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ABSTRACT

The

increase in malware threats, Information, and demanding robust sceurity measures for

reasing use of android mobile devices and the complexity of applications have led to

safeguarding user privacy. We investigate the use of deep learning techniques in detection of
of Android idering the We aim to impr is ability to

accurately classify and detect a wider range of Android malware variants. We provide APK

analysis for a feature extraction mechanism capable of extracting a total of 43,377 features

1201 each total 13,211 malware and 1201 benign

applications. Afier meficulous selection, we retain only 10,524 features, which are
subscquenly used to train the neural networks. This dataset enables thorough evaluation and
validation of the proposed detection system. We make use of APK extracted from
ANDROZOO for the purpose of dataset generation. Performance metrics which is used in this
research are deteetion aceuracy, recall, Fl-score and precision are utilized to determine the

efficacy of the enhanced detection approach. This research explores the effectiveness of

convolutional neural network (CNN) and deep neural network (DNN) models for Android
malware detection using static features. By utlizing our own dataset, we evaluate the

both model; Our the

DNN model acuracy rate of 97%, which is outperforming the CNN model, which achieves a
slightly lower accuracy rate of 96%. Transfer Learning (TL) based model also achieves a
slightly lower aceuracy rate of.94% but has the advantage to classify unscen o zero-day

attacks. These findings highlight the potential of DNN-based approaches in enhancing the

detection and prevention of Android malware, showcasing their superiority over the CNN as
well TL based classifiers. The evaluation also highlights the importance of considering an

expanded number of malware classes, as it significantly enhances the system’s capability to

detect diverse malware families both known and unknown malwares.
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1. INTRODUCTION

An overview of Android malware chapter as well as the motivation behind our study,
Existing gaps and rescarch questions along with our rescarch objectives is discussed in this
chapter. Also we have provided an overview of our thesis approach and the constraints of our
research.

1.1. OVERVIEW:
Everyday use of mobile devices, particularly using the Android operating system, has

increased with the time. Thercof, malware attacks on these devices are becoming increasingly

usual, In a malware, the attacker develops a program with the aim of damaging a computer

s h For. third: Google Play
Store is recently penetrated by malware, which poses serious privacy and security risks for
users{1][2]. Over 2.56 million mobile applications (Apps) were available for download in the
Google Play Store alone as of the first quarter of 2022, according to Statista[3].

We can make use of static or dynamic features of an application to determine whether an
Android App is possibly benign or malicious. Android malware detection and prediction
process make use of datasets that may contain static or dynamic features, extracted from either

the APK of the application without executing or from the emulator based execution. The static

analysis features include permissions, API calls, and strings etc. To increase the accuracy of
Android malware detection, machine-leaming methods have been applied to these static
features [1], With regard to identifying Android malware via statie feature analysis, decp
learning approaches, such as recurrent neural networks (RNNs), and convolutional neural

networks (CNN) have demonstrated promising results[4]

In short, we examine how well static features, CNNs, and DNNs, perform in identifying

Android ion. Our research intends ib of efficient

static analysis-based methods and more reliable for Android malware detection.



1.2. MOTIVATION
i

due to the increasing number of mobile malware attacks. The understanding of how to extract

pertinent staic features from Android applications and to develop eficient decp leaming

mod important initial step for
process [5]. Increasing the precision and effectiveness of Android malware detection using

Static foatures is one of the main goals of this rescarch.

Static analysis-based is. Consequently,
the goal of the study is to create advanced static analysis-based tools that can effciently find
attacks. Our collection of malwares allows us to enhance the precision of malware detection
on a different collection of applications by utlizing the information obtained from studying
one group of applications (6]

By achieving these goals, the research has the potential to significantly enhance the

security of Android devices and protect users from the harmful effects of malware attacks.

1.3. RESEARCH GAPS

o

i cither benign or malicious [7][8] or multi-classification considering up to 10 classes o

subclasses of Android malware [9J{10][11]. Since new classes of Android malware are

discovered, it becomes imperative to examine the efficacy of taking into account additional

lasses. However,

models'accuracy and make it casier to identify newly discovered and developing malware

variants. Another effect of adding or including more classes result in a more complex model

with additions I jred resulting in increas

Secondly, previous models are developed using datasets with limited number of
features [12]. Investigating the usage of more features and bigger datasets can help these
‘models perform bettr. It is pertinent to note that larger datasets can provide the models with
‘more diverse and relevant examples, which can enhance their generalization capabilities(7).
Existing rescarch considers limited features and the latest static feature extraction techniques
can extract up to. 19000 features and after applying preprocessing they get 350 features [8]
from APK analysis. APK development, code complexity and feature extraction techniques for



static

becoming more robust and hence retuming bigger features sets. Therefore, better and more
robust models involving more features and malware classes are required.
A zero-day attack, also known as a zero-day exploit, is a type of cyberattack that takes
advantage of a previously unknown vulnerability or software flaw in a computer system,
application, or picce of software. These vulnerabilities are called "zero-day” because they are
exploited by attackers before the software developer becomes aware of the issue, leaving zero
days for the developer to prepare and release a patch or fix [9]. An initial evaluation of zero-
day attacks was conducted using a combination of Graph Convolutional Networks (GCN) and
Mulilayer Perceptron (MLP). However, there is a need to incorporate more sophisticated
techniques, such as transfer leaming with machine leaming, to effectively address zero-
day attacks(10),

1.4. PROBLEM STATEMENT:
Early malware threat detection can help avoiding possible malicious activi
by Android Malware. i i sub-classes, and

s performed

new malware are getting introduced regularly. However, existing research considers at most
10 number of Android malware classes and sub-classes [6]. Therefore, a deeper APK analysis
capable of revealing more static features for constructing datasets and deep learning models
considering a wider range of malware classes and sub-classes for Android malware detection
process are required. We aim to deploy a feature exraction mechanism for dataset
development. We also propose deep leaming techniques based models considering more
‘number of classes and statc features and use deep-leaming based Android malware detection

techniques handling zero-day attacks. We raise the following research questions:

1. How can we construct datasets with larger sets of examples by considering more

features and families/classes?

How can we develop a deep learning approach based models that make use of a
bigger range of malware classes and features in the dataset and improve efficiency

of existing systems?

What is comparison of deep leaming-based classifiers that can be employed to

identify malware with and without the possibility of handling zero-day attacks?



1.5. RESEARCH OBJECTIVES
Objective 1:

Investigate existing methods and techniques for constructing datasets with larger sets of

examples by incorporating additional features and witha I

dataset diversity and representativencss.
Objective 2:

Explore deep leaming-based approaches for classifying malware by utlizing a broader range
of malware classes and features in the dataset. Evaluate the effectiveness of these models in

improving the ef accuracy of fon systems

Objective 3:

To investigate and develop the effective techniques and strategies for the proactive detection

of zero< f d e

1.6. THESIS METHODOLOGY AND LIMITATIONS:

The methodology for collecting the dataset of Android applications for this rescarch
o A "

and using third-party sources. Once the data is gathered, uscful static features are extracted

is, and manifest

sing
file inspection. Permissions, network tions, API requests, and other

that may be indicative of malicious behavior are some examples of these staic features. For
malware detection 1o categorize applications into. malicious o benign, neural network
architectures are used in deep learming models, for example, Convolutional neural networks
(CNNs) and deep neural networks (DNN). The quality and variety of the training dataset and
the quality amount of the extracted features have a very visible impact on how aceurate these
‘models are. The use of decp learning models for malware detection is not without limitations
though. The challenge of getting a sizable and varied collection of malware and benign
applications is one issue. Additionally, it might be difficult to determine between benign and
‘malicious behavior in some circumstances, such as when an application uses APIs that could
be viewed suspiciously or requests particular rights. Furthermore, given the continually

evolving nature of malware, it can be difficult for deep leaming models to generalize



successfully to new and untested malware samples, which is  need for their efficacy. The
Research Methodology w

Collection
oo
o
-
m N

Figure 1.1: Research methodology sicps

we follow is depicted in Figure .1

1.7. RESEARCH CONTRIBUTIONS

The collection of a balanced dataset is one of the major contributions of our study to the
area of Android malware detection. The quantity and quality of data play a key role in
determining how accurate a deep learning model is. Our dataset has a balanced distribution of
‘malware and benign applications, giving each class an equal representation. A dataset like this
‘guarantees the development of more reliable and accurate models, which can help with

malware identification.

An important coniribution to our rescarch is that we have concentrated on adding more
‘malware class variations to our dataset. Traditional malware detection methods might not be
sufficient for detecting new types of harmful behavior because of how quickly malware is
evolving. Therefore, incorporating a wider variety of malware classifications enables more
precise and delicate malware detection. This expansion of malware types may also provide
light on the basic features of st i

effective detection methods.

Another contribution of our research is the extraction of a more comprehensive set of

features from Android application. Identifying the features that matter for malware
classification s a big challenge for deep learning-based malware detection. We face with this
challenge by extracting a larger number of features from our dataset, leading to more accurate
and precise decp-learning models. This feature extraction compriscs the study of numerous

features, including permissions, API calls, and network connections.



1.8. THESIS ROADMAP
After the abstract and introduction, the roadmap of research are as follows: Literature
ey

2. In Chapter 3 methodology that was used in this study is extensively cxplained In Chapter 4

on the topic of Android malware detection and static analysis is explained in Chapter

explained results with a discussion of the findings that follows. Chapter 5 concludes by

d With

place, beableto
© . and finally, the Fthe research. In we depict

the overview of thesis which we follow.
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2. LITERATURE REVIEW

Android malware detection is a crucial area of research given the widespread use of

smariphones and the potential threats posed by malicious apps. Static feature analysis.
techniques have emerged as a prominent approach to identify and elassify malware without
excouting the applications. By extracting features from the binary code or manifest files, these:
techniques offer valuable in

ights into the potential malicious behaviour of Android apps.

Dynamic analysis techniques, on the other hand, involve executing apps in controlled

environments to observe their behaviour in real-time. We explore the advancements in android
malware detection, focusing on static feature analysis, dynamic analysis, datasets used for
evaluation, and the integration of machine learning and deep learning methodologies for

accurate detection.

2.1. Primary Study Selection:

A total of 120 papers were initially selected for the primary study selection through
database searches and other sources. Following the application of inclusion and exclusion
criteria based on relevance and quality, 62 papers were chosen for further examination. Six of
the publications chosen were systemati literature reviews, one was a survey, and four were
literature reviews. The publications were gathered from a variety of sources, with [EEE (31),

(1), and Springer being. Hindawi, MDPI,
SagePub, ACM, ITCKTU, JISI, and PLOS ONE were among the other sources. The papers
that were chosen were then thoroughly examined in order to extract important material and

i droid d anal ches

luding IEEE Xplore, ACM Digital

Library, ScienceDirect, and Google Scholar, was required to conduct the review. "Android

" "Android ion,” "machine

leaming," "deep leaming,” "tatic analysis,” "dynamic analysis," "hybrid analysis," and
“feature-based analysis” were among the search terms utilized. The search was restricted to
studies published in English between 2010 and 2022.



At the outset, the initial search yielded 120 rescarch papers. After conducting further

weultimately imary studies
and 7 review papers for inclusion in this systematic literature review.

The data extraction approach included noting the year of publication, dataset(s) used,
analysis technique(s) used, and study limitations. The gathered data was sorted and analyzed
in order to determine the important themes and findings about android malware deection and

analysis methodologies and tools.

2.2. Data Extraction:
This sub-phase involves obaining essential data from the chosen research. The data
retrieved from each rescarch comprises the proposed static analysis approach, the evaluation

‘methodology, the results, and the limitations of the suggested technique. A predetermined form

was used 10 extract the data. Each study's data was retrieved by two independent reviewers,
and any disagreements were handled by consensus. The gathered data was organized and
synthesized to address i ‘The extracted information i ion is
listed in Figure 2.1

Figure 2.1: The extracted datw/information
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During the data extraction phase, a CSV file was created to systematically record relevant
i The CSV- the following header columns:

‘Source: This column recorded the source of the study, such as IEEE, Science Direct,
Springer, Research Gate, Hindawi, MDPL, SagePub, ACM, licktu, JISL. and Plose-One.

2. Cite: This column reported the total number of citations.

. Al Model: This column documented the type of artificial intelligent models such as

machine learning or deep leamning

Dataset: The name of the dataset used in the study for raining and testing the machine

learning model was recorded in this column.

Accuracy Metrie: This column documented the type of accuracy metric used in the

study, such as precision, recall, F1 score, accuracy, and others.
6. Accuracy Percentage: This column records the percentage value of the accuracy

metric achicved by the machine leaming model i the study.

7. Limitations: This column records any limitations or downsides of the study in terms
of dataset selection, model design, evaluation critcria, or other elements.

8. Link: For future reference, this column recorded the hyperlink to the full-text PDF of
the paper.

9. Date: The study's publication date was noted in this column.

10. Algorithm: the study,
such s J48, SVM, KNN, Naive Bayes, and others.

11, Features: This column recorded the set of features used in the study for machine

learning model training and testing.

12. Classes: The classes of malware or benign apps utilized in the study for machine

learning model training and testing were recorded in this colum.

The data extraction phase entailed the methodical extraction and recording of pertinent
information from each of the 62 chosen research. The CSV file provided as a thorough and
ordered record of the retrieved data, allowing for additional analysis and synthesis of the

results.



2.3. Data Synthesis:

The data synthesis step produced various tables and graphs that gave for a better
understanding of the properties of the AT models used to detect Android malware. The most
widely used characteristics were Permissions, API calls, System calls and Opeode with most
studies incorporating both into their AT models. However, some rescarch used fewer common
features, such as segment entropy and creator information, showing the need of studying

multiple feature sets for malware identification.

TaBipis 2.2 lists 22 different types of features used in the previous study, each with a

the number of times that 1l the Iysed.

