

FINAL YEAR PROJECT REPORT

MERGING REALITY AND DIGITAL CONTENT TO IMPROVE DRIVING EXPERIENCE

In fulfillment of the requirement For degree of BS (COMPUTER SCIENCES)

By

MUHAMMAD UZAIR YAQOOB MUHAMMAD SAQIB ASHFAQ MUHAMMAD SAAD BAIG 54066 BSCS 54132 BSCS 54188 BSCS

12.63

SUPERVISED

BY

MR. MUHAMMAD AWAIS RAO

BAHRIA UNIVERSITY (KARACHI CAMPUS) FALL-2022

DECLARATION

We hereby declare that this project report is based on our original work except for citations and quotations which have been duly acknowledged. We also declare that it has not been previously and concurrently submitted for any other degree or award at Bahria University or other institutions.

Signature	:	for soil
Name	:	<u>Muhammad Uzair Yaqoob</u>
Reg No.	:	54066
Signature	:	
Name	:	Muhammad Saqib Ashfaq
Reg No.	:	<u>54132</u>
		09
Signature	:	- And
Name	:	Muhammad Saad Baig
Reg No.	:	<u>54188</u>
Date	:	1st - Febuxary -2027

The copyright of this report belongs to Bahria University as qualified by Intellectual Property Policy of Bahria University BUORIC P-15 amended April 2019. Due acknowledgement shall always be made of the use of any material contained in, or derived from, this report.

© Bahria University all right reserved.

ACKNOWLEDGEMENTS

We would want to express our gratitude to everyone who helped us complete this project successfully. We would like to extend our thanks to Mr. Muhammad Awais Rao, my research supervisor, for his important advice, direction, and patience during the study process.

In addition, we would like to thank our supportive parents, friends, and instructors for their assistance and encouragement.

MERGING REALITY AND DIGITAL CONTENT TO IMPROVE DRIVING EXPERIENCE

ABSTRACT

The objective of this project is to develop dehazing, object recognition and lane recognition algorithms. This report explores different techniques used for the dehazing, recognition of traffic signals/traffic signs and lane recognition to improve driving experience in hazy or hazy weather. Different stages involving image processing occurred in the project many methods and architectures are tested to drive good results. Module by module implementation occurred in the project the first priority and need is to dehaze the image so that the dehazed/cleared image for its further processing to the traffic signals/sign and lane recognition. Haze is the leading cause of car accidents all around the world. Haze is defined as a moisture droplet in the air that hinders visibility. Light scatters between droplets when it hits haze, creating a thick white backdrop. As the number of droplets grows, the haze thickens, making it impossible for a driver to see his surroundings. Because dense haze distorts the light, drivers misunderstand the distance between other cars, traffic signs visibility and traffic signal statuses believing one thing to be far away while it is actually near to them. Driving a car in this situation is exceedingly unsafe. This study tackles the problem and offers a remedy by dehazing the haze in real time with Traffic Signals/Signs Recognition and Lane Assist. Dehazed real-time video can improve the experience of driving by aiding with lane changes and detecting traffic signs and signals. This project uses the Computer visions, deep learning and DCP (Dark Channel Prior) algorithm to develop the program. The main advantage of using this program is that it enhances the driving experience by assisting the driver in hazy weather condition. The program works in step by step prioritized way from dehazing the real-time input to recognition of traffic signals/signs and then lane assist.

TABLE OF CONTENTS

DECLARATION	ii
APPROVAL FOR SUBMISSION	iii
ACKNOWLEDGEMENTS	vi
ABSTRACT	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF APPENDICES	xv

CHAPTER

1	INTF	INTRODUCTION		
	1.1	Background	16	
	1.2	Problem Statements	17	
	1.3	Aims and Objectives	18	
	1.4	Scope of Project	19	
2	LITERATURE REVIEW			
	2.1	Dehazing	20	
	2.2	Object Recognition	22	
	2.3	Lane Recognition	24	
	2.4	Weather Event Impacts on Roads	26	
3	DESI	DESIGN AND METHODOLOGY		
	3.1	Design	28	
		3.1.1 System Framework	29	

	3.2	Method	ology			30	
	3.3	Module	S	30			
		3.3.1	Dark Chann	nel Prior		30	
			3.3.1.1	Streaming Max-N	1in Filter	35	
			3.3.1.2	Guided Filter		35	
		3.3.2	Object	Recognition	using	Tensorflow	
		SSD_IN	CEPTION_	V2		36	
			3.3.2.1	Data Set		37	
			3.3.2.2	Training		39	
			3.3.2.3	Testing		42	
		3.3.3	Lane Recog	nition		45	
		3.3.4	Parallelizati	on/Multithreading		49	
		3.3.5	Project Wor	k Distribution		50	
		3.3.6	Gantt chart			51	
	IMPLN	IENTA	ΓΙΟΝ			52	
	4.1	Hardwa	re Specificat	ions		.52	
	4.2	Softwar	e Specificati		52		
		4.2.1	Tools			52	
		4.2.2	Libraries			53	
	4.3	Designi	ng of Prototy	ре		53	
		4.3.1	Manufactur	ing of Acrylic Cha	mber	53	
		4.3.2	Manufactur	ing of Artificial Ro	ads and La	nes 55	
		4.3.3	Manufactur	ing of Signals and	Signs	56	
		4.3.4	Manufactur	ing of Signals Con	troller	57	
		4.3.5	Remote Con	ntrol Car		58	
		4.3.6	Web-Cam			59	
		4.3.7	Fog Genera	tor		60	
RESULTS AND DISCUSSIONS							
	5.1	Results				61	
		5.1.1	Accuracy			64	
		5.1.2	Latency			64	