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Abstract

Thermal management in closed cavity is one of the most important analysis

in recent decade. Such type of heat analysis in the presence of molecular movement

is convection. The simulation of Heat and mass transfer through various type of

convection in complex geometries is studied in this dissertation. The analysis of

FEM on heat transportation in a two dimensional closed cavity is much challenging

and depending upon the complex nature of the problem. However, to ensure the effi-

cient and accurate analysis, the following considerations of significant criteria may be

taken as; Mesh density, Element type, Boundary Conditions, Material Properties of

structure, the solution and its method and the criteria to check its convergence. Aim

of this work is to develop various geometries (square, trapezoidal, circular, curved

and corrugated) for engineering and industries as cooling equipment, thermal energy

storage, thermal solar equipments etc. through fins, obstacles and lid walls. Math-

ematical non-linear Partial Differential Equations (PDEs) and boundary conditions

are developed. For such physical two dimensional problems, steady-state equations

of continuity, momentum, energy and concentration are developed, which are non-

dimensionalized by using suitable dimensionless variables. For solution of strong

non-linear PDEs in dimensionless form in this thesis, computational method as Fi-

nite Element Method (FEM) is adopted. For numerical approach, Glarekin residual

approach of FEM is applied in which first domain is discretized into sub-domain in

the form of quadrilateral and triangular form etc. Each sub-domain formulation oc-

curs with combination of nodes, which form elements. Acquired elements are solved

in the form of simultaneous algebraic equations for unknown interior nodes, these

elements of sub-domain develop stiffness matrix for numerical simulation. Union

of elements form domain of the cavity or enclosure. Simulation of structure for

natural, forced and mixed convection are taken in this thesis. Impact of various

rising parameters on streamlines, isotherms, iso-concentration, velocity, tempera-
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ture, local and average Nusselt number are presented in the form of graphs. The

emphasis on heat transfer in cavity due to forced, natural and mixed convection

are obtained. Numerical and graphical interpretation of problems are discussed in

comparison with experimental and numerical results. Mesh analysis and grid inde-

pendence test for various cavity are analysed for average Nusselt number. Number

of nodes or response of meshes on rate of heat transfer are calculated. Validation

of the current work with literature in limited cases are explored. In case of square

cavity, size of heated fin increases the heat transfer inside cavity. Convection process

shows significant transfer rate of heat at mean position with increase in nanopar-

ticles in enclosure. Heat driven through lid walls in case of forced convection in

porous corrugated duct in the presence of heat generation. Partially lid driven of

top lid walls move inside direction generate more heat in enclosure. In concentration

of nanofluids, Lewis number and buoyancy increase mass transfer and Re increases

heat transfer inside enclosure. Forced convection in circular duct through triangular

fins is significantly affected with Re, Da and φ. Reynolds number increases heat in

cavity while porosity and nanoparticle decrease heat in cavity with increasing the

parameter. Q > 0 plays a vital role for heat generation inside cavity in all problems.
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CHAPTER 1

INTRODUCTION AND HISTORICAL

BACKGROUND

1.1 Background

The development and transfer of heat in enclosures have attained more

attention in recent research. Differential equations that appear in physics and

engineering can be solved numerically using the finite element method (FEM).

From its initial introduction in the 1940s, it has developed into a popular tool

for the design and analysis of complicated structures. Finding a precise and

effective method of discretizing the domain is one of the key issues of FEM.

This entails deciding on the right element size and form as well the quantity of

elements required to reach the desired level of accuracy. It is frequently nec-

essary to strike a balance between computational cost and accuracy since the

kind and size of the elements can have a considerable impact on the solution’s

accuracy and efficiency. Convection transfer in enclosures (free, forced, and

mixed) has received the most emphasis on different geometries whereas heat

transfer by conduction and radiation has got very little consideration. The

literature section discusses the various kind of geometries that are present for

the heat transfer rate analysis. Different numerical methods are applied to

deal the above analysis. Finite element method is one of the most appropriate

numerical procedure in an engineering and industrial sectors for thermal heat

generation through particle movement in the prescribed cavity.
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Numerous industries including mechanical, civil, aeronautical, and

electrical engineering, use the Finite Element Method (FEM) for cavity design.