FREQUENCY OF STATIC FEATURES

Figure 2.2: Categories of Android Features

that identify.
Adware, Trojan and Backdoor malware etc were the most frequently detected malware
classifications, while Worm and Scareware etc were less frequently targeted. This data can
assist researchers to identify which malware classes pose the most serious threats to Android

devices and may help guide future research efforts.



12

Researchers have explored various malware classes in their studies. In the
lysis of i h for this

thesis, the Figure 2.3 show the malware is classified into 22 distinct categories. We find all the

the other hand total of § studies

conducted on Adware, 6 studies on SMS Trojan, | study on Phishing, I study on Data Stealer,
3 studies on Rootkit, 2 studies on Botnet, 1 study on ClickFraud, 1 study on DDOS, § studies
on Ransomware, 7 studics on Trojan, 4 studies on Backdoor, 1 study on Riskware, 3 studies
on Spyware, 3 studics on ScareWare, 2 studies on Worms, and 1 study each on Dialer,
Downloader, Rouge, and Pws. This diverse representation of malware classes underscores the

comprehensive nature of the research conducted in this domain.

Figure 23: Classes used in primary studics
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In i tudies that i in the field,

"Drebin"" ingin 17 research

studies. "Genome" and "Private Dataset” datasets were also cited frequently, with § studies
each making use of these resources. "AMD (CICMAL2017)" was utilized in 7 studies, while
"cic " in Other "Kaggel,”
“"MoDroid," "Ember,"

‘Microsoft Malware Classification Challenge Dataset,” "KuafuDet,” and
"Omnidroid" were utilized in one research study each. Additionally, there were § instances
where the dataset used was not explicitly mentioned, making it challenging to attribute the

specific dataset utilized in those cases. As Figure 24 show the dataset used by researchers.

Figure 2.4;

Dataet Used nSudies

Researchers often rely on various repositories 1o obtain the data necessary for their
eybersccurity and malware studies as shown in Figure 2.5. Among the repositories mentioned.
in these studies, "VirusShare" emerges as the most frequently referenced, appearing in 11
"Google Play,” the official Android

app store, follows closely with 6 mentions, emphasizing is significance in analyzing Android

applications. "Contagio” serves as a valuable repository in 5 studies, while "Androozo"
contributes to 3 research projets. Additionlly, "Third-party app markets” were utlized in 3
studies, "Marvin" in 1 study, and in some instances, when the repository was not explicitly
specified ("Not Mentioned"), rescarchers made use of the term "Android APK" in their studies,
implying that these repositories were indeed the sources for their dat




Repository Used In Benchmark studies

Figure 2.5: Reposioies Consideredin Benchmarls Sudies

2.4. Our Analysis and Findings

2.4.1. Challenges in Dataset Qual

Author proposed a machine leaming approach for Android malware detection, utlizing
a static permission-based methodology{11]. Their approach shares similarities with DREBIN
in terms of being lightweight and computationally efficient. The paper included four main

experiments: Lassi source code-based
lust fi

To improve the accuracy and reliability of the results, an Ensemble learning technique was
employed, consisting of an odd number of classifiers. This allowed for a more robust
F outcomes based on the i by each model.

Author in [12] aimed to enhance the efficiency and - reliability of Android malware

ed

of commercial anti-virus tools in classifying samples as malicious or benign. The findings
indicated low detection rates, with only 14.37% of the 5902 malicious samples correctly
identified, and a false positive rate of 18.4% observed on the 4297 benign samples.
Furthermore, the rescarch cxplored the effectiveness of various machine leaming (ML)
algorithms using only the APK manifest file for analysis. Notably, all ML algorithms
outperformed commercial ani-virus engines. Specifically, the Random Forest algorithm
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extibited exceptional precision, achieving a score of 0.8249, which showcased its ability to

accurately idenify true positives among the detected malware instances.

A lterature reiew is presenid in [13] that explored the application of deep learning

techniques for features. Inthe study,

a dataset of 426 malware and 5,065 benign samples was uilized, and these samples were
categorized dware, SMS Mal T

{he BiLSTM model, which demonsirated an exceptional accuracy of 98.85% on the
CICInvesAndMal2019 dataset containing 8,115 static features. Notably, the selected features,

including Permissions, Activities and Services, Broadcast Receivers, Meta data, API calls,

System calls, and Opcode, played a vital role in contributing to the improved detection of

Android malware.

The author in [14] focused on mulii classification, considering adware, ransomware,
scareware, and SMS malware, while uilizing 19 selected features. The study employed the
Long Short-Term Memory (LSTM) algorithm for improved ransomware detection in the
Android environment. To ensure robust feature selection, cight different feature selection
algorithms were utlized, with a majority voting process leading to the selection of 19

significant features. The d d

\g the CI-CAndMal2017 android malware dataset and standard performance parameters.
Remarkably, the proposed algorithm achieved an outstanding detection accuracy of 97.08%.
Based on these impressive results, the proposed algorithm was endorsed as an efficient

approach for malware.

Author worked on binary Android malware detection 15). The proposed Decp Classify

benign Android application:

and achieved an impressive accuracy rate of 97.4%. Comparative evaluations demonstrated
that Decp Classify Droid outperformed most cxisting machine leaming-based methods,
accurately detecting 97.4% of malware with minimal false alarms. Additionally, the approach
showeased exceptional efficiency, being 10 times faster than Linear-SVM and 80 times faster
than KNN. The evaluation dataset consisted of 5546 malwarc and 5224 benign software
samples from the Drebin dataset, underscoring the effectiveness and efficiency of the Deep

Classify Droid detection system for binary Android malware detection.



In the research, a based Android ‘model was prop
using features from benign and malicious apps collected from Google Play and Virus Share
[16]. The model utilized a fully connected decp leaming approach (DNN) and achieved an
outstanding accuracy of approximately 94.65%. The dataset included 331 features with
classifier labels, focusing on binary and multi-label categorical data, particularly permissions
in API, which were often misused by hackers. The study also identified goodware and benign

applications, contributing to a safer user expericnce on Android devices.

‘We analysed various models related to Machine Learning (ML) and Deep Leaming

(DL) that are being used for detecting Android malwares. These techniques are all use for

detecting Android malwares. There exists a gap st landscape. While some
studies are focusing on binary classification, others are exploring multi-class classification,
usually with no more than 10 classes. However, the study[17] which use 10 classes lack
detailed dataset descriptions and do not provide the names of the classes they are using. This
gap emphasizes the need for a comprehensive exploration. Our aim is to address this gap by
exploring additional classes, uilizing larger, more diverse datasets with more features. Our

i NNs)

o efficiently manage more classes and extract important features. Therefore, our rescarch has
the potential for major improvements in Android device security and protest users from the
malware attacks by fulflling these goals. In sTable 2.1 we show the comparison of existing

literature using static analysis of application.



‘Table 2.1 Comparison of E:

dsting Literature Using Static Analysis of

Applications

Classes. Limitation

‘Algorithums

CICANdMal2017 Permission  Adware, Limited classes
JIntents  Radws ider
rootkit, SMS
Malware, and
LI 2023 dl  Drebin RFandETand  permission Adware Limited
and DNNand ID- s, intents, ,Banking classes.
CICMaldroid200  ONN services,  Benign,Riskw consider
and API  areand SMS
callsa
[ 202 dI Derbin logistics permission,  benignand  Limited classes
i APIs,app  malicious apps. Used

egression
\Random Forest, component  GOOD WARE
SVM, sand

Neural Network ~ system

calls
(especially
n-grams of
system
calls)
338 202 di PrivateDataset  Multilayer Feaures  Malwareand  Limited size of
erceptron not Benign) dataset even
(MLP) ‘mention not mention
features.
I 2022 TI PrivateDataset  GANand Stticand  Malwareand  Binary dataset
itum support  dynamic benign apps
Vector machine analysis
(@QsVM) features
2021 ml  Drebin NaiveBayes  Permission malwarcand  Limited
(TAN) and s APlaalls benign ‘number of
Random forest  and intent classes




2021

2021

ml

ml

Drebin and
Androzoo

CICAndMal19

MODroid dataset

Private Dataset

Random forest

Graph
Convolutional
Networks (GCN)
and Multilayer

Random Forest
and SVM and
Gaussian Naive
Bayes and K-
Means

KNN and Naive

P:mlmwn

mention

Permission

Permission

Lines of
code

activates,
ices

Malware

MaLware and
benign

Virut, Sality,

Trojan and.
Adware and

Malware and
Benign

Consider
limited feature.

incorporate.
more
sophisticated
use limited
classes

‘Small number

of samples.
from

the
‘permissions

Limited feature
setused

Work on
Binary




2020

2020

2020

2020

2020

2019

ml

Drebin and AMD

and Genome and
Malgenome

Virus share,

‘Thirty Party app.
and VirusShare

Not Mentioned

Google play and
Virus share.

CICAndMal20

‘Hamming
Distance (FNN)
and all nearest
neighbors
(ANN) and
weighted all
nearest
neighbors
(WANN), and k-
‘medoid based
nearest
neighbors

(KMNN)
MLP AND SVM

DNN

LSTM RNN

permission
number of

permission

Permission

sequences,
System call
sequences

Malware and
Benign

Trojan and.
Adware and
Ransomware,
and Backdoor

Malware and
benign
applications.

Malware and
Benign

Malware and
Benign

Adware and

Work on
Binary

Consider only
3 features
permissions,
Receivers, API

calls

Limited classes
uses

only work on
binary

classification

Used limited
feature set



2019 dl Private Dataset

AN 2019 dl VirusShare and
Drebin and
Contagio, and
Androzoo,
MeAfee Labs

DNN Permission  Malware and

s Intent, AP
Tand
system
calls

CNN Permission

Malware and
bening

2019 dI  Emberand Logistic System  Dailer,
i Regression (LR)  calls
VirusShareand  and Navie worm and
P trojan and
‘wormautoit
Nnghbor (KNN) and trojan and
Decision Tree loader
(DT) Random and rouge and
Forest s
(RF)SVM and
and DNN
EIM 2019 dI  Drebinand FalDroidand  Permission  malware and
Contagio, and sand APl bening
Genome. and WANN and ~ calls and
KMNN Intents and
system.
calls.
Z 2018 ml Google play sVM Permission  Malware and

Benign

2

limited set of
features.

‘The main
limitation of
the study is
that the model

performance
on new and

unseen
malware

samples.
Limited classes
uses

Static analysis
of binary files,
limited to
certain types of
‘malware

Use on one.
feature



2018 dl

2018 di

2018 d

I8 2017 dl

]

£

0]

2016 ml

2016 ml

2016 dl

2016 ml

Kaggle

Drebin and
MARVIN

Drebin, Genome,
Virus Share

Android Apk files

Not Mentioned

Android Apk files

Private Dataset

Google Play Store
and Virus share
and Third Party
wp

RNN and CNN

ANN

NN and DNN

SVM

DNN
CONN

KNN and
Logistic
Regression and
BN

not
mention
Permission
and APl
calls
APlcalls a,

Permission
s, Strings,
ode

APLealls
and
Permission
s,
Third-party
libraries.
Permission

Not
Mentioned.

sequences.
and APL
calls
APICALL

malware
Benign

Malware and
Benign

Adware and

phishing and

Rooting

malware, and

Botnet and

Click fraud and

DDoS malware
d

access Trojan
(RAT)
Malware and

Benign
Malware and
benign apps.

‘beniy
‘malicious apps.

21

Not mention
features and
only work on
binary classes
Consider only
Binary classes

Limited family

Limited feature:
set

Itis unclear
whether
system will be
effective
against new or
previously
unknown
‘malware.

‘The feature set
is very limited,
etis
not publicly
available

‘The paper does
not discuss the
scalability of
the proposed
approach or the

on larger
datasets.



T 2016 dI Virus Share and
Maltrieve and
private Dataset

T 2016 dl Genome and.
Play store

S8 2016 di Google playand

ienome and
Contagio

2015 ml  NotMentioned

51 2013 Not  Not Mentioned
Menti
oned

Variable data quality is an issue in the context of Android malware

Markov Models.
and SVM and
NN

RF and SVM
and NN

SVM and ONN

oosted a
148 algorithm

APl call
sequences.
and system
call

APl calls

Permission
s

Permission
AP

s
callsIntent
. library
calls

App
Permission
sand APL
calls

Malware and
Beni

‘malware and
Benign

Malware and
Benign

Malware and
Benign

Malicious and
benign
applications

2

Do not provide
a detailed
breakdown of
the specific
families or

classes
included in the
dataset.

Lack of
explanation for
selection
process
Limited to

certain types of
malware

Work only on
inanry

detection utilizing

staic feature datasets, according 1o the results of the systematic lierature review. The choice

of suitable datasets for training and testing

models is one of the major issues in this domain.

“The major rescarch! usage of various datasets highlights how cruial it i to test Al models on

a range of datasets in order to verify ther robustness and generalizability. However, this

Variation in dataset utilization might also result i inconsistencies that could reduce the

accuracy of the algorithms' predictions.

‘As stated in Table 2.2 Dataset Used In Primary Studiesthe most frequently utilised

datasets in the primary studies were Drebin, Private Datasets, VirusShare, and the AMD.
Drebin appeared in 20 arices, 461, (24}, (36, [71{47). (23], (48, (331 491, 503, 311, (201
[52], (531, [54], 55}, [13), 56}, (32}, [57] while Private Datasets were utilsed in | aricles
(58], [59], [41], [9), (49]. [21], [39). [60), (27), [281. [22). [61], [62], 163], [64]. [13], [57].

Virus Share, the third most frequently utilised dataset, was used i

in 12 studies. [16], [7), [30].
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[47), [411, [9], 48], [65], [66], (29, [40]. [56). These dataset’s variances in the amount of

‘malicious and benign samples, however, can lead to issues when the model is being trained.

Forinstance,
‘more malware samples than benign samples, and the other way around. This inconsistency can
also cause the model to be over fitted or under-fitted which may reduce the predictability of

the results.

