen or zero-day

al-tac.'ks. These findings highlight the potential of DNN-based approaches in enhancing the

detection and prevention of Android malware, showcasing their superiority over the CNN as

well TL based classifiers. The evaluation also highlights the importance of considering an

expanded number of malware classes, as it significantly enhances the system’s capability to

detect diverse malware families both known and unknown malwares.
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1. INTRODUCTION

Am ovewiew of Android malware chapter as well as the motivation behind our study,

Existing gaps and research questions along with our research objectives is discussed in this

chapter. Also we have provided an overview of our thesis approach and the constraints of our

research.

1.1. OVERVIEW:

Everyday use of mobile devices, particularly using the Android operating SYstem9 has

increased with the time. Thereof, malware attacks on these devices are becoming increasingIY

usual. In a malware, the attacker develops a program with the aim of damagmg a computer

system without the user's consent. For Android mobiles, the third-partY app stores9 Google PlaY

Store is recently penetrated by malware, which poses serious privacY and securitY risks for

users[ 1][2]. Over 2.56 million mobile applications (Apps) were available for download in the

Google Play Store alone as of the first quarter of 2022, according to Statista[31.

We can make use of static or dynamic features of an application to determine whether an

Android App is possibly benign or malicious. Android malware detection and prediction

process make use of datasets that may contain static or dwamic features, extracted from elther

the APL of the application without executing or from the emulator based execution' The statIC

analysis fealures include permissions9 API calls9 and strings etc. To increase the accuracy of

Android malware detection machine-learning methods have been applied to these staUc

features [1]. with regard to identifying Android malware via static feature analysis, deep

learning approaches, such as recurrent neural networks (RNNs)9 and convolutional neural

networks (CNNs) have demonstrated promising results[4] .

In short we examine how well static fealnres7 CNNs9 and DNNs, perform in identifying

Mdroid malware detection. Our research intends to contribute to the development of efficlent

static analysis_based methods and more reliable for Android malware detection.



1.2. MOTIVATION
The detection of Android malware using static features remains an important research area

due to the increasing number of mobile malware attacks. The understanding of how to extract

penhent static features from Android applications and to develop efficient deep-learning

models for malware detection remains an important initial step fOF Android malware detectIQn

process [5]. Increasing the precision and effectiveness of Android malware detection using

static features is one of the main goals of this research'

Static analysis-based malware detection techniques maY be able to do this' ConsecpentIY’

the goa1 of the study is to create advanced static analysis-based tools that can efficientIY find

atta,.ks. Our collection of malwares allows us to enhance the precision of malware detectlon

on a different collection of applications by utilizing the information obtained from studYlng

one group of applications [6] .

By achieving these goals9 the research has the potential to significantIY enhance the

secudty of Android devices and protect users from the harmful effects of malware attacks

1.3. RESEARCH GAPS

h is pertinent to note that prior research has focused either on binarY where the outPut class

is either benign or malicious [7][8] or multi-classification considering UP to 10 classes or

subclasses of Android malware [9][101[11]. Since new classes of Android malware are

discovered it becomes imperative to examine the efficacy of taking into account additional

classes. However9 it is impoaant to note that adding more classes can decrease the classification

modUs' accuracy and make it easier to identify newIY discovered and developing malware

variants. Another effect of adding or including more classes result in a more complex model

with additions layers required resulting in increased processmg costs.

Secondly9 previous models are developed using datasets with limited number of

features [12]. Investigating the usage of more features and bigger datasets can help these

models perform better. It is pertinent to note that larger datasets can provide the models with

more diverse and relevant examples9 which can enhance their generalization capabilities[71.

Existing research considers limited features and the latest static feature extraction techniques

can extract up to 19000 features and after applying preprocessing they get 350 features [8]

from AllK analysis. APR development code complexity and feature extraction techniques for



static fealnre extractioh as well as simulator based execution for dWamic feature extractlon are

becoming more robust and hence returning bigger features sets. Therefore, better and more

robust models involving more feanres and malware classes are required.

A zero_day attack9 also Imown as a zero_day exploit9 is a type of cyberattack that takes

advantage of a previously unknown vulnerability or software flaw in a computer SYstem9

application) or piece of software. These vulnerabilities are called "zero-day" because theY are

exploited by attackers before the software developer becomes aware of the issue, leaving zero

days for the developer to prepare and release a patch or fix [9]. An initial evaluation of zero-

day atta'.ks wa, .'x,du.t,d u,ing a combination of G'aph Convolutional Networks (GCN) and

Multilayer Per<,.eptron (MLP). However, there is a need to incorporate more sophisticated

techniques9 such as transfer learning with machine learning! to effectiveIY address zero

day attacks[ 10] .

1.4. PROBLEM STATEMENT:

Early malware th.eat detection can help avoiding possible malicious activities performed

by A,d„id M,lw„,. Th„, „, „um„,.,us A.d,.id malwa” f'mili” '"d th'ir sub-classes, and

new malware are getting introduced regularly. However9 existing research considers at most

10 number of Android malware classes and sub-classes [6]. Therefore, a deeper APK anaIYsls

capable of revealing more static features for constructing datasets and deep learning models

considering a wider range of malware classes and sub-classes for Android malware detectlon

process are required. We aim to deploy a feature extraction mechanism for dataset

development. We also propose deep learning techniques based models considering more

number of classes and static features and use deep-learning based Android malware detection

tecluliques handling zero_day attacks. We raise the following research questions:

1.

2.

3

How can we construct datasets with larger sets of examples bY consldermg more

features and families/classes?

How can we develop a deep learning approach based models tInt make use of a

bigger range of malware classes and features in the dataset and improve efficiencY

of existing systems?

What is compaI]son of deep learning_based classifiers that can be employed to

identify malware with and without the possibility of handling zero-daY attacks?



1.5. Rl.Sl.ARC'H OBJECTIVES

Objective 1 :

Investigate existing methods and techniques for constructing datasets with larger sets of

examples by incorporating additional features and families/classes, with a focus on enhancing

dataset diversity and representativeness.

Objective 2 :

Explore deep learning-based approaches for classifying malware bY utilizing a broader range

of malware classes and features in the dataset. Evaluate the effectiveness of these models in

improving the efficiency and accuracy of existing malware detection SYstems'

Objective 3 :

To investigate and develop the effective techniques and strategies for the proactive detection

of zero_day attacks considering static features and comparing accuracY.

1.6. THESIS METHODOLOGY AND LIMITATIONS:
The methodology for collecting the dataset of Android applications for this research

includes different strategies such as web crawling, downloading apps from appllcatlons stores,

and using thrd_pad,y sources. Once the data is gathered9 useful static features are extracted

using a variety of methodsp such as applications code dissection, API call anaIYsis, and manifest

file inspection. Permissions, network connections, API requests, and other application features

that may be indicative of malicious behavior are some examples of these static features' For

malware detection to categorize applications into malicious or benign, neural network
architectures are used in deep learning models! for example9 Convolutional neural networks

(CNr\Is) and deep neural networks (DNNs). The quality and variety of the training dataset and

the quality amount of the extracted features have a verY visible impact on how accurate these

models are. The use of deep learning models for malware detection is not without limitations

though. The challenge of getting a sizable and varied collection of malware and benign

appli(,.ations is one issue. Additionally, it might be difficult to determine between beniW and

malicious behavior in some (,.irLumstances7 such as when an application uses APIs that could

be viewed suspiciously or requests particular rights. Furthermom9 given the continualIY

evolving nature of malware, it can be difficult for deep learning models to generallze
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successfully to new and untested malware samples9 which is a need for their efficacy. The

Research Methodology which we follow iS depicted in Fig1're 1-1.

i@@&iia§

i:;#&@#IQ@@}}}&#& F:gaiaax:i@©4". );{@}gM%

Figure 1.1: Research methodology steps

1.7. Rl.SEAR(-'H CONTRIBUTIONS

The collection of a balanced dataset is one of the major contributions of our studY to the

area of Android malware detection. The quantity and quality of data play a keY role m

determining how accurate a deep learning model is. Our dataset has a balanced distribution of

malware and benign appli,,.'ations> giving each class an equal representation. A dataset like this

guarantees the development of more reliable and accurate models, which can help wah
malware identification.

An important contribution to our research is that we have concentrated on adding more

malware class variations to our dataset. Traditional malware detection methods might not be

sufficient for detecting new types of harmful behavior because of how quickIY malware is

evolving. Therefore9 incorporating a wider variety of malware classifications enables more

precise and delicate malware detection. This expansion of malware tYpes maY also provlde

light on the basic features of harmful behavior, assisting in advancing the development of more
effective detection methods.

Another contribution of our research is the extraction of a more comprehensive set of

features from Android application. Identifying the features that matter for malware

classification is a big challenge for deep learning-based malware detection. We face with thls

challenge by extracting a larger number of features from our dataset, leading to more accurate

and precise deep-learning models. This feature extraction comprises the studY of numerous

fealrrres9 including permissions, API calls, and network connections.



1.8. THESIS ROADMAP

After the abstract and introduction, the roadmap of research are as follows: Literature

review on the topic of Android malware detection and static analysis is explained in Chapter

2. In Chapter 3 methodology that was used in this study is extensively explained in Chapter 4

explained results with a discussion of the findings that follows. Chapter 5 concludes by

discussing the study's contributions and offering ideas for more research. With this structure in

place9 the reader will be able to fully understand the issue completely, from the literature review

to the technique used9 and finally, the findings and contributions of the research. In we depict

the overview of thesis which we follow.
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2. LITERATURE REVIEW

Android malware detection is a crucial area of research given the widespread use of

smartphones and the potential threats posed by malicious apps. Static feature analysis

techniques have emerged as a prominent approach to identify and classify malware without

executing the applications. By extracting features from the binary code or manifest files, these

techniques offer valuable insights into the potential malicious behaviour of Android apps.

Dynamic analysis techniques, on the other hand, involve executing apps in controlled

environments to observe their behaviour in real-time. We explore the advancements in android

malware detection, focusing on static feature analysis, dynamic analysis, datasets used for

evaluation, and the integration of machine learning and deep learning methodologies for
accurate detection.

2.1. Primary Study Selection:

A total of 120 papers were initially selected for the primary study selection through

database searches and other sources. Following the application of inclusion and exclusion

criteria based on relevance and quality, 62 papers were chosen for further examination. Six of

the publications chosen were systematic literature reviews, one was a survey, and four were

literature reviews. The publications were gathered from a variety of sources, with IEEE (3 1),

Science Direct (11), and Springer being the most common (5). Research Gate, Hindawi, MDPI,

SagePub, ACM, ITCKTU, JISI, and PLOS ONE were among the other sources. The papers

that were chosen were then thoroughly examined in order to extract important material and

insights on android malware detection and analysis approaches.

A thorough search of numerous academic databases, including IEEE Xplore, ACM Digital

Library, ScienceDirect, and Google Scholar, was required to conduct the review. " Android

malware detection," " Android malware analysis," " Android malware classification," "machine

learning," "deep learning," "static analysis," "dynamic analysis," "hybrid analysis," and

"feature-based analysis" were among the search terms utilized. The search was restricted to

studies published in English between 2010 and 2022.



At the outset9 thi initial search yielded 120 research papers. After conducting further

screening based on the relevance of the publications, we ultimately selected 62 primarY studles

and 7 review papers for inclusion in this systematic literature review.

The data extraction approach included noting the Year of publication, dataset(s) used,

analysis teLtmique(s) used9 and study limitations. The gathered data was sorted and anaIYzed

in order to detennine the important themes and findings about android malware detection and

analysis methodologies and tools.

2.2. Data Extraction:

Ths sub_phase involves obtaining essential data from the chosen research. The data

retrieved from each research comprises the proposed static analysis approach, the evaluation

methodologv2 the results9 and the limitations of the suggested technique. A predetermined form

was used to extract the data. Each study's data was retrieved by two independent reviewers,

and any disagreements were handled by consensus. The gathered data was organized and

synthesized to address the study objectives. The extracted information in the data extraction IS

listed in FIgure 2. / .

Figure 2.1: The extracted data/information



During the data extraction phase, a CSV file was created to SYstematicalIY record relevant

infomation from the selected studies. The csv file consisted of the following header columns:

1. Source: This column recorded the source of the study, such as IEEE) Sclence Dlrect,

Springer9 Research Gate9 Hindawi9 MDPl9 SagePub9 ACM, ltcktu, JISI, and Plose-One'

2. Cite: This column reported the total number of citations.

3. Al Model: This column documented the type of artificial intelligent models such as

machine learning or deep learning.

4. Dataset: The name of the dataset used in the study for training and testing the machlne

learning model was recorded in this column.

5. Accuracy Metric: This column documented the type of accuracy metric used in the

study, such as precision, recall, Fl score, accuracY9 and others'

6. Accuracy Percentage: This column records the percentage value of the accuracY

metric achieved by the machine learning model in the studY.

7. Limitations: This column records any limitations or downsides of the studY m terms

of dataset selection> model design, evaluation criteria, or other elements.

8 Link: For future referen<,.e9 this column recorded the hyperlink to the full-text PDF of

the paper.

9. Date: The study's publication date was noted in this column.

10. Algorithm: This column documented the machine learning algorithm used in the studY,

such as J489 svM9 KNN> Naive Bayes, and others.

11 Features: This column recorded the set of features used in the studY for machine

learning model training and testing.

12 Classes: The classes of malware or benign apps utilized in the studY for machlne

learning model training and testing were recorded in this column'

The data extraction phase entailed the methodical extraction and recording of pertment

infonnation from each of the 62 chosen research. The CSV file provided as a thorough and

ordered record of the retrieved data, allowing for additional anaIYsis and SWthesis of the

results
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2.3. Data Synthesis:

The data synthesis step produced various tables and graphs that gave for a better

understanding of the properties of the Al models used to detect Android malware. The most

widely used characteristics were Permissions, API calls, SYstem calls and Opcode with most

sludies incorporating both into their Al models. However9 some research used fewe1 common

features9 such as segment entropy and creator information, showing the need of studYlng

multiple feature sets for malware identification.

