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ABSTRACT 

 
 

Thalassemia, which is a hereditary blood disorder that impacts millions all over the 

world, require early identifying of carriers for reduces its prevalence and the associated 

complications. Carriers, even though they often don't show symptoms themselves, may pass 

the genetic mutation to their children, potentially causes thalassemia in future generations. 

Detecting carriers at an early stage allowing for important interventions like genetic 

counseling, family planning, and education on thalassemia risk. 

In recent time, machine learning algorithms have become valuable tools in healthcare, 

capable to analyzing large datasets for predictive insights. This thesis aims for exploring the 

use of machine learning to identifying thalassemia carriers based on Complete Blood Count 

(CBC) results. The project involves data collections, preprocessing, feature selections, and 

model training. Specifically, we prioritize features which are most relevant to thalassemia 

detection, including utilizing the Mentzer index. Our approach uses the Random Forest 

Model for the detecting of thalassemia carriers. 

Model performance will be evaluated rigorously using appropriate metrics for 

reliability and accuracy. The outcomes of this studies hold the potentials to significantly 

contribute to the field of thalassemia diagnosis’s and managements. Through developing an 

accurate and efficient machine learning model based on CBC results, clinicians and 

researchers will gain valuable insights that could improves patient outcomes and inform 

future researches and treatment strategies. That research could ultimately lead to better-

targeted interventions and personalized cares for individuals affected by thalassemia. 

 

Keywords: Genetic counseling, Complete Blood Count (CBC), feature selection, Mentzer 

index, Random Forest Model,patient outcomes, personalized care. 
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CHAPTER 1 

 

 
 

INTRODUCTION 
 

 
1.1. Background 
 

Thalassemia is a hereditary blood disorder characterized by abnormal 

hemoglobin production, which can result in insufficient red blood cell formation and 

subsequent anemia. It poses a very significant global health concern, affecting millions 

worldwide. In many different countries, including Pakistan, there are reports showing 

that blood disorders like thalassemia are on the rise. 

 

Table 1-1 Comprehensive Overview of Thalassemia Statistics in Pakistan 
 

Parameter Value 

Estimated Population of Pakistan 225,633,392 (225 million) 

Frequency of β-thalassemia trait 5.0-7.0% 

Estimated number of carriers >10 million 

Number of children diagnosed with β-

thal major/year 

~5,000 

 

The above table indicates that Pakistan, which is estimated to have 225,633,392 

(225 million people) population, is facing a huge disease burden of β-thalassemia. The 

frequency of β-thalassemia traits is between 5.0 - 7.0%; 10 million or more carriers have 

been estimated across the nation. Annually, 5,000 kids are officially diagnosed with 

major β-thal more emphatically illustrating the size of the problem. This poses a great 

challenge to health care system that mostly depends on blood transfusions to control the 

disease. 
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The high rate of thalassemia is often a result of inadequate genetic counseling 

and prenatal screening [1]. Limited access to these services may aggravate the cycling 

of thalassemia from one generation to the next [2], emphasizing the importance of 

general population genetic education and screening programs. The lack of proper 

intervention may lead to increased workload for affected individuals and families [3], as 

they attempt to manage the disease as well as its effect on quality-of-life. 

 

Thalassemia is usually only identified after birth, with noticeable symptoms 

appearing. However, delaying diagnosis until a child is about two years old can cause 

serious risks as urgent treatment is vital [4]. With regards to its clinical course, 

thalassemia encompasses the forms of thalassemia major, thalassemia minor or trait, and 

thalassemia intermedia [5]. The way the condition is classified represents the severity 

and clinical presentations, with thalassemia major serving as the most severe form that 

requires regular blood transfusions and complex medical treatment. This form of the 

disease, known as thalassemia minor or trait, is usually characterized by milder 

symptoms [6] and can be found unintentionally during routine blood tests. Thalassemia 

intermedia is an intermediate type [7], high in symptoms but low in manifestations and 

may necessitate regular transfusions or other supportive measures. Thalassemia major 

calls for lifelong blood transfusions, while thalassemia intermedia may necessitate less 

frequent transfusions. Conversely, thalassemia minor patients do not need transfusions 

but carry the thalassemia trait [8]. 

 

Early discovery and precise diagnosis of thalassemia are pivotal for prompt 

action and effective management. It's crucial to emphasize the considerable risk posed 

to offspring born to thalassemia carriers. When both parents are carriers, there is a 25% 

chance that their child will inherit thalassemia major, requiring lifelong management, 

frequent blood transfusions, exhaustive medical care, and significant emotional and 

financial strain on the family. 

 

In countries like Pakistan, where the average number of children per woman is 

four, the impact of thalassemia is notably pronounced. Carrier couples confront the 

challenging reality that, on average, one of their offspring will be born with thalassemia. 

Therefore, there is an urgent need for increased awareness about thalassemia prevention, 
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 genetic counseling, and prenatal testing. Providing accurate information and promoting 

family planning options can empower individuals and couples to make informed 

decisions about family size, thus decreasing the incidence of thalassemia in future 

generations. 

 

In recent years, machine learning algorithms have emerged as potent tools in 

healthcare for automating and enhancing disease detection and diagnosis. These 

algorithms can analyze large datasets, identify patterns, and make predictions based on 

input data, such as Complete Blood Count (CBC) results. Leveraging machine learning 

techniques can boost thalassemia detection, enabling early identification and providing 

valuable insights for clinicians and researchers. 

 

Research hints that most thalassemia patients have a shorter lifespan, 

approximately around 25 to 30 years. However, with appropriate medical care and 

support, their lifespan can be extended to approximately around 60 years. Proper 

medication plays a crucial role in increasing the life expectancy of thalassemia patients. 

Thalassemia can also cause abnormalities in bone structure, further impacting patient 

health. Heart-related issues, especially in beta thalassemia major cases, can be life-

threatening and may arise before reaching the age of 30. Thus, early prediction and 

treatment are key to ensuring timely intervention and the necessary care to enhance 

patient quality of life [9]. 

 

Aside from medical challenges, thalassemia patients in Pakistan also face social 

stigma and psychological burdens due to limited awareness and misconceptions about 

the condition. This can lead to discrimination and social exclusion, significantly 

affecting overall well-being and quality of life. Therefore, efforts should be made to 

educate the public, reduce stigma, and promote inclusivity for thalassemia patients. 

 

Furthermore, addressing the economic burden faced by thalassemia patients and 

their families is crucial. The costs associated with regular blood transfusions, 

medications, and supportive care can be substantial, straining household finances and 

impeding access to necessary treatments. Government initiatives offering financial 

assistance, health insurance coverage, and support for thalassemia treatment are 

essential to tackle these economic challenges. 
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Premarital screening and genetic counseling are vital components of thalassemia 

prevention in Pakistan. Carrier couples have a higher likelihood of having children with 

thalassemia major, underscoring the significance of comprehensive premarital screening 

programs and genetic counseling services. These services aid individuals in making 

informed decisions about their marriage partners, lessening the risk of transmitting 

thalassemia to future generations. Raising awareness about genetic testing and 

encouraging screening before marriage are fundamental steps in preventing thalassemia. 

 
 

1.2. Impact of thalassemia: 
 

Thalassemia, it's a blood disorder. It matters a lot to doctors and health workers. 

Knowing how big thalassemia is for us can help a lot. We can catch it early, tell people 

about it, and take good care of those who have it. The sickness touches more than the 

ones who have it. It changes the lives of families, friends, and everyone else. By 

grasping its effects, we see it's more than a health issue. It's also about our lives, money, 

and minds.  

 

Thalassemia, a blood illness that's in our genes, matters big time in health and 

care. Seeing its big role is a must. This way, we can spread the news, catch it sooner, 

and care better for those with it. Thalassemia isn't just a health issue, it has a big 

financial impact too. The expenses it brings. for example, doctor appointments, tests, 

and lifelong treatments, can really hurt a family's finances. When you add in indirect 

costs, like being less productive and job and schooling issues, the burden grows. There's 

also a larger social issue. Many people don't understand thalassemia. They may have 

wrong ideas and even discriminate against people with the disease and their loved ones. 