Table 2.2 Dataset Used In Primary Studics

Reference
[46), [24], (36]. [7),47), (23], (48], [33], [49), [50], [51], [20), [52).
1531, [54},[55), (131, (56}, (321, 1571

[67), (301, [47), [42], (511, [40]

[24), (481, [4], (8]

[68]

[17), (25}, [44], (451, [69), [70). [71]

6]
381,137} (16)

[36]
§ [71,142), [33], 149}, (511, (52}, 32]

[16], [7), [30}, [47], [41), [9), [48), [65], [66], [29], [40], [56]
CICAndMai2017  NEONID)]
LTI (581, (59). [41), (9], [49), [21], 391, (601, [27), [28}, [22), [61]. (62},
(63, [64]. [13), [57)
21
[47), (41, (73], [74], [52), (73], [53), [8]
(7], [48], (33, (511, [66]

VirusTotal ,Ember
MeAfee Labs

KuafuDet,Omnidriod



Microsoft  Malware fC3}

Classifieation

(291, [40]

These results

justrate that when analysing their suggested approaches for Android
malware detection using static feature datasets, researchers only use a limited amount of

datasets. It is essential to use relevant datasets that are typical of real-world situations and

contain licious and o effectively
this problem. Standardised techniques for dataset selection and preparation can be used to
achieve this. In order to deal with the problem of high-dimensional data,

s also crucial to

feature selection and dimensionality reduction techniques.

We find feature sets and they are:

Application Tags
Feature Tags
Library Tags
Meta Data Tags
Permission Tags
Provider Tags
Receiver Tags

[ S

Service Tags

We consider the following for the analysis of each of thesc in following steps.

Step 1. Display Dataset Summary of Application/ Feature/ Library/ Meta/ Permission/

Provider/Receiver Service Tags



Step2.

Step 3.

Step4.

Step 5.

However, itis pertinent to discuss the implicat

25

Calculate Summary Statistics of Application’ Feature/ Library/ Meta/ Permission/
Provider/Receiver/ Service Tags.

Retrieve DataFrame Column Information of Application/ Feature/ Library/ Meta/
Permission Provider/Receiver Service Tags.

Histogram of Malware Class Frequencies of Application/ Feature! Library/ Meta/
Permission Provider/Receiver Service Tags.

Visualization of Feature Usage within the Subset for Application’ Feature/

Library/ Meta/ Permission’ Provider/Receiver/ Service Tags.

s and insights gained for the Application

Tags, Library Tags, Feature Tags, Meta Tags, Permission Tags, Provider Tags, Receiver Tags,
Service Tags in each of these analysis steps. In Table 2.3 we show the feature set which we
have considered for this research.

Table 2.3: Our Data Analysis

Extracted Sub Features

FeatureTags  [C]

Library Tags _ [e5 A
Meta Data Tags [REULES

4163 %

5967

10498




242, Data Analysis:
2411, Feature Set 1: Application Tags in AndroidManifest.xml
Step 1: Display Dataset Summary Of Application Tag:

To provide an overview of the dataset, a summary of application tags can be created.
This table will include relevant columns and statistics that capture key information about the
dataset. In Table 2.4 show some of the dataset summary of Application tag.

Table 2.4: Display Dataset Summary Of Application Tag

Allow Allow Allow Uses Activity  Malware

kup_( ko Count Class
B8 MO maw Qurient o
boalcusto
mAllowBa Traffic true

ckup

Thi iew of the dataset, showeasing the values in

cach column for the first few rows. It includes columns such as

X _false, _true,
usesCleartextTraffic_true, Activity Count, and Malware Class. Each row represents an
instance or record in the dataset related to the application tags in android manifest xml
Step 2: Calculate Summary Statistics Of Application Tag:

In order to gain a better understanding of the datasct, summary statistics can be
computed for the Data Frame. These statistics provide insights into the central tendenci

dispersion, and distribution of the dataset’s numerical columns. Based on the provided

statistics, the follow In Table 2.5 sho y

statistics some of columns of apy




Table 25: Caleulate Summary Statistics Of Application Tag

AllowBackup_

‘AllowBackup

AllowBackup Uses Cleartext ~ Activity

@bool/custom false _true Traffic.

Count

AllowBackup

Count 14,376 14376 14376 14376 14376

Mean  0.000974 0067752 0421605 0.023929 3481566
5

s 0031192 0251328 0493833 0.152833 43.82027

Min 0 0 0 0 0

2% 0 0 0 0 7

50% 0 0 0 0 19

5% 0 0 1 0 46

Max 1 1 1 1 485

Step 3: Retrieve DataFrame Column Information

To gain a better understanding of the DataFrame's columns, it is essential to retrieve
information such as column names, non-null counts, and data types. In Figure 2.6 show the
details of the retrieve data frame column information. Based on the provided details, the

information for

Figure 2.6: Retrive Data Frame Column Information Of Application Tag,

Below information provides a comprehensive overview of the DataFrame's column
information. I includes the range of the index (from 0 to 14375) and the total number of
columns (6). Each row repr umn and i

« Column: The name of the column.



« Non-Null Count: The number of non-null values present in the column.

« Diype: The data type of the column.

In this particular DaiaFrame, there are five integer columns (Allow
Backup_ _false. _true,

Uses Clear text Traffic true, and Activity Count) and one object column (Malware Class).

Step 4:

togram of Malware Class Frequencies

We plot a histogram to examine the distribution of malware class frequencies within
the dataset. The histogram provides a visual depiction of the frequency count for each of the
12 malware class present in the dataset. Remarkably, all the malware classes exhibit an equal

frequency count of 1,198, indicating a balanced representation.

The x-axis of the histogram corresponds to the distinct malware class labels, while the
y-axis represents the frequency count. The histogram plot conveys a symmetrical distribution
of frequencies among the diverse malware classes, highlighting a proportional represcatation
of each class within the dataset. For a comprehensive understanding of the histogram plot,
please refer to the Figure 2.7. This visualization offers valuable insights into the distribution
patterns and relative frequencies of the different malware class variants in the dataset,

contributing to a comprehensive analysis of the dataset.

ey

S LIS

Figure 2.7: Histogram of Malware Class Frequencies Of Application Tag



Step 5: Visualization of Feature Usage within the Subset for Application Tag

A graphical representation was ereated to examine the usage of features within the
subset of the dataset being analyzed. This graph focuscs on the sum of integer columns while
excluding the 'apkname’, 'activity count’, and ‘malware class' columas to avoid redundancy.
= % 2 o

a clear and concise analysis

The x-axis of the graph denotes the different features present in the subset, while the y-

axis represents the count of APK samples utilizing each specific feature. This visualization
provides valuable insights into the prevalence and adoption of different features within the
subsel, enabling an understanding of which features are commonly employed by the APK

samples. For a comprehensive understanding of the feature usage patiems within the analyzed

subset,please refi 28,
wilization landscape within the analyzed dataset subset, facilitating the identification of
prominent features employed by the APK samples.

Figure 2.8: Visualization of Feature Usage within the Subset for Application Tag.

2412, Feature Set 2: Feature Tags in AndroidManifest.xml

Step 1: Display Dataset Summary Of Feature Tag
To provide an overview of the dataset, a summary Table 2.6 can be created. This table
will include relevant columns and statistics that capture key information about the dataset.

Based on the example provided, the following table summarizes the Feature Tags dataset.



‘Table 2.6: Display Dataset Summary Of Feature Tag

FEATURE: FEATURE: FEATURE: ~ FEATURE Activity
‘Android.  Count
Audroid.  Android. Androidsoftwa  “ARdroid- - Count
hardware. - re. software.
i hardware.

Location live_wallpaper  mode

autofocus

10 1 0 0 155 Adware
20 0 i ) 0 14 Adware
30 0 F il 0 25 Adware

Step 2: Calculate Summary Statistics for Feature Tag

To help us understand the dataset better, we have added a Table 2.7 that summarizes
the summary statistics of the features. This table s a significant resource for acquiring insights
into the dataset, allowing us to study key statistical metrics and better understand the data's
distribution, variabilit i i knowledge of the dataset

and perform informed analysis and interpretation of the resuls.

‘Table 2.7: Calculate Summary Statistics for Feature Tag

FEATURE:

FEATURE: Activity

‘ount

FEATURE: ~ FEATURE:

dhardw  android.softwa

Android.hardw  android-hardwa
are re.

vr.mode

autofocus bluetooth

0.009878 .. 0.000835 0001878 34923553
0.098897 L. 0028881 0043298 43.701594
0.000000 ~. 0000000 0.000000 0.000000

0000000 . 0.000000 0.000000 7.000000



0.000000 0.000000 0.000000 0.000000 20000000
0000000 0.000000 < 0.000000 0.000000 46000000

1.000000 1.000000 .. 1.000000 1.000000 485.000000

Step 3: Retrieve DataFrame Column Information Of Feature Tag
The Table 2.8 provides a quick overview of the DataFrame's column information. It
includes the range of the index (from 0 to 14375) and the total number of columns (6).

‘Table 2.8: Retrieve Data Frame Column Information Of Feature Tag

FEATURE:android hardware.autofocus
[l FEATURE androidhardvare butooth
FEATURE:android hardware bluetooth._le

H FEATURE:android hardware.camera 14376 int64
FEATURE:android hardware camera.any 14376 int64

E FEATURE:android hardware.camera.autofocus 14376 int64.
FEATURE:android hardware.camera.flash 14376 int64

43| FEATURE:android hardware.camera.front 14376 int64.
(3 FEATURE:android hardware.camera2.full 14376 ini64
n FEATURE:android hardware.location 14376, int64
FEATURE:android hardware location.gps 14376 ini64
FEATURE:android hardware location.network 14376 int64
FEATURE:android hardware microphone 14376 ini64
FEATURE:android hardware.nf 14376 int6d

Bl FEATURE:android hardware e hoe 14376 int64
FEATURE:android hardware.screen.landscape 14376 int64
FEATURE:android hardware screen. portrait 14376 int64
FEATURE:android hardware.sensor.accclerometer 14376 int64
FEATURE:android hardware sensor.compass 14376 ini64
FEATURE:android hardware telephony 14376 int64



FEATURE:android hardware touchscreen 14376, ini64
m FEATURE:android hardware.touchscreen. multitouch 14376, int64
FEATURE:android. litouch distinet. 14376 A
ﬂ FEATURE:android hardware.vulkan 14376 int64
FEATURE:android hardware vulkan.version 14376 int64
FEATURE:android hardware wifi 14376 int64
FEATURE:android software leanback 14376 int64
FEATURE:android.software live_wallpaper 14376 int64
FEATURE:android software.vrhigh_performance 14376 int64
ﬂ FEATURE:android software.vr.mode 14376 int64
K01 Activity Count 14376 int64
[ Malware Class 14376 object

Step 4: Histogram of Malware Class Frequencies Of Feature Tag:

We also plot a histogram for the feature tag to_examine the distribution of malware

the frequency
count for each of the 12 malware class present in the dataset. Remarkably, all the malware

an equal freq 1,19 The x-
axis of the histogram corresponds 1o the distinct malware class labels, while the y-axis
represens the frequency count. The histogram plot conveys a symmetrical distribution of
frequencies among the diverse malware classes, highlighting a proportional representation of
ach class within the dataset. For a comprehensive understanding of the histogram plot, please:
refer to the Figure 2.9 This visualization offers valuable insights into the distribution pattens

and relative i variants in the datase,

comprehensive analysis of the dataset



“mrnituim

’ |
CAIPTLLSISEY

Figure 2.9: Histogram of Malware Class Frequencies Of Feature Tag:

Step 5: Visualization of Feature Usage within the Subset Of Feature Tag

A graphical representation was created to examine the usage of features within the
subset of the dataset being analyzed. This graph focuses on the sum of integer columns while
excluding the 'apk name’, 'activity count!, and 'malware class' columns to avoid redundancy.

Morcover, a minimum threshold of 50 was applied to include only significant columns,

ensuring a clear and concise analysis.

The x-axis of the graph denotes the different features present in the subset, while the y-
g each speific feature. This visualization

axis represents the count of APK samples
provides valuable insights into the prevalence and adoption of different features within the

subset, enabling an understanding of which features are commonly employed by the APK

samples.
For a comprehensive undersianding of the feature usage patterns within th

subset,please refer 2,10
utilization landscape within the analyzed dataset subset, facilitating the identification of

e analyzed
the feature

‘prominent features employed by the APK samples



Figure 2.10: Visualization of Feature Usage within the Subset Of Feature Tag

2413, Feature Set 3: Library_Tags_Datasetin AndroidManifest.xml

Step 1: Display Dataset Summary Library Tag
To provide an overview of the dataset, a summary table can be created. This table will
st i about
in
Table 2.9, Based ided, the following
Tags dataset.

‘Table 2.9: Display Dataset Summary Library Tag

Library:andr L - Libraryiorg.  Libraryorgs  Activity  Malwa
oidx.window.e roiduwindo  apachehttpd imalliance.op  Count

xtensions wsideear egacy enmobileapi




alculate Summary Statistics Of Library Tag
To help us understand the dataset better, we have added a table that summarizes the

the features. This tabl ights into
the dataset, allowing us to study k:y statistical metrics and better understand the data's
distribution, variabili

and perform informed analysis and Interpretation of the results. As Table 2.10 show the
Calculate summary Statistics of Library Tag.

Table 2.10: Calculate Summary Statistics Of Library Tag

Library:android - . Library:org.sima  Activity
droidtestr  x.window.extens pachehttpleg  lliance.openmobil
unner eapi
14376.00000 X 143760000
0007373 0. X 34654702

0085554  0.037274 - 0151307 0035364 43321236
0.000000 - 0000000 0.000000 0.000000
0000000 - - 0000000 0.000000 7.000000
0.000000 - 0.000000 0.000000 20.000000
0000000 - 0000000 0000000 46000000
1000000 - 1000000 1.000000 485.000000

Step 3: Retrieve Data Frame Column Information Of Library Tag.

In Table 2.10 show retrieve data frame column information of library tag.

oS Eotumns okl 10 S

Y ors SaaiTiance dpemminileas

14378 noncmul objece

Figure 2.11: Retrieve Data Frame Column Information Of Library Tag



Step 4: Histogram of Malware Class Frequencies Of Library Tag:
In Figure 2.12 depict the histogram of malware class frequency of ibrary tag..