The Figure 2.2 1ists 22 different types of features used in the previous studY, each with a

corresponding count of the number of times that feature was used across all the apps anaIYsed
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Figure 2.2: Categories of Android Features

The various malware classifications that the selected studies were designed to identlfY'

Adware9 Trojan and Backdoor malware etc were the most frequently detected malware

classincations, while Worm and Scareware etc were less frequentIY targeted' Thls data can

assist researchers to identify which malware classes pose the most serious threats to Androld

devices and may help gxride Rrture research efforts.



Researchers have explored various malware classes in their studies. In the

comprehensive analysis of malware classes conducted during the background research for this

thesis9 the FIgure 2.3 show the malware is classified into 22 distinct categories. We find all the

studies considered benign9 on the other hand 48 studies considered malware. A total of 8 studies

conducted on Adware9 6 studies on SMS Trojan, I study on Phishing, 1 study on Data Stealer,

3 studies on Rootkjt9 2 sludies on Botnet, 1 study on ClickFraud, 1 study on DDOS, 8 studies

on Ransomware9 7 studies on Trojan, 4 studies on Backdoor, 1 study on Riskware, 3 studles

on Spyware, 3 studies on ScareWare, 2 studies on Worms, and I studY each on Dlaler,
Downloader9 Rouge! and Pws. This diverse representation of malware classes underscores the

comprehensive nature of the research conducted in this domain.
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Figure 2.3: Classes used in primary studies



In a comprehensive analysis of studies that have employed various datasets in the field,

it was observed that the "Drebin" dataset was the most frequently used, appearing in 17 research

studies. "Genome" and "Private Dataset" datasets were also cited frequently, with 8 studies

each making use of these resources. " AMD (CICMAL2017)" was utilized in 7 studies, while

"CIClnvesAndMa12019" was referenced in 2 research studies. Other datasets such as '’Kaggel,"

"MoDroid, " "Ember, " "Microsoft Malware Classification Challenge Dataset," ”KuafuDet," and

"Omnidroid" were utilized in one research study each. Additionally, there were 8 instances

where the dataset used was not explicitly mentioned, making it challenging to attribute the

specific dataset utilized in those cases. As Figure 2.4 show the dataset used by researchers.
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Figure 2.4: Graphical representations of malicious dataset in the primary dataset

Researchers often rely on various repositories to obtain the data necessary for their

cybersecurity and malware studies as shown in Figure 2.5. Among the repositories mentioned

in these studies, ’'VirusShare" emerges as the most frequently referenced, appearing in 11

research studies as a critical resource for malware samples. "Google Play," the official Android

app store, follows closely with 6 mentions, emphasizing its significance in analyzing Android

applications. "Contagio" serves as a valuable repository in 5 studies, while "Androozo"

contributes to 3 research projects. Additionally, "Third-party app markets" were utilized in 3

studies, "Marvin" in 1 study, and in some instances, when the repository was not explicitly

specified ("Not Mentioned"), researchers made use of the term " Android APK" in their studies,

implying that these repositories were indeed the sources for their data.
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Figure 2.5: Repositories Considered in Benchmarks Studies

2.4. Our Analysis and Findings

2.4.1. Challenges in Dataset Quality

Author proposed a machine learning approach for Android malware detection, utilizing

a static permission_based methodology[11]. Their approach shares similarities with DREBIN

in terms of being lightweight and computationally efficient. The paper included four main

experiments: Permission_based clustering, Permission-based classification, source code-based

clustedng9 and source code_based classification. For conducting their research, the authors used

a dataset comprising 400 applications, equally split into 200 benign and 200 malicious samples.

To improve the accuracy and reliability of the results, an Ensemble learning technique was

employed9 consisting of an odd number of classifiers. This allowed for a more robust
determination of outcomes based on the probabilities generated bY each model'

Author in [12] aimed to enhance the efficiency and reliability of Android malware

detection by focusing solely on the permission feature and emploYing binarY classification with

an imbalanced dataset sourced from the MODroid dataset. The study evaluated the performance

of commercial anti-virus tools in classifying samples as malicious or beni©. The findings

indicated low detection rates, with only 14.37% of the 5902 malicious samples correctIY

identified9 and a false positive rate of 18.4% observed on the 4297 benign samples'

Furthermore9 the research explored the effectiveness of various machine learning (ML)

algorittuns using only the APK manifest file for analysis. Notably, all ML algorithms

outperformed commercial anti-virus engines. SpecificalIY, the Random Forest algorithm



exhibited exceptional -precision, achieving a score of O'8249, which showcased its abllltY to

accurately identify true positives among the detected malware mstances'

A literature review is presented in [13] that explored the application of deep learnlng

te„.}miques for Android malware detection, specifically focusing on static features' in the studY'

a dataset of 426 malware and 5,065 benign samples was utilized, and these samples were

cat,gori,ed into Ransomware, Adware, SMS Malwarel and Scarewarc' The research enWloYed
the Bi]_STM model9 which demonstrated an exceptional accuracY of 98.85% on the

CIClnvesAndMa12019 dataset containing 89115 static features. Notably, the selected features,

including Permissions9 Activities and Services, Broadcast Receivers, Meta data9 API calls'

System „.ans9 and Opc,.,de, played a vital role in contributing to the improved detection of

Android malware.

The author in [14] focused on multi classification, considering adware9 ransomware'

scareware) and SMS malware9 while utilizing 19 selected features. The studY emploYed the

Long Shoa_T,m M,m,ny, (LSTM) ,lg„„itlun f., imp''"'d ”n”mw”' d't'ction in the

Android environment. To ensure robust feature selection, eight different feature selectlon

algorithms were utilized, with a majority voting process leading to the selection of 19

,ig„in„nt features. The proposed deep lear11ing-based malware detecti011 model was evaluated

using the Cl_C AmdMa12017 android malware dataset and standard performance parameters

Remarkably) the proposed algorit tun achieved an outstanding detection accuracy of 97'08%'

Based on these impressive results9 the proposed algorithm was endorsed as an efficient

approach for malware.

Author worked on binary Android malware detection [15]. The proposed Deep ClassifY

Droid detection system was a deep learning-based approach focused on distiI:Wishing between

malicious and benign Android applications. The system utilized CNN-based malware detectlon

and achieved an impressive accuracy rate of 97.4%. Comparative evaluations demonstrated

that Deep Classify Droid outperformed most existing machine learning-based methodsp

accurateIY detecting 97.4% of malware with minimal false alarms. Additionally) the approach

showcased exceptional efnciencY9 being 10 times faster than Linear-SVM and 80 times faster

than kNN. The evaluation dataset consisted of 5546 malware and 5224 beniW soRware

samples from the Drebin dataset) underscoring the effectiveness and efficiency of the Deep

(..-lassify Droid detection system for binary Android malware detectlon'



In the research, a static analysis-based Android malware detection model was proposed

using features from benign and malicious apps collected from Google Play and Virus Share

[16]. The model utilized a fully connected deep learning approach (DNN) and achieved an

outstanding accuracy of approximately 94.65%. The dataset included 331 features with

classifier labels, focusing on binary and multi-label categorical data9 particularIY permlsslons

in API, which were often misused by hackers. The study also identified goodware and bemgn

applications, contributing to a safer user experience on Android devlces.

We analysed various models related to Machine Learning (ML) and Deep Learnlng

(DL) that are being used for detecting Android malwares. These techniques are all use for
detecting Android malwares. There exists a gap in the existing research landscape. Whlle some

studies are focusing on binary classification, others are exploring multi-class classificatlon9

usually with no more than 10 classes. However, the study[17] which use 10 classes lack
detailed dataset descriptions and do not provide the names of the classes theY are using' Thls

gap emphasizes the need R)r a comprehensive exploration. Our aim is to address this gap by

exploring additional classes, utilizing larger, more diverse datasets with more features' Our

method makes use of deep neural networks (DNNs) and convolutional neural networks (CNNs)

to efficiently manage more classes and extract important features. Therefore, our research has

the potential for major improvements in Android device security and protect users from the

malware attacks by fulfilling these goals. In sTable 2.1 we show the comparison of exlstmg

literature using static analysis of application.
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Table 2.1 Comparison of Existing Literature Using Static AnaIYsis of

Applications

©b®€gi®©

Permission Adware{CNN aid tiMCICAndMa120 1 72023 dlf§i
Radware,
rootkit, SMS
Malware, and
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2022 dl Private Dataset Multilayer
Perceptron
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Malware and
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Malware and
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Drebin and

Androzoo
2021 mi

CICAndMall 92021 ml

Contagio and
VirusShare and
Microsoft
Malware
Classification
Challenge

2021 Int

MODroid dataset2021 ml

APK Pure20:21 mi

Private Dataset2021 ml

Random forest

Graph
Convolutional
Networks (GCN)
and Multilayer
Perceptrons
(MLP)
Boosted

Learning and
AdaBoost

Random Forest
and SVM and

Gaussian NaIve

Bayes and K-
Means
KNN and Naive
Bayes (NB)
and Sequential
Minimal
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MLP, Random
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Regression
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MalwarePermission
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Control
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Drebin and AMD
and (JeRome and

Malgenome

2020 ml

Virus share,dl2020)

Thirty Party app
and VirusShare

mI2020

2020 Not MentionedmI

Google play and
Virus share

di2020

2019 C'!CAndMa120dI

}{amming
Distance (FNN)
and all nearest

neighbors

(ANN) and
weighted all
nearest

neighbors
(WANN), and k-
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nearest

neighbors
(KMNN)MLP AND SVM

Random Forest
and K-Nearest

Neighbor

XGBoost
algorithm

DNN
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features
Static
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features
extracted
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application
binary code
API, intent,
and
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Work on
Binary
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Consider only
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Receivers, API
calls
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Adware and

Ransomware,
and Backdoor
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manifest
file
features
API calls,
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Limited classes
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Malware and
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applicationss and
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API-pair
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number of
classes

Malware and

Benign
graphs,API call
sequences)
Execution
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.and Intents
API calls
and System
calls and

Perrnlsslon
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S
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Intents,
API calls,
Opcode
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and SMS
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,Bytecode
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2019 dl Private Dataset DNIq Permission
s,Intent, AP
land
system
calls

Malware and
benign

limited set of
features

2019 dl VirusShare and

Drebin and
Contagio, and
Androzoo,
McAfee Labs

CNN Permission
s and API
calls and

Intents and

System

calls

Malware and
bering
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limitation of
the study is
that the model

was only tested
on a small
dataset. The
authors also
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model's

performance
on new and
tlrlseen
malware

samples.
Limited classes

uses
2019 dl Ember and

VirusTotal and

VirusShare and

private dataset

Logistic
Regression (LR)
and Navie
Bayes (NB) , K-
Nearest
Neighbor (KNN)
,Decision Tree
(DT) ,Random
Forest

(RF),SVM and
CNN and DNN
FaIDroid and

FNN and ANN
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KMNN

System
calls

Dailer,
Backdoor and
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trojan and
wormautoit

and trojan and
downloader

and rouge and
pws

2019 dl Drebin and

Contagio, and

Genome.
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s and API
calls and
Intents and
system
calls.
Permission

malware and
bering

Static analysis

of binary files,
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certain t)pes of
malware

2(:>18 mi Google play SVM Malware and
Benign

Use on one
feature
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Opcode

sequences
and API
calls
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Benign

Malware and
Benign

Adware and

Ransomware
and Rootkit
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Spyware and
Trojan.
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Adware and
Riskware and
Ransomware
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Adware and
SMS malware
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phishing and
Data theft and
Rooting
malware, and
Botnet and

Click naud and
DDoS malware
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Ransomware,
and Remote
access Trojan

(RAT)
Malware and
Benign
Malware and
benign apps

benign and
malicious apps.
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features and

only work on
binary classes
Consider only
Binary classes

Limited family

Limited feature
set

It is unclear
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system will be
effective

agaInst new or
previously
unknown
malware.

The feature set
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The dataset is

not publicly
available

not discuss the
scalability of
the proposed
approach or the

on larger
datasets.
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Markov Models
and SVM and

NN

Virus Share and
Maltrieve and

private Dataset

2016 dl

RF and SVM
and NN

Genome and
Play store

2016 dl

SVM and CNN
Google p}ayand

Drebin and
Genome and

Contagio

2016 dl

SVMNot Mentioned2015 mi

Boosted and

J48 algorithm
2013 Not Not Mentioned

Menti
oned

Variable data quality is an issue in th context of Android malware detection utlllzlrW

,t,ti, f,at.„ datasets, according t') the results of th SYstematic literature review' The cholce

of suitable datasets for training and testing Hmdels is one of the major issues in this domaIn

The major research, usage of various datasets highlights how CIUcial it is to test Al models 011

a range of datasets in order to verify their robustness and generahzabilhy' However9 thIS

„,d,tion in d,t„,t utilization might aIso restllt in incQnsiSten(;i's that could reduce the

accuracy of the algorithms' predictions.

As stated in Table 2.2 Dataset Used in Primary StudiesttB most frequentIY utilised

datasets in the primarY studies were Drebin} Private Datasets, VhusShaK, and the AMD

D„bi„ ,pp„„d i„ 20 „ti,1„, [46], [24], [36], [7],[47], [231, [48], t33], [49], [50]’ [51]’ [20I’

[52]> [53], [54], [55], [13], [56], [32]) [57] whl, P'i'at' D't'sets were utilised in 1 articles

[58], [59], [41], [9], [49], [21], [39], [60], [27], [28], [22], [61], [62], [63]' [64]' [13]' [57]
;i=s Share the third m„t n,q„,„tIT „tili„d d,t„,t, w„ "”d i" 12 studies' [16], [71' [3C)]'

API call Malware and
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and system
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Malware and

Benign

Malicious and

benign
applications

Do not provide
a detailed
breakdown of
the specific
malware
families or
classes
included in the
dataset.

Benign used5000 and only
use 1000
malware
means limited
malware
Lack of
explanation for
the feature
selection
process
Limited to
certain types of
malware

Work only on
bmanry



[47]? [41]> [9]9 [48]9 [65]1 [66]> [29]) [40]9 [56]. These dataset’s variances in the amount of

malicious and benign samples9 however, can lead to issues when the model is being trained.

For instance) the model may be biased towards identifying malware if a dataset contains

more malware samples than benign samples, and the other way around. This inconsistency can

also cause the model to be over fitted or under-fitted which may reduce the predictability of

the results.