It's important to work on changing these views and getting better acceptance. This way, 

we can create a more supportive environment for those affected by thalassemia. 

 

Thalassemia's existence proves the need for genetics-based guidance and plans 

for families. By teaching people about thalassemia's inherited traits and advising them 

on family growth, we equip them to decide wisely about their reproductive health. With 

pre-pregnancy checks and counseling, couples can figure out if they're likely to pass the 

disease to their babies. This aids in future prevention and handling of thalassemia. 
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Figure 1-1 (Haque, 2022) The Impact of Thalassemia: Understanding its Broad and 

Significant Effects 

 

To sum up, thalassemia is more than a diagnosis or treatment. It touches 

individual health, family peace, society views and even public health plans. Knowing 

and tackling the many issues that thalassemia brings is key to improving affectee's life 

quality and reducing its far-reaching impact on society. 

 
       1.3. Identifying the Problem Area 

 
This section tackles the challenge of using machine learning to spot thalassemia. 

Three main issues block the path to accurate detection. The first is the limited use of 

machine learning in using Complete Blood Count (CBC) results. Next, we don't know 

which CBC parameters hint at thalassemia. Finally, few have studied how to pick the 

right features for thalassemia detection with machine learning. 

 

       1.4. Research Motivation 
 

The motivation behind this research is that we need to fill an existing gap 

between thalassemia diagnosis and detection, particularly using the highly accurate 

machine learning techniques that rely on the essential results of Complete Blood Count 

(CBC). Even though CBC is a standard procedure in clinical practice, we haven't fully 

explored the opportunities it brings to improve the understanding of thalassemia. We 
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can substantially increase the sensitivity and specificity of the diagnosis by determining 

certain CBC parameters or their joints that reliably indicate the presence of thalassemia.  

 

Moreover, research on characteristic choosing ways for CBC reports in 

thalassemia diagnosis enhanced by machine learning algorithms is not yet available. 

CBC data can be enhanced by applying feature extraction and selection methods, which 

will, in turn, boost the precision of diagnostic models. As a result, our study is intended 

to fill these gaps and add to the development of more accurate and specific diagnostic 

techniques for thalassemia. 

 

1.5. Problem Statement 
 

Develop a predictive model to identify individuals who may be carriers of 

thalassemia based on their Complete Blood Count (CBC) reports. It is a genetic blood 

disorder characterized by abnormal hemoglobin production, leading to anemia and other 

health complications.  

 
1.6. Research Questions 
 
RQ 1: How to do data annotation and labeling? 

 

RQ 2: How does ML approaches and features in the thalassemia detection model 

impact diagnostic accuracy 

 

RQ 3: If the parameters like Mentzer Index, using MCV and RDW parameters, 

contribute to the thalassemia diagnosis? 

 
1.7. Thesis Objective 
 

The aim of this research is to transform thalassemia diagnosis and treatment 

techniques, and handle the existing problems within the health services. With healthcare 

emphasizing precision and reliability in diagnosis, the existing shortage of specialized 

medical professionals and the high costs associated with testing amplify the necessity 

for accurate detection methodologies. Moreover, there is an increase in cases of 

thalassemia as a result of consanguineous marriages which makes it necessary to have 

efficient detection strategies.  
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This study attempts to blaze new trails such as automated detection models and 

affordable diagnostic solutions to mitigate these challenges. The broader objective is 

therefore on raising patient care standards, reducing healthcare disparities and easing 

burdens on individuals as well as health systems managing patients suffering from 

Thalassemia. In doing so, we hope to redefine paradigms of Thalassemia diagnosis and 

treatment that shall lead ultimately to better patient quality of life together with 

healthcare outcome. 

 

1.8. Contribution to the field and future directions 

 
In the course of the study the Mentzer Index and the Random Forest models are 

displayed for improving thalassemia diagnosis. These studies have remarkably resulted 

in obtaining new diagnosticians to thalassemia using the approaches. The application of 

Mentzer Index, together with the help of machine learning methodology, brings a new 

level of accuracy and productivity for diagnostics in this field. Although the approach is 

limited by the specific datasets used and the need to generalize it for more applications, 

this method still holds significant potential in driving future data analysis. In the future 

research, collections of bigger as well as more diverse datasets should be taken into  

account. More attention should be also given to the machines that integrate machine 

learning with legacy methods. To achieve this, we will target these obstacles and, in the  

process, assist in the diagnosis of thalassemia that will in turn enhance the patient 

management operations. 

 

1.9. Outline of this thesis 
 

      The organization of this paper is as follows: Chapter 1 “Introduction” section 

includes the introduction of the study. Chapter 2 “Literature Review” section 

summarizes the related works on embedding techniques. Chapter 3 “Research 

Methodology” section explains the whole methodology of this study. Chapter 4 

“Classification Techniques” section shows different techniques used. And Chapter 5 

“Results and   Evaluation” section   shows   the   results   obtained.   Finally,   Chapter 6 

“Conclusion” section highlights the key findings and conclusion of this study.
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CHAPTER 2 

 

 
 

LITERATURE REVIEW 

 

 
This part of the research paper is the introduction and presents about the earlier 

research that has been done in this field. In a literature review, conducted for this 

research, we have established a number of studies which have applied machine 

learning and artificial intelligence (AI) methods for the purposes of diagnostics and 

detection of various types of blood-related issues. 

 

2.1. Application of Machine Learning Models on Complete Blood 

Count (CBC) Reports 

 
 Fu, Y.-K. et al. In 2021, [11], in-depth research was done on the informational 

capability of AI models mainly considering SVM to monitor essential blood 

parameters including Hb, RBC, MCV, MCH, MCHC, and RDW to distinguish 

between positive and negative patients. The work has revealed the high accuracy result 

of 95% on the testing dataset by using ROC curve analysis in us to measure model 

performance. 

 

Besides that, a survey in 2007[12] was done. Yousefian, Fatemeh et al testing 

the ability of detecting blood figures like RBC, HGB, MCV, and HTC using SVM and 

KNN, the artificial intelligence models. In this study, the perception achieved was 

88.89% for SVM and 85.19% for KNN, which have proved that AI is able to identify 

some condition by the features of blood. 
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Another study in medical science 2020 [13] E. R. Susanto et al addressed the 

implementation of the AI models such as Fuzzy C Mean on the characteristics of 

blood components like HGB, MCV, and MCH. The index metrics of precision, recall, 

and accuracy scored very high, with precision at 99%, recall at 96.6%, while accuracy 

was at 96.5%. 

 

Additionally, yet another conference dated 2022 [14] A. Devanathet al 

portrayed the recognition of diverse blood elements through the use of AI models 

among them LR, KNN, SVM, DT, and NB. These models achieved an impressive 

accuracy of 97% and also did very well in the measures of precision, recall, and F1 

score, which demonstrated their robust performance in the classification task of 

predicting or not a certain condition. 

 

A recent study published in 2023 [15] Saleem M et al investigated feature 

selection techniques for thalassemia detection, analyzing blood parameters such as 

MCV, PCV, MCH, MCHC, RDW, PLT, TLC, and HGB. Machine learning algorithms 

including KNN, DT, GBC, LR, AdaBoost, XGB, RF, LGBM, and SVM were 

evaluated on a dataset comprising records from 6000 patients. Among these 

algorithms, SVM emerged as the top performer with an accuracy, recall, and F1-score 

all above 90%, emphasizing the efficacy of machine learning approaches in improving 

thalassemia detection. 