Histogram of Malware Classes

™
200

’ &

& T T ES S
»‘{53, & F je’;f’@fu &

Values

re 2.12:Histogram of Malware Class Frequencies Of Library Tag

ualization of Feature Usage within the Subset of Library Tag:
In Figure 2.13 show visualization of feature usage with in the subset of library tag.

Sum of Columns (Having Sum of >=

TR o
LIS T O T O
ST T A O A
| EOE (B o1 e B ol |
=% §F ¢ 8 % § ¢
jredi b 4oafeed R
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Columns. 3

Figure 2.13: Vis

on of Feature Usage within the Subset Of Library Tag



24,

Feature Set 4: Meta Data Tags in AndroidManifest.xml:

Step
‘The some of the dataset summary of meta data tag shown in the

Display Dataset Summary:

Table 211
‘Table 2.11 : Display Dataset Summary of Meta Data Tag
0 0 0 0
0 0 1 155
0 0 0 14 Adware
0 0 .0 7 Adware
0 0 B! 25 Adware

Step 2: Calculate Summary Statistics Of Meta Data Tag:

In Tabl

‘Table 2.12: Calculate Summary Statstis O Meta Data Tag.

14376.00 1437600 1437600

0.004035 0002295 . 0079438 34803214
0063392 0.047858 0270430 43239226
0.000000 0.000000 .. 0.000000 0000000
0000000 0.000000 .. 0,000000 7.000000

- 0.000000 0.000000 . 0.000000 20.000000



- 0.000000 0.000000 - 0.000000 46000000

- 1.000000 1.000000 1000000 485.000000

Step 3: Retrieve DataFrame Column Information Of Meta Data Tag:
The information of meta data tag. whic

s retrieve data frame columns depictin Figure 2.14

£2ARTEE e to matuare class

deypest thteataze)) ounniu

Figure 2.14: Retrieve DataFrame Column Information OF Meta Data Tag.

Step 4: Histogram of Malware Class Frequencies Of Meta Data Tag:
As Figure 215 show the Histogram of Malware Class Frequencies OF Meta Data Tag.

I

G PE PR o7

Figure 2.

istogram of Malware Class Frequencies Of Meta Data Tag

Step 5: Visualization of Feature Usag Meta Data Tag:

Visualization of featurc usage within the subset of meta data tag are shown in Figure 2.16.
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DataTag.

Feature Set 5: Permission Tags in AndroidManifest.xml

Step 1: Display Datas
In Table 2.3 Display Dataset Summary Of Permission Tag.

Summary Of Permission Tag:

“Table 2.13 : Display Dataset Summary Of Permission Tag.

BRE e AT
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Step 3: Retrieve Data Frame Column Information Of Permission Tag
In Figure 2.17

celass *pandas. core. frame.pataFrane’>
RangeTndex: 14376 entries, © to

Columns: 225 entries, PERHISSION: aroid. hardware .canera. autofocus to Malware C1a
dtypes: intea(224), mhectny

memory usage: 24.7+ M8

Figure 2.17: Retreve DataFrame Column Information Of Permission Tag

Step 4: Histogram of Malware Class Frequencies Of Permission Tag:
In Figure 2.18

e 11110

/ /"/////, s

Figure 2.18: Histogram of Malware Class Frequencies Of Permission Tag
Step 5: Visualization of Feature Usage within the Subsct Of Permission Tag
tion

inthe subset of h

Figure 2.19.

Figare 2,19: Visualization o Feature Usage within the Subsct OF Permission



ammpy. 14 0 0 {0k 1 or

ARV L 0 0 o] - 0 0¢€
ammpy bl 1 o o lI8ES G iz
aumpy ss1 0 i 0 1 ot

avay:

PYATIONN0  AOIILE SuBnId's)

s Juno) pnsdd

MRMIBIN  AJAIDY  ISSTULOZPU0pin0ad | IS juziopis0ad
L 19PIN0IZ JO AivwnIng 19sEI6 KBSIQ : ST AV,

By uoneanddy Jo Aswurns 195eIEp A4} JO SIS

dde o sozueusns 2jqu) Buimol[oy a1 papiacid SIdWIEX? ) O PASEE “ISEIEP A4 INOGE UONEULOJUL
1M 91qEY SULL “PaIEaI) 9q U Qe ATEWIINS & “SUIED ) JO MAAINO UE Pin0id 01
oL 0PI0ag JO Lavung serq Seidsi 1 dS

MOUS §1°Z Aqe, uf “aseiep sFer
oy aamideo o s

IS pur Suwn[oa JueAdlal apnfou

u sBey, 9pacid 9IrT




000000°S8 000000° 000000°1 000000'1 0000001 | xow

00000097 0000000 0000000 0000000 0000000 %SL
00000002 0000000 0000000 0000000 0000000 %05
000000°L 0000000 0000000 0000000 0000000 %ST
0000000 0000000 0000000 0000000 0000000 upw
YT0LI0'ER 99€970°0 W8I0 1086110 S9V6800  PIS
TULYSITE 9690000 08€9€0°0 98TE10°0 6908000 uwom
000000'9L€51 000000'9L€71

000000°9LEV1 " 000009LEPT 000000°9LEY1 _ Junod

03 AHABOY

FUL P0G JO SHSHS S1BWNS AEINE) F 91T AIVL
9z
QL U1 UOYS St DI F61 59PIA0I O JO XU 965, D508 *%ST U * PIS UL ‘03 2 MOYS 51 19pIA0Ad o SONSHIES A1 JO AU L
S0, 19p1A01G JO SIS KIvwS AFIL) 3T dIS



Step 3: Retrieve DataFrame Column Information OF Provider Tag

InFi 0sh i dertag.

o com tonull cot. oepe
© ot spert o conent e 16376 ronil] frese
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Step 4: Histogram of Malware Class Frequencies Of Provider Tag:
“The histogram for each classes which we have used in our research in depict in the Figure 2.21
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Figure 2.21:Histogram of Malware Class Frequencics Of Provider Tag:

Step 5: Visualization of Feature Usage within the Subset Of Provider Tag,
In Figure 2.22 represent the features which are used with in the subset of the provider tag.
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Step 4: Histogram of Malware Class Frequencies Of Receiver Tag:
The histogram show each malware class frequency for receiver tag in Figure 223.

Histogram of Malware Classes

requency

S P
g cghF o
Figure 2.2 ogeamof Mawar Clss Frequencie Of Resfer Tag

Step 5: Visualization of Feature Usage within the Subset Of Receiver Tag:
In Figure 2.24 visualize the feature use within the subset of reseiver tag
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Figure 2.24: Visualization of Feature Usage within the Subset Of Recever Tag:
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Step 4: Histogram of Malware Class Frequencies Of Service Tag
Histogram of each malware class which is considered for the service tag is depict in Figure
35 . 5

i

Step 5: Visualization of Feature Usage within the Subset Of Service Tag
In Figure 2.26 shows the visualization of feature usage within the subset of service tag.
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Figure 2.26: Visuslization of Feature Usage within the Subset Of Service Tag.




2.43. Modelling Techniques

SVM was extensively uilised in Android malware detection research (46], [67], [68].
[17), [16], [59], [41], [9), (421, [65). [4]. [44], [51], [20], [27] from (2013-2015). During this
period, Random Forest was also employed in a few rescarches [70], [56], [64] and [64] Also
often employed were K-Means and KNN [20], [64]. [55], [16]-

In recent years, the trend in Android malware detection rescarch has shifted towards the
use of deep learning approaches, particularly CNNs. Due to the increased accessibility of

massive datasets and computing power, CNNs have grown in popularity in recent yars. The

increase in the number of mobile devices and pment of has also

resulted i for
and efficient detection methods.

According to studies, CNNs can identify Android malware with a high degree of aceuracy
(26 9] [651, [40], [20], [27], [55]. This is because of their capacity to determine complex
properties from unstructured data, which is particularly helpful in identi

g newly developed
and unknown malware classes. Additionally, CNNs are more computationally efficient than
typical machine learning techniques because they can analyse input in parallel. Despite their
efficiency, CNN-based Android malware detection methods may yet be improved. The

selection of input features, which has a significant influence on the model's accuracy, is one

area pment. Th i bythe use of
[49], 45, [27),[64]. The ability
{0 adapt of CNN-based models to malware attacks can also be increased through the use of

concurrent training. In Table 2.21 show the Algorithms mentioned in primary studies.

244, Dataset Quality

Research has shown that the selection of datasets plays an important part in the
performance of Android malware detection models when using static features{15]. Although
the Dret

include being very small and mainly including outdated malware samples. Therefore,

dataset has been extensively utlised in past studics, it has certain drawbacks, which

rescarchers have begun utlizing larger and more diverse datasets such as Androzoo and
VirusShare, which offer a broader range of malware samples

For instance, a recent study trained a deep learning-based model on the Androzoo dataset
and obtained an accuracy of 99.53% in identifying Android malware using static features. This

dataset offers a rich supply of data for training machine learming models and comprises over
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23 million Android apps including both benign and malware samples. Similar to this, another
study trained a Random Forest model using the VirusShare dataset 1o detect Android malware

with a 98.9% accuracy using static features.

In addition to the dataset choice, the model architecture sclection can also significantly
affect how well malware s detected. Recent studies have demonstrated that deep leaming-
based models such as Convolutional Neural Networks (CNN) and Recurrent Neural Networks
(RNN) have shown promising results in identifying Android malware using satic features.
However, the fact that these models need a lot of data for training highlights how essential
having high-quality datasets are. The performance of detecting Android malware using static
features can be enhanced by combining consistent, large datasets with the most recent models.
One research, for instance, trained a deep learning-bascd model using the datasets from
Androzoo and VirusShare to obtain an accuracy of 99.27%. Another study trained a Random
Forest model using numerous datasets, including AMD, VirusShare, and Androzoo and
ighlight the value of having high-quality

attained an accuracy of 97.8%. These findings
datasets and the possibility of utilising them in alongside advanced algorithms for accurate

‘malware detection.

‘Table 2.21: Algorithms mentioned in primary studies

1461, [67), (681, [17). [16]. (9], [41], [9), 42}, [65). [4]. [44].

[51, 201, 271

[70], (56}, [64], [64]

124), (68}, 19), (91, [421, 23], [65), 41, (49). 290 , 200, 271, (70}
[641, (551, [16]

(68

261, 9], [65). [29]. [40), [27], [70), [56]

MINIMAL

OPTIMIZATIO

I TR (26], (9], (23], (65, (41, (27, [70], 61), [64]
MLP,

(v 26]



ALGORITHM STUDIES

126116}, [65]

[26]
261, (9], (651, (40}, [20}, (27}, [35]

(381, [37). [36]. [30. [581, [91, [20] , 75}, [32], (18, [54]
(371091, [48], (30}, (21}, [50], [35], [71], [631, [18], (541, [81 . [52
173,133}, [52), [57), [13]

[14],[72], (351

[14], (721, [8)

(721, [47). 181

(72,181

159), (93, (651, [66), [27]

(9], (651, [4], [61], (561, [64]

[33,(52)

[331.[52)
1331,152)

(651, [27]
[65), [66]. [45]
1651
STACKING (4. [49), [45), [27), [64]
ENSEMBLE
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REPRESENTATION
MULTILAYER
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DFS
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ATION
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[200
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2419, Performance Metri

learning models for Android A I, Fl-score, and area

under UC) are all common i Several published rescarch in
Android malware detection have reported these performance metrcs from 2013 to 2023 to
evaluate the performance of their suggested models. In Table 2.22 show the performance
‘measures use in the primary studies. Among these measures, accuracy s generally employed
a5 2 major performance measure to assess the models overall performance, whilst precision

and recall are used {o assess the model's efficacy in detecting malware samples and benign
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samples, respectively. 1 howed that -
performance measure for investigating the impact of data quality issues on satie analysis of

malware detection in Android are accuracy, recall, and precision. Based on the information.

provided in the table, silized f data
quality concems on static analysis of malware detecton in Android were Accuracy, Recall
(Sensitivity, True Positive Rate TPR), and Precision/Corrciness. Accuracy measures the

overall sification model and
‘nstances (o the total number of instances. These performance measures can help address data

quality isues by providing insights into the effeciveness of the statc analysis approach in

detecting malware. For e.g. 1l assessment of lity used o

ain and testthe model. Low accuracy might be asign of poor data quality, such as missing ot

inaceurate data. Recall can help idenify flse negatives, which are instances of malware that
were not detected by the model. Recall can be used to identify false negatives, or instances of
malware that the model missed. This could help rescarchers in idenifying the varities of
‘malware that are more challenging o find and enhancing the model's capacity to perform.
Precision can be used to spot false positives, or non-malware cases that were mistakenly
Jabelled as such. This can asist rescarchers in identifying the characterstcs that the model is
using to detect malware and improving the model o lower false positives. Overall, using
appropriate performance measures in evaluating the impact of data quality issucs on Sat®
analyss of malware detection in Android can help rescarchers and practitoners improve the

accuracy, effectiveness, and efficiency of malware detection systems.