Some of the FEM cavity modelling projects are; Fluid flow assessment, Ther-

mal analysis, Analysis of structural behaviour of cavities, Electronic equipment

and Analysis of the behaviour.

FEM is also used in blood flow modelling to help researchers and

medical professionals better understand the intricate flow patterns and fluid-

structure interactions that take place within the cardiovascular system. Nu-

merous notable FEM applications in blood flow modelling entail; Hemody-

namics, Medical device design, Blood clot formation and Fluid-structure in-

teraction.

1.2 Research gap

1.2.1 Theoretical gap

After reviewing a variety of literature, the gap was looked at, and

convection in an irregular closed enclosure has identified as follows:

• Haq et al. [1] executed a thermal experiment in a closed triangle-shaped

cavity whereas by utilizing the mathematical equations of [1], a square

cavity is developed and the equation is applied to evaluate the thermal

experience via natural convection in the enclosure with horizontal and

vertical fins which can be seen in chapter 4.

• Chapter 5 has been designed by adding porosity and heat generation/absorption

terms to the curved closed cavity which is partially heated.

• For Forced convection, Bakar et al. [2] has studied the steady flow in a

square lid-driven cavity which is then extended to the curved corrugated

cavity in a porous medium filled with CuO in Chapter 6.
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• In chapter 6’s context, chapter 7 is designed for a double-sided lid driven

in a corrugated duct flow containing nanoparticles.

• Extension of Ababaei et al. [3] research to mixed convection in a lid

driven trapezoidal cavity with a split lid and an elliptic-shaped obstacle

is addressed in Chapter 8.

• Chapter 9 of the thesis examines an extension of Bakar et al. [4] work on

forced convection for thermal drift over partially heated triangular fins

in a circular porous duct.

1.2.2 Contextual analysis

In contemporary convection context, the following shows, how the

relevance of convection in 2-D steady state models is strengthened:

• Haq et al. [1] suggested triangular cavity inscribed cylindrical obstacle

while for increasing heat transfer various size of heated fins in a square

cavity has been dealt for its vital role.

• Heat generation coefficient has a strong inclination to create streamlines

and isotherms in curved partially heated porous cavity.

• Until to current study, modelling of the interacting phenomena that en-

hance the development of efficiency of heat transfer. The study is focused

on either the thermal ”flow” or process models of structure processes that

may produce much more thermal ”mechanical” performance. Flow can

be accelerated by the lid wall if the flow is mechanically slower. An

irregular corrugated porous cavity with heat generation coefficient is es-

tablished through the vertical lid wall in chapter 6’s analysis of heat

transfer.

• With the motive from chapter 6 carried over to chapter 7, a corrugated
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domain was established to double the lid-driven cavity and double the

transfer rate via lid walls.

• With the help of partially split lid walls, heat can be produced to any

direction inside/outside the cavity and trapezoidal cavity model is ex-

amined in chapter 8 for the said purposes.

• One of the engineering tools used for maintaining heat in a cavity is

the circular duct. Such a maintenance assessment with partially heated

triangular fins is addressed in chapter 9.

1.3 Problem statement

We desire to look into the following problem statements with the ex-

ecution of a systematic review of literature.

• An investigation of the water-based SWCNTs’ natural convection heat

transfer through parallel horizontal and vertical fins is carried out in-

side a square cavity. Chapter 4 contains a comprehensive graphical and

theoretical result.

• Chapter 5 is expanded for combined heat generation and natural con-

vection for copper oxide – water nanofluid in enclosed curved partially

heated porous cavity with the enthusiasm of natural convection in square

cavity discussed chapter 4.