Table 2.2 Dataset Used in Primary Studies

{}Mb&

flies

[36]

[16], [71, [30], [47], [41], [91, [481, [651, [661, [29], [401, [56]

[14], [18]

[58], [59], [41], [9], [491, [21], [39], [601) [27], [28]

[63], [64], [13], [57]

[72]

[47], [4], [731, [74], [521, [75], [53], [8]

[411

[91

[481

[4]

[22], [61], [62],
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[351

[52]

[54]

[7]
[26]

These results illustrate that when analysing their suggested approaches for Android

malware detection using static feature datasets, researchers only use a limited amount of
datasets. It is essential to use relevant datasets that are typical of real-world situations and

contain a balanced distribution of malicious and benign samples in order to effectiveIY manage

this problem. Standardised techniques for dataset selection and preparation can be used to

achieve this. In order to deal with the problem of high-dimensional data? it is also cruclal to

utilise appropriate feature sets that are customised to the targeted datasets and to appIY efficlent

feature selection and dimensionality reduction techniques.

We find feature sets and they are:

1.

2.

3.

4

5.

6.

7.

8.

Application Tags

Feature Tags

Library Tags

Meta Data Tags

Permission Tags

Provider Tags

Receiver Tags

Service Tags

We consider the following for the analysis of each of these in followlng steps'

Step 1. Display Dataset Summary of Application/ Feature/ LibrarY/ Meta/ Permisslon/

Provider/Receiver/ Service Tags.



Step 2. Calculate Summary Statistics of Application/ Feature/ Library/ Meta/ Permission/

Provider/Receiver/ Service Tags.

Retrieve DataFrame Column Information of Application/ Feature/ Library/ Meta/

Permission/ Provider/Receiver/ Service Tags.

Histogram of Malware Class Frequencies of Application/ Feature/ Library/ Meta/
Permission/ Provider/Receiver/ Service Tags.

Visualization of Feature Usage within the Subset for Application/ Feature/

Library/ Meta/ Permission/ Provider/Receiver/ Service Tags.

Step 3.

Step 4.

Step 5.

However, it is pertinent to discuss the implications and insights gained for the Application

Tags, Library Tags, Feature Tags, Meta Tags, Permission Tags, Provider Tags, Receiver Tags,

Service Tags in each of these analysis steps. In Table 2.3 we show the feature set which we

have considered for this research.

Table 2.3: Our Data Analysis

7

91

23

14053

4163

5967

8586

10498
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2.4.2. Data Analysis:

2.4.1.1. Feature Set 1: Application Tags in AndroidManifest.xml

Step 1: Display Dataset Summary Of Application Tag:

To provide an overview of the dataset, a summary of application tags can be CFeated'

This table will include relevant columns and statistics that capture keY information about the

dataset. In Table 2.4 show some of the dataset summarY of Appllcatlon tag'

Table 2.4: Display Dataset Summary Of Application Tag

6

X}@§€ ABd@

:B8+b##

VM

Hk@iCAdt

10
20
30
40

0

0

0

0

0

0

0

1

-0
-0
-0
-0

155

14

7

25

Adware

Adware

Adware

Adware

This summanr table provides a quick overview of the dataset9 showcasing the values in

each column for the first few rows. h includes columns such as

aUowBackup @booVcustomAllowBackup? allowBackup_false, allowBackup–true’

usescleartextTraffic true9 Activity Count! and Malware Class. Each row represents an

instance or record in the dataset related to the application tags in arKlroid manifest'xml

Step 2: Calculate Summary Statistics Of Application Tag:

In order to gain a better understanding of the dataset9 summary statistics can be

computed for the Data Frame. These statistics provide insights into the central tendencies,

dispersion and distribution of the dataset's numerical columns. Based on the provided

statistics, the following summary statistics can be obtained' in Table 2'5 sh)w the summarY of

statistics some of columns of appllcatlon tag
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Table 2.5: Calculate Summary Statistics Of Application Tag

Count 14,376

(b&&{ifF+f&f8t§©

14,376fa:39614.376 14,376

Mean 0.000974 0.067752 0.42 1 605 0.023929 34.81566

5

43.82027

0

7

19

46

485

Std

Min
259/a

50(34

75(}/a

Max

0.03 1 192

0

0

0

0

1

0.25 1328

0

0

0

0

0.493833

0

0

0

I

0.152833

0

0

0

0

1

Step 3: Retrieve DataFrame Column Information

To gain a beuer understanding of the DataFrame's columns, it is essential to retrieve

information such as column names, non-null counts, and data types. In Figure 2.6 show the

details of the retrieve data frame column information. Based on the provided details, the

following table presents the column information for the DataFrame
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Figure 2.6: Retrive Data Frame Column Information Of Application Tag

Below information provides a comprehensive overview of the DataFrame's column

information. It includes the range of the index (from 0 to 14375) and the total number of

columns (6). Each row represents a column and contains the following details:

+ Column: The name of the column.



, Non_Null Count: The number of non-null values present in the column.

, Dtype: The data type of the column.

In this particular DataFrame, there are five integer columns ( Allow

Backup @bool/custom AllowBackup,-allowBackup_false,-allowBackup_true,

Uses Clear text Traffic true, and Activity Count) and one object column (Malware Classy

Step 4: Histogram of Malware Class Frequencies

We plot a histogram to examine the distribution of malware class frequencies within
the dataset. The histogram provides a visual depiction of the frequency count for each of the

12 malware class present in the dataset. Remarkably, all the malware classes exhibit an equal

frequency count of 1 ,198, indicating a balanced representation.

The x_axis of the histogram corresponds to the distinct malware class labels, while the

y_axis represents the frequency count. The histogram Plot conveys a SWetdcal distrlbutlon

of frequencies among the diverse malware classes, highlighting a proportional representatlon
of each class within the dataset. For a comprehensive understanding of the histogam Plot,

please refer to the Figure 2.7. This visualization offers valuable insights into the distribution

patterns and relative frequencies of the different malware class variants in the dataset9

contributing to a comprehensive analysis of the dataset.

Histograrn of Malware Classes

Figure 2.7: Histogram of Malware Class Frequencies Of Application Tag



Step 5: Visualization of Feature Usage within the Subset for Application Tag
A graphical representation was created to examine the usage of features within the

subset of the dataset being analyzed. This graph focuses on the sum of integer columns whlle

excluding the 'apkname', 'activitY count’9 and 'malware class' colunms to avoid redundancY

Moreover a minimum th'eshold of 5 was applied to include only significant columns, ensuring

a clear and concise analysis.

The x_axis of the graph denotes the different features present in the subset, while the Y-

axis represents the count of APK samples utilizing each specific feature' This visuallzatlon

provides valuable insights into the prevalence and adoption of different features within the

subset9 enabling an understanding of which features are commonIY emploYed bY the APK

samples. For a comprehensive understanding of the feature usage patterns within the analWed

subset9 please refer to the Figure 2.8. This visualization offers a concise overview of the feature

utilization landscape within the analyzed dataset subset9 facilitating the identification of

prominent features employed bY the APK samples-

Surrt of Columns (Having'leele of > = 5>

4

qPr
qRfqSfF

Col uni as

Figure 2.8: Visualization of Feature Usage within the Subset for Application Tag

2 4 1.2. Feature Set 2: Feature Tags in AndroidManifest.xml

Step 1: Display Dataset Summary Of Feature Tag

To provide an overview of the dataset, a summary Table 2.6 can be created. This table

win include relevant columns and statistics that capture keY information about the dataset'

Based on the example provided, the following table summarizes the Feature Tags dataset'
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Table 2.6: Display Dataset Summary Of Feature Tag

r&

{%WW&
:€§§@ Q§£§

kg8\###$,

d&ak

00

0

20

30

0

0

0

0

0

0

0

0

0

0

0

80

155

14

25

Adware

Adware

Adware

Adware

Step 2: Calculate Summary Statistics for Feature Tag

To help us understand the dataset better, we have added a Table 2.7 that summarizes

the summary statistics of the features. This table is a significant resource for acquiring insights

into the dataset9 allowing us to study key statistical metrics and better understand the data's

distribution, variability, and properties. we will be able to gain a better knowledge of the dataset

and perform informed analysis and interpretation of the results.

Table 2.7: Calculate Summary Statistics for Feature Tag

;afb fe+

&q
:C&w&#

1 4376.000000

0.001530

14376.000000

0.009878

14376.000000 14376.000000 14376.000000

34.9235530.000835

0.028881

0.001878

0.039091

0.000000

0.000000

0.098897

0.000000

0.000000

0.043298

0.000000

0.000000

43.701594

0.000000

0.000000

0.000000

7.000000
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0.000000

0.000000

1.000000

0.000000

0.000000

1.000000

0.000000

0.000000

1.000000

Step 3: Retrieve DataFrame Column Information Of Feature Tag

The Table 2.8 provides a quick overview of the DataFrame's column informatlon' It

includes the range of the index (from 0 to 14375) and the total nwnber of columns (6)'

Table 2.8: Retrieve Data Frame Column Information Of Feature Tag

QX®RB}

FEATURE:android.hardware.autofocus

FEATURE:android.hardware.bluetooth

FEATURE:android.hardware.camera

FE.AT'URE:android.hardware.camera.autofocus

FEATURE:android.hardware.camera.front

FEATURE:android.hardware.location

FEATURE:android.hardware.location.network

FEATURE:android.hardware.nfc

FEATURE:android.hardware.screen.landscape

FEATURE:android.hardware.sensor .accelerometer

FEATURE:android.hardware.tekphony

0.000000

0.000000

1.000000

:NbiigN@}

(:: WW

14376

14376

14376

14376

14376

14376

14376

14376

1 4376

14376

14376

14376

14376

14376

14376

14376

14376

14376

14376

14376

20.000000

46.000000

485.000000

int64
int64

lat$$

int64

intO+

int64

int64

lnt64

tIlt@}

int64

int@

Int64

int$4

nt64

Int64

int64
int a

int64

int64

int64
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FEATURE:android.hardware.touchscreen

FEATURE:android.hardware.touchscreen.multitouch

FEATURE:android.hardware.vulkan

FEATURE : android.hardware. wifi

FEATURE:android.software.live wallpaper

FEATURE:android.software. vr.mode

Malware Class

14376

14376

14376

14376

14376

14376

14376

14376

14376

14376

14376

14376

int G+

int64

int64

int64

int64

int64

int a

int64

int64
int64

intO}

object

Step 4: Histogram of Malware Class Frequencies Of Feature Tag:

We also plot a histogram for the feature tag to examine the distribution of malware

class frequencies within the dataset. The histogram provides a visual depiction of the frequency

count for each of the 12 malware class present in the dataset. Remarkably, all the malware

classes exhibit an equal frequency count of 1 ,198, indicating a balanced representation. The x-

axis of the histogram corresponds to the distinct malware class labels, while the y-axis

represents the frequency count. The histogram plot conveys a symmetrical distribution of

frequencies among the diverse malware classes, highlighting a proportional representation of

each class within the dataset. For a comprehensive understanding of the histogram plot, please

refer to the Figure 2.9 This visualization offers valuable insights into the distribution patterns

and relative frequencies of the different malware class variants in the dataset, contributing to a

comprehensive analysis of the dataset.



Histogram of Malware Classes

C

\h tues

Figure 2.9: Histogram of Malware Class Frequencies Of Feature Tag:

Step 5: Visualization of Feature Usage within the Subset Of Feature Tag

A graphical representation was created to examine the usage of features within the

subset of the dataset being analyzed. This graph focuses on the sum of integer columns whlle

excluding the lapk name'9 'activity count'9 and 'malware class' columns to avoid redundanCY'

Moreover9 a minimum threshold of 50 was applied to include onIY significant columns,

ensuring a clear and concise analysis.

The x_axis of the graph denotes the different features present in the subset9 while the Y-

axis represents the count of APK samples utilizing each specific feature' This visuallzatlon

provides valuable in,ights into th, p,evale,„.'e and adoption of diffe'ent features within the

subset9 enabling an understanding of which features are commonIY emploYed bY the APK

samples.

For a comprehensive understanding of the feature usage patterns within the anaIYzed

subset9 please refer to the Figure 2.10 This visualization offers a concise overview of the feature

utilization landscape within the analyzed dataset subset9 facilitating the identification of

prominent features employed bY the APK samples-
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57
488

2

Figure 2.10: Visualization of Feature Usage within the Subset Of Feature Tag

2.4.1.3. Feature Set 3: Library Tags_Dataset in AndroidIWanifest.xml

Step 1: Display Dataset Summary Library Tag

To provide an overview of the dataset, a summary table can be created. This table will

include relevant columns and statistics that capture key information about the dataset as shown

In

Table 2.9. Based on the example provided, the following table summarizes the Feature

Tags dataset.

Table 2.9: Display Dataset Summary Library Tag

b
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%{$h
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adware
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3

0

0

-0
-0
-0

0

0

0
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Step 2: Calculate Summary Statistics Of Library Tag

To help us understand the dataset better, we have added a table that summarizes the

summary statistics of the features. This table is a significant resource for acquiring insights into

the dataset9 allowing us to study key statistical metrics and better understand the data's

distribution variability7 and properties. we will be able to gain a better knowledge of the dataset

and perform informed analysis and Interpretation of the results. As Table 2.10 show the

Calculate summary Statistics of Library Tag.

Table 2.10: Calculate Summary Statistics Of Library Tag

@}#

14376,000000

0.001391

0.037274

0.000000

0.000000

0.000000

0.000000

1.000000

@@

14376.000000

0.023442

0.151307

0.000000

0.000000

0.000000

0.000000

1.000000

Wget

14376.000000

0.001252

0.035364

0.000000

0.000000

0.000000

0.000000

1.000000

W&&f

14376.00000

0.007373

0.085554

0.000000

0.000000

0.000000

0.000000

1.000000

&&ii&#

gMb

gia
&#
M
@:
+%
%8X

14376.0000

34.654702

43.321236

0.000000

7.000000

20.000000

46.000000

485.000000

Step 3: Retrieve Data Frame Column Information Of Library Tag

In Table 2.10 show retrieve data frame column information of library tag.