Table 2.22: Performance Metrics mentioned in primary studies

STUDIES

[46).[67)(24,[681(37). (361161, (301 14]. (72114711591 91 421 231
(23], [48). [33]. 4], (491, 21), 50). (73], [74]. (40}, 135). [28). [701. [61).
[551.[181.[54].[8). (53]

[46),[671(24], [68)(17]. [26). [381. 37). [161 (301, (141.(58).(721.(411.9).
(SENSITIVITY [25], (23], (48, [33], [65). [4]. [491. [21). [74]. [44]. [51]. (45). [69]. [40].
U S (3], (27). (27) [27). 281, [700. [61). 75). (3211323, [57). [13]. [71).(62).
RATETPR [63], (641, (55).[18). [541. [81.[53)




EVALUATION
METRIC

STUDIES

PECIFICIT' [46). [16].(14]
(TNR),

[46], [67) 241, [68], [26] (58], 37). 16].[14). (421, (72). (411. 190 [25).
TR e LR (23], (481 651, [41.[491, (211, [74], [44]. (511, [45).[69]. [40]. [20]. [27),
ECTNESS (28], (701, {611, (75 (321, (321, [57), 13]. [71]. [63]. (551, [181. (541 81
1531

VIS ATV (461, (241, (17), (38, [47)2 [59], (251, (27, (281, (71,551, [131. 57)
RATE (FPR)

[ZOS A Ll (25]. [66]. [53]

(38).(30].[251. [74].[521.(57). (71]

[38].[25).[74].[521. (8]

[46]. [67),[24].[26]. [47. [27). [701. [64]

[46]

(3810361, [16], 141, (581, [72) (9. [66]. [601. [291. [401. 201, 1351, 7.
(711, (621, [63],[27]. [701. (611, [75).[64]. [55). 1181 [54). (8. 53

nel

24110, Transfer Learning:

After conducting an extensive search on the topic of Android malware detection using
satic features, it was found that only a limited number of studies have explored the role of

\ransfer leaming in improving the accuracy of detecting Android malware. Out of the three
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relevant papers (5. (63, [74] denified, all of them used transfer learning techniques to
Therefor

of studies on the topic suggests that transfer learning has not been extensively explored in the

context of Android malware detection using static features, the studies that have been

conducted p s ng techniques to imp
detection models. Further rescarch in this area is warranted to fully explore the effectivencss

of transfer leaming in addressing the challenges of detecting Android malware.

2.4.5. Discussion of Limitations and Conclusions:

We performed a systematic ltcrature review 1o analyse the performance of machine
leaming, and deep learming techniques for Android Malware Detections using Static Features.
We select the 62 studies out of 120 studies from different sources by applying inclusion and
exclusion criteria. We found out which of the techniques arc preferred by researchers in cach

category e, macine caming. and deep leaming. We also compared performance reported in

each of! ported which of used
i cach of these studics. We reportthat deep leaming and machin learning are widely used for
Android malware detection. However, researchers used ensemble techniques and transfer
learning methods less frequently for android malware detection for static analysis of
applications. There is need to work on using same techniques on combinations of different
datasets having large number of classes and there is a requirement of larger datasets in public

domain. The most the Drebin and Virus share dataset, and

that it s a trustworthy and valusble resource for detecting android malware. The total 47 from
our selected primary studies arc on the on the binary classes ( Most of the published paper
work) and remaining selected primary studies are on multi class classification. The studies
reviewed show that this method is successful in detecting numerous forms of malware with
high accuracy rates. We analyscd from or study that the Adware, Ransomware, Trojan and
Backdoor are mostly considered by the researchers. The data also reveal that SVM is the most

successful Al model for this purpose, while API calls, Permissions, and Sirings ar the most

relevant elements for identifying android malware. One major limitation of this SLR s that it
o f Other
hybrid he be future

studies. Another drawback is that this evaluation only included papers published in English,

which may have eliminated some important investigations.



3. RESEARCH METHODOLOGY

3.1. Research Design:
We use Applied Research design prmclpl:s and provide research design that includes data
llecti ‘We furt ing, feature

extraction, model choice, model asscssment, and performance measures for a detailed

discussion of process. We go through steps,
feature selection, and deep neural network (DNN) model development processes. We assess
our model's performance by, such as accuracy, confusion matix, F1 score, recall, and ROC-
AUC. Finally, we provide details on how we divided the dataset ino training and testing sets.
and how we used the testing set 0 validate our model. In  Figure 3.1 we depict our rescarch

design which we follow in our research.

Figure 3.1: Our Research Methodology

3.2. Data Collection Methods:
Defining the starting point: We begin by clearly defining the rescarch objectives

and the types of malware classes we want to collect data on. We followed a series
of steps to determine which classes we wtilize o train our model as depict in Figure
32
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Figure 1.3 Selection f Clsses

We choose 12 malware classes and subclasses from ANDROZOO which
containing 1201 APks. These 12 malware classes and sub classes are shown in Table
3.1, We distinguish between malware categories and malware families in our context.
jous software based on their general behavior,

Malware categories categorize mali
while malware families serve o group together related variants that share common
characteristics or origins within the Android ecosystem. This distinction forms a
foundational aspect of our rescarch as we carefully select and analyze datasets for our
study. It is pertinent 10 note that extracting APK files from publicly avalable datasets
load of a sub- set of ilable APK. itori
It is important to highlight that datasets such as CICmal2020, CICmal2019, and

CICmal2017, provided details about the malware classes they contained. We identify
14 malware classes that include Backdoor, File Infector, PUA, Ransomware, Riskware,
Scareware, Trojan, Trojan- Banker, Trojan-Dropper, Trojan-SMS, Trojan-Spy, Zero-
day, and SMs Malware based on the avail From the Androzoo repository, we
successfully located 7 of these malware classes, which were Trojan, Banking,
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Backdoor, SMS Trojan, Ransomware, Adware, and Riskware. However, for the
remaining 7 malware classes mentioned earlier, we couldn' find suiable data in the
Androzoo repository. To expand our dataset and enhance the ffectiveness of Android
malware detection, we had to make a compromise. We decided to sclect malware
classes that had more than "1201" APKs available in the Androzoo repository. Among
hese, we included three additonal casses, namely spyware, monitor, aod explot. To
dentiy potential zero-day threats, we wtlized the K-means agorithm o detect pattems
and identify such APKs from the available datasct

During our research, "
availsble datasets proved (o be quite challenging. Only a few datasets, specifically
CICmal2020, CICmal2019, and CICmal2017, provided details about the malware

la d. Nonetheless, d to identify ncarly 14

based on the available information. These classesincluded Adware, Backdoor, File
Infector, PUA, Ransomware, Riskware, Scareware, Trojan, Trojan-Banker, Trojan-
Dropper, Trojan-SMS, Trojan-Spy, Zero-day, and $Ms Malware. From the androzoo
repository, we successfully located 7 of these malware classe, which were Trojan.
Banking, Backdoor, Sms Trojan, Ransomeware, Adware, and Riskvare. However, for
the remaining 7 malware classes mentioned carler, we couldu't find suitable data in
the androzoo repository. To expand our dataset and enhance the effectiveness of
android malware detection, we had to make a compromise. We decided to select
malware classesthat had more than 1200 APKs available in the androzoo repostory.
Among these, we included three additonal classes, namely spyware, monitor, and
exploi. To idenify potential zero-day threats, we utilized the Kemeans algorithm to

detect pattens and identify such APKs from the available datase.
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Searching for malware classes:  Afier determining the malware
classifications, we search for them in web databases such as VirusTotal and
Androzoo, We may find a large number of malware samples for our study from
these databases.

Converting data to CSV format: Afier locating the malware samples, we
construct a Python script o convert the data from the Virus Total JSON format
{0 more practical CSV format. As aresultof this step, critcal data such as the
Jirus's name, file type, file size, number of detections, and download URL are

simpler to extract from the data.



4. Organizing the data: Finally, by dividing the CSV file according to the
various malware types sclected, we organize the data. We may achieve this
using a Python script or other tools to make it simple to obain the data for
analysis. We save the data locally for quick access and as a backup in casc of
data loss.

Al these steps depict in Figure 3.3.

Virusotal + Androzoo

Seperate Each

Figure 3.3: Callection Of Malware Classes

Load CSV of each malware class: Afier splitting the CSV file based on
malware types, we need to load each CSV file into memory 1o extract the APK
Jinks. This process involves reading the CSV files and getting the data that is
needed by processing.

Inquire the user for the fotal number of APKs to Download: Afier loading

ihe CSV files, we require to show the message for the user how many APKs

they want to download. Processing APKs might be time-consuming 5o it is

{mportrant o restictthe quaniity of APKs downloaded. This approach ensures

that even in cases where the program unexpectedly closes, users do not have 1o
1200 A ing the

user-friendly and efficient

Create a loop: After getting the relevant information we create a loop t©
download the requested amount of APKs. This loop will run over the number
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range supplied by the user. Each iteration of the loop will involve the following

steps:

Download APK: In cach iteration, we will download an APK from the
fied i i

CsV file.

Decompile downloaded APK using JADX: Afier downloading the APK, we
need to decompile it using a tool such as JADX to obiain the source code. This
is necessary in order to investigate the code for future research.

Find and move the Android manifest file: Afier decompiling the APK, we
need to find and extract the Android manifest file. This file provides essential
APK information, such as its components, permissions, and services. This file
will be moved to a separate directory for future use for feature gathering,
Delete APK file and the recently decompiled directory: Afier extracting the
required information,For free up the memory we need 1o delete the APK file

and the recently decompiled directory . This will ensure that the resources of

the system are used efficently.

. Go to the next iteration: After done the above steps, we will g0 10 the next

iteration of the loop to download the next APK.

download hown in Figure 3.4.

Dekt Decor
APK ot

ure 3.4 Process OF Malware APKS Download




65

15, From extracts dircetory find AndroidManifest.xml files: After decompiling the
downloaded APKs, we shif the AndroidManifest xml il t0 a separate directory. [n
i step for extract the content we will scarch foral the AndroidManifest xml files in
the directory .

14.C

cach il found after we have get all the AndroidVianifest xm fles. From this loop will
ensure that we extract the required information from all the files.
i cach itration, seipt read XML of each file and tore the contents mentoned in the table
belon as features of AndroidMalware 0 a CSV For each fle. The Table 3.2 shows the
information that we extracted.

Table 3.2 Feature Used In Our Research

Description

‘Application

Pre-built code modules used by the app to add functionality or reduce

development time.
TP Components that receive and handle messages or events from other apps

or sysiem components.

= Components that manage access to a structured sct of data, used to share

data between apps or provide access to data stored in a database.
Additional information about the app, such as the version number,
developer information, and licensing information.
Security settings that control access (0 system resources or user data,

required for certain app functionality such as sccessing the camera or
‘microphone.

Feature that execute in the background and_ perform. long-running
operations, such as playing music and downloading files etc.

That provide additional functionality to the applications, such as support

for specific software or hardware features.
A unique idenifie for the application used to distinguish it from other
applications on the devices.




‘The number of activities are in the applications.

Names given to various components of the applications, for example
activities, providers and services, It is utlized 10 identify and make them
‘more easily understandable and readable.

We will gather above information from each file in a CSV file. We will be used this
CSV file in the future for further analysis. Once all the files have been processed, the feature

tract lete, As Figure 3.5 sho malware

Figure 3.5 Malware Feature Extraction

only i wehad
10 construct a benign malware sample collector as well which is depict in Figure 3.6, so we
designed a web scrapper to scrape through the Playstore and other third-party app stores to
acquire benign samples, as shown in Figure 3.6 and as steps described below:

1. Import required libraries: The first step is to import the required libraries such as
requests, BeautifulSoup, urllib, time, random, esv, and os.

Read App IDs from CSV file: The code reads the list of benign app IDs from a CSV

file and stores them in a lis

Loop through the App IDs: The code loops through each app ID in the list of benign
app IDs.

Create Search URL: The code creates a search URL using the app ID.

B



&

Make Request to the Search URL: The code sends  request 0 the search URL with
random wait time and headers.

Parse Response using BeautifulSoup: The code parses the response using
BeautifulSoup.
Get Link for the App Page

response.

he code gets the link for the app page from the parsed

Create URL for the App Page: The code creates the URL for the app page.

9. App Page: Tl ith random

wait time and headers.

Parse Response using BeautifulSoup: The code parses the response using

BeautifulSoup.

Get Download Link for the App: The code gets the download link for the app from
the parsed response.

Click on the Download Button: The code clicks on the download button by sending &

request to the download link with random wait time and headers.

Parse Response using BeautifulSoup: The code parses the response using
BeautfulSoup.
4. Get Download Link for the APK: The code gets the download link for the APK from

the parsed response.
. Download the APK File: The code downloads the APK file by sending a request to
the APK download link with random wait time and headers.
16. Save the APK File: 4 APK filein fi
path.




Seavcn nac
e don
i

Figure 3.6: Benign Downloader

Decompile the APK: The code decompiles the APK file using JADX by constructing
the command and running it

Copy Manifest File: The code find the manifst fil
renames it o the app 1D, and saves it n a separate directory for the extracted files
Remove APK File and Decompiled Directory: The code removes the downloaded
APK file and the decompiled directory.

the decompiled directory,
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4. Loop to the Next App ID: The code loops to the next app ID untl the desired number
of APKs is downloaded or all app IDs are processed-

3.3. Experimental Setup:

edto

evaluat jproach, as well as the achieved results and ing dis

In this section, we describe the experimental setup used to evaluate the performance of our
proposed approach based on Deep Neural Networks (DNN) for Android malware detction

having stati pplication th
Jibrary with python version 3.11.3, by using with Scikieam, Numpy, Tensorflow, and Pandas

in Table 3.3

Table 3.3t Experimentl Setup.

Core:i7 Processor Intel(R) Core(TM)
746820HQ CPU @ 2.70GHz, 271 G3
GHz

NVIDIA Quadro M2000M.

‘Windows 10-64 Bit

Python version 3.1

RAM 16 GB- 3600 Mz DDR4
Keras Numpy, Tensorflow, Scikitlearn

To evaluate the performance of our proposed approach, we use several performance

‘metrics, including accuracy, recall, F1 score, and ROC, AUC curve. A test set of Android
is separate i

The experiment's findings are explained in the parts that follow along with a comparison to

state-of-the-art methods.

3.4. Data Preprocessin

Preprocessing is necessary in machine Icaming and degp learming applications because

raw data often contains irrelevant or redundant information that can negatively impact model
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performance. Preprocessing can help with problems including missing dats, class imbalance,
and dataset noise. We can make sure that the model is only taking into account necessary

features and that the data is in a format that the model can comprehend by cleaning,

vansforming, and normalizing the data. I the end, this may result in predicts that are more

accurate and reliable.
3411, DataLoading:

Loading data is the first step
pandas ibrary in Python to read the CSV file containing the Android application dataset. The

any deep learning project. In this step, we used the

collction included detailson a range of feaures, including AP cals ntens, nd permissiors,
wilized by various Android appliations,along with information on the related malware class.

tis simple o handle and cxamine the data by loading it into a pandas DataFrame.