• In the presence of heat generation and absorption, a numerical simula-

tion of lid-driven flow in a curved corrugated porous cavity filled with

CuO-water is examined. Forced convection in a corrugated cavity is the

emphasis of Chapter 6.

• The curved duct is examined as a double lid driven in Chapter 7, which is

a continuation of Chapter 6. The impact of various shape of nanoparticles

have been assessed in this chapter.
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• In chapter 8, a split lid driven trapezoidal cavity with an elliptic-shaped

obstacle for mixed convection has been addressed.

• In chapter 9, special attention is given to thermal drift and forced con-

vection on water-based single wall carbon nanotubes (SWCNTs) in a

porous circular duct. Equilateral triangular fins that are moving inside

a circular cavity that has triangular fins on both the vertical and hori-

zontal axes. To calculate the thermal drift, internal heat generation and

absorption are taken.

1.4 Research questions

The following questions for each chapter in thesis have been arisen:

• What is the impact of heat transfer due to the horizontal and vertical

fins in a square cavity?

• How does the partially heated curve transfer heat in the porous curved

cavity via natural convection?

• How is heat generated in a porous corrugated cavity on the lid walls

through forced convection?

• What are the impacts of heat generation/absorption on a double-sided

lid driven in porous corrugated duct?

• What are the effects of various directional partially split lid walls with

the elliptical obstacle in a trapezoidal cavity?

• What are the impacts of heat generation in a circular duct with the

partially heated triangular fins in the presence of an inclined MHD?
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1.5 Research objectives

The main objective of this research is to construct and demonstrate

the accuracy of a numerical method for the assessment of heat transfer in

numerous cavities via convection. The focus of work is the finite element ap-

proaches to the solution of fundamental equations of motion and energy, and

an experimental analysis is also undertaken to validate the analysis. This work

is an extension of ongoing research aimed at improving our understanding of

the physics underlying factors and creating models for engineers and com-

mercial enterprises without the need for prototype development. To reduce

necessity physical prototypes during the design phase, FEM can be modified

to satisfy specific accuracy requirements. Multiple prototypical iterations are

typically expensive and time-consuming to be produced. The developer can

model several ideas and materials using software in a matter of hours rather

than spending weeks on actual prototyping.

1.6 Research limitations

For heat transfer in cavity through convection, it has limitation of

method itself and the method on cavity. Mesh distribution is taken essen-

tially as the stability of FEM depends on the quality of mesh. The most

important aspect of the widely used finite element method is the considera-

tion of shape functions that are linear or quadratic. In Cartesian coordinates,

two-dimensional steady laminar flow research is being conducted. Limitations

on cavities are assumed to be closed and have been taken for the designs of

squares, curves, corrugations, trapezoidal, and circular enclosures.

1.7 Significance of research

The creation of model reduction techniques satisfies the industry’s ur-

gent need for engineering problem simulations that happen quickly and almost
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in real time. Numerous types of heat and energy transfer models are being

developed. For engineering use, FEM has the capacity to produce approxi-

mative structural geometry. The purpose of this research is to create various

cavities for the exchange of mass and heat. While physically simulating a var-

ious structural deformity can be unfeasible, a computer implementing FEM

can resolve the issue accurately.

1.8 Thesis organization

Main aim to develop the thesis is to construct mathematical models

based upon various engineering structures associated with different kind of

fluids. These models consists of non-linear partial differential equations with

boundary conditions. These equations are based upon law of conservation of

mass, momentum, energy and concentration. These models consist of various

parameters and the nanofluid’s relationship that determine the fluid pattern

(streamline), heat transfer in the different portion of cavity (isotherms), veloc-

ity profiles along all the directions and rate of heat at the interface where fluid

and solid interact (Nusselt number). To determine these results, finite element

method (FEM) is adopted with Glariken approach. The detail description of

this method is discussed at the end of chapter 3. The breakup of the entire

thesis is divided into the Ten chapters. After detailed literature review process,

thesis is further divided into the pattern:

Chapter 3 contains literature, basic definitions and physical princi-

ples that apply to this endeavour. These laws consist of mass, momentum,

energy and concentration equation.