 

Collectively, these studies underscore the growing role of AI and machine 

learning in analyzing blood parameters for accurate detection and diagnosis of various 

medical conditions, highlighting the significance of feature selection and algorithmic 

performance evaluation in achieving reliable results. 
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Table 2-1 Reviewed Research Work on Machine Learning Techniques Applied to 

Complete Blood Count (CBC) Reports 
 

Ref. Year Techniques / Method / Model Results 

[11] 2021  SVM (Support Vector Machine)  SVM performed best with                                                              

 (ROC=95%)  

[12] 2017  SVM (Support Vector Machine), 

 KNN (K-Nearest Neighbour) 

 SVM performed best with                             

 (Accuracy=88.8%) 

 KNN performed best with   

 (Accuracy=85.1%) 

[13] 2020  Not a AI Model something similar   

 to Fuzzy C Mean 

 Manual testing(Using 

 medical specialist) performed  

 best with (Precision=99% 

 Recall=96% 

 Accuracy=96%) 

[14] 2022  LR 

 KNN 

 SVM 

 DT(Decision Tree) 

 NB (Naive Baye's) 

 Algorithm performed best with   

 (Accuracy=97% 

 Precision=87% 

 Recall=97% 

 F1-score=93%) 
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2.2. Utility of the Mentzer Index in Thalassemia Screening and 

Diagnosis  

 

Muhammad Idrees et al did a  study in 2023 [16] on the Mentzer Index that 

was conducted at the Hematology unit of Hayatabad Medical Complex was designed 

to determine the sensitivity and specificity of the Mentzer Index when it comes to 

differentiating between beta thalassemia minor and iron deficiency anemia. This cross-

sectional study of 860 cases with hemoglobin concentration below 11 g/dL, 

demonstrated that the index, calculated as the middle corpuscular volume (MCV) 

divided by the count of the red blood cells (RBC), was a potent diagnostic tool. 

The examine discovered that the Mentzer Index displayed high sensitivity and 

specificity, with 56.86% of patients diagnosed with iron deficiency anemia and 

43.14% with a higher suspicion of beta thalassemia based on the index parameters. 

 

These results demonstrate the effectiveness of the Mentzer Index as a simple and 

accurate differential diagnosis between thalassemia minor and iron deficiency anemia 

and, therefore, aiding in the early diagnosis and confirmation of suspected cases by Hb 

Electrophoresis.

[15] 2023  K-Nearest Neighbors (KNN) 

 Decision Trees (DT) 

 Gradient Boosting Classifier  

 (GBC) 

 Linear Regression (LR) 

 AdaBoost, Extreme Gradient    

 Boosting (XGB) 

 Random Forest (RF) 

 Light Gradient Boosting Machine  

 (LGBM) 

 Support Vector Machine (SVM) 

 Algorithm performed best  

 with (Accuracy=93%  

 Recall=93% 

 F1-score=92%) 
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W. Siswandari et al. in 2019 [17] investigated the diagnostic capacity of the 

Mentzer Index in the prediction of beta-thalassemia carriers compared to Hb 

electrophoresis. Thalassemia diagnosis is usually accomplished by PCR or Hb 

electrophoresis, which are specialized technologies that may not be readily available in 

every hospital. The study obtained Mentzer Index odds ratio (OR) of 2.4 (0.5 - 11.5, 

CI95%) among 37 anemia patients at Prof. Dr Margono Soekarjo Regional Public 

Hospital. The sensitivity (Sn) is 0.36 while the specificity (Sp) is 0.81. Also, the 

positive predictive value (PPV) was 0.44, and the negative predictive value (NPV) was 

0.75. It implies that the Mentzer Index could provide a more straightforward and 

readily available alternative to the costly and specialized methods. Thus the index can 

serve as a useful predictor of beta-thalassemia carrier diagnosis. 

 

The research led by Dr. Shubhi Saxena et al [18] in 2020 was a retrospective 

observational study with 1236 patients to assess the diagnostic accuracy of the 

Mentzer index to distinguish between iron deficiency anemia and β thalassemia trait 

compared to HPLC. The results showed that out of 741 patients, 59.9% had iron 

deficiency anemia and 40.1% of the patients had β thalassemia trait. The Mentzer 

index was shown to be 89.0% sensitive and 87.9% specific for the detection of β 

thalassemia trait with the positive predictive value of 83.2% and the negative 

predictive value of 92.3%. The Youden's Index was 76.9%. This discovery emphasizes 

the usefulness of Mentzer index as screening tool particularly in poor countries like 

India where HPLC equipments may not be readily available. A HPLC validation is 

advisory in cases of doubt.
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Table 2-2 Exploring the Utility and Efficacy of the Mentzer Index as a Diagnostic 

Method:A Comprehensive Review of Research Findings 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ref. Year Techniques / Method Results 

[16] 2023 Mentzer Index Sensitivity:high 

Specificity:high 

Iron Deficiency Anemia 56.8% 

B-thalasemia 43.14% 

[17] 2019 Mentzer Index Sensitivity:36% 

Specificity:81% 

[18] 

 

2020 Mentzer Index Sensitivity:89% 

 Specificity:87.9% 

Iron Deficiency Anemia 59.9% 

B-thalasemia 40.1% 
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CHAPTER 3 

 

 
 

RESEARCH METHODOLOGY 

 

 
3.1. Proposed Methodology 

 
The study employs a systematic and robust research design to explore the research 

questions and accomplish the objectives. It is done according to the following:  

 

Data Collection: In this research, the dataset comprises CBC reports obtained from Al 

Zahra Hospital in Iraq, consisting of records from 500 patients. It’s important to note 

that the dataset. Initially lacked annotations for thalassemia classification. To address 

this, we sought Assistance from medical specialists for labeling purposes. Following 

expert annotation, the dataset was categorized into 350 records indicating the absence 

of thalassemia and 150 records indicating the presence of thalassemia. This meticulous 

labeling process ensured the integrity and accuracy of the dataset, enabling us to 

effectively train and evaluate our classification model.  

 

Feature Selection: Analysis of CBC reports aim at identifying significant features 

related to thalassemia like MCV, RDW, and newly derived Mentzer index. Statistical 

methods including correlation analysis are used in selecting informative features that 

give an all-round evaluation of possible indicators for detection of thalassemia. 

 

Model Development: Machine learning algorithms like decision trees, random forests 

or support vector machines are employed in coming up with automated thalassemia 

detection model. Input variables for this stage are those selected from the previous 

one. 

 



15 
 

Model Training and Evaluation: A part of the datasets is used in training the 

designed model while its performance is assessed using appropriate measures such as 

accuracy, sensitivity, specificity, area under receiver operating characteristic (ROC) 

curve. 

 

Comparison Results with Existing Features: The performance of the developed 

model with new feature is compared with existing features of CBC report, including 

HB, MCV etc. to assess its superiority in terms of accuracy and reliability. 

 

Validation and Generalizability: The developed model is validated using an 

independent dataset to assess its generalizability and robustness. 

 

 

Figure 3-1 Navigating Methodological Approaches: An In-depth Exploration of 

Methodology Steps 
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Figure 3-2 Unveiling the Layers: A Comprehensive and In-depth Exploration of 

Research Methodology 

 

The image above highlights the fact that data extraction starts with the 

procurement of appropriate data from trustworthy sources the dataset utilized in this 

research comprises records from Alzahra Hospital Iraq, consisting of data from 500 

patient records. The annotation and labeling process has been conducted by medical 

specialist Dr. Amina Risalat, with verification overseen by Dr. Hafsa Hashmi, both 

experts from the thalassemia center. Secondly, feature selection is performed by 
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investigating CBC reports to select significant features related to thalassemia, like 

MCV, RDW, and Mentzer index. The statistical techniques such as correlation 

analysis assist in identifying the informative features that are holistic and incorporate 

multiple thalassemia detection marks. Then, machine learning algorithms, including 

decision trees, random forests, or support vector machines, are implemented in order 

to create automated thalassemia detection model with input variables that are 

identified in the previous stage. Model training is done on part of the dataset and the 

evaluation is performed using measures like accuracy, sensitivity, specificity and the 

area under the ROC curve. The performance of the model with the new feature is then 

checked by comparing it with other features of CBC reports like hemoglobin (HB) and 

MCV, to identify the best one in terms of accuracy and reliability. Finally, the 

constructed model goes through a validation process with the help of an independent 

dataset to measure its applicability and strength. 