3412, Data Cleaning

Datacleaning s an important stepinany decp leaming project.Inhissep, we removed
any irelevant or redundant data rom the dataset. We removed the App Name column as it
does not contain any useful information for our analysis. We also identify for any missing or
ull values in the dataset and climinate them s nceded. For building a good model it is

important in data cleaning step Which help to o ensure that the data i accurs(e and reliable.

3413, Handling Class Imbalance:

Clus imbalance is o common problem in desp learing, where the number of samples in
e class i much higher than the oher class. This can lead o biased models that perform
poorly on the minority class. To solve this problem, ve uscd oversampling techniques like
SMOTE to generate synthetie sampls of the minority class o under sampling techniques like
‘andom under sampling in order 1o reduce the number of samples in the majority class This
elps to balance the classes in the dataset and ensure that the model s not biased towards the
majority clas. While inftaly considering 1200 APKs for ach class, it became evident during
he decompilation process that cerain APKs couldn't be successfully decompiled due ©
arious error. Consequently, for certain classes, we found ourselves with a defiet of 10 0 20
APKs. In response o this challenge, we had 1o implement balancing techniques (o €nsure that
cach class had a suffcient number of representaive samples for our analysis and model

waining



3.5. Feature Selection:

f selecting a group of important del

Jn this phase We counted the number of ones in cach column o determine the frequency of
each feature in th collection. Then, we st a treshold fo eliminate feaures with fewer than a
specified number of 1. For instance, we sct @ threshold of 2, meaning that any feature with
e than two 1s was removed from the st Therefore, model work bttr because it reduce
he number of dimensions in the dataset, So, we used the pands concat() function t0 101 the
chosen featurs with the target variable (Malware Class) and th dfo _gsv() function fo 53v¢
he preprocessed dataset as a CSV file. Feature selection helps improve the aceuracy of the
‘model by reducing the number of ielevant or duplicate o atributesthat can add noise to the

data and make it harder for the model o leam the underlying patterns.

Iniially, we had  total of 43,377 featurs, but ollowing the preprocessng stage, we W

Jeft with only 10,523 features for further analysis and modeling.

del work bet

cure tht the data is correct and consistent, which s important for building 2 reliable model
Handling class imbalance and selecting relevant features help o reduce bias in the model and

improve ts bilty to make accurae predictions on unsecn dat By taking these steps, we are

the most useful information from  train a model that is robust and
eficien in detecting malware in Android applications. This not only benefits the field of
eybersecurity but also has practical applications in protecting USers from potential harm and
threats

3.6. Evalua

To evaluate the performance of our deep learning model, we utilized a variety of metics.

n Metrics:

These metrics included training accuracy, confusion matrix, F1 score, recall, and ROC-AUC.

Al evaluation metrics results are shown in
Table 3.4.

3611, Training Accuracy:

is aidenify ho It determined

s the umber of cortetly classiied samples ivided by the total number of samples i the



{vaining set. Taking a look at the models raining quality may make it easier to figure out how

well it can leam from the data and whether it is overfitting or under fitting.

3612, TPFPTNF

matrix

and false negatives. A confusion matrix determine how well a classification model works by

comparing the actual labels of the data t0 the prediced labels. The confusion matrx can be

elpful in determining which classes the model is having problem accurately clasifying and

may suggest further model improvements.
3.6.1.3.  F1Scor
The F1 It L.

ll, and i from 0 to 1. AsF1

a single score that summarizes the model's performance score can be helpful in comparing

models or tuning hyper-parameters.

3614, Recall:

Recall is a way to measure how well a model can find true positives, or how many
rue positive cases it corectly identified. Recall can be helpful when its important to find
positive cases for example in medical diagnoses or fraud detection.

3615 ROC-AUC:

The ROC-AUC (Receiver Operating Characteristic - Area Under the Curve) is &
measure of a model's ability to distinguish between positive and negative classes. It is
caleulated by plotting the truc positive rate against the false positive rate at various
classification thresholds. ROC-AUC can be helpful in assessing the overall performance of the

‘model and comparing different models.

Table 3.4: Evaluation Metric

Evaluation Metric

Equation
(TP +TN)/ (TP + TN + FP + FN)
A confusion matrix is obtained by comparing. the predicted
labels of a model with the true labels of a dataset.

2% (precision * recall)/ (precision + recall)

TR/ (TP + FN)



ROC-AUC

7

The ROC curve is obtained by plotting the true positive rate

¢
values.

Note: TP = True Posiive, TN = True Negative, FP = False Posiive, FN = False Negative-

3.7. Hypotheses and Research Questions:

Our study aims to address the following research questions which are describe in Table 3.5.

Table 3.

: Research Ques

Jns and Hypothesis

T

How can we construct datasets with

larger sets of examples by
considering more features  and

families/classes?

How can we develop a deep learning
approach based models that make
use of a bigger range of malware
classes and features in the dataset
and improve efficiency of existing
systems?

What is comparison of deep
learning-based classifiers that can
be employed to identify malware
with and without the possibility of

handling zero-day attacks?

By including a larger number of features and
‘malware families in the dataset, we hypothesize that
the DNN will have a better understanding of the
malware landscape and will be able to classify new,
‘unscen samples with higher accuracy.

We hypothesize that specific deep leaming models,
DNN model outperforms the CNN model in terms
of accuracy and generalization for malware
detection tasks, according to our preliminary
evaluation. By conducting a thorough comparison
and evaluation of various decp learning models,
including DNN and CNN_ models, on balanced
datasets, we hope to validate our hypothesis and
identify the model with the highest performance for
‘malware deteetion.

Hypothesis is done using deep learning pre-trained
models, dataset is fine-tuned for known threas, it
will enhance the identification of zero-day attacks.
To

alyze static application features transfer
learning is used inorder o identify zero-day attacks.
It will enable the model to effectively detect



7

previously unknown attack patterns and improve
the overall performance of zero-day atiack
identification by utilizing the knowledge gained
from the known thrcats.

In order to answer these rescarch questions and test our hypothescs, e followed a
methodology that involved data preprocessing, mode training. and evaluation using various
performance metris such as raining accurscy. confusion matrx. F1 score. recall, and ROC-
'AUC. The detils of our methodology and experimental stup are described n the following

sections
3.8. Software and Tools Used:
Description of any software tools o frameorks used inthe study are shown i Table 3.6.

Table 3.6  Softwareand Tools

Software/Tools

Purpose
Extracting APK files and their static
features

Acquisition section
Custom ool Extracting features fom the collected Mentoned in  Data

applications Acqisition section
Pandas. Cleaning and preparing data for model  [76]
training

Keras

£
3

Building and training decp leaming (7]

P TensorFlow  models

Model

Evaluating model performance using (78]
‘metrics such as accuracy, confusion
‘matrix, F1 score, recal, and ROC-AUC.

Exaluation

Matplotib,  Creating visulizations of data and [79)
Seabom ‘model performance



Jupyter Environment for coding, analysis, and  (80)
Notebook,  report wrting.
Python 3.11.8

3.9. Implementation Details:

To implement our p h Python tools that
of gtting data and trsining the DNN. We performed the folowing steps in order to get the

information we require:

We downloaded a large number of malware samples from different sources through

internet and collect them in on our local machine.

2. After that we used a Python scri and

he AndroidManifest xml files out of these samples to get the APK files.

We extracted the AndroidManifestxml fils from the samples of malware and stored
them in a separate directory.
Similarly, for the benign samples, we followed these steps:

1. We downloaded a large number of benign APK il from the Google Play Store using
hid party app store such as APK Pure and stored them i a directory on ot Tocal
‘machine.

We used a Python script that manipulate the Apkiool tool to_extract the
AndroidManifest xmi files from these mahware and benign samples.

We collected the AndroidManifestxml files from the berign samples and stored them.

in a separate directory.

For the DNN training phase, we performed the following steps:
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Preprocessing: We preprocessed the data by converting the  collected
AndroidManifest.xml fles into a format that can be fed into the DNN model. We also

performed data cleaning and filteing to remove irelevant or duplicae information

Building the architecture: We designed and built a DNN model using a Python decp
caming library such as Keras or Tensor Flow. The architecture was designed to take

input and output label

Training the model; We used the preprocessad data o rain the DNN model, and we
changed the hyper parameters 10 get the best resuls. We also used methods ike eross-
validation to check how well the model worked.

B

Visualizing the performance: We used different visualizing performance metrics (o
measure how well the learned model worked so the used performance metric are
Confision metric, accuracy, precision, recall, and F1 score. We also visualized the

‘performance using graphs and charts.

5. i p: : Adjusting hyper-p: Ifneeded, d th

NN model's hyper-parameters to make it work even better. We did the training and

{esting steps over and over until we got the desired level ofaccuracy and performance

For handling the zero-day attack detecton, we transferred the knowledge of previously
trained DNN model to another DNN Model:
|, Loading Pre-trained DNN: In this step, we loaded a previously rained Decp Neural
Network (DNN) model using a Python deep leaming library such as Keras. This pre-
vained model had been trained on a related task or dataset and contained valusble

Knowledge that we wanied o transfer o our new model for zero-day atack deection.

Detecting anomalies: We applicd anomaly detection techniques such as K-Means
clustring method to identify potential anomalies or deviations in our dataset These
anomalies might represent unknown or zero-day attacks that do not conform 10 the

expected patterns of benign or known malicious apps.

Updating the anomalics as potential zero day attacks: Aflr detecting potentil
anomalies in the dataset, we updated the labels or annotations of these instances 1o
mark them as "potential zero-day attacks.” This label modification allowed us to
different

e these instances during the training of the new DNN model.
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Building a new DNN architecture: We designed and built a DNN model using &
Python deep learning library such as Keras or Tensor Flow. The architecture was
dosigned o take the preprocessed data as input and output the predicied
malware/benign label.

5. Transfen

¢ knowledge of pre-trained DNN to newly designed DNN: We
performed knowledge transfer by iniializing the weights and architecture of our
newly designed DNN model with those from the pre-trained DNN. This process
allowed our new model 1o inherit valuable features and patterns leamed from the

related task, providing it with  strong starting point for zero-day attack detection.

Training the model: We used the preprocessed data to train the DNN model, and we
changed the hyper parameters to get the best results. We also used methods like cross-

validation to check how well the model worked.

7. Visualizing We used vist per metics to
measure how well the leamed model worked 5o the used performance metric are
Confiusion metrie, aceuracy, precision, recall, and F1 score. We also visualized the

performance using graphs and charts

Adjusting hyper-parameters: Adjusting hyper-parameters: If needed, we changed

the DNN model's hyper-parameters to make it work even better. We did the training
and testing sieps over and over until we got the desired level of accuracy and
performance we nceded XML, Java, and resources. In our Python tools, we used
APKTOOL to getthe files from the APK.

APKTOOL is an useful open- source tool o reverse engincer Android apps and

extract various files such as XML, Java, and resources.

3.10. Model Selection Criteria:
We experimented with different DNN architectures, such s simple fecdforward neursl
'NNs). After looking

at cach design accuracy, we decided to use a simple feedforward DNN for our approach. We
chose a feedforward DNN because it is simple and casy to train, yet powerful enough to leam
complex patterns in the AndroidManifestxm files. Morcover, we found that a feedforward

NN was able to achieve high accuracy on our dataset without overfiting or requiring
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excessive computational resources. We also implemented a transfer leaming approach by
Jeveraging the knowledge gained from one Deep Neural Network (DNN) model and applying
1o another DNN model. To achieve this, we provided a smaller dataset for the second DNN
model to fine-tune s parameters further, This transfer of knowledge enabled us to capitalize
on the predlcamed features and representations from the frst model, thus enhancing the
performance and efiiency of the second model while working witha limited amount of dta.
The selected DNN architecture consists of several fully connected layers with ReLU
activation functions, followed by a final output layer with a softmax activation function. We
used loss function and the 10 train the DNN.

3.11. Feature Extraction and Selection:

In our approach, we extracted features from the AndroidManifestxm file of the APK
<amples. We downloaded both benign and malware APK samples and collest the required
features from the AndroidManifest.xml file of ach APK sample by exccuting the feature
extractor tool that we developed. These extracted features were then used to train our decp

neural network model.

Afier the feature extraction, to selcet only the relevant features to use in our model, we
performed feature seection. This step s necessary to make the model less complicated and
st0p 1o avoid overfitting We counted how many 1 were in each column of the feature matrix
Lo find out how often each feature shows up in the dataset. We then seta threshold to remove
features with fewer than a certain numiber of anes. For example, we seta threshold of 2, which
‘means that any eature is less than 2 should be eliminated from the datasct. This process focus
on the most important features and helps o remove features that are less important. The

selocted subset of features was then used to test and train the deep neural network model

3.12. Algorithmic Details:

The architecture of our DNN consists of four layers, including an input layer, three hidden
Jayers with ReLU activation, and an output layer with a softmax activation, as presented in
Algorithm 1. The input layer receives nine features, which are extracted. from the

AndroidManifest xml files of the apk samples.
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The ReLU activtion functon is defined as /i) = max(0,3), which means that it outputs
he maximum between 0 and the input value. The ReLU activation i¥ used in the three hidden

layers to introduce non-linearity to the mode and help it I

“The output layer has 12 nodes, where 11 nodes correspond to the | 1 malware subclasses.

and the last i fimax activation lied to

he output laer, which outputs a probability distribution over the 12 classes. The softmax
function is defined as follows:
softmax(a-i) = expla_i) /sum(expla_) for alli
i equation o s the input {0 the th output node, and  is an ndex overall output nodes. The
softmax function ensurcs that the sum of the outputs ofal nodes is equal to 1, which gives us
a probability distribution.
We used categorical_crossentropy a5 the loss function. for  the model. The
categorical_cross enropy measures the difference between the predictedprobability

b fathematical 1_crossentropy
s defined as:

Categorical Crossentropy =-sum(y_true *log(_pred))

where y_true s the true distibuton of probabilies and y_pred is the distribution of
probabilities that was expected.