Chapter 4 focuses on Haq et al. [1] .’s study article. The constant

natural convection flow water based SWCNTs through parallel fins enclosed

by square cavity is examined in this chapter. The non-linear coupled PDEs

are numerically solved using the Galerkin finite element technique after an

appropriate transformation, is performed to convert equations guiding the flow
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into non-dimensional form. For different parameters like Pr, Ra, position of

heated fin and length of heated fin, numerical results are produced. This

chapter is published in International Communications in Heat and

Mass Transfer: Vol 119, pp. 104797, (2020).

Chapter 5 discussed the natural convection in extended form Haq

et al. [1] in normal curved shape of deformable cavity with heat genera-

tion/absorption and porosity parameter. Effect of rising parameters in case of

multiple effecting parameters discussed graphically.

In chapter 6 numerical simualtions are studied in a porous curved cor-

rugated cavity. Cavity is filled with nanoparticles and heat generation/absorption

in uniform form is developed. Cylindrical obstacle inscribed in cavity. Influ-

ence of rising parameter and various state of obstacle on streamlines, isotherms,

velocity and Nusselt number is discussed. Result validation and mesh analysis

againt the Nusselt number described graphically. This chapter is published

in Alexandria Engineering Journal: (2021).

Chapter 7 contains the extension of partially lid-driven to double

lid-driven porous curved corrugated cavity. Governed equations are converted

to dimensionless form with suitable transformation, then solved by numerical

finite element method. The contents of this chapter are published in

Journal of Molecular Liquids: pp. 118046, (2021).

Chapter 8 contains mixed convection simulation in a split lid-driven

cavity with elliptic shaped obstacle for Boussinesq approximation. Effect of up-

per wall directional movement on isotherms, streamlines and iso-concentration

are reported. This chapter is published in : International Communi-

cations in Heat and Mass Transfer: Vol 126, pp. 105448, (2021).

In chapter 9, the work in circular porous enclousre with partially

heated triangular fins. Idea of circular cavity explored for inclined MHD with

heat generation/absorption in presence of heated fins in triangluar form. The

non-dimensional PDEs are solved through Glarkin approximation of FEM with
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bi-quadratic discretization of elements. Effect of various dimensionless param-

eters on streamlines, isotherms, temperature and local Nusselt number at ver-

tical and horizontal mean position are discussed graphically and theoretically.

This chapter is published in Physica Scripta: Vol 96, pp. 065701,

(2021).

Relation of various type of convection and effect of various parame-

ters in computational analysis of varying shape of complex cavities has been

explored in chapter 10. Rate of heat transfer in cavity has variated with

increase in nanoparticles, size of fins and other parameters. Such effects on

heat flow and mass transfer have been discussed in last unit.
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CHAPTER 2

LITERATURE REVIEW AND BASIC CONCEPTS

2.1 Brief literature review

In this chapter, basic concept of various cavity models and its appli-

cation which are applicable in natural science are discussed. Factor affecting

the cavity models for ranging heat flow structure and creation of heat has been

discussed in detailed in this chapter. Application of different complex struc-

tural enclosure by various structures used at the industrial level is discussed.

In order to handle the complex structure, a numerical schemes which are used

by various researchers is presented in the current chapter.

Heat and mass transfer are prominent transport processes in a variety

of contexts, including the natural world, living beings, and the engineering

process, etc. This thesis focuses on the most recent advances in applying fun-

damental heat and mass transport theory as well as novel technologies to a

wide range of industrial applications exploiting complex cavity models. This

thesis will offer readers with a recent numerical method, Computational Fluid

Dynamics (CFD) simulation, and innovative investigations of heat and mass

transfer themes related to a variety of engineering disciplines, including flow

regime, nanoparticles, surface tension, battery heating systems, and engineer-

ing processes such as different solvents and resistance welding. The thesis aims

to provide unique insight into heat and mass transfer patterns, as well as to

operate as a space for the exchange of novel ideas and in the advancement
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of fields. Nanofluids have been the subject of significant research around the

world since pioneering researchers discovered the distinct thermal behaviour

of suspended nanoparticles in conventional fluids, dubbed nanofluids.