 
          3.2. Data Gathering 
  

In this research, we have assembled a dataset from Alzahra Hospital Iraq 

consisting of records from 500 patients, the dataset is publicly available at this link 

“https://data.mendeley.com/datasets/28s2bhdjfd/1”. The annotation and labeling of 

this dataset were meticulously carried out by medical specialist Dr. Amina Risalat, 

with verification overseen by Dr. Hafsa Hashmi. This dataset includes approximately 

500 Complete Blood Count (CBC) reports from both thalassemia and non-thalassemia 

patients, reflecting a concerted effort to gather comprehensive data for our research 

analysis. 

 

We followed the strict guidelines for keeping the data clean of any 

misinformation and patient’s privacy, all the data was anonymized. We did this for a 

diverse range of patients in all ages, from both genders. Patients with different clinical 

background were kept in mind to keep the diversity of our dataset so our findings can 

be representative. 

 

There are a total of 350 thalassemia patients whereas 150 are non-thalassemia 

patients. We made sure to keep patients from urban as well as rural areas in the count. 
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Figure 3-3 Mapping the Patient Landscape: A Detailed Exploration of Patient 

Distribution 

   
3.2.1 Dataset Variables: 

 

The data set consists of different variables, collected from Complete Blood 

Count (CBC) reports, except the Mentzer index, a new feature introduced specifically 

for identifying the thalassemia carriers. All of these variables are essential for the 

diagnosis of beta-thalassemia and other hematologic diseases. 

 

WBC: White Blood Cell count, reflecting the immune function. 

LYMp: The proportion of Lymphocytes, which are a type of white blood cell that are 

involved in the immune system. 

MIDp: The percentage of mid-sized cells in the blood. 

NEUTp: The percentage of Neutrophils, which is a type of white blood cell essential 

for fighting infections. 

LYMn: Absolute count of Lymphocytes. 

MIDn: Absolute number of Mid-sized cells. 

NEUTn: Absolute count of Neutrophils. 

RBC: Red Blood Cell count, which transports Oxygen to tissues. 

HGB: The concentration of hemoglobin that carries oxygen in the blood. 

HCT: Hematocrit, the volume fraction of red blood cells in the blood. 

MCV: The Mean Corpuscular Volume, which is the average volume of red blood 
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cells. 

MCH: MCH, or the average amount of hemoglobin in a red blood cell. 

MCHC: MCV is the concentration of hemoglobin in a given volume of red blood 

cells. 

RDWSD: Red Cell Distribution Width - Standard Deviation, which is an index of 

variability of red blood cell size. 

RDWCV: Red Cell Distribution Width - Coefficient of Variation, another coefficient 

of variation indicating variability in red blood cell size. 

PLT: Platelet count is necessary for blood clotting. 

MPV: Mean Platelet Volume, the average size of platelets. 

PDW: Platelet Distribution Width (PDW), an indicator of platelet size variation. 

PCT: Plateletcrit or the volume percentage of platelets in the blood. 

PLCR: Platelet-Lymphocyte Ratio, a calculated ratio that serves as an inflammatory 

marker. 

MI: Mentzer Index, calculated by division of MCV/RBC 

 

These variables collectively provide valuable insights into the hematological 

profile of individuals, aiding clinicians in diagnosing and monitoring various blood 

disorders, including thalassemia. The addition of the Mentzer index further enhances 

the diagnostic capabilities, enabling more accurate identification of individuals with 

thalassemia carrier status, thereby facilitating timely intervention and management. 

 

            3.3. Code Configuration 
 

First the Python and an Integrated development environment (IDE) should be 

downloaded and installed. Python can be found on the official website and you should 

select the most recent stable version that is compatible with your operating system of 

choice. After Python is installed, the next step is to choose your IDE (Integrated 

Development Environment) that will suit your needs and preferences. Top picks here 

are PyCharm, Jupyter Notebook, Visual Studio Code, and Google Colab. By having 

these platforms, programmers can use a user-friendly UI for writing, running, and 

debugging the code, which increases the development process efficiency and 

simplifies it. Then the development environment could be set and required libraries 
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and modules imported, as expressed below in the provided code snippet, to allow for 

data analysis and machine learning activities. 

We used a simple yet systematic method for the initial handling of the data as this was 

acquired. With the help of 'files.upload()' function of Google Colab, we uploaded the  

 

Excel file containing our data to our drive. Then we applied pandas to read the 

uploaded Excel file into a DataFrame. To be sure that the file is correctly handled, we 

pulled the file name using the keys in the uploaded dictionary. A preliminary view of 

dataset's first rows was presented using the 'head() method', which helped to 

understand the structure and content immediately. 

 

3.4. Data Preprocessing 
 

We developed crucial techniques to arrange the dataset for modelling and 

analysis. First of all, we did a careful examination for missing values within the 

dataset with 'isnull().sum()' method proving dataset completeness and reliability. Then 

a mapping technique was used, coding 'Yes' as 1 and 'No' as 0 to the categorical values 

of the 'Carrier' column. Such a transformation aids in later analysis and modeling, 

helping to incorporate the categorical data into machine learning. It was then ensured 

that the unique values in the 'Carrier' column were printed out in order to check the 

final success of the mapping, to ensure both consistency and accuracy in data cleaning. 

Such preparation stage is a prerequisite for later modelling of results ensuring high 

quality of research. 

 

          3.5. Feature Importance Analysis: 

 
The table below indicates the contribution of each feature to the accuracy of 

the model as a result of the feature importance analysis. Facets like Red Blood Cell 

Count (RBC), Mentzer Index (MI), and Red Cell Distribution Width - SD (RDWSD) 

are the most important variables in the discrimination of thalassemia patients from 

non-thalassemia individuals. Among others, these features offer useful information 

about the hematological changes linked to thalassemia, which reinforces their 

significance in the diagnostic algorithms. 
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Table 3-1 Unveiling Significance: A Comprehensive Examination of Feature 

Importance Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RBC (Red Blood Cell Count) 

In the model, red blood cell count has a major impact on predictions, as the importance 

score is 0.082231. It becomes clear that fluctuations in RBC count are key for 

identifying thalassemia patients from those who do not have this disease. 

 

Number Feature Importance 

1 RBC 0.082231 

2 MI 0.080460 

3 RDWSD 0.079362 

4 MPV 0.073993 

5 PLT 0.062940 

6 RDWCV 0.059381 

7 PLCR 0.049159 

8 MCHC 0.048593 

9 MCV 0.043527 

10 HCT 0.042994 

11 PCT 0.042193 

12 MCH 0.039369 

13 PDW 0.038219 

14 HGB 0.035785 

15 LYMn 0.035477 

16 MIDn 0.034773 

17 MIDp 0.033174 

18 NEUTp 0.032531 

19 LYMp 0.030442 

20 NEUTn 0.028590 

21 WBC 0.026807 
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MI (Mentzer Index) 

The Mentzer Index (MI) also makes a huge contribution to the model and it has a 

coefficient of 0.080460. This indicates that MI, which is a calculated parameter from 

RBC and MCV values, does a lot to help detecting thalassemia. 

 

RDWSD (Red Cell Distribution - SD Width) 

RDWSD (Standard Deviation of Red Cell Distribution Width) has a notable part, 

getting an importance value of 0.079362. Varying values of the RDWSD parameter 

can give an indication about the abnormalities in red blood cell size distribution, which 

help in diagnosing thalassemia. 

 

MPV (Mean Platelet Volume) 

MPV, which is the mean platelet volume, also is a crucial part of the model with a 

score of 0.073993. MPV represents a platelet size’s average in the blood and it is 

linked with thalassemia and other hematologic disorders. 

 

PLT (Platelet Count) 

Platelet (PLT) is one of the most important features of the model with an importance 

weighted score of 0.062940. A decrease in platelet count could indicate the presence 

of hematological disorders and hence the platelet count is a critical parameter in 

thalassemia screening. 

 

RDW-CV (Red Cell Distribution Width - CV) 

Red Cell Distribution Width - Coefficient of Variation (RDWCV) features in the 

model as well, ranked the third with the score of 0.059381. Differences in RDW, a 

metric of red blood cell size variability, arise from heterogeneity in red blood cells and 

could be indicative of thalassemia. 