[ aLGoriTHM 1:

| Require: Dataset-Training T. Dataset-Testing t, Epochs E. Batch-

B, Weighis W, DNN Layers DL
| function DNN_Model(T, t, E. B):
1: Normalize T (0-1)

2: Reshape T

3: Initialize DNN architecture:

4 Dense(urit = 2°n, acivation=relu, keml_regularizer =12(0.0001) + Dropout(rat

| cutput layer = Dense(units =12, acivation = sofimax)
| & Optimiston Setings:optimisr - Ada(lsming 10001

| loss = categorical crossentropy, metrics = accuracy

for epoch in range(E):

6 for §in range(0, len(T), B):

6: bateh = T[i:i*B]

7: Train wrt B from T

9: Calculate loss for the B

8: if Wrong Prediction then
9: Update W

11: end for

: end if

12: end for

13: Save the trained model

14: Result = Predict on t

15: Save Result

end function

# Usage example
T=X_train #training features

£= X _test Htesting features

[E=200 # Number of epochs

64 # Batch size

input_dim = X _train shape[1] # Input dimensionality
DNN_Model(T, t, E, B)
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Figure 3.7:Deep Neural Network Architectire

We used the Adam optimizer with a learning rate of 00001 10 gt the settings of the
‘el to work best. The Adam optimize i an adaptive learming rate optimization algorihm

that is efficient and robust to n information. lied L. ization o
layers o pr erfitting. 12 izati to the loss

function that el weights to be small. ically, the L2

term s defined as:

L2 Regularizaton = 0.0001 * sum(n”2) where w i the weight of the model.

In our approach, we used ypping functionality to stop the

the carly stopping.
Tanetionality helped us o prevent overfting and achieve bettr generalizaion performance.
“The graphical presentation of the neural network architecture is shown i Figure 3. and the
proposed algorithm is presented in Algorithm 1.

3.13. Architecture of DNN:
The Figure 3.7 show the details of the cach layer,including the ‘number of input nodes, the

number of nodes in each hidden layer, ights, and biases.

of parameters is calculated by summing the individual compones, resulting in a value of
5,560,576, Additionally, a total of 972 biases are considered in the network. We present the
wehiteture of our CNN based model in Algorithm 2 where the rcitcture of our proposed model
using DN is shown in Figare 3.,



W4 HL2  HL3  HL4 Outputlayer  Towl

I . e B e e
0 put 10523 512 256 128 64 x
1 Nodes 512 256 128 64 12 s
2 Weights (%) 9689% 236% 050% 015% 001% 100.00%
3 Bisses (%) 5267% 263% 1317% 658% 123% 100.00%

Figure 3.7 Architecture of DNN

ALGORITHM 2:

— Require: Dataset-Training X_trsin, Datase-Training Labels y_tain, Epochs E, Batch-Size B

; train, E, B):

| Function CNN_Model(X_train,
1: Normalize X_train (0-1)
| 2:Reshape X_train
| 3 italioe ONN mod:l
Initialize CNN m
| 4*CowlD@n. 3 “activation=rel, input_shape={size, 1)) + MaxPooling1D(2) Flatten()
| E.mwmmnmmno + Dropout(0.3)
et = Dense{ 12, activation=so0flmax)
| & Oplmllnllnn sm.np opumuzr Adun(\amnn&nlﬁﬂmolv, loss = categorical
| crosenmo. m acy epoch in rnge(E):
Siforiin nngem. ey sy B
| 6: batch = X_trainfii+B]
. Train the model on the batch
§: Caleulate loss forthe batch
| 9 if Wrong Prediction:
| 10Updte e modelweighs
11: endif
|12 endfor
| 13- end for 14: Save the rained model to a ile end function

P
~ Tnmmg data

trair 2 labels
5 00 )‘Numbzr g

=64 # Batch size
CM’V_MM:I/XJ’-:'», y_train, E, B)




3.14. Architecture of CNN:

We construct a CNN model. It consists of four Conv1D layers, each with a ifferent filer
size determined by 2%, ollowed by a ReL U activation function. After cach convolutional layer
here's a MaxPooling1D operation to down-sample the data, and a Flatten layer to convert it
{hto  suitable format for subsequent processing. BatchNormalization is applied to improve
vaining stability, and Dropout i incorporated to mitigate overfiting. It is presented in
Algorithm 2.

3.15. Architecture of TL based Model:

We construct a new deep neural network model by leveraging the architecture of &
pertined model. This pertained model serves as a saring point for out work. To adapt this
modelforthe specific task of ero-day attack detection, we make a crucial modification 0 he
cutput laer. Assuming we have 13 clases,including one for zero-day attacks, we tailor the
network accordingly. For training, we configure the model by specifying the optimization

i 0.0001) and the i

The training process involves itrating over the data or a defined number of cpochs, and we
process the data in baiches, enhancing efficiency. During training, we morilor the loss, and if
it surpasses a predefined threshold (typically set at 0. inthis case) it signals & potential zero-
day attack.In esponse to this detcetion, we can take appropriate actions, such as updating the

model's weights furthe . Afler raining,

model for future use. To formance, we evaluate it testing data.
1 this evaluaton, we primarily measure accuracy as an indicator of how well the model can
classify data into s respective classes, which includes dentifying zero-day attacks hen they

occur. We present the rchitecture of our TL based model in Algorithm 3



| ALGORITHM 3:

|4 Required DtseTriing X_rin, DatastTrsning Labels 3 rin, Epohs . Bt iz B
| st modl

| ¢ Funcron or DNN Mode with Transter Leaming
| def DNN_Model_Transfer_| anlnpﬂ‘, 4 E, B, pretrained_model):
#Normalize T (0-1) and resh:

T=T/npmax(D), T= T rehape(t shape0], )

# Initalize DN architecture

model = Sequential()

forlayer in prerained._ model layers:
‘model add(lyer)

# Modify the output I:y:r for zero-day detection (assuming 13 classes)

el laversl utput_dim = 13 # Assuming 13 clases (12 riina ¢ 1 2e10-62y)
odellayer| 1 activation = sofimax’ # Adjustactvation functon

|| #Opimisation setings
| optmizer = Adum(lcaring_rte-00001)
| mode compi L iner-optimizer, metses-[sccuracy’)

#Training loop
for epoch in range(E):
| foriin range(®, len(T), B):
bateh = T(i+B]
| #Training wora B from T
| ol ossfr the bsch
los = moderin_on_buchbsch, ) # Asring reconsusion st

| e 1d. day atack)
| dreshold =01 # Adust i reshold s necded
ifloss > threshol

# Update weights or perform furtheractions s needed
| ol layers{-1].set_weights(new_weights)

l\nhunlluenm el
|| modelaveCrrodoy. detection_model hS")

Evaluation on testing data.

y_pred = model predict()
‘ yore=t

|| Caleutteaccuracy vou can e other metrics as well)
ey - acuracy, score(npargmax(y._true,axis~1), npargmax(y_pred, xis=1))
‘ ‘print("Test Accura




Finally, the output layer s a Dense layer with 12 units and a softmax acti

function, which is suitable for tasks involving multi-class classification. For opi
‘model uses the Adam optimizer with a leaming rate of 0.0001, employs categorical cross-
entropy s the loss function, and tracks accuracy as a melric for model performance. The
{vsining process unfolds within a loop that runs for the specificd number of training epochs.

h, ided hes of a speci ‘model is

wained on each batch while computing the loss. If the model makes incorrect predictions on 2
batch, it updats its weights to enhance its performance. After completing the trining, the

function saves the trained model 0 a fle for later use. In pracice,this function can be applicd

1o specific dataset (X_train and y_train) by speci of
the batch size (B) to create and train a custom CNN model.

3.16. Evaluation Procedure for DNN models:

To assess the performance of our DNN model, we divided the dataset into a training set
and a testing st using an 80:20 ratios. We used the testing st 0 evaluate it performance and
{he training s o train the DNN model. Specifically, we used 80% for training and 20% of the
dataset for testing and validation. During the training phase, we used o adjust the hyper-
parameters and the training set to update the weights of the model. Then, we evaluated the
model using the testing set 1o ensure that it could generalize well 1o new, unscen data. We
Jalidated the performance of our model using the evaluation metrics mentioned carler,
{including accuracy, confusion malrix, F1 score, rcall, and ROC-AUC. We wilized the 20%
{esing set o validate our DNN using these metric, which allowed us to measure the model's
performance on unseen data. This approach ensured that our model was not overfiing to the

training data and was able to generalize to new data.



4. RESULTS AND DISCUSSION

The evaluation and analysis of the proposed anomaly detestion systents efficiency and

45 2 benchmark to measure the system's performance and provide a quantiaive basis for

evaluating its effectiveness (1]

i our work, we have implemented several performance metric for evaluation, including
Accuracy, Recall, Precision, ROC, AUC, and Fl-Score. The Confsion Matx is ilized 10
preent the actual values of True Negatve (TN True Positive (TP), Flse Negtive (FN), and
False Positive (FP). When dealing with balanced classes, the Confusion Matrx without
normalization accuraely representsthe rsultsfor each predicied label. In the case of balanced
datasets, the normalized Confusion Matrx displays the results as a percentage, llowing for &
comprehensive assessment of each clas. To claborate on some of the performance metrics
shown in Table 4.1

Table 4.1 : Metrics

(TP+TN)/ (TP + TN + FP+ FN)
TP/ (TP +FP)

TR/ (TP +FN)

2+ (Precision * Recall) / (Precision + Recall))

Avea Under the Receiver Operating Characterisic (computed graphically)

By uilizing these performance metics, we gain a comprehensive understanding of the.
effctiveness and effciency of our anomaly detection system in accuratly detecting and
i in the Android domai




4.1. Comparative Analysis:
In this section, we compare our. approach to the. ‘base approach [8] used in android malware
detection. The following Table 4.2 summarizes the key differences between the two

approaches.

Table 4.2 : Compars

—

Our model uilizes a CPU-powered, DL- The base model relies on CUDA-
based detetion algorthm that s cicient_empowered DL technology and requires
enough to operate on devices without GPU hardware for optimal efficiency.
GPU compatibility.

“The developed algoritum s capable of The base model is based on only 3
detecting up to 12 distinet variants of different variants and may not detect as

ive Analysis

malware,  showcasing  advanced many malware types as our model. In
knowledge. This expertise enables the  reality, there are hundreds of diverse
identification of newly  introduced malware types, some of which are entirely
malwaremodels, a5 they often dissimilar from one another.

incorporate functionalities from existing

malware types or employ similar attack

‘methods.

1 orde to asses ihe elficency of our On” the other hand, the  base ‘model
‘model, we uilize our ropricary dtaset, evaluates s effciency using publicly
consisting of a substantial number of available datasets, which may be familiar
carefully collected APKs. This unique 1o attackers who posscss knowledge of
dataset. ot only surprisespotential  these datasets.

attackers but also poses a challenge for

{hem 1o comprehend the underlying

coneept of our developed approach.

Number of application for cach class Number of applicaion for cach class
balanced used so advantage is that cach unbalanced so it will lead to Bias in the
‘malware class and benign apks equal it results, Reduced  generalizability,
will increase sccuracy, Enhanced minarity classes can resilt in limited
senerlizabliy, balanced representation understanding of their characteristics and



of cach class ensbles a thorough
understanding of the characteristics,
behaviors, and pattems  exhibited by
different malware classes and benign
robust

applications, evaluation,

ultimately leading to more reliable

Given the limited amount of data
samples, our approach of using & §0:20
tainetest split with model. Fit0) is
superior to the base paper’s cross-
validation approach using 10 folds. By
allocating 80% of the data for training,
our approach allows the model to leam
from a more representative and diverse
set of samples, enabling  better
generalization and capturing complex
pattems. Additionally, using a single,
welldefined test set _climinates the
variability introduced by different folds
in cross-validation. This approach also
saves  computational  resources by
training the model once. instead of
‘multiple times in cross-validation.

Our model utilizes an extensive feature
Set of 43,377, even after implementing
preprocessing  techniques.  Through
careful selection, we have reduced the
number of features 10 around 10,524
This surpasses the base model's
ulization of only 190 features for

training. Our model's extensive feature,

behaviors. Lead to incomplete evaluation.
When evaluating the performance of the
model, an unbalanced ataset can skew
the assessment metrics, such as aceuracy,
precision, and recall. This distortion can
the and

efficiency of the model's performance on

obscure true  effectiveness
the various classes.

The base model's use of @ 10-fold cross-
validation approach may be less effective
with limited data due 10 several reasons.
For first of all, splitting the dataset into
many folds might result in smaller
training sets, reducing the  model's
capacity to capture the full range of
variations and complexity.

The base model has limited feature

representation, utilizing only 190 features

for training. This restricted feature

coverage may hinder its ability to capture

the full range of information in the
dataset, The base models limited feature
representation may lims

its effectiveness

i detecting and classifying malwares.



sclection and retention give it a
significant advantage over the base
model in terms of accurately detecting

and classifying malwares.

Our approach demonstrates several advaniages over the base approsch. including
efficient CPU-powered detection, the abilty o detect @ greater number of malware varian's.
ilzation of a proprietary dataset, balanced representation of each class, consideration ofa
diverse feature set, and an optimized training-tst split. These advantages contbute 10
improved accuracy, enhanced generalizability, and increased robusiness detecting and

classifying android malwares.

4111 DNNvsCNNysTL:

I this seetion, we present the P

Neural ‘onvolutional Neural Network
(CNN) and Transfer Learning (TL) method for android malware detection which is shown in
Table 43 We evaluate the models based on several key metics, including training time,

accuracy, loss, confusion matrix, AUC-ROC,recall, FI score, and precison.

Table 4.3: DNN vs CNNvs TL

ACCURACY 97.62% 96.44% 9445

Loss 01424 01278 03550
OON'gnllJ}%ION Figure 4.1 Figure 42 Figure 46
AUC-ROC 098 (Figure 1) 097 (Figure 4.2) 1.0 (Figure 4.3)
RECALL 084 082 096

FI SCORE 084 082 097

PRECISION 084 082 098
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Figure 4.1 DNN AUC_ROC Curve

AUC-ROC Curve

—— AUCROC curve (area = 0.97)
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False Positive Rate

Figure 4.2 CNN AUC-ROC Curve
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Figure 43 Transfer Learning AUC-ROC Curve
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Selection of Hyper-Parameters:
We employ various hyper parameters to enhance the performance of our deep learning

algorithm, as highlighted in the study{81]. Our approach involves the following components:

1. Epochs: Epochs denote the training iterations performed on our decp neural networks.

Initially, we configured the model to undergo 1000 training iterations. Subsequendy, we
implemented an_carly stopping technique, which continually assessed the models
performance by monitoring the training loss. I for five consecutive cpochs, the loss filed

1o exhibit any further reduction, we made the informed decision to conclude the training

in loss indicates that the model has likely reached its. optimal training state. Further iterations
would carry the potential risk of overfitting. Employing this approach, our DNN Model
<uccessfully completed it training after the 200th epoch in our most promising experiment.

2. Bateh-size: The batch size denotes the number of data samples processed together during
each training iteration. In our series of experiments, we systematically varied batch sizes,
ranging from § 0 125, and found that a batch size of 64 emerged as the most optimal choice
for both our DNN, CNN and TL-DNN (transfer Learing DNN). Importantly, the prefercrice
for a batch size of 64 aligns with our dataset’s substantial nature, encompassing over 10,000

features. In this context, larger batch sizes expedite tr 2 the risk of

ing while




2

thereby fe formance
evels, Consequently, we have opted for a batch size of 64 inour best experiments, balancing

etween computational efficiency and model accuracy-

3. Dropout: s a regularization technique where, for cach layer, & fraction of neurons

(represented as a percentage) are random P

In our experiments, which encompassed DNN, CNN, and transfer leaming models, we
mplemented a 20% dropout ate for each layerin the DNN and a 30% dropout rate in the
NN, These dropout racs emerged as the most suitble choices through systematic
experimenttion, where we tesied a range of values from 0 dropout to 90%. This 20/30
percent dropout straegy cnhances our model's performance by introducing an clement of
‘ncertanty during trsining. It discourages the network from rlying 100 heavily on specific
ncurons, promoting the leaming of more robust and generalized features. By preventing

overfiting it allows our models fo bt adapt to new, unseen datd, ulimately improving

their abil ke accurate pr

4 Optimizer function: The optimizer function plays & crucial role in adjusting weights to
‘minimize eror ates, Our study utlizes the Adam optmizer ith i learning rate of
0,001 to Deep Neural Networks (DNNs) and Convolutionl Neural Networks (CNNs) and
pre-trained DNN used in ransfer leaming cnsures stable and efficient fine-tuning for new
usks. This approsch acceleraes convergence, prevents ovely slow leaming rates, and

mitigats the risk of overfiting, esulting in improved and quicker model adaptation.

S Activation Funetion: Inour neural network,we deliberaely chose 0 employ the Rectified

Linear Unit (ReLU) activation function for all hidden layers due 1o its computational

A W its ability ishing g Jlem, thus allowing the model
1 effecively capture complicated patterns and advanc the taining Proces® For the output
Jayer, we made a deliberate choice o utlize the sofimax activation function. This selection
was made to transform raw scores info a probability distibutor, which is particularly
beneicial for tasks involving multi-lass lassfication. I enables us (0 obtain interpretable
and probabilisti class predictions, aiding in the straightforward identification of the most

likely class among several possibilties

Ovenall, the DNN methodology outperformed the CNN and TL method in key areas,

including training time, accuracy, and several asscssment Crteri These results suggest that



B

as an effective solution for android malware detcction. The
ctin Figure 4.4, Figure 4.5 and Figure 4.6.

the DNN model holds promi
confusion metrics of them three models depi

Figure 4.5: CNN Confusion Matrix



Figure 46: TL Confision Matrix

42. Robustness and Sensitivity Analysis:
In this section, we evaluate the robustness of our Android malware detection model by
sensitivity Analysis. We obtain significant insights about our model's robustness and

adaptabiliy by applying it o diverse sitations and analyzing its performance under differed

settings. hedding
Jight on the models stability and effectiveness across gifferent scttings. Through these
analyses, we gain  decper undersanding of the models capabilides and uncover important

considerations for its deployment in real-world scenarios.



4201, Sensitivity Analysis by unbalancing the datasct:
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Figure 4.7: Count of samples after unbalancing

We conducted @ sensiivity analysis by changing the dataset from balanced to
nbalanced. For the purpose of our analysis, we deliberatcly introduced an element of
Tandomness into the dataset by randornly excluding certain APKS, leading 0 an intentionally
e batanced dataset, The Figure 4.7 below visually epresents his daaset, where cach class is
oo by a numerical epresentation. n the adjacent colums. we provide the speific count
O APKs included in this analysis for cach respecive class. This analysis aimed (0 assess the
‘performance of our DNN model und i i ined
from this sensitivity analysis are shown in Table 44

Table 4.4: Results of sensitivity Analysis by unbalancing the datasct

Confusion Matrix Figure 4.8

The sensitivity analysis results demonstrate theresilience and adaptabilty of our DNN model
1o unbalanced datasets, Despite the inherent challenges associated with uneven class



%

distributions, our model maintained high accuracy, precision, recall, ROC and AUC, and FI
score, This underscores the effectiveness and reliabiliy of our approach in detecting and
clasifying android malware instances, regardiess of the class distribution challenges. As it

shown in the tabular form in Table 4.4.

4212, Cross Validation

In addition, we also conducted a sensitivity analysis results of our DNN model by
changing the test and ran splitsto 80% for testing and 20% for training. The analysis focuses
on key metris such as epoch, training time, los, accuracy; presison, recall, ROC and AUC,

F1 score, and confision matrix. In Table 4.5 20% and 80% split results are shown.

Table 4.5: 20% training and 80% testing split:




“The sensitivi the DNN i it

in malware detection, even with a reduced trai

the challenges posed by

\g data size. Despit
i all, and F1 score,

howeasing ts capability o effctivly identfy and clasify android malware insances. This
lustats the robustness and srength of our approach, ighlighting its potential forreal-world

applications.

4.3. Discussion of Findings:

this section, we interpret f i his

the context of feature analysis, and discuss the insights
and conclusions drawn from the findings. Additiorally, we address any unexpected or

interesting observations and their implications.

Our comparative analysis between the DNN, TL and NN models revealed several
ignificant fndings. Firsly, in terms of training time, the DNN model ouperformed the NN
model, requirng only $3.33 minutes compared to the CNN model's 2 hours and 53 minutes
‘whereas TL model requires § minutes. While our results undeniably showcase that Transfer
Leaming (TL) achieved comparable performance with just 0 epochs and a mere 3 minutes of

nining, it imperaive to cmphasiz that transfer learing is an augmentation 10 the training
{ime and epochs intaly considered by the pre-trained Deep Neural Network (DNN). This

that the DNN model provid time-cf for Android

malware detection when compared o the additional training time and resources required for
vansfer learning. Morcover, the DNN model achieved higher accuracy, with a rate of97.62%,
surpassing the CNN model's accuracy of 96.44% and TL model's accuracy is 94.45%. This

suggests that the DNN model excels in accurately classifying Android appl

us or benign.

The AUCROC scores for these models were quite high, with the DNN ‘model
achieving a score of 0.98 and the CNN model achicving 0.97 and TL. model achieving 1.00.

instances, further validating their effectiveness in detecting Android malware and zero-day

attack



98

I I i i -, both models

performed comparably in terms of recal, precsion. and FI sore, showcasing their robustness

i capturing true positives, false positivs, and achicving a balanced performance.

4301, Statistical Analysis:
P-Value Analysis of Analysis of Model:
We perform statstical analysi using p-value to assess the significance of observed

Gifferences between models. This analysis helped us understand whether the observed

variations in model perform: @ W w il test
and chivsquare test using a significance level (alpha) of 0.05. The results yielded significant
evidence to eject the ull ypothesis based on both tests. Ths indicates that the DNN model
exhibits a satistcally significant abilty to detect malware. Furhemmore, the validation

accuracy of 83.56% fur £HO and he DNN

model is effctive in identifying mabware. These findings emphasize the potential practical
alu of the DNN model in combating malware threats and provide compelling evidence for

its inclusion in malware detection systems.

P-

alue Analysis of Analysis of Dataset:

1 this rescarch paper, we delve into a rigorous statistcal analysis of our datascl,

pl erful tool
distinet tests designed to unveil the relationship between the dataset columns and the malware
label column.
Test 1: Top 50 Correlated Columns, For our initial examination, we. picked the top
i i 1 column. These

<olumns were chosen based on their potental significance in understanding the
presence of malware in the dataset. Following this selection, e subjected these
columns to the Chi-Square test, a statistcal method known for its ability to assess
independence between categorical variables. Surprisingly,the results of this first
st revealed zero instances of test failures, signifying the robustness of the
correlations identified.

Test 2: All 10,523 Columns Our second test extended the analysis 10 encompass

4l 10,523 columas within the dataset, individually paired with the malware label

column. This comprehensive approach involved the exccution of a total of 10.523



out[15]

%

cl

‘malware label column. Impressively, out of these tests, 8819 successfully passed a5
i :

quare tests, each assessing the i d the

shown in Figure 4.9,
he presence of malware. However, the remaining 1,704 tests resuled in failures
which s shown in Figure 4.0 Failed P-Value Analysis, highlighting the
complexity and diversity of factors present in the dataset.

Column _P-value TestPassed
° FEATURE 0000000 Troe

3 FEATURE android hardware LOCATION 0000525 Trve

4 FEATURE-androld hardware audio low_latency 0000000 True

s FEATURE android nardware audio pro 0000525 True

. FEATURE androia hardware autofocus 0.000002 True
10818 recever_enabledtrue 0,000000 Tre
10818, usesCleartextTrafic_ 0000000 True
10820 usesCleartextTrafic_faise 0.000000 Trve
10821 usesCleartextTrafic_true  0.000000 True
0822 Actvity Count 0.000000 True

8819 rows x 3 columns

Figure 49: Passed P-Value Anlysis

Colmn Pvalue TestPassed

... e e
T FEATURE. ancro permision AGCESS_WIF_STATE 0530262 Fase

2 FEATURE androia naraware Camera 050262 Fase

™ FEATURE: ancro narcwaresensoc barometer 0821718 Fae
» FEATURE anoia naraware sensorgnt 0621718 Fane

% ~FEATURE androia naare sensox ey 0821719 Fase
10508 receneracn Hexpert recever ApkRecener 0330252 Fase
10808 recenerxcxin Mexpert recenes MedaReceiver 0530262 Fase
feceerxcin Sesper wiapl AppREDSter 0390262 Fae

receer_enabied @pooinaskaal 0830262 Fase

10816 ecenver_enatied GUONRIEKTKaL 0520252 Fase

1704 rows x 3 columns

Figure 4.10 Failed P-Value Analys



CONCLUSION

In this chapter, we present our conclusions. We proposed a deep leaming-based
approach for addressing the security concens associated with Android-based applcations,
specificlly focusing on malware deteston. It worth noing that while Deep Neural Networks
(DNNs) have been explored in this domain previously, our algorithm represents a sgnificant
advancement. Our model exhibits the caps

ity to process a substantial 10,524 features as
{nput dats, a considerable leap beyond the fimitaions of prior DNN models, which typically
accommodated a maximum of 350 features, Our proposed detection method is intended t0 be
effective and scalable, and protect against complex multi-threats and attacks. Transfer

Learning, Convolutional neur

combat the i by In essence, this
chapter highlights our commitment to enhancing Android security. We aim (0 protect users

from malware effectively while kecping our approach adaptable to evolving threats.

contain more number of feature and more number of classes and benchmark deep leaming
algorthms. The resuls obiained from the evaluation process are igorously valdated.
providing clear and unbiased insights into the systent's performance. We employ various

Recall, F1 score, Confusion Mat AUC (Area Under

the Curve), ROC (Receiver Operating Characteristic), P-value analysis 1o assess. the
effectiveness of our multi-threat malware detection techniques, considering both detection

accuracy and time efficiency.

We gained substantial insights into the robustness and adaptabiliy of our model

(hrough its application in various scenarios and subsequent performance analysis under

different settings. Our investi Falterations in
distribution has illuminated itions. These

comprehensive analyses have provided us with a profound comprehension of the models
capabilties and have revealed crucial insighs fo s pracical implementaton in real-world
situations. The experimental results demonstrate. that our approach achieves high detection

accuracy with DNN while maintaining efficient processing times. The deep neural networks




(DNN) rain model give accuracy of 97.62%, Whereas we also apply Convolutional neural
networks (CNNs) yields an aceuracy rate of 96.44%, underlining the robustness of our
approach in tackling complex malware threats. Even in the case of Transfer Leaming (TL).
where the accuracy rcaches 94.45% with an additon of detecting zero day attacks alongside
he othe 12 malware families we considered. This highlightsthe profiiency of our ystem
addressin the complex challengs posed by muli-threat malware and detecting the zero-day
attacks in Android environmens

as a future work, we plan o exceute the same incorporating develop and make public

Jarge datasts so that the research fratenity may benefit and develop more robust models for

» work to
cuting-edge antivirus software or productiviy tools for the market. This proactive approach
srve the broader audience by exhancing thei digital security and productvity as well 5 sive
benefit to the researchers. By bridging the gap between academic research and practical
applications, we aim to make @ meaningful impact in the cybersecurity and productivity

software industris, ltimately contributing t a safer and more effcient igital ecosyS(cr-
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