For numerous reasons, the cavity problem is an useful measurement

problem. Initially, it is one of the most basic enclosed contact issues that can be

practically and theoretically analyzed. Second, there has been some emphasis

in the literature that addresses the cavity problem. There exist both theoreti-

cal and experimental data for limiting cases to compare the recent development

in mathematical models. Third, there are several practical applications that

are interrelated to the cavity problem. Due to numerous engineering appli-

cations, researchers are interested in studying convection heat transfer and

fluid flow in cavities, which have wide range of applications in solar thermal

systems, heat exchangers, erecting cooling/heating, room aeration, condensa-

tion of electronic equipment, drying devices, thermal energy storage systems,

supercapacitors, storage tanks, geothermal system, nuclear and preservative

reactors, and food processing, etc. Due to thermal non-equilibrium and pres-

sure variations inside the cavity, convection heat transfer in cavities is defined

as the energy and mass interaction between the surrounding (of regular or

irregular flow regime) and the working fluid flowing inside the cavity. De-

pending on the buoyancy and external pressures ratio, this interaction might

be natural, mixed, or forced convection. Interest of researchers is developed

based upon several barrier arising while constructing the fluids characteristics,

deformation process, configuration of model, heat source, its methodology to

handle the mathematical model and the validation of entire process with ex-

isting literature and experimental approach.

The theory of heat transfer is concerned with the rate of energy ex-

change and temperature distribution in a thermal system in closed enclosure.

It can occur in three modes, which is conduction, convection and radiation. As

this experiment involves convective heat transfer, the principle of convection
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is presented. Convection is the mode of propagation of energy between a solid

surface and the associated liquid that is in motion regardless of a change in

temperature. Process of natural convection arises in many phenomena but

here, the core determination to discuss this process that is associated with

nanofluids application [5–13]. Overall, the results show that as the volume

fraction of nanoparticles increases, heat transfer becomes more efficient. Per-

formance of heat transfer due to free convection in various complex cavities

employing numerous parameters is discussed [14–22]. The effect of magnetic

field on the heat transfer in rectangular cavity is investigated by Rudraiah

et al. [23]. In another study, Kim and Ha [24] investigated the laminar free

convection in annuli having internal fans. They have concluded that if the

number of fins increase then the Nusselt number decreases.

The enhancement of heat transfer properties takes place in circular

ducts with fins which are commonly used in many engineering and industrial

applications. They are; HVAC systems, Electronic cooling, Automotive cool-

ing, Process cooling, and Solar collectors. These applications basically depend

on the heat transfer system such as in an automotive cooling the circular ducts

with fins used in automobile cooling systems to transport heat from the engine

to its surrounding air. The functioning of fins in the system widens its surface

area for a better and efficient performance. Venkatadri et al. [25] measured

the natural convection flow for the transportation of energy in trapezoidal en-

closures. They contend that they are able to achieve higher heat transfer rates

when enclosure is designed properly. They conclude that the Rayleigh number

is enhanced by the rates of the transfer of heat and fluid flow, and that the rate

of heat transfer is greater at the top corner of a hot wall than anywhere else,

while the local Nusselt number gradually decreases from bottom to top of the

wall before suddenly increasing as we get closer to the top corner. In a rectan-

gular cavity, Abir et al. [26] investigated the impact of Marangoni convection

on the steady natural convection flow and heat transfer in a two-layered fluid
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system composed up of air and water. They deduced from the numerical sim-