 

PLCR (Platelet-Lymphocyte Count Ratio) 

Platelet-Lymphocyte Count Ratio (PLCR) contributes to the model significantly, and 

its weight is 0.049159. Changes in PLCR values may be an indication of systemic 

inflammatory disorders or blood related disorders such as thalassemia. 
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MCHC (mean corpuscular hemoglobin concentration) 

One of the important parameters (MCHC) has a score of 0.048593. MCHC values are 

an average of the concentration of hemoglobin in red blood cells, thus allowing for the 

detection of thalassemia-specific alterations. 

 

MCV (Mean Corpuscular Volume) 

Mean Corpuscular Volume (MCV) is an indicator in the model, and its value is 

0.043527. MCV determines the average cell volume of red blood cells and is increased 

in thalassemia patients. 

 

HCT (Hematocrit) 

Hematocrit (HCT) is a cardinal feature in the model with a rating of 0.042994. HCT 

gives the proportion of the blood volume occupied by red blood cells and is a marker 

of blood abnormalities which are the hallmark of thalassemia. 

 

PCT (Plateletcrit) 

Plateletcrit (PCT) plays a vital role in model's prediction with an importance score of 

0.042193. PCT serves as an indicator of the level of platelets and may be useful in the 

diagnosis of thalassemia. 

 

MCH (Mean Corpuscular Hemoglobin) 

Mean haemoglobin concentration (MCH) has a role to play with a score of 0.039369 

in the model. MCH acts as an indicator of the mean hemoglobin concentration in red 

blood cells, thus allowing for the detection of thalassemia. 

 

PDW (Platelet Distribution Width) 

Platelet Distribution Width (PDW) also takes an attribute in the model with a score of 

0.038219. Differences in PDW may signify platelet abnormalities linked with 

thalassemia and hematological disorders. 

 

HGB (Hemoglobin) 

Hemoglobin (HGB) is one of the main factors that affect the model prediction with a 
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score of 0.035785. Normal HGB levels play a key role in oxygen transportation and 

may signify the complications of thalassemia. 

 

LYMn 

Lymphocyte Count (LYMn) score equals 0.035477. Lymphocyte (LYMn) changes 

suggest immune system problems that can be associated with thalassemia. 

 

MIDn (Mid-Range Neutrophil Count - Absolute) 

The model contains MIDn, which is an important Mid-Range Neutrophil Count - 

Absolute (MIDn) with the score 0.034773. MIDns are markers of changes in the 

neutrophil count, which may be linked to the presence of systemic inflammation or 

infections in thalassemia patients. 

 

MIDp (Mid-Range Neutrophil Count - Percentage) 

Mid-level Neutrophil Count - Percent (MIDp) is one of the factors considered, having 

a score of 0.033174. MIDp values give information about neutrophils' distribution and 

function that may be affected in patients with thalassemia. 

 

NEUTp (Neutrophil Count - Percentage) 

Neutrophil Count - Percentage (NEUTp) is an essential feature of the model with a 

score equal to 0.032531. NEUTp stands for the amount of neutrophils in blood, which 

can be considered as a sign of inflammation or infection in thalassemia patients. 

 

LYM% (Lymphocyte Count - Percentage) 

Lymphocyte Count - Percentage (LYMp) is as significant as 0.030442 in the model. 

LYMp values are used for lymphocytes percentage in blood which gives an idea about 

immune system and perturbed functionality in thalassemia patients. 

 

NEUTn (Neutrophil Count - Absolute) 

Neutrophil Count - Absolute (NEUTn) is a feature that has a score of 0.028590 in the 

model. NEUT values corresponds to the absolute number of neutrophiles as they are 

extremely important in the immune function and can be used as a marker of infection 
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or inflammation in thalassemic patients. 

 

WBC (White Blood Cell Count) 

The model has an attribute named White Blood Cell Count (WBC) with a score of 

0.026807. WBC levels, which indicate the total number of white blood cells in the 

blood, provide information about the patient's immune functions and may indicate 

further abnormalities associated with thalassemia. 

 

These aspects individually contribute to the power of the model in the detection of 

thalassemia, thus showing their importance for precise diagnosis. 

 

         3.6. Model Implementation 
 

For model implementation we have used Random Forest Classifier, and fine-

tuned the hyperparameter values using Grid Search Cross-Validation. Then, we adjust 

the data set by applying the ADASYN (Adaptive Synthetic Sampling) method to deal 

with class imbalance precisely. This method simulates the training data for minority 

classes so that their distribution is equal. After that, the resampled data set was split 

into two halfs, 80% for training and 20% for testing. 

To enhance the Random Forest Classifier's output, we decided on a grid of 

parameters containing a number of hyperparameters, that is the number of estimators, 

maximum depth, minimum samples split, and minimum samples leaf. The Grid Search 

implementation was then followed by the application of Grid Search Cross-Validation 

as a means of searching through the parameter space and identifying the best 

combination of hyperparameters that yielded maximum model accuracy. The best 

hyperparameters obtained through the grid search were utilized to train a fresh 

Random Forest Classifier unit. 

Finally, hyperparameters were tuned and learned parameters were used to 

predict the test set for evaluation. This meaningful model implementation approach 

relies on the Random Forest Classifier being optimally predicted and applicable to 

unseen data. This ensures robust detection of thalassemia carriers with high accuracy 

rates. 
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This approach ensures that our model is fine-tuned to achieve the highest 

possible performance, resulting in accurate and reliable predictions for thalassemia 

carrier detection. 

 
         3.7. Classification Techniques 
 

Discussing different class of techniques used for classification, and each 

technique was unique in the way it handled different data dimensions. One main 

hurdle tackled was the fact that datasets were not always balanced, leading to distorted 

predictions. To address this, we opted for the Synthetic Minority Over-sampling 

Technique (SMOTE), a popular method for balancing class distributions by adding 

synthetic minority class samples. 

 

Before that, from the feature selection, we identified the importance of this on 

improving the model accuracy. Here we incorporated the Random Forest classifier 

into our approach. Renown for their ability to handle high dimensional data, Random 

Forests was instrumental in feature ranking and therefore the model construction and 

optimisation by identifying and ranking features based on their importance. 

 

With the dataset balanced and the key features identified, the next step was to 

fine-tuning the model to achieve the highest performance. Hyperparameter 

optimization was an indispensable part of this process. By the way of an exhaustive 

traversing of the hyperparameter space by means of grid search or Bayesian 

optimization, finally, we found out the best classifier setup achieving maximum 

accuracy and robustness. 

 

These methodologies were the base of our thesis and thus, we built a detailed 

framework for creating true classification models. This strategy tackled the issue of 

unbalanced data as well as the improved the model performance through the 

implementation of the right feature selection and hyperparameter tuning, contributing 

to advancements in the field of classification analysis. 
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            3.7.1. Label Encoding 

  
For our dataset preparation phase, we have incorporated essential techniques that 

will enable us to carry out modeling and analysis effectively based on the organized 

data. First, we conducted thorough investigation into missing values in the dataset 

through application of the 'isnull().sum()' method to ensure the data is complete and 

trustworthy. Therefore, we followed this step in order to base our analysis on a 

complete and reliable data. 

 

Following that, we employed a geocoding tool called label encoding, where we 

encoded 'Yes' as 1 and 'No' as 0 for the categorical values present in the 'Carrier' 

column. The shift was significant as it allowed for categorical data into our machine 

learning models. Through converting our categorical variables into numerical 

representations, we enabled our algorithms to use the data successfully. 

 

Also, to confirm the effectiveness of mapping, we printed out the only values 

in the 'Carrier' column. This step was of the utmost importance to make sure both the 

homogeneity and exactness of our data cleaning procedure would start our analysis 

and modeling on a strong side. 

 

Label encoding in data preprocessing plays a vital role. Transformation of 

categorical variables into corresponding numbers will facilitate the machine learning 

algorithms to better understand and discover the significant patterns among the data. 