\class ' pandas , core . frame .DataFralne ' >
Range Index : 14376 entries , 6 to 14375
Data col urrtrts (total la cojuglns ) :
# Cal urna

© Library : android . test + runner
1 Library : androidx . window , extens ion s

2 Library : androicix . window . sidecar3 Library : rom . google . android e gcm o maps
4 Library : com , google . android a maps

5 Library : com , sec , android , app , inuIt iwindow6 Library : org , apac he . http . legacy

7 Library : org . sima 1liance . openmobileapi
8 Activity Count
9 Malware Class

city,pes : int64<9) , object ( 1)nrewtory usage : 1.1+ NB

Non - Null Count

14376 non– nuII
14376 non - null
-14376 non- nuII
14376 non -null
14376 non –null
14376 non- null
14376 non -null
14376 non - nail
14376 non– nu iI
14376 non– null

[>type
int 64
int 64
int 64
int 64
int 64
int 64
int 64
int 64
i nt 64
object

Figure 2.11: Retrieve Data Frame Column Information Of LibrarY Tag



36

Step 4: Histogram of Malware Class Frequencies Of Library Tag:

In Figpre 2.12 depict the histogram of malware class frequency of library tag,.
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Figure 2.12:Histogram of Malware Class Frequencies Of LibrarY Tag

Step 5: Visualization of Feature Usage within the Subset of Library Tag:

Figpre 2.13 show visualization of feature usage with in the subset of library tag.In
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Figure 2.13: Visualization of Feature Usage within the Subset Of LibrarY Tag
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2.4.1.4. Feature Set 4: Meta Data Tags in AndroidManifest.xml:

Step 1: Display Dataset Summary:

The some of the dataset summary of meta data tag shown in the

Table 2.11

Table 2.11 : Display Dataset Summary of Meta Data Tag

nieta-
data:AA 1>

B NAME

0

0

a

0

0

aret8-

data:APP KE

Y

0

0

0

0

0

meta-
data value:tr

ue

0

I

0

0

I

Activity

Count

Malware

Class

0

2

3

4

80

155

14

7

25

Adware

Adware

Adware

Adware

Adware

Step 2: Calculate Summary Statistics Of Meta Data Tag:
In Table 2.12 show the calculate summary statistics of metadata tag.

Table 2.12: Calculate Summary Statistics Of Meta Data Tag

data: A4 DB

NAME

IIleta'

data:Adapter

greta'

data value:true

C

Count

count

Hiearl

std

mill

25%

14376.000

0.004035

0.063392

0.000000

0.000000

0.000000

14376'OO

0.002295

0.047858

0.000000

0.000000

0.000000

14376.00

0.079438

0.270430

0.000000

0.000000

0.000000

14376.00

34.803214

43.239226

0.000000

7.000000

20.000000%A
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Step 3: Retrieve DataFrame Column Information Of Meta Data Tag:

The information of meta data tag which is retrieve data frame columns depict in Figpre 2.14

<class ' pandas . core + frame B DataFr’a171e ' >
RarrgeIndex : 14376 entries p ,@ tI.''> 143 /5
LF F gIi!! :: ==1F =F TA : ni T: • : : d:rIniL I?= { : iTS ihT : :[ ? iT it a : AADB NAM Ft in Mdl Wd re Class
nlernor>/ usaBle : 56 + 1+ riB

Figure 2-14: Retrieve DataFrame Column Information Of Meta Data Tag

Step 4: Histogram of Malware Class Frequencies Of Meta Data Tag:
As Figwe 2. 15 show the Histogram of Malware Class Frequencies Of Meta Data Tag.

HIstogram of Malware Classes

Values

Figure 2.15: Histogram of Malware Class Frequencies Of Meta Data Tag

Step 5: Visualization of Feature Usage within the Subset Of Meta Data Tag:
Visualization of feature usage within the subset of meta data tag are shown in Figpre 2.16.
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Figure 2.16: Visualization of Feature Usage within the Subset Of Meta Data Tag

2.4.1.5. Feature Set 5: Permission Tags in AndroidManifest.xml

Step 1: Display Dataset Summary Of Permission Tag:

In Table 2.3 Display Dataset Summary Of Permission Tag.

Table 2.13 : Display Dataset Summary Of Permission Tag

PERNIISSIO

N : android.ba

rdware+came

ra.autofocus

PERMISSI

ON:android

.hardware.s

err$or.ac£ele

roaketer

PERMISSI

OIN:android

.perIlassiGn+

ACCESS F

INE bOCA
TiON

se

Malware
Class

SETTINGS

0

2

3

4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

80

155

14

7

25

Adware

Adware

Adware

Adware0

0 Adware
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Step 3: Retrieve Data Frame Column Information Of Permission Tag
In Figpre 2.17 show the detail of the retrieve data frame column information ofpermlsslon tag

<class ' pandas . Lore .frame .DataFralne ’ !
F : : E : : : T e ! ; 5 1 : : : : i : : : r i : i ;X 1 : 5 t 1::1 Fi : : : : raid + hardware & camera & aut ufo custoM alldare (
dtypes : {Rt64<224), object(1)
Hiemory usage: 24.7+ MB

Figure 2.17: Retrieve DataFrame Column Information Of Permission Tag

Step 4: Histogram of Malware Class Frequencies Of Permission Tag:
In Figure 2.18 show the histogram of malware class frequency of the permlsslon tag

HIstogram of Malware Ciasse$

Figure 2.18: Histogram of Malware Class Frequencies Of Permission Tag

Step 5: Visualization of Feature Usage within the Subset Of Permission Tag

The visuali,adon ,f th, feat,He usage with in the subset of permission tag shown in FiWre 2'19
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Figure 2.19: Visualbation of Feature Usage within the Subset Of Permlsslon
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Step 3: Retrieve DataFrame Column Information Of Provider Tag:

In Figpre 2.20show the details of data frame column of provider tag

CoEur$8

!8 provider :caR.appla:.’{n, sdk. A??Lol;iaInltPro:,’iJer
!! provider =£om.b3idu. protect .Stub ProvIder
{2 provider :c€>!$.cra5hlytics.irdro id.£rashlyti£slnitPrcv!!i'r
i3 pravider ; £oq:.da:biz.t30bao. jena . nl . pr©',:'ijer , Loca3File€ontent Provider
{{ provider : com . facebook.facebook Content Provider

&S ,3r.ovider ; com. {a£ebook,H3tiveApp£all(cntentPrcyj{Icr
is Fravider : can .{a£eboak. ads . Audience?4etyiorkCententPr@.'!der

}7 provider :cgrn.{a£ebaok .!ntern81.F&£ebaoklnltProvic§er
}a provider:£om.fatebook.}aarketlng.interna},q8rketi8gl3lt?rovider
{$ oro*diGer : cc,g; ,{re3hchat.ccr3sulaer , sdk , provider .freshchatlnitPrcvi<len

28 provider:tom.google. android.glas .ads. iach{}eAdsinitPr'avi<ler
21 prcviCar : ton . gc,ogle_ android . gms.neasuregierR . AppHe:surementContentProvider

22 provicSer : com . google .{ir2base . perf . provider .Fire5a5ePerfPrcvlder

23 prayjder : can.gcogle.fireba5e . provider,flrebasgjni£Pravi€icr
2+ provider : cog!.{gexin.download .D8hnl08d Provider
2: provider : cam. in&gep{cker.F!!ePrcvid8r
2 b provider: £<,m.irni'!sobrte.lifecycle. i?aa50ur£eL{{ecycleProvieler
27 pro\.'iier : com . kbe an ie .multipi€ker . atil5.&HPFileProviCer
28 pro*,,ider = can.q51ki.uti!. In{2rnaIFileCcntent Provider
29 ora,,;ider : ca$.re3ct03tive.ivpusic. image?!cker,!v?a3i£!!nage?ickenF lie?Pw#lceE
38 provider : com . re&£taat ive,community . web=,'iew . FF4€'NebVleuFilePrcwidep

31 Fravider : com.5qy8reup.pitas50.Picas$aPrcvicler
32 provider : cam . urbanalrship.UrBanAlr5hi?Provider
33 provider:car!!.u£map.pkg.uzapP.Li?rovi8er
3g pro,..,ider : com, vin=s£3m.reac{native{iievlewen.FileProvider
35 Or,.owider :de.8Foplant 'cordova . emailcomposer .Provider

36 bra,rider :de .ap?? ian{ .=ordova . plugin . rn{!{i£atica . cti!.assetProvi£lep

37 provider :drcilain Ia.fi ie picker .u{ils.FilePicher Provider
38 prc.t,ider:ex?o.g?odu}es.file3y3 tern.FileSysteqIFila?rcviier
3g provider:expo.nadules. image picker . In&geFickePFI IeP[ab*ReF

48 provider : io.flutter . plugins. share .Sh&reFileProvi aer
41 provider : ic,githBb.pwlin . cordova .plugin$.flleop2ner2 .File?rovid zr

42 provider : io. intercom .android . sdk. intercomlniti&lizeContentPnc:/ iden
43 provider : ic. sent-y . android . care . 5en{rylnitPrc:.'ideF
44 provider : io .sentry . android. core . SentryPerfornlan{eProb'i<icr

45 provider; !ncaa.HonaRunti©ePra'.’!£ier

48 provider ;nl.x5er'b'ices .plugins .Fi!=Pr©Yi lcr
47 provider :org . apache .cordova .£amera.FlleProvi<ger
48 provider ; sdk.Job+n load ,Downlcac$Provider

49 provider_authorities :$string/classp ibs_provider_authority
$8 provider_3utf©rities:§5tr ing/fre5h£h8t_file_?rcviderJYth<InltY
SE provider_grantYrlPermissions:true
$2 provider_readFer'mission:cam . uhat5ap?. sticker . REaD

33 Activity Count
$4 Halware Cia ss

Non-liu!! Count DtyFe

14375 non-nuli !at64

14376 non-fly!: int6£!

14375 non-ridE! !at$a
14375 pan-rig ii !nt6£;

!4375 nca-na!! !nt$4
1437$ non-no!! !at$4
!4375 rico-no!! !ate'i
14375 non-no!! !nt$4
!4378 naa-nu!! int64
14]? e non-null int§i
14 1 76 non-no ii int$4
14378 nan-na!! !nt$4
14376 con-null !RtB4

!4376 Pan-nu!! !nt64
14376 non-nu!! int$4
14376 ron-null int$4
!43? 6 non-nu!! int$4
!4376 non-no!! intfyii
!4376 nc?1-null int 64
14 176 non-null !8t64
14378 non-no!! !nt$4
}4376 non-nail int Hi
1437e carl-no!! !nttxi
14376 m)a - null int$4
14375 non - null int$4
14376 non-no!! int 64

}4376 nan-nu!! int$4
14378 non-nu!! intf#
1{378 ran-nu!! !nt$4

14375 Baa- no!! iRt64
14376 ran-ntl:: int$4
!4375 non-null int$4
14375 non-no!! !at$4
14376 non-no!! int64
!4375 non-nu!! !nt$4
14375 non-ny! i !nEE##

!437$ non-nu! i int$4
t4376 non-no!! int 84

14376 non-nui! !nt64
}4375 non-na!! int$4
1437$ non-no!! !nt$4
!4378 Baa-no!! !nt611
14378 non-nu!! int$4
14376 non-ntl!! !nt6'!

1437$ rben-no!! obie£

1, igure 2.20:Retrieve Data Frame Column Information Of Provider Tag
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Step 4: Histogram of Malware Class Frequencies Of Provider Tag:

The histogram for each classes which we have used in our research in depict in the FiWFe 2'21 '

1000

0

JoF AghqpIFba•bqf / qihusiqH\bBqIPIeb#

values

Figure 2.21:Histogram of Malware Class Frequencies Of Provider Tag:

Step 5: Visualization of Feature Usage within the Subset Of Provider Tag

In Figpre 2.22 represent the features which are used with in the subset of the provider tag'

Figure 2.22:Visualization of Feature Usage within the Subset Of Provider Tag
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Step 4: Histogram of Malware Class Frequencies Of Receiver Tag:

The histogram show each malware class frequency for receiver tag in FiWre 2'23

Histograrr! of Malware Classes
1200

>LJaarJ
U
I'lP

Figure 2.23:Histogram of Malware Class Frequencies Of Receiver Tag

Step 5: Visualization of Feature Usage within the Subset Of Receiver Tag:

In Figpre 2.24 visualize the feature use with in the s\lbset ofrecelver tag

10000

a Cl o C)

}# aoc)c)

at C:> C+CJ

P C') o o
:3 Of) .3

Figure 2.24, Vi,„,Ih,ti,„ ,fF,,tu„ U„g' within th' S”bset Of Receiver Tag
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Step 4: Histogram of Malware Class Frequencies Of Service Tag

Histogram of each malware class which is considered for the service tag is depict in Figure

2.25.Figure 2.25:Histogram of Malware Class Frequencies Of Service Tag

Flistograrvr of Nlalware Classes

Figure 2.25:Histogram of Malware Class Frequencies Of Service Tag

Step 5: Visualization of Feature Usage within the Subset Of Service Tag

In Figure 2.26 shows the visualization of feature usage within the subset of service tag.

43 1 43
4B6360 57 B5599942 3 300

Figure 2.26: Visualization of Feature Usage within the Subset Of Service Tag
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2.4.3. Modelling Techniques

SVM was extensively utilised in Android malware detection research [461) [67]9 [68]9

[17], [16], [59], [41], [9], [42], [65], [4], [44], [51], [20], [27] nom (2013-2015)' DL“i"g thls

period9 Random Forest was also employed in a few researches [70], [56], [64] and [64] AIso

often employed were K-Means and KNN [20], [64], [55]9 F161

In recent years9 the trend in Android malware detection research has shiRed towards the

use of deep leaming approaches9 particularly CNNs. Due to the increased accessibilitY of

massive datasets and computing power9 CNNs have grown in popularitY in recent Years' The

increase in the number of mobile devices and the development of mobile computing has also

resulted in an increase in Android malware attacks9 requiring the urgent need for more accurate

and efficient detection methods.