ulations that a greater buoyancy force, or larger Rayleigh numbers, promises

improved heat transmission through conduction and convection. Poulikakos

and Bejan [27] found the experimental result of attic-shaped space in natu-

ral convection heat transfer. Xu et al. [28] investigated concentric triangle

closure, where horizontal cylinder is placed in triangle. In a partially heated

enclosure, adopting nanofluid with different types of nanoparticles are worked

by Oztop et al. [29]. In another work, Haq et al. [1] discussed the simulation

of nanofluid in a partially heated triangular cavity by considering the differ-

ent constrained cylindrical obstacle. Brownian motion and thermophoresis

are crucial effects in the concept of nanofluid addressed by Sheikholeslami et

al. [30]. The temperature of the inner sinusoidal and outer circular walls is

kept constant, while the other two walls are thermally insulated. The data

show that when the buoyancy ratio rises, the average Nusselt number drops

until it hits a considerable value, at which point it begins to rise again. This

lowest value occurs with increasing buoyancy ratio numbers as Lewis number

grows. Sheikholeslami et al. [31] examined natural convection in a circular

enclosure with an interior heated sinusoidal cylinder. The results demonstrate

that the Rayleigh number, amplitude values, and the number of undulations

in the enclosure have a substantial influence on streamlines, isotherms, and

the number, size, and development of the molecules inside the enclosure. Heat

transfer enhancement with buoyancy driven in inclined triangular enclosure

simulated by Billah et al. [32]. They declared that Heat distribution increases

with increase in quantity of volume fraction of nanoparticles in cavity.

For decades, heat transfer in the cavity with a moving boundary in

mixed convection is a fascinating phenomenon that helps the engineers in con-

struction of models. The study of convection in a lid-driven cavity has at-

tracted the perceptible attention of researchers due to numerous applications

in the field of industrial microelectronics, nuclear power plant, food processing,
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renewable energy system etc. [33–37]. Mixed convection flow in a low heated

square driven cavity was numerically examined by Moallemi and Jang [38].

They have proposed the effect of Prandtl number on the flow and heat trans-

fer mechanism. Additionally they have discussed the buoyancy effects are more

prevailing for higher values of Prandtl number in a square lid driven enclosure.

Chamkha et al. [39] worked on the unsteady, mixed convection flow and heat

transfer due to the heat generation/absorption fluid in a vertical lid driven

cavity at uniform magnetic field. They summarized that the average Nusselt

number decreases with an increase in internal heat generation coefficient but

increases for the opposing flow. Sivakumar et al. [40] analysed numerically the

heat transfer and fluid flow of mixed convection in lid-driven cavities where the

left vertical wall is partially heated. The variation of length and position of

heated part of vertical wall is investigated and explores the transfer of heat and

fluid flow in a cavity. On 3-dimensional structures, the numerical study was

performed by Ouertatani et al. [41]. In a crown wavy enclosure free convection

simulated by Dogonchi et al. [42]. Porous medium has significant impact on

rate of heat transfer.

In the process of force convection, external source is applied to yield

the fluid motion such as pump, tool used for suction, fan, etc., which is one of

effective way of heat transfer. Such process is frequently utilized in maximum

temperature of the systems like surface benchmarking to improve heat trans-

fer, cooling channel, automatic control cooling, automobile industry cooling

etc. Selimefendigil and Oztop [43] explore the magnetohydrodynamics forced

convection of CNT-water nanofluid in a layered a U-form vented cavity with a

porous section under the influence of wall corrugation. They conclusion that

the bottom wall’s triangular corrugation, which can be used as a tool for fluid

flow and heat transfer features, was found to be effective. The average heat

transfer rate decreases with a higher number of corrugation waves, while it

initially increases and then decreases with a higher corrugation height. Shafee
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et al. [44] using LBM, it is possible to tackle the problem of hydromagnetic-

forced convective nanoliquid flow inside a porous enclosure with a moving top

divider. Yields show that the convective role improves with Re’s rise, while

it diminishes with the rise in Lorentz powers. Ha’s turn-around association

is thermal inclination. Dariush et al. [45] analysed the combined convection

laminar heat transfer(HT) in CESC. Volume fraction of nanoparticle increases

the HT rate inside the enclosure. Lid velocity has also significant impact on

the temperature distribution in cavity. Influence of fin length on heat trans-

fer in sinosedial cavity is studied by Fayz-Al-Asad et al. [46]. They depicted

that increase the length of vertical heated fin has greater impact on isotherms

profile and flow building inside cavity.