This pre-modeling phase essentially lays the foundation for the final modeling of 

results with the aim of getting high-quality and accurate model output. 

 

            3.7.2. ADASYN (SMOTE) 

 
For the "Data Preprocessing" step, we implemented SMOTE (Synthetic 

Minority Over-sampling Technique) to overcome the class imbalance present in the 

dataset. This approach proves to be effective when the class distribution is unbalanced, 

which could be the case in this example when the number of samples from each class 

differs very much. As a result, the SMOTE algorithm from the imbalanced-learn 
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library was used to synthetically create new instances of the minority class 

(thalassemia carriers). Therefore, the dataset was balanced. The generated dataset 

which was composed of synthetic and real samples was then used for further analysis 

and modeling. To ensure the success of the SMOTE method, we showed the class 

distribution after resampling, verifying a more fair representation between thalassemia 

and non-thalassemia samples. This preprocessing step increases the accuracy and 

generalizability of the machine learning models by reducing the influence of the 

imbalanced data set on the predictive accuracy. 

 
As part of data preprocessing stage, we have split the resampled dataset into 

two parts, i.e. train and test to facilitate model training and evaluation. This stage is 

essential to evaluate our machine learning models on unseen data. Through 

sklearn.model_selection module’s train_test_split function, we randomly split the 

resampled dataset into training and testing subsets, in which 80% of the data was taken 

as training and 20%. We ensured reproducibility of the results by setting the 

random_state parameter. This split allows us to have our models trained on a subset of 

the data while retaining another portion for evaluation which offers an unbiased 

estimate of model's performance on unseen data. 

 

         3.7.3. Optimizing Model Performance through Hyperparameter Tuning 
 

In my exploration of classification tasks, hyperparameter tuning was the most 

valuable method that I found out to be efficient in the process of getting the proper 

model performance. During the process of training classifiers, I paid particular 

attention to the vital role that hyperparameters play in the learning process of 

classifiers, which I fine-tuned with great care in order to obtain the best results. With 

the use of more advanced optimization methods such as grid search and Bayesian 

optimization, I meticulously explored the hyperparameter space searching for the best 

combination of hyperparameters which corresponds to the maximum model accuracy. 

 

In this iterative process, Random Forest proved to be a very suitable algorithm 

for the classification tasks compared to others. Through thorough experimentation, I 

found a set of hyperparameters which generated tremendous results for my dataset. 
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The best performing Random Forest model was achieved with the following 

hyperparameters: {'max_depth': None, 'min_samples_leaf': 2, 'min_samples_split': 2, 

'n_estimators': 100}. These parameters, meticulously chosen through a series of 

experiments and validations, therefore greatly influenced the model's capability of 

depicting the intricate cycles and making precise predictions. 

 

Through adjusting hyperparameters including the maximum depth of trees, the 

minimum number of samples to split an internal node, and the number of tree in the 

forest, I tried to find a trade-off between model complexity and generalization ability. 

The optimization process was guided not only by the performance metrics of the 

model, such as accuracy, precision, recall, and F1-score, but also by the considerations 

of computational efficiency and model interpretability. 

 

As an integral part of this comprehensive optimization procedure, I was 

committed to guarantee that my classification models were precisely tuned and fully 

equipped to yield class-leading results on a heterogeneous set of datasets. This 

methodical approach not only reinforced the strength and validity of my research 

results but also underlined the key role of hyperparameter tuning as a pillar of 

successful machine learning approaches. 

 

            3.7.4. Incorporating Mentzer Index 

 
The Mentzer index is a parameter used in medicine to help differentiate 

between microcytic anemia types, particularly iron deficiency anemia (IDA) and 

thalassemia trait. It’s calculated by dividing the mean corpuscular volume (MCV) by 

the red blood cell count (RBC). The formula is: 

Mentzer Index = M CV /RBC 

A Mentzer index of less than 13 suggests thalassemia trait, while a value greater than 

13 suggests iron deficiency anemia [16]. Thalassemia trait typically has small red 

blood cells (low MCV) but a normal or slightly reduced red cell count, resulting in a 

low Mentzer index. In contrast, iron deficiency anemia also causes small red blood 

cells but is associated with a decreased red cell count, leading to a higher Mentzer 

index 
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            3.7.5. Important feature Selection Technique 

 
We used the Random Forest Classifier to find out the most crucial features in 

the newly formed dataset. The classifier trained on the balanced dataset provided us 

with feature importances, which indicates the criticality of one feature in comparison 

to another in predicting thalassemia carrier status. The DataFrame containing the 

feature importances was then arranged in order of the most significant ones, using the 

descending order. Streamlining the subsequent analysis led to we selecting the features 

which importances are above the specified threshold, for example, =0.05. A concise 

list of features was then chosen from the resampled dataset to get a only the most 

important features for the subsequent modeling and analysis. Such feature selection is 

essential in fighting with the curse of dimensionality, enhancing model performance, 

and enabling a more focused review of the data set. 

 

 

Figure 3-4 Assessing the Impact of Key Features on Thalassemia Prediction
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As above graph describes the feature importance, you can clearly see from 

above that the Mentzer Index have highest importance after RBC. In this way we can 

select the most importance feature to train our Machine learning model. 
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CHAPTER 4 

 

 
 

RESULTS AND FINDINGS 

 

 
 
          4.1. Random Forest Classifier: 
 

Random Forest Classifier is greatly appropriate for our dataset since it can deal 

with both classification issues and data with numerous features at the same time. In 

light of the traits of our dataset that are characterised by a mixture of attributes 

obtained from CBC reports[12], the Random Forest classifier's composition of 

decision trees can be a perfect alternative for capturing the intricate connections and 

interactions between these traits. Moreover, the generated feature importance scores 

allow us to dig deeper into the key attributes that are most significantly relate to the 

screening of thalassemia carriers. This transparency of the feature importance helps in 

probing interpretability of the model’s predictions, which of course is crucial for the 

understanding hidden underneath of the factors that determine the classification in this 

specific domain. So, Random Forest Classifier is rightly adapted for assessing the 

thalassemia disease within our dataset that also throws valuable insights into the 

predictive factors. We have performance tested the model with a confusion matrix, 

which is visualized in the chart below. 

 
            4.1.1. Assessment of Model Using Confusion Matrix without Mentzer Index: 

 
In the case of our classification task, we used the confusion matrix to evaluate 

the accuracy of our model. The matrix is a complete summary of the model's 

predictions, which are differentiated as true negatives (TN), false positives (FP), false 

negatives (FN), and true positives (TP). 
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Figure 4-1 Performance Evaluation: Confusion Matrix Excluding Mentzer Index 

 

True Positives (TP): 

The model correctly classified 87 cases as true positives, meaning no errors 

were made in estimating thalassemia cases. This proves the model's ability to 

appropriately tag thalassemia carriers in the dataset thus being sound in classifying 

diagnoses. 

True Negatives (TN): 

In addition, its performance in terms of identifying true negative cases (i.e., 

non-thalassemia cases) reached 75% accuracy. This shows that the model is capable of 

distinguishing the individuals who do not have the disease, therefore, proving that it is 

accurate because it classifies both the negative and positive cases. 

False Positives (FP): 

On the other hand, there were 10 cases where thalassemia absent individuals 

were misclassified as positive (FP). Although these instances are considered 

misclassifications, they teach about locations where the algorithm can be improved, 

such as enhancing the specificity of their classification algorithm. 

False Negatives (FN): 

On a flipside, the model has highlighted a particular case of 3 false negatives, 
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where people with thalassemia were actually wrongly labeled as negative. These 

scenarios clearly illustrate why improving the model so that it can reliably identify all 

positive cases correctly is very critical to prevent the scenario when patients with 

thalassemia will be ignored. 

Interpretation and Implications: 

Consequently, the matrix of the confusion produces a general evaluation of the 

model that is successful in correctly classifying both positive and negative cases while 

also showing the model's weaknesses that can be worked on. This information can 

streamline the model’s predictive potential and thus, improve the model’s accuracy 

and trustworthiness in terms of the diagnosis of thalassemia and the direction of 

clinical decisions. 

 

4.1.2. Evaluation Metrics of the Best Random Forest Model without Mentzer 

Index: 

 

Accuracy: 

The accuracy of the top Random Forest model is 93%. Accuracy is a measure of the 

proportion of correct classification among the total number of predictions. 

Accuracy = (True Positives + True Negatives) / (True Positives + True 

Negatives + False Positives + False Negatives) 

where TP = 87 (True Positives), TN = 75 (True Negatives), FP = 10 (False Positives), 

and FN = 3 (False Negatives). 

Precision: 

The accuracy of the best Random Forest model is 90%. Accuracy determines the 

model's ability to correctly find positive among all instances that are predicted to be 

positive. undefined 

Precision=TP/ TP + FP where TP = 87 and FP = 10. 

Recall: 

The recall of the best Random Forest model is 96.67%. Recall, or true positive rate, or 

sensitivity, assesses the accuracy of the model on identifying all positive cases from 

the dataset correctly. 

Recall=TP+FN/TP 

where TP = 87 (True Positives) and FN = 3 (False Negatives). 
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F1 Score: 

The best Random Forest model F1 score is 93.05%. The F1 measure is a balanced 

performance metric of a model that considers both precision and recall.It is calculated 

as: 

F1 Score=2 * (precision * Recall)/(Precision + Recall).  

 

Table 4-1 Evaluating Thalassemia Prediction Models: Performance Analysis 

Excluding Mentzer Index 
 

Number Parameters 
Random Forest Model 
without Mentzer Index 

1 Accuracy 92.57% 

2 Recall 96.6% 

3 F-1 Score 93.05% 

4 Precision 89.6% 

  

Best Hyperparameters: 

The best performing Random Forest model was achieved with the following 

hyperparameters: {'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 5, 

'n_estimators': 200}. These parameters were determined through grid search 

optimization technique, maximizing the model's predictive accuracy and minimizing 

the overfitting. The choice of these hyperparameters notably emphasizes their 

importance in achieving the best model performance and as a result, the optimality of  

the model which in turn enables it correctly identify thalassemia carriers in the dataset. 
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Figure 4-2 Analyzing Model Performance in Thalassemia Prediction 

  without Mentzer Index 
 

 

4.1.3. Assessment of Model Using Confusion Matrix With Mentzer Index: 

 

For the purpose of performance assessment of our model in the classification 

task, we used the confusion matrix. The matrix is made up of the model's predictions 

in an exhaustive manner, highlighting TN (true negatives), FP (false positives), FN 

(false negatives) and TP (true positives). 

 

 

Figure 4-3 Performance Assessment: Confusion Matrix Including Mentzer Index 
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True Positives (TP): 

The model correctly classified 90 out of 100 cases as true positives which 

implies a correct prediction of thalassemia cases. This demonstrates that the model 

could efficiently recognize the thalassemia carriers within the dataset, presenting its 

credibility in disease classification. 

 

True Negatives (TN):  

Moreover, the model demonstrated 76 cases of correct positive cases, which 

were true negatives, implying the correct identification of non-thalassemia cases. The 

ability to differentiate non-thalassemic individuals shows the proficiency of the model 

in terms of classifying positive and non-positive cases. 

 

False Positives (FP): 

Though, in 6 instances the persons that didn’t have thalassemia were 

misclassified as positive (FP). In spite of the fact that these mistakes are 

misclassifications, they also provide grounds for the model to be refined, notably by 

increasing the specificity of the classification algorithm. 

 

False Negatives (FN): 

On the other hand, the model was comprised of 4 false negative cases where 

thalassemia carriers were wrongly classified as negative. These cases highlight the 

necessity of increasing the model's ability to detect even the slightest cases of THAL 

that would otherwise be overlooked by the system and hence the need to minimize 

false negatives. 

 

Interpretation and Implications: 

In sum, the detailed analysis given by the confusion matrix allows for an 

extensive evaluation of the model accuracy, which leads to better understanding of the 

model positive and negative cases while also tracking down the areas that need to be 

improved. Through these findings we are able to refine the model's predictive abilities 

and in the long run ensure the model accuracy and reliability when diagnosing 

Thalassemia and making clinical decision-making processe
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4.1.4. Evaluation Metrics of the Best Random Forest Model with Mentzer Index: 

 

Accuracy: 

The accuracy of the most accurate Random Forest model is 94.3%. Accuracy 

rate is the number of correctly classified instances out of the total number of 

predictions. 

Accuracy = (True Positives + True Negatives) / (True Positives + True 

Negatives + False Positives + False Negatives) 

where TP = 90 (True Positives), TN = 76 (True Negatives), FP = 6 (False Positives), 

and FN = 4 (False Negatives). 

Precision: 

The best Random Forest model achieved a precision of 93.75%. Precision indicates 

the proportion of true positives among all instances predicted as true.  

Precision=TP/ TP + FP in which TP is 90 and FP is 6. 

Recall:  

The best Random Forest model is recalled with 95.74%. False alarms, otherwise 

known as true positive rate or sensitivity, measure the model's ability to correctly 

identify all positive cases within the dataset. 

Recall=TP+FN/TP 

where we have TP = 90 (True Positives) and FN = 4 (False Negatives). 

F1 Score: 

The best Random Forest model has 94.74% F1 score. The F1 score provides a 

weighted measure of a model's performance since it considers both precision and 

recall. It is calculated as: 

F1 Score = 2 * (precision * recall) / (precision + recall). 
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Table 4-2 Analyzing the Effectiveness of Models in Thalassemia Prediction with 

Mentzer Index 
 

Number Parameters 
Random Forest Model 

with Mentzer Index 

1 Accuracy 94.32% 

2 Recall 95.74% 

3 F-1 Score 94.74% 

4 Precision 93.75% 

 

 

Best Hyperparameters: 

The best performing Random Forest model was achieved with the following 

hyperparameters: {'max_depth': None, 'min_samples_leaf': 2, 'min_samples_split': 2, 

'n_estimators': 100}. These factors were established through a grid search process, 

which optimized the model in terms of accuracy and avoiding overfitting. Tuning 

these hyperparameters gives stress on their significance in achieving best model 

performance, hence improving the model's accuracy in distinguishing the thalassemia 

carriers. 

 

 

 
 

Figure 4-4 Thalassemia Prediction Evaluation: Results Including Mentzer Index 
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          4.2. Results Comparison 
 

4.2.1. Impact of Mentzer Index on Random Forest Model Performance 

 

The table below compares the performance metrics of two random forest 

models; one with the Mentzer Index and the other without it. Throughout different 

evaluation criteria, the model wearing Mentzer Index proved to have better results. In 

this experiment, the accuracy of the model is enhanced from a 92.57% to a 94.32% with 

the presence of the Mentzer Index, revealing the model's improved predictive capability. 

Besides, the model with the Mentzer Index shows the F-1 score of 94.74% compared to 

93.05% stated by the other model. The difference implies higher precision and recall 

levels. Very importantly, precision significantly increases to 93.75% from 89.6% when 

we include Mentzer index in the model. This improvement again emphasizes the 

model’s proficiency in reducing false positives, which are critical for applications where 

the precision is very important. Besides a little lower accuracy of 95.74% in contrast to 

96.6% in the model without Mentzer Index, the overall efficiency in other metrics 

indicate that embedding the Mentzer Index improves the reliability and predictive power 

of Random Forest model. 

 

Table 4-3 Exploring Differences in Thalassemia Prediction Performance with and 

without Mentzer Index 
 

Number Parameters 
Random Forest Model 
without Mentzer Index 

Random Forest Model 
with Mentzer Index 

1 Accuracy 92.57% 94.32% 

2 Recall 96.6% 95.74% 

3 F-1 Score 93.05% 94.74% 

4 Precision 89.6% 93.75% 

  

 

4.2.2. Comparing Results with SVM 

 

The comparison between the Random Forest model and the Support Vector 

Machine (SVM) model, both incorporating the Mentzer Index as a parameter, reveals 

notable differences in their performance across key metrics. In terms of accuracy, the 

Random Forest model outperforms the SVM model with an accuracy of 94.32% 

compared to 84.57% for the SVM. This suggests that the Random Forest model is 
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better at correctly classifying instances overall. 

However, when considering the recall metric, which measures the ability of the 

models to correctly identify positive instances, the Random Forest model still 

maintains a higher value at 95.74%, whereas the SVM lags behind at 71.11%. This 

indicates that the Random Forest model is more adept at capturing true positive 

instances, especially crucial in scenarios where identifying positive cases accurately is 

paramount. 

 

Moving on to the F1 score, which balances the trade-off between precision and 

recall, the Random Forest model achieves a score of 94.74%, showcasing a 

harmonious blend of precision and recall. On the other hand, the SVM model, while 

performing relatively well, exhibits a lower F1 score of 82.58%. This implies that the 

Random Forest model achieves a more balanced performance across precision and 

recall, potentially indicating its robustness in handling imbalanced datasets. 

 

Lastly, examining precision, which measures the proportion of correctly 

predicted positive instances among all instances predicted as positive, the SVM model 

shines with a precision of 98.46%, surpassing the Random Forest model's precision of 

93.75%. This suggests that the SVM model excels in minimizing false positive 

predictions, crucial in scenarios where false positives carry significant consequences. 

 

Overall, while the Random Forest model showcases superior accuracy, recall, 

and F1 score, the SVM model demonstrates exceptional precision. The choice between 

these models would depend on the specific requirements of the application, with 

considerations for the relative importance of accuracy, recall, and precision in the 

context of the problem domain. 
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Table 4-4 Comparison of results with Support vector machine using Mentzer Index 
 

Number Parameters 
Random Forest Model 

with Mentzer Index 

SVM with Mentzer 
Index 

1 Accuracy 94.32% 84.57% 

2 Recall 95.74% 71.11% 

3 F-1 Score 94.74% 82.58% 

4 Precision 93.75% 98.46% 

 

 

 

4.2.3. Comparative Analysis with Prior Research Findings 
 

 

In my thesis, I have extremely highlighted powerful preprocessing techniques, 

feature selection, and innovative feature engineering to enhance the performance of 

classification models. Data preprocessing methods are rigorous and encompass data 

balancing techniques to address the issue of class imbalances and feature selection 

algorithms for finding discriminative attributes that are used for model training. 

Meanwhile, one of my research highlights is the integration of the Mentzer Index 

which substantially improved the predictive power of the model. Thanks to the 

implementation of the Mentzer Index and other traditional indices, I managed to take 

model predictions to the next level and outperform other research findings. This novel 

integration allowed the model to capture detailed relationships and going beyond the 

data, leading to greater predictive accuracy and reliability. 

 

It is important to acknowledge that individual components have contributed but 

the contribution is also from the synergistic effect of integrating various techniques 

such as preprocessing and feature engineering strategies. The holistic nature of this 

approach proves the critical role of taking into consideration all forms of data 

preparation and feature selection when aiming at the highest classification model 

efficiency. 

 

In general, the findings of my thesis underscore the viability of comprehensive 

preprocessing, feature engineering, and the integration of the Mentzer Index within 

thalassemia diagnosis models. The collaborative efforts undertaken in this study have 
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yielded a model that demonstrates superior performance, thus highlighting the 

potential of novel methodologies in advancing this field. However, it's imperative to 

acknowledge that comparing the results of two models trained on different datasets 

may not provide an entirely fair assessment. Nevertheless, in the absence of alternative 

datasets, this comparison serves as a preliminary exploration, laying the groundwork 

for further investigations. It's plausible that with the application of larger and more 

diverse datasets, the observed results could vary. Therefore, future research endeavors 

should aim to validate and build upon these initial findings, potentially uncovering 

nuances and insights that contribute to the ongoing refinement of thalassemia 

diagnostic techniques. 

 

 

Table 4-5 Exploring and Contrasting Thalassemia Prediction Results with Findings 

from Existing Literature 
 

Number Parameters 
Random Forest Model 

with Mentzer Index 

GBC Classifier With 
feature Selection 

1 Accuracy 94.32% 93.46% 

2 Recall 95.74% 93.89% 

3 F-1 Score 94.74% 92.7% 
 

 

 

The table above is the result of a comparative study between our Random 

Forest model with Mentzer index and the Gradient Boosting Classifier used by 

Saleem, Aslam, Lali, Rauf, and Nasr (2023), their study on predicting Thalassemia 

using feature selection techniques conducted a comparative analysis to evaluate the 

effectiveness of different methodologies [15]. It highlights important findings. Among 

the models, the Random Forest model enhanced with Mentzer Index outperforms the 

GBC classifier in precision, recall, and F1 score. With an accuracy of 94.32% against 

93.46% and a recall rate of 95.74% against 93.89%, our model surpassed the others in 

terms of predictive accuracy. Besides, we got 94.74% F1 score for our model which is 

higher than that of 92.7% obtained by the GBC classifier. These results prove the 

significance of integrating the Mentzer Index solution with the Random Forest model 

and illustrate its ability to detect subtle patterns within the data that will lead to a better 

predictive efficiency 
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CHAPTER 5 

 

 
 

CONCLUSION 

 

 
 

In this part of the study, we will sum up the outcome of the machine learning 

model we created for early thalassemia carrier identification. Through employing 

Mentzer index and mining CBC data, we built a Random Forest Model with very high 

precision in identifying carrier status. The validity of the model was checked with a 

great deal of testing, which provided hope for thalassemia diagnostics and treatment 

optimization. This trial certainly has the potential to revolutionize thalassemia 

diagnosis and treatment by providing better clinical care and understanding of the 

disease. 

 
5.1. Conclusion 

 
This thesis is intended to use machine learning in the detection of thalassemia 

carriers early, which is a crucial step for reducing the impact of this genetic blood 

disorder. Through CBC values analysis, we tried to develop a tool which could help us 

to diagnose carriers and to start interventions and genetic counseling on time, yielding 

fewer carrier children. This endeavor focused on the collection of data, the preparation 

for analysis, and the selection of relevant features, including the Mentzer index, deemed 

crucial in thalassemia identification. Through Random Forest Model training, we 

developed a predictive system that is able to identify carrier status accurately based on 

CBC data. During the study, we conducted a thorough test of the model in order to 

confirm its reliability in classifying carriers. The conclusions give great hope that 

diagnostics and management of thalassemia can be greatly improved. Through the 

development of an accurate machine learning model based on CBC data, this study 
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paves the way for specific interventions as well as personalized care strategies for people 

with thalassemia. 

 

As such, this study may end up transforming the way thalassemia is diagnosed 

or even targeted interventions, with better clinical outcomes and a further advance in 

the understanding of thalassemia research and treatment. Through the application of 

machine learning into healthcare, this research is aimed at solving complex medical 

issues and improving the quality of life for people with thalassemia across the globe. 

 
5.1.1 Limitations 

 

 We based our analysis on large-scale dataset by filtering only 500 patients' 

reports from Pakistan/Asia, analyzing mostly CBC lab reports of people in this 

region. 

 Furthermore, we must recognize that the CBC traits among Asians may not be 

the same as those for other regions, which, in turn, could affect the model's 

performance when it is used for disease detection across diverse ethnicities. 

 However, our dataset offers useful information but one should note that other 

datasets may produce different findings. 

 The future study should investigate diverse datasets and address the data 

preprocessing with variations in data types and datasets in order to guarantee 

the model’s robustness and generalizability across the different population and 

settings. 

 

5.2. Future Work 
  

In the future, we will integrate our diagnostic model with image processing 

techniques to diagnose thalassemia using blood smear images. Through the 

combination of machine learning and image analysis, we strive to enhance diagnostic 

precision and productivity. Through this method, we could finally obtain the 

conclusion of thalassemia diagnosis by assimilating both CBC reports and blood smear 

images together. This innovation can be a breakthrough in diagnosis, combining the 

pluses of classic and high-tech imaging. 
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