According to sludies9 CNNs can identify Android malware with a high degree of accuracY

[26] ) [91) [65]) [40]) [20]9 [271, [55]. This is because of their capacity to determine complex

p„,p„ti„ f,.m „„,t,„,t.„d data, which is particularly helpful in identifYing newIY deveIQped

and unhown malware classes. Additionally, CNNs are more computationalIY efficient than

typical machine learning techniques because they can analyse input in parallel' Despite theIr

efficiency9 CNN-based Android malware detection methods maY Yet be improved' The

selection of input features7 which has a sigpi acant influence on the model's accuracy, is one

area for development. The accuracy of CNN_based models may also be increased by the use of

ensemble models9 such as stacking ensembles and bagging [4], [49], [45]9 [27]9 [64]. The abilltY

to adapt ,f (.'NN_b„ed mod,1, t. m,lw„, ,tt,''k, „n '1'' b' i"”””d through the use of

concurrent training. In Table 2.21 show the Algorithms mentioned in primarY studles'

2.4.4. Dataset Quality

Research has shown that the selection of datasets plaYS an important part in the

p„f,.,m„,'., .f And,.id m,lw„, d,tection models when using static features[15]' AhhQ11gh

the Drebin dataset has been extensively utilised in past studies, it has certain drawbacks’ which

include being very small and many including outdated malware samples. Therefore,

researchers have be91m utilizing larger and more diverse datasets such as Androzoo and

VirusShare! which offer a broader range of malware samples'

For instance a recent study trained a deep learning_based model on the Androzoo dataset

and obtained an accuracy of 99.53% in identifMg Android malware using static features' Thls

dataset offers a rich supply of data for training machine learning models and conWnses over
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23 miUion Android apps including both benign and malware samples' Similar to this’ another

study trained a Random Forest model using the VirusShare dataset to detect Android malware

with a 98.9% accuracy using static features'

In addition to the dataset choice) the model architecture selection can also siWificantIY

affect how well malware is detected. Recent studies have demonstrated that deep learnlng-

based models such as Con\,'olutional Neural Networks (CNN) and Recwmnt Neural Networks

(RNN) have shown promising results in identifYng Android malware using static features'

However, the fact that these models need a lot of data for training highlights how essentlal

having high_quality datasets are. The performance of detecting Android malware usmg statlc

features can be enhanced by combining consistent9 large datasets with the most recent models'

One research, for instance, trained a deep learning-based model using the datasets from

Andr0700 and Vinlsshare to obtain an accuracy of 99.27%. Another study trained a Random

Forest mode1 using numerous datasets, including AMD, VirusSham9 and Androzoo and

attained an accuracy of 97.8%. These findings highlight the value of having high-qualltY

datasets and the possibility of utilising them in alongside advanced algorithms for accurate

malware detection.

Table 2.21: Algorithms mentioned in primarY studies
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2.4.1.9. Performance Metrics :

Perfomance metrics are cdtica1 for assessing the efficacy of machine learning and deep

learning models for Android malware detection. Accuracy) precision, recall, Fl-score' and area

,md„ the cuive (AUC) are all con„non perfQrmanCe indicators' Severa1 ptlbhshed research in

Android malware detection have reported Mse performance metrics from 2013 to 2023 to

evaluate the performance of their suggested nmdels' in Table 2'22 show the performance

measures use in the primarY studies. Among these measures, accuracy is generally employed

„ , m,j„ p„f„),ma„c, m,a,„„ t. „„„ the model's overall performa11ce' whllst preclsl011

,nd ,e'.,11 „, u„d t, „„„ the model’s efficacY in detecting malware salWIGS and be111g11
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samples9 respectively. .The analysis of the collected data showed that the most commonly Tse:

perfomance measures for hve£igd@ the impact of data quality issues on static. analysis. of

malware detection in Android are accuracy, recall, and precision. Based on the informatIOn

provided in the table, .the toP three performance macs utilized to examine the effects of aT

quality cancelms on static analysis of malware detection in Android were Accuracy' Recall

(S„„iti„ity, T,„, P„hive Rate TPR), and Precision/Co"ectness' Acc11racY measures. th:
overall conecmess of the classifICatiOn model and is defined as the ratio of correctly classifIed

instances to the total number of instances. These performance measures can help address data

quality issues bY providing insights into the effectiveness of the static analysis aTproach in

:eteding malware. For e.g accuracy can give an overall assessment of the data quality used to

train and test the model. Low accuracy might be a siP of poor data quality’ such as mlsslrW or

inaccurate data. ReGan can help identify false negatives) which are instances of malware that

were not detected by the model. ReGan can be used to identify false negatives, or instances or

malware that the model missed. This could help researchers in identifying the varieties of

malware that are more challenging to and and enhancing the model's capacity to perform

I) r e c i s i o n c aII t) e L1 s e (I t () s1) () t fa 1 s e posh ives ) or non wma 1 wwe case stlMt were mist in1 y

labelled as such. This can assist researchers in identifying the characteristics that the model is

using to detect malware and improving the model to lower false positives' Overall' USI:g

appropriate performance measures in evaluating the impact of data quality issues on statIC

analysis of malware detection in Android can help researchers and practitioners inWrove the

accuracy) effectiveness, and efficiencY of malware detectlon SYstems

Table 2.22: Performance Metrics mentioned in primarY studles
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[4], [66], [291, [28]

[54]

[53]

2.4.1.10. Transfer Learning:

After conducting an extensive search on the toPic of Android malware detectlon us11B

static features, it was found that onIY a limited nunber of studies have explored the role of

transfer lealMg in improving the accuracy of detecting Android malware. Out of the thfee
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relevant papers [5]! [63]? [74] identified, all of them used transfer learning technlques to

enhance the performance of the malware detection models. Therefore, while the limited number

of sl11dies on the topic suggests that transfer learning has not been extensively explored in the

context of Mdroid malware detection using static features, the studies that have been

conducted demonstrate the potential of transfer learning techniques to improve the accuracY of

detection models. Further research in this area is warranted to hllIY explore the effectlveness

of transfer learning in addressing the challenges of detecting Android malware.

2.4.5. Discussion of Limitations and Conclusions:

We performed a systematic literature review to anaIYse the performance of machme

leaning9 and deep learning tec}uiques for Android Malware Detections using Static Features'

We select the 62 sludies out of 120 studies from different sources by appIYing inclusion and

exclusion criteria. We found out which of the techniques are preferred bY researchers in each

category i.e.9 machine learning, and deep learning. We also compared performance reported in

each of the selected primary stlldies and we reported which of the performance measure is used

in each of these studies. We report that deep learning and machine learning are widely used for

Android malware detection. However, researchers used ensemble techniques and transfer

learning methods less frequently for android malware detection for static anaIYsis of

applications. There is need to work on using same techniques on combinations of dlfferent

datasets having large number of classes and there is a requirement of larger datasets in publlc

domain. The most often used dataset is the Drebin and Virus share dataset9 and studies indlcate

that it is a trustworthy and valuable resource for detecting android malware. The total 47 from

our selected primary studies are on the on the binary classes ( Most of the published paper

work) and remaining selected primary studies are on multi class classification. The studies

reviewed show that this method is successful in detecting numerous forms of malware wah

high accuracy rates. We analysed from or study that the Adware, Ransomware, Trojan and

Backdoor are mostly considered by the researchers. The data also reveal that SVM is the most

successful Al model for this purpose> while API calls9 Permissions, and Strings are the most

relevant elements for identifying android malware. One major limitation of this SLR is that a

primarily concentrated on static feature anaIYsis research for Android malware detection' Other

methodologies, such as dynamic anaIYsis or hYbfid approactns, might be investigated in futule

studies. Another drawback is that this evaluation only included papers published in English,

which may have eliminated some important investlgatlons.
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3. RESEARCH METHODOLOGY

3.1. Research Design:

We use Applied Research design principles and provide research design that includes data

collection measurement and data analysis steps. We further include data pmprocessing) feature

e.\traction model choice9 ' model assessment and performance measures for a detailed

discussion of our research process. We go though the data collection and preprocesslng steps'

feature selection and deep neural network (DNN) model development processes' We assess

our model’s performance by9 such as accuracy, confusion matrix’ Fl score’ recall’ and RO

AUC. FinalIY! we provide details on how we divided the dataset into training and testIng sets)

and h.w we used the testing set to validate our model. In Figure 3.1 we depict our research

design which we follow in our research.

PRC.PROCESSiNG POST-PROCESSING

{ D@IE’a# AGe;iT;:jF BETH Logs

r.. i ; pt8di€t Oat&St e)at&s#i

v){ L_=_.:............,.,,.„._.

! !J hT h h &;ii;iii!I}#1;; #1!!:ii:: += !iE!#WWfpbR

! i T J r r r f / w&;};;@ng;I@;:;LIi:EI;}/ r r r / / Tl
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Convert Labet To bilmeFg;
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Fewlare $€}®ChOO

Figure 3.1: Our Research MethodologY

3.2. Data c'onection Methods:

1. Denning the starting point: We begin by clearly dennhW the research obJectIves

and the types of malware classes we want to collect data on' We followed a serles

of steps to detennine wh,,.h classes we utilize to train our model as depict in Figure

3.2
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Figure 3.2; Selection of Classes

We choose 12 malware classes and subclasses from ANDROZOO which

containing 1201 APks. These 12 malware classes and sub classes are shown in Table

3.1. We distinguish between malware categories and malware families in our context'

Malware categories categorize malicious software based on their general behavlor'

wtile malware families serve to group together related variants that share common

charactedstics or origins within the Android ecosystem. This distinction forms a

foundationa1 aspect of our research as we carefulIY select and analWe datasets for our

study. It is pertinent to note that extracting APK nIcs from publicly available datasets

allows the download of a sub_ set of totally available APK files from these reposltofles'

It is important to highlight that datasets such as CICma120209 CICma12019, and

CICma120179 provided details about the malware classes they contained. We identlfY

14 malware classes that include Backdoor, File Infector, PUA, Ransomware9 Rlskware,

Scareware9 Trojan9 Trojan- Banker, Trojan-Dropper, Trojan-SMS9 Trojan-SpY, Zero-

day9 and SMs Malware based on the avail From the Androzoo reposltorY' we

successfu11y located 7 of these malware classes, which were Trojan9 Banklng'
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Backdoor, SMS Trojan9 RalBonware, Adware’ and Mskware' However’ for tIe

remaining 7 malware classes mentioned earlier, we couldn’t nnd suitable data in th:
Androzoo repository. To expand our dataset and enhance the effectiveness of Android

malware detecdon9 we had to make a compromise. We decided to select malware

,1„„, th,t had more than "1201 " APKs available in the A11drc)z')') reposit')rY' m011g

these we included three additional classes, namely spWare, monitor, and e}Qloit' To

identify p,t,nti,1 „„._d,y th„t,, w, utili„d the K-means alg')fithm tc) detect patter11s

and identify such APKs from the available dataset

During our research, obtaining information about malware classes from public y

available datasets proved to be quite chanenghg' Only a few datasets’ specincally

CICma12020 CK.ma12019, ,nd CICm,12017, p„,vid'd details about the malware

,1„„, th,y ,',nt,h„d. N,n,th,less, we managed to identifY nearIY 14 malware classes

based on the available information. These classeshcluded Adware) Backdoor' FIle

Infector PUA9 Ransomware9 Riskware) Scareware, Trojan, Trojan-Banker' Trojan-

Dropper9 Trojan-SMS, Trojan-Spy9 Zero-day, and SMs Malware' From the androzoo

repositoFr9 we successfully located 7 of these malware classes' which were Trojan'

Bad,Jng) Backdoor) Sms TMan9 Ransomeware, Adware, and Riskware' However' for

the remaining 7 malware classes mentioned earlier) we couldn’t find suitable data in

the and„,,, „p,.,sit,.,y. To ,*p,nd ,u, dataset and enhance the effectiveness of

,nd„id m,1w„, d,t,'tion, w, h,d to make a compr')mise. We decided tQ select

malware classesthat had more than 1200 APKs available in the androzoo reposltorY

Among these) we included thee additional classes, namely spWMe, monitor' and

el,.ploh. To identify p,te„ti,1 „„_day th,e,t,, W' utilized the K-means algQrith"1 tQ

detect paUems and identify such APKs from the available dataset
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Table 3.1: Type Of Classes Select For Our Research
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2. Searchi„g f„ m,lw„e cla,s,s, Aft'r determining th' malware

classincations, we search for aRm in web databases such as VinlsTotal and

Androzoo. We may find a large number of malware samples for our studY from

these databases.

3. Converdng d,t, t, CSV fo,mat: Aft„ 1'”ting the malware samples' we

,,n,truct a Python script to convert th data from the Vi"ls TQta1 JSC)N fofmat

t. , m.„ p„,ti,al CSV format. As a result of this step, critical data such as the

vMs,s name nle type9 nle size9 number of detections, and download URL are

simpler to extract from the data.
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4. Organizing the data: Finally) by dividing the CSV ale accordirW to the

various malware types selected, we organize the data. We maY achieve thls

U,i.g , pyth',. ,'.apt ., .th„ t,,is to make it simple tQ ')btain the data f("

analysis. We save the data locally for quick access and as a backup in case of

data loss.

All these steps depict in Figure 3'3 '

C+a§ge§

Figure 3.3 : Collection Of Malware Classes

5. Load CSV of each malware class: After splitting the CSV file based on

malware bpes9 we need to load each CSV file into memory to extract the APK

links. This process involves reading the CSV mes and getting the data that is

needed by processIng.

6. Inquire the user for the total number of APKs to Download: After loadHW

the CSV nles2 we require to show the message for tIm user how manY APKs

they W,„t t, d,w„1,.,d. P„..„,i„g APK' might be time-consuming SQ it ”

import.rant to restrict the quantity of APKs downloaded' This approach ensures

that even in cases where the program unexpectedIY closes’ users do not have to

restart the download of all 1200 APKs from the beginnilW’ makirg the too1 more

user-friendly and efficient.

7. Create a loop: After getting the relevant information we create a Ioop to
d,w„1,,d the requested amc„111t c)fAPKs' This looP will "m over the 1=tlmb'r
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range supplied by the user. Each iteration of the loop will involve the following

steps:

Download APK: in each iteration, we will dowiload an APK from the

specified malware class using its corresponding link from the previously loaded

CSV file

Decompile downloaded APK using JADX: After downloading the APK, we

need to de(.ompile it using a tool such as JADX to obtain the source code'Thls

is necessary in order to investigate the code for future research.

10 Find and move the Android manifest file: After decompiling the APK9 we

need to find and extract the Android manifest file. This file provides essential

APK information, such as its componentS permissions, and services' This file

will be moved to a separate directory for future use for feature gathering'

11 Delete Al,K file and the recently decompiled directory: After extracting the

required information,For free UP the memorY we need to delete the APK file

and the recently decompiled directory . This will ensure that the resources of

the system are used efficently.

12. Go to the next iteration: After done the above steps) we will go to the next

iteration of the loop to download the next APK.

The whole process of download malware apks shown in Figure 3'4'

@ :JaM&

XP@@@:

R

Figure 3.4: Process Of Malware APKS Download
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13. From extracts directory Hnd AndroidManifest.xml mes: After decompiling the

downloaded APKs, w, ,MR the And,oidManifeg.xml files tQ a separate directorY' in

this step for extract th, „„tent w, will s,a,ch fo' '11 the AndroidManifest'xml files 111

the directory .

14. Construct a IooP to iterate through all files found: We create a Ioop to iterate thougtt

each fIle found after we have get all the AndroidManifeg.xml fIles. From this Ioop will

ensure that we exuact the required information from all the files'

In each iteration) script read XML of each mle and store the contents mentioned in the table

below as features ofAndroidMalware to a CSV For each fIle. The Table 3'2 shows the

information that we extracted.

Table 3.2: Feature Used in Our Research

W§ge WeI
to run the app

Pre-built code

development tIme

or system components

data between apps or provide access to data st9md in a database

Security settings that control access to SYstem resources or

required for certain app functionality such as accessing the

microphone

modules used by the app to add Rnx;tionalitY or Feduce

number,

user data,

camera or

r_„ . ____',_ ..II;,; An,I n,npt;„r,nlitv to the aDDliCationsp such as support
1 nat pru

for specific software or hardware features

applications on the devnes
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&&

The number of activities are in the applications.

We win gather above information from each file in a CSV file. We will be used thls

csv file in the fulure for further analysis. Once all the files have been processed, the feature

extraction process is complete. As Figure 3.5 show the process of malware feahlre extractIOn

@&&@§E8@

Figure 3.5: Malware Feature Extraction

Above mentioned processes are only for the collection of Malware samples so we had

to ,,.orntru1.t a benign malware sample collector as well which is depict in Figure 3'6, so we

designed a web scrapper to scrape through the PlaYstore ard other third-partY app stores to

acquire benign samples9 as shown in Figure 3.6 and as steps described below:

1. Import required libraries: The first step is to import the required libraries such as

requests9 BeautifulSoup> urllib, time, random, csv, and os.

2. Read App IDs from CSV file: The code reads the list of beniW app IDs from a CSV
file and stores them in a list.

3. Loop through the App IDs: The code looPS through each app ID in the list of benlgn

app IDs.

4 Create Search URL: The code creates a search URL using the app ID'
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5. M,k, R,q„„t t, the Search URL: The code sends a request ta the search URL with
random wait time and headers.

6. Parse Response using BeautifulSoup: The code parses the response usmg

BeautifulSoup.

7. Get Link for the App Page: Th, c.de get, the link for the app page from the parsed

response.

8 Create URL for the App Page: The code creates the URL for the app page'

9. Make Request to the App Page: The code sends a request to the app page with random

wait time and headers.

10. Parse Response using BeautifulSoup: The code parses the response us111g

BeautifulSoup.

11. Get Download Link for the App: The code gets the download link for the app from

the parsed response.

12. click on the Download Button: The Lode clicks on the download button by sending a

request to the download link with random wait time and headers'

13. Parse Response using BeautifulSoup: The code parses the response uslng

BeautifulSoup.

14. Get Download Link for the APK: The code gets the download link for the APK from

the parsed response.

15 Download the APR. File: The code downloads the APK file bY sending a request to

the APK download link with random wait time and headers'

16. Save the APR. FDe: The code saves the downloaded APK file in the specified dlrectorY

path.
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Figure 3.6: Benign Downloader

1.

2,

3

Decompile the APK: The code decompiles the APK file using JADX bY constructmg

the command and Iunning it.

copy Manifest File: The code find the manifest file in the decompiled directorY)

renames it to the app ID) and saves it in a separate directory for the extracted files.

Remove Al,K File and Decompiled Directory: The code removes the downloaded

APK file and the decompiled directory.



69

4. Loop to the N,,t App ID, Th, c',d, 1..P, t, th' next app ID until the desired number

of APKs is downloaded or all app IDs are processed.

3.3. Experimental Setup:

Thi, „.d.„ d,„,.,ib„ th, „,p„im,nt,tion arrangements and perfc)rma11c” metrics used tQ

e„al,„ate the proposed apprQaChp as well as th achieved results and con:esp011dilW dlsCLlsslor1

1„ this s,dion, we describe the experimental setup used to evaluate the perfoFmanCe of our

p„p„,d ,pp„.„h b„,d .„ D„p N,„„1 Networks (DNN) for A11drc)id malware detectl011

having st,ti, f„t.„, „,fApph„ti,.,n. Th, „,p„im,nt,ti'n is performed Llsing the KerasPYthQ11

library with python version 3 .11.3, by using with Scikitlearn, Numpy, Tensorflow ’ and PandaT

libraries to achieved the desired results. The specifications of the underIYing SYstem are defined

in Table 3.3 .

Table 3.3: Experimental Setup

M==
Core-i7 Processor Intel(R) Core(TM)

GHz

NVIDIA Quadro M2000M.

Windows 10-64 Bit

P}4hon version 3.11

K.eras 9Numpy9 Tensorflow, ScMearn

MB
&g

Wi{WW

To evaluate the performance of our proposed approach, we use several performance

metrics, including accuracy, recall FI score, and ROC, AUC cur"’e' A test set of Androi

malware samples is used to gene,ate thes, metrics; this test set is separate from the tralnlng set

Th, ,,p„im,nt's findings are explained in th paFts that fo11ow alang with a CQ"WarlsQn o

state-of-the-art methods.

3.4. Data Preprocessing:

Preprocessing is necessary in machine learning and deep learning applications ecausT

raw data often contains iHelevant or redundant information that can negatively impact model
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perfOImanCe. PNprocessing can help with problems including missing data9 class imbalanc:

and dataset noise. We can make sure that the model is only taking into account necessary

features and that the data is in a format that the model can comprehend by cleanIng'

transfoMng9 and nomaliz@ the data. In the end, this may result in predicts that are more

accurate and reliable.

3.4.1.1. Data Loading:

Loading data is the first step in any deep learning project' in this step’ we used the

P a n d a s 1 i b r a r y i n P yt h o n t o r e a d t h e (bI S \r file containing the Android application data ? t• s The

:olledion included details on a range offeatures9 including API calls, intents' and permlsslons'

utilized by various Android applications, along with inhrmMon on the related malware class

It i, ,imp1, t. h,nd1, ,nd ,*,mi„, the data by loading it intQ a pa11das DataFralne

3.4.1.2. Data Cleaning: 1

Data cleaning is an important step in any deep learning project. In this step, we removed

any in.elevant or redundant data from the dataset. We removed the App Name coIuT: as it

does not contain any useful information for our analysis. We also identify for aW mlssl IT Tr

null values in the dataset and dimhate them as needed. For building a good model it is

impodant in data cleaning step which help to to ensure that the data is accurate and reliable

3 4.1.3. Handling Class Imbalance: _

Class imbalance is a common problem in deep learning) where the number of samples m

one class is much higher than th other class' This can lead to biased models that peT:m

poorly on the minority class. To solve this problem) we used oversampliTg technIques IIE

helps to balance the classes in the dataset and ensure that the model is not biased rwards thT

APKs. h response to this chaUenge9 we had to implement balancing techniques to ensure that

: a c 11 : 1 a s s ]1 a d a s u ffi c i e 11t 11L1 rIIt) e r of rep Hsem dive samples for our analysis arM and el

tralnlrlg.
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3.5. Feature Selection:

data and make it harder for the model to learn the underlyIng patterns

Initially) we had a total of 439377 features) but following the preprocessing stage' we were

left with only 109523 features for nlrther analysis and modeIIng

threats.

396+ Evaluation Metrics:

An evaluation metrics results are shown m

Table 3.4 .
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t„ini„g „t. T,king , 1,,k ,t the model's training qualitY maY make it easier to figure out how

wen it can leam from the data and whether it is overfining or under fitting

3.6.1.2. TP/FPrrN/FN:

We used the confusion matrix to represent true positives, false positives, true negatlves’

and false negatives. A confusion matrix determine how well a classincation model works by

comparing the actual labels of the data to the predicted labels. The confusion matrix can be

helpful in deteMning which classes the model is having problem accurately classifying and

may suggest further model improvements'

3.6.1.3. Fl Score:

The F1 score is a measure of a model's accuracy that considers both precision and recall'

It is the harmonic mean of precision and reGan, and it ranges from 0 to 1. As Fl score provIdes

a single score that sumarizes the model's performance score can be helpRll in comparIng

models or tuning hyper-parameters'

3.6.1.4. Recall:

Rei..aU is a way to measure how well a model can find true positives’ or how malW

tmc p„)sitive cases it co,„e,tly identified. Recall can be helpnl1 when it's important to find

positive cases for example in medical diagnoses or fraud detection

3.6.1.5. ROC-AUC:

The RC)(.-_ AUC (Receiver Operating Characteristic - Area Under the Curve) is a

m„,u,e .f , m,.,de1.s ability to di,anguish between positive and 1:legative classes' it is

calculated by plotting the true positive rate against the false positive rate at varlous

classification th.esholds. ROC_AUC can be helpEd in assessing the overall performance of the

model and comparing different models.

Table 3.4: Evaluation Metric

A coMusion matrix is obtained by comparing the predicted

labels of a model with the true labels of a dataset.

TP / (TP + FN)M
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values.

Note: TP = THe PosiM9 TN = TIue Negatiw9 FP = False Positive, FN = False Negatl\n

3.7. Hypotheses and Research Questions:

Ow study aims to address the fonowhg research questions which are describe in Table 3'5

Table 3.5: Research Questions and HYpothesls

;b

byexamplesofsetslarger

considering more features and

families/classes?

malware families in the dataset, we hYpothesize that

the DNN will have a better understanding of the

malware landscape and will be able to classify new,

unseen samples with higher accuracY

How can we develop a deep learning We hypotheske that spwinc deep learning .models'

and improve efficiency of existing evaluation. By conducting a thorough FornparlsTn
.+ _a, ,nd ,„,h„tion of variQ11S deep I'ar11ing mc)deIs’svstems? -'-- - ’ – . . ,

J -''-' Mluding DNN and CNN models, on balanced

datasets9 we hope to validate our hYpothesis and

id„,tify th, m.d,1 with the highest perfc)rma11ce fc"

malware detection.

learning_based dassiners that can models, dataset is fme-tuned for known threats: it

==Idling zero_daY aaacks? learning is used in order to identify zero-day attacks
It win enable the model to effectively detect
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previously unknown attack paaems and mlprove

the overall performance of zero-daY attack

identmcation by utilizing the hxwledge gained

nom the known threats.

sectIOns

3.8. Software and Tools Used:

Description of any software tools or frameworks used in the study are shown in Table 3'6

Table 3.6 : Software and Tools

W:l!
&M

#@i&&:iii

Wg

He=
Custom Tool Elt;acting APK files and their statIC

features

Extracting features kom

applications

trarrImg

DataMentioned In

Acquisition sectlon

DataMentioned in

Acquisition sectron

[76]

Custom Tool
the collected

Pandas

Building and uaining deep learning [77]

models

M@ withKeras

TensorFlow

backend

S,ikit-learn!XM

Seaborn

Creating visualizations of data and [79]

model performance
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:@Wg: JupyM

Notebook,

Python 3.11.8

report wntmg

3.9. Implementation Details:

To implement our proposed approach„ we nude a set of PyEhon tools that handle the stTT

of getting data and Uahhg the DNN. We performed the following steps in order to get the

information we requlre:

1. We downloaded a large number of adware saHples from different sources througl

internet and collect them in on our local machlne'

2 After that we used a PYthon scdpt that used the Apktool tool to decode the apps and get

the AndroidMa„ifest.xm1 nlcs out of these samples to get the APK files

3 . We extracted the AmdroidManifeg.xml ales from @ samples of malware and stored

them in a separate directorY.

Similarly, f,r the benign samples9 we foIlowed these steps:

1 We dowNoaded a large number of benign APK fIIes from the Google Play Store usln:

third party app store such as APK Pure and stored them in a directoW on our local

machine.

2 We used , PWh,n „apt th,t m,„ip„1,te the ApktoQl tQO1 tQ extract the

AndroidManifest.xml nles from these malware and benign samples

3 . We collected the AndroidManifest.xml fIles from the benign samples and stored them

in a separate directorY.

For the DNN training phase9 we performed the following steps:
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1. Preprocessing: We preprocessed the data by converting the collected

And„,MM„,if,st.xml files irltQ a fQrmat tht can be fed intQ the DNN mc)del- We alsQ

perR)rmed data cleaning and nhering to renmve hNlevant or dLWlicate informatIOn

2. Building the architecture: We designed and built a DNN model using a P)a IIon deep

leaMng libranr su,h „ K„„ ., T,n„, Fl.w. Th' ”'hitecture was desiped tQ take

the preproce„,d d,t, „ input ,nd outP„t th' p”di'ted malware/berlign label

Training the model: We used the preprocessed data to train the DNN model’ and we

changed the hYper parameters to get the best results. We also used methods IIke cross-

validation to check how well tIn model worked'

Visualizing the performance: We used different visualizing performance metrICS to

measure how wen the learned model worked so the used performance metrlc are

Confusion metric) accuracy) precision, recall, and Fl score. We also visualized the

performance using graphs and charts'

Adjusting hYper_parameters: Adjusting hyper-parameters: if needed) we changed thT

DNN modells hyper-parameters tO make it work even beUer' We did the UainhW and

testing steps over and over until we got the desired level of accuracy and performance

For handling the zero_day attack detection) we transferred the knowledge of previously

trained DNN model to another DNN Model:

Loading Pre_trained DNN: in ths ,t,p, we loaded a p'e'iously trained Deep Neural

Network (DNN) model using a Python deep learning library such as Keras' ThIS pre-

trained mode1 had been trained on a ,elated task or dataset and contained valuable

knowledge that we wanted to transfer to our new model for zero-day attack detectIOn

Detecting an,m,1i,s, W, ,ppli,d ,„.m,ly detection techniques such as K-Means

clustering method to identifY potential anomalies or deviations in our dataset' These

anomalies might rep„,ent U„MW„ ., „,o_d,y ,tt„k' th't do not corlform to the

expected patterns of benign or known malicious apps'

Updadng the anomalies as potential zero day attacks: After detecting potential

anomalies in the dataset9 we updated the labels or annotations of these mstances to

mark them as „potential zero_day attacks." This label modification allowed us to

differentiate these instances during the training of the new DNN mode1
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4. BuDding a new DNN architecture: We designed and built a DNN model uslng a
Python deep learning library such as Keras or Tensor FIow' The archIteCtUre was

d„ign,d t. t,k, th, p„p,.„„,d data as input and ('11tP'It the predicted

malware/benign label.

5. Transferring knowledge of pre-trained DNN to newly designed DNN: qNe

performed knowledge transfer by inMalizing the weights and architecture of our

newly designed DNN model with those from the pre-trained MN' This process

a11owed our new mode1 to inherit valuable features and patterns learned from the

related task, providing it with a strong staKing point for zero-daY attack detectlon

6. Training the model: We used the preprocessed data to train the DNN model' and we

changed the h)per parameters to get the best results. We also used methods IIke cross-

validation to check how well the model worked'

7. Visualizing the performance: We used different visualizing performance metrics to

measure how well the learned model worked so the used performance metrlc are

Connlsion metnc9 accuracy9 precision9 recanp and Fl score. We also visualized the

performance using graphs and charts.

8. Adjusting h\per_parameters: Adjusting hyper-parameters: if needed, we changed

the DNN moders hyper_parameters to make it work even better. We did the tramlng

and testing steps over and over until we got the desired level of accuracy and

perfOHnanCe we needed XML) Java) and resources. In our Python tools) we used

APKTOOL to get the AndroidManifest.xml fIles from the APK fIles and decode them

APKTOOL is an useful open_ source tool to reverse engineer Android apps and

extract various files such as XML9 Java 7 and resources'

3.10. Model Selection Criteria:

W, „.p„im,nt,d with diff„,nt DNN „,hitectures, such as sin'lple feedf'"ward 11el"al

netwMs mm„,,,mpI„. '„K, ,„.h M ..„„,I„,ti„„I „,„ral networks (CNNs). Afte- loQkirlg

at each design accuracy) we decided to use a simple feedforwMd DNN for our approach' Vv e

chose a feedf,ma,d DNN be.au„ it i, ,i„,pl, ,„d „,y t, t”in, yet powerful enough to learn

complex paUems in the AmdroidManifest.xml nles. Moreover, we found that a feedforward

L)NN was able to achieve high accuracy on our dataset without overfittlng or requlrlng
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e\cessive comput,ti,n,1 „,',u„„. W, ,1,o impl,m,"t'd ' transfer learning approach bY

leveraging th, k„wl,dg, g,i„,d f„.m .., D„p N'"”1 Network (DNN) mQde1 a"d applH'=F

it to another DNN m,d,1. T, „hi,„, thi,, w, p„.,„id,d , ,m,11” dataset for the sec')11d DNN

mode1 to fine_ame it, pa,am,t,rs fu,th„. Thi, transfer of k110wledge enabled us to capital"ze

on the pre_leamed features and representations from the nra model) thus enhancing the

perfomance and efficiency of the second model while working with a limited amount of data

Th, „1,.t,d DNN „,hitecture consists Qf several nIHY col"lected laYers with ReLU

activation hmctions, followed by a nnal outPut layer with a soHmax activation function' Vv e

u,ed the ,ategorical cross-entroPY Ioss fl„Etion and tM Adam CWtimizer to train the DN

3.11. Feature Extraction and Selection:

1„ ',u, ,ppr,.)ach7 we e,t,a,ted features from the Andrc)idManifest'xml file of the APK

samples. We downloaded both benign and malware APK samples and collect the required

f,atures from the AndroidMa„ifest.xml file of each APK sample bY executing the feature

,,t„,tor tool that we deveIQped. These extracted features were then used to train ("lr ( eep

neural network model.

Aft„ th, f„t„„ ,,t„ction, to select QrlIY the relevant features to use in Q11r mc)del’ we

performed feature selection. This step is necessary to make the model less conplicated and

,t.p t. ,„c,id ,,„mdng We counted how mal:IY is were in each col11m11 of the feature "latnx

to find out how on.en each feat„e ,h,w, up i. th, d,t„,t. W' th'n ”t a threshold to remove

features with fewer than a certain numb,r of ones. Fo, exampl'9 we set a th'eshold Qf 2' which

means that any feat„„ i, 1„, th,n 2 ,h,.„Id b, ,limi„,ted f”m the dataset' This process fQCUS

.n th, m.,t imp„t,„t features and helps to remQve features that are less inWortant- The

selected subset of features was then used to t,st and t,ain the deep neural network model

3.12. Algorithmic Details:

The architecture of our DNN consists of four layers, including an input layer) three hidden

layers with ReLU aca\,anon, and an outPut layer with a sonmax activation’ as presented in

Algodth„ 1. Th, i„put 1,y„ „„ei„„ nin, f'atures, which are extracted from the

AndroidManifest.xml files of the apk samples'
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function is defined as follows:

soPm,x(„_i) = ,XP(„j) / ,um(exp(a_i)) for Q11 j

a probability distribution'

is defIned as:

C,tegoricd_C„„„e„t„oPy = -s"mO_true * log(Y JTell>)

w h e r e y t m e i s t h e t m e d i s t ri b u t i o n o f P r o b abURies andyPm d is the disK i but iono

probabilities that was expected'
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\ ALGORITHM 1:

! Require.. Dataser_Training T, Dataset_Testing t, Epochs E, Batch_Size B, Weights W, DNN Layers DL

function DNN Model(T, t, E, B):

{ 1: Normalize T (0-1)

} 2: Reshape T

3 : Initialize DNN architecture:

4 8 Dense(unit = 2„n, acdvati,„=„I„, k„„,1_„g,,1„i”' =12(O.0001) + Dropo''t(-ate = O'2)

! outP„t 1,Y„ = D,„„(u,it, =12, „ti,,tion = sonmax)

B 4: Optimisation Settings: opHmiser = Adam(learningJatFO'OOOI)’
loss = categodcal crossentropy, metrics = accuracY

i
5: for epoch in range(E):

6: for i in range(0, len(T)9 B):

6: batch = T[i:i+B]

7: Train w.r.t B from T

9: Calculate loss for the B

8: if Wrong Prediction then

{ 9: Up,I,t, W
1 10: end if

i ll:endhr
12: end for

13: Save the trained model

14: Result = Predict on t

i 15: Save Result

end function

i

i
i

# Usage example:
T = X train #training features

f = X test #testing features
E = 200 # Number of epochs
B = 64 # Batch size

input dim = X_train.shape[ 1 ]
DNN Model(T, t, E:9 B)

# Input dimensionality



81

iNPUT LAYER{:

B:A::

=:{\-I HI=4$£XC: F.FP

f) &BnflStB

@

[ AVen

! Benign

Figure 3.7 :Deep Neurat Network Architecture

We used the Adam optimize, with a learning rate of 0-0001 to get the seUilWS of the

model to work best. The Adam optimizer is an adaptive learning rate optimization algorithm

that is efficient and robust to noisY gradient hhrmation. We also applied 12 regulariZatlor: to

the thee hidden layers to prevent overatting. L2 reWlarizadon adds a penalty term to the ITss

function that encourages the model weights to be small. MathemMicany, the L2 Kgularlzatlon

term is defined as:

L2 Regularization = 0.0001 * sum(wA2) where W iS the weight of the model

p„po„d alg,.„ithm i, p„„”ted in Algorithm 1

3.13. Architecture of DNN:

The Figure 3.7 show the details of the each layu9 hcludhg the number of input nodes' th:

number of nodes in each hidden layer, the corresponding weights, and biases' The total number.

of parameters is calculated by summing the individual components’ resulting in a value ::

5,560,576. Addhionany) a total of 972 biases are considered in the network' We pre Tent T:

aLt:curl of our cw based model in AlgodM 2 where the architecture of our proposed model

using DNN is shown in FiWre 3.8'
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Figure 3.7 : Architecture of DNN

ALGORITHM 2:

i = = 1tLe q u i r e : I) a t a s e t = T r a i n i n g )<L tr an ) Data sad rd ning Labels ytrain
Epochs E, Batch-Size B

:, r„„,d.„ CNN_Model(X_t*„i„, y–t*„i„, E, B):

{ 1 : NoIInalize X_train (0-1)
2: Reshape X_traln

3: Initialize CNN model:

Injt bajlIET;II:1:::iivation=.relu., i,p,t_,h,p,=(,i„, 1 )) + M''PoohngID(2) + FlattenO

5 : for i in range(0, len(X_train)9 B):

6: batch = X_train[i:i+BI
7: Train the model on the batch
8: Calculate loss for the batch
9: if Wrong Prediction:

10:Update the model weights
11: end if

li: eT:foo: 14: Save the trained model to a me end function

i
i

i

;#===:HIiTn; G;----–- -–’-----–-––--––--
y -train = ... # Training labels

E = 200 # Number of epochs
B = 64 # Batch size

CNN Model(X_train, y_train, E, B)
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3.14. Architecture of CNN:
We constmct a CNN model. It consists of four Con\,ID layers) each with a different fIlter

size determined by 2') followed by a ReLU activation nmction' ARa each convolutional ayer

therds a MaxPoolingID operation to down-sample the data, and a Flatten layer to convert 1

into a suitable found for subs,qu,„t p„„„ing. B'tchN”'m'li”tion is applied to "nprQT

training stability, and Dropout is incorporated to mMg Me overntthW' it is presented m

Algorithm 2 .

3.15. Architecture of TL based Model:
We construct a new deep neural network model by leveraging the architecture o a

P e N a i n e d m o d e 1 s T h i s P e rt a i n e d 1T1 o d e 1 s e Nes as a staRing point for o Two rk• BTo : dap tt + : :

model for the specific task of zero-day attack detection) we make a CIUcial modifICatiOn to the

outPut layer. Assuming we have 13 classes, hcludhg one for zero-day attacks’ we JMJor the

network accordingly. For training, we connWre th nDdel by specifying the optlmlzatlon

method (Adam with , 1„M„g „t, ,fO.0001) ,„d th, loss nmction (categoric-1 cros*e"trQPY)

1T t1 e t r a i II i 11 g r) r O C e S S i r1N r 0 1 \r e S i t erath g over the data brad erm cdrRunbe r of epochs ) and W:

process the data in batches I enhancing efficiency- During training’ we monitor the Ios:’land if

1 sun)asses a pr,d,n„,d th„h,1d (typi„ny „t ,t o.1 in this Gas'), it ;ig"als a patentiaJ =erT

d a y a t t a c k s I n r e s P o n s e t o t h i s d e t e c t i o n ! we can take a P prop date actions ) such as UP dat in ? th :

m o d e 1 1 s w e i gIIt s o r iIT11) 1 e 1T1 e 11t i 11 g funher se curRy measure STAR era aining ) we save th Thai ned

model for future use. To assess its performance) we evaluate it on a separate set of testing data

In this evaluation, we pdmadly measure accuracy as an indicator of how well the model ran

classify data into its respective classes, which hEIUdes identifying zero-day attacks when they

occur. We present the architecture of our TL based model in Algorithm 3
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ALGORITHM 3 :

# Required DMasd_Trdnhg X_train) Daasd_Training Labels y_train) Epochs E' Batch-Size B

pretrained_model

I :tUE : : n = 1 B:tr: :=L==rT:at = =B ! t: ::1:9gp r e t r a i ned model ) :

PITT::::1:ITV TfTrs„i:;eCT'shape tO]’ - 1 )
# Initialize DNN architecture
model = Sequentialo
for layer in pretrained_model.layers:

# Optimization settings

i ==i==Pt:(l==ETc:=o–rTF==J=roPy,,,ptimi„,=,ptimi„,, m,td”=['accuracy'])

} # Training Ioop

for epoch in range(E):
for i in range(0, len(T)9 B):

batch = T[iIi+B]

# Training w.r.t B from T

threshold = 0.1 # Adjust this threshold as needed

if loss > threshold: . ,

# Update weights or perform hrttBr actions as needed

mode1.layers[_1] .set_weights(new_weights)

pass

Save the trained model
mode1.save("zero_day_detection_nK)del'h5")

Evaluation on testing data
t = t / np.max(D
t = t.reshaped.shape[0], -1)

yJ)red = model.predict(D

y true = t

i
i

i =cl=== e=Tcu:r={1=our :(T = = =1= =i ; T=t: i : : i: : F): Tp p a r gIII ax ( y ]) reds axis = 1 ) )
i print('' Test Accuracy:", accuracj_._„_–

}

i
S

;

;

i

i
i
i
i

i

i

;

i
i

;

i

i

ii
i
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FinaUy9 the output layer is a Dense layer with 12 units and a softmax actlvatl011

Rmction which is suitable for tasks involving multi-class classifICatiOn. For optimization' the

model uses the Adam optimizer with a learning rate of 0.0001, employs categorical cross-

entropy as the Ioss nmction, and tracks accuracy as a metric for model performance' The

UaiNng process unfolds within a Ioop that runs for the specifIed number of training epoch?
Inside each epoch) the training data is divided into batches of a specifIed size, and the model is

trained on each batch while computing the Ioss. If th model makes incorrect predIctIOns on a

batch it updates its weights to enhance its performance. ABer completing the training) thT

function saves the trained mode1 to a.tHe for late, u,e. In p'a'ti'e, this function can be applied

t, , ,p„in, d,t„,t (X_t„in and y_Hair1) by specifyi"g d” m=mber ofUai"i'W epochs (E) and

the bat„.h size (B) to create and train a custom CNN model

3.16. Evaluation Procedure for DNN models:
To assess the perfomlan„ ,f ,u, DNN m,.d,I, w' di'id'd th' d'taset into a tralr1111g set

mId a testing set using an 80:20 ratios. We used the testing set to evaluate its performance and

the training set to train the DNN model. SpecifIcally, we used 80% for Uaining and 20% of the

d,t„,t f., t„ting ,nd „,hd,tion. During the traini11g pMse, we used to adjust the Wper-

parameters and the Uaining set to update the weights of the model' Then’ we evaluated t le

model using the testing set to ensure that it could generalize well to newi unseen data' We

validated the performance of our model using the evaluation metrics mentioned earlier

including accuracy) confusion matrix, Fl score, recall’ and ROC-AUC' We utilized the 20:o

testing set to validate our DNN using these meMes) which allowed us to measure the model's

perfomance on unseen data. This approach ensured that our model was not overming to the

training data and was able to generalize to new data'
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4. RESULTS AND DISCUSSION

The ,valuation and anaIYsis of th proposed anQmaIY detection SYstem's efficiencY anc

accuracy rely on a set of established and standardized performance metrics' These metrICS serre

as a benchmark tO measure the systemts performanCe and provide a quantitative basis for

evaluating its effectiveness [1].

In our work we have implemented several performance metrics for evaluation' includlrW

A c c LIr a c )r 9 r( e c a 1 1 1 1P r e c i s i o ][]L ) 1B:O•I ) ]\I: ) and Fl =ScoKpThe(•I fusion Matrix is utilized t :

IKsem tlc acma1 vahes of Tm, N,g,th, (TN), T,., P”hi'' (TP), False Negati“e. (FN?' anT

;dse Positive (FP). When ' dealing with balanced classes9 the Conhsion Matrix without

normalization accurately represents th results for each predicted label' in the case of balanced

datasets the nonbalized Conhsion Matrix displays the results as a percentage) allowing for a

C () 111]F) r e t1 e r1 S i \r e a S S e S S ][][+1 e ][a of each class B Toe labor He (•mso me of the per fmman cem eric S

shown in Table 4. i .

Table 4.1 : Metrics

By utilizing these perfomance metrics) we gain a comprehensive understanding of th:

effectiveness and efficiency of our anomaly detection system in accurately detecting and

classifying m,lw„, i„ th, A„d„.,id malw”' d't'ction domain
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approaches.

Table 4.2 : Comparative Analysis

Number of application fm each class

unbalanI..ed so it will lead to Bias in the

results, Reduced generahzabilltY’

minority classes can result in limited

understanding of their characteristics and
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of each class

understanding

behaviors, and

different malware

applications,

ultimately leading

enables a thorough behaviors' Lead to incoHWlete evaluatIOn

of the characteristics) When evaluating the performance of the

paUems eqdbhed by model) an unbalanced dataset can skew
classes and benign th assessnnnt metrics’ such as accuracY’

robust evaluation) precision) and recall. This dlsto]alan can

to more reliable obscure th true effectiveness and

efficient.y of the model's performance on

the various classes.

Given the

samples, our approach

train-test split

to the base paper’ssupQrlor

validation approach using 10

allocating 8CY% of dw data

our approaeh allows

from a

set

Ow model utilizes an extensive featuFe

set of 43)3773 even after implementmg

Throughtechniques,preprocessmg

careful selection, we have reduced the

number of features to around IO}524'

This surpasses the base modeFs

utilization of onIY 190 features for

training. Our model's extensive feature

The base model has limited feature

representation, utilizing onIY 190 featul:es

for training. This restricted feature

coverage may hinder its abilitY to capture

the mi range of information in the

dataset. The base model’s limited feature

representation may limit its effectiveness

in detet.dting and classifying malwares'
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selection and retention glve A a

significant advantage cwer the base
model in terms of accurately detectlng

and classifying malwares'

() L1r aP P r o a c 11 (i e rII o ][]L s t r at e s s e v e raI advantages over the base approach 9 inchrIng

e ffi c i e nt C P U = 1) o w e r e d d e t e c t i o n 9 t11 e at) in ty to detect a gre Her number of malware Tar lans )

Ut i 1 i Z a t i O n O f a 1) r O P d e t a nyr d at a S e t ) t) a lance d representation of each class ) consider adon of a

diverse feature set, and an optimized trahhg-test SPlit' These advantages contri:ute t:

improved accuracy) enhanced generdizability, and increased mbustness in detecting and

classifying android malwares.

4.1.1.1. DNN vs CNN vs TL: f

In this section) we present the results of our expedmeNs comparing the performance of

;able 4.3 We evaluate the models based on several key metrics, including tra111111g t1111e

accuracY) loss) confusion matrix) AUC_ROC, recall, Fl score' and preclslon

Table 4.3: DNN vs CNN vs TL

1{8; Loss

W& A IiIc = ]B(1;C

g ::::*t

194 200

0 1424 0.1278

0.98 (Figure 4. 7) 0.97 tFigure 4'21

0 84 0.82

50

94.45

0.3550

b{{}a
1.0 (Figure 4.3)

0.96
0.97

0.98
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Figure 4.3 Transfer Learning AUC-ROC Curve

4 1.1.2. Selection of Hyper-Parameters:

W, „„pl',y „„i.U, I,yp„ p„,m,ters to enhance the perfo'mal:lce of ol" deep learn"W

algodtlun) as highlighted in the study[81]. Our approach involves the followmg components

1. Epochs: Epoch, denote the training herations performed on our deep neural 11etworks'

lnitiaUy, we conngu„d th, m.d,1 t. und„g. 1000 t”ining it'rations' Subseq11endY' we

implemented an early st,.)ppi„g tectmique9 which continually assessed the model's

perfomance bY monitoring the training Ioss. It for five consecutive epochs, the Ioss failed

tO el.Mbit any further reduction9 we made the inf'.'rmed decision tO conclude the tramlng

process at that specific epoch. This choice was grounded in the understanding that an increase

in loss indicates that the model has likely reached its optimal training state. Further lteratlons

w,uld ,„„y th, p',t,ntH ,i,k .f ,„„nu@. Employing this appr')ach, 011r DNN Model

successfuuy completed its training after the 200th epoch in our most promising experlment

2. Batch_size: The batch size denotes the number of data samples processed together durIng

each training iteration. In ou. series of experiments) we systematically varied batch sizes9

ranging from 8 to 128) and found that a batch size of 64 emerged as the most optimal chOIce

f„ b,th ,„, DNN, CNN ,„d TL-DNN (t„„,fer Learning DNN). Impc)rta11tIY, the preference

for a bat,h ,i,e ,f 64 ,ngn, with ',u, dat„,t', ,„bst„,tial nature, encompassing over 10'000

features. In this context, 1a,ger bat,..h sizes e„pedite training while mitigating the risk of



between computational efficiencY and model accuracY

their ability to make accurate predictions and classificatIOns

hkely class among several possibilities'
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t t1 e I)}{}{ m o d e 1 t1o 1 (1 s 1) r o 111 i s e a s a 11 effective solution for aMro idm dw Med a ection• Tn

confusion metric, of th,m thee mod,1, depict in Figure 4.4, Figure 4'5 and Figure 4'6
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Figure 4.6: TL Con.fusion Matrix

4 2. Robustness and SensitivitY AnaIYsis:

considerations for its deploYment in real-world scenarlos



4.2.1.1. Sensitivity Analysis bY unbalancing the dataset
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T,b1, 4.4, R„„it, of sensitivity AnaIYsis bY 1111bala11ci11g the dataset
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di,t,ib„ti„,n,, .u, m„de1 m,i„tained high acc11racY, precision, recall, ROC and AUC’ and F1

score. Th, und„„„„ th, ,ff„ti„,n„, ,nd „li,bility of our apprQaCh in detecting and

classifYing android malware instances, regardless of the class distribution challerWes' As it

shown in the tabular form in Table 4.4.
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Figure 4.8: Confusion Matrix

4.2.1.2. Cross Validation

In addition) we also conducted a sensitivity analysis results of otu DNN model by

,h,„gi.g th, t„t and t„in ,pht, to 80% for testi11g and 20% for Uail:li11g' The anaIYsis focuses

O n k e Iyr m e t d C S S U C 11 a S e P} 0 C t1 ) t r a i II i 11 g time ! Ioss ) accuracy ) precision ) recall ) RC) Land A1Jl !

F1 score and confusion m,t,ix. In T,bl, 4.5 20% 'nd 80% 'Plit ”suIts are shown

Table 4.5: 20%, training and 80% testing SPlit:

Epoch
I

Loss

200

17 Minutes

0.1985

96.15%

0.72

0.71

0.94

0.71

Accuracy

Precision

Recall

ROC and AUC

Fl Score
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The sensMvity analysis of the DNN model clearly demonsaues its resilience and efficacy

in malware detection, even with , „d„„d t„bing d,t, 'i”. D”pRe the challenges posed bY

a sma11er data,et9 ou, moMI e,hibits „,n,i,t„,tly high accuracy9 precision, recall' and Fl score’

showcasing its capability to effectively identify and classify android malware instances' Thi:

illustrates the robustness and strength of our approach, highhghthg its potential for real-world

applications.

4.3. Discussion of Findings:

In ths section we idea)ret the fIndingS of our experimentation, analyze the results withln

the context of Android malware detection using static feature analysis, and discuss the insights

and conclusions drawn from the findings. Additionally, we address any unexpected or

interesting observations and their implications'

Our comparative analysis between the DNN, TL and CNN models revealed severa_

significant fIndingS. Firstly, in terms of Raining time, the DNN model outperformed the.CNN

Learning (TL) a.hi'„ed compa-able perfQfmance „hhj-lst 50 epochs and a Tere 5..'=TT_:_T

malicious or benign.

at in
instances,

attack.

ler vaII



InterestingIY9 despite the differences in architecture and UMning approach' both models

perfomed comparably h tems of recall) precision, and Fl score, showcasing their robustness

in capturing tme positives) false positives, and achieving a balanced performance

4 3.1.1. Statistical Analysis:

P_Value Analysis of Analysis of Model: 1

We perfom stadgjcal analysis using p-value to assess the siWincance of obserre:

differences between models. This analysis helped us understand whether the obserreT

variations in model perhmance were statistically sigMncam. We conducted the binomial test

model is effective in identifying malware. These Endings emphasize the potential practical

value of the DNN model in combating malware threats and provide compelling evidence for

its inclusion in malware detection systems'

P_Value Analysis of AnaIYsis of Dataset:

In this research paper9 we delve into a rigorous statistical analysis of our dataset'

label column.

Test 1: Top 50 Correlated Columns For our initial examination, we picked the toP

50 columns exhibiting the highest correlation with the malware label column' These

colums were chosen based on their potential significance in understanding the

presence of malware in the dataset. Following this selection' we subjected these

colunms to the Chi_Square test, a statistical method known for its abiIIty to assess

independence between categorical variables. Surpdshgly) the results of this fIrst
test revealed zero instances of test failures, signifying the robustness of the

1..on~elations identified.

Test 2: An 109523 Cohmns Our second test extended the anaIYsls to encompas:

all 10 523 columns within the dataset, mMduany paired with the malware label

lumn. This comprehensive approach involved the execution of a total of 10’5CO
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li b :

Chi_Sduare tests9 each assessing the independence between a s@le column and the

malware label colum. Impressively) out of these tests, 8819 successRllly passed as

shown in F@„, 4.9 , „,,ding ,ignin„m „lationships between these cc)Itlmr" and

the presence of malware. However, the remaining 19704 tests resulted in failures
which is shown in FIgure 4.10 Failed P-Value Analysis, highlighting the

,,.omplexity and diversity of factors present in the dataset
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(-'ONCLUSION

In this chapter) we present our conclusions. We proposed a deep learning-based

approach for addressing the security concerns associated with Android-based appllcatlons’

,p„in„Hy f,.„u,ing .„ „„1w„, d,t,ction. It's worth rloti1'g that while Deep Neural Networks

(DNNs) have been explored in this domain previously, our algodthm represents a sipificant

ad,,n„m,„t. O„, m,.d,.I ,*Mbit, th, „p,bility to process a s11bsta11tial 10,524 features as

input data) a considerable leap beyond the hmitMons of prior DNN models' which typically

accommodated a maximum of 350 features. Our proposed detection method is intended to be

effective and sca1,b1,, ,„d p„.,t,'..t ,g,in,t ,.,npl,, multi-threats and attacks' Tra11sfer

Learning9 Con\,olutional neural networks, and deep neural networks are used by the system to

,,mb,t the increasing cyber thfeats and aUacks posed on bY Android malware' in essence’ this

chapter highlights our commitment to enhancing Android security' We aim to protect users

from malware effectively while keeping our approach adaptable to evolving threats

We evaluate the performance of our proposed nKchanism using our own datasets which

contain more number of feature and more number of classes and benchmark deep learnIng

algodthm,. Th, „,uk, ,.bt,i„,d f„,m th, ,„,lu'tion process are dgorc)tlsIY validated'

providing clear and unbiased insights into the system’s performance' We employ various

performance metrics such as Recall, Fl score, Confusion Matrix, Accuracy, AUC (Area Under

the GuN,), ROC (R„,i„„ Ope„ting Ch„„t„istic), P-value anaIYsis to assess the

effectiveness of our multi_th.eat malware detection techniques, considering both detection

accuracy and time efficiency.

We gained substantia1 insights into the r,b„,stness and adaptabilitY Qf our model

through its application in various scenarios and subsequent performance analysis under

different setting,. Ou, in„„tig,ti,.n into the ,ffe,t, ,f ,it,rations in training data size and class

di,tab„ti,n h„ in.min,t,d th, m.d,I', ,t,bility and efficacy across diverse cc)11ditiQ11S' These

comprehensive analyses have provided us with a profound comprehension of the moder:

capabilities and h,„, „„,ded „.Ci,1 in,ight, f., it' p”'ti'al implementation in real-world

sit„ati„)ns. The expe,iT„e„tal re,ults demonstrate that our approach achieves high detectlon

accuracy with DNN while maintaining efncient processing times. The deep neural networks



(DNNs) train model give accuracy of 97.62%,. Whereas we also apply Convolutional neural

the other 12 malware families we considered. This highlights the pronciency of our system in

addressing the complex challenges posed by muM-threat malware and detecting the zero-day

attacks in Android environments.

As a future work9 we plan to execute the same incorporating develop and make pubIIC

benefit to the researchers. By bridging the gap between academic Ksearch and prm}iTal

applicUions, we aim to m,k, , m„„i„gm imp”t i" 'he cyberTecu'iT. and prQd:Ct'“"Y

software industries, ultimately contribut@ to a safer and more efficient dLigital ecosystem
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