Utilising FEM, it is possible to determine the temperature distribu-

tion inside the cavity by solving the heat transfer equations, which explain the

movement of heat. Analysis of structural behaviour of cavities, such as those

in underground tunnels, dams, and structures, is possible using FEM. Using

FEM, it is possible to determine how much stress and strain is present inside

the cavity, which can aid in the structure’s design and efficiency. Electronic

equipment, such as microwave ovens, and other cavities can be studied using

FEM to deal the behaviour of electromagnetic fields. To determine how the

electric and magnetic fields are distributed inside the cavity, the Maxwell’s

equations describe how electromagnetic fields behave these equations can be

solved using FEM. Zhang et al. [47] discussed free convection HT in L-shaped

enclosure. They elaborated the effect of heat source and magnetic field (MF)

in cavity. For the weak MF more heat transfer rate when radiation mechanism

neglected. Zheng et al. [48] studied the NC in square cavity in the presence of

two tubes (cold, hot). They summarized that more HT when cold tube posted

above the heated tube. Majdi et al. [49] performed simulation in triangular

lid cavity in the presence of circular body inside enclosure. They conclude

that with rise of Ri, Nuavg decreases and Nuavg increases with increase in
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concentration of CuO. Hamid et al. [50] developed simulation on trapezoidal

partially heated cavity containing casson fluid. They summarized that increase

in heated length more heat generated in cavity. Khan et al. [51] conducted

experiment for HNF in a split lid driven cavity with inscription of Y- shaped

obstacle. For inner direction of lid movement case local Nusselt number in-

creases and Ri has opposite impact on Nuavg. In a porous 3-D cubic enclosure

forced convection HT through LMB simulated by Sajjadi et al. [52]. They de-

pict that convective HT in enclosure reduces with increase in MHD parameter.

In a lid driven cavity, study of micro-polar flow developed by Ali et al. [53].

They found that strong inertial Re = 10, streamlines and isotherms are sym-

metrically developed and high thermal conductivity received. Gangawane et

al. [54] performed simulation of mixed convection through heated triangular

block in domain. They conclude that the size of the block significantly affected

the fluid flow and HT. Selimefendigil and Oztop [55] performed simulation on

partially heated triangular enclosure having partially flexible wall taken. Re

and Ri decrease and local Nusselt number and Nuavg increased. Muthtamil-

selvan et al. [56] worked on lid wall cavity. They performed heat generation

in cavity through uniform bottom wall which is heated. They concluded that

nanofluid has significant influence flow and Nusselt number. They depicted

that Ri is dominant when forced convection was considered.

In many situations, conventional cooling techniques involving the trans-

fer of both free and forced convection heat are not satisfactory. Enclosure pre-

ceding corrugated geometry is another specific type of attractive geometry and

apposite, and finds usefulness in solar corrugated accumulator design and roof

top design of houses. Porous substrates with high thermal conductivity are

used in many applications such as industrial cooling equipment, heat interfaces

or exchange, and solar collectors to improve forced-convection heat transfer. In

view of the above work, [57–59] investigated the convection in porous medium

and examined the heat transfer using a thermal non-equilibrium model. They
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analysed the effects of viscous and thermal dissipation porosity and inertial

coefficient. Izadi et al. [60] analysed the forced convection in annulus. That

annulus filled with Al2O3 nanofluid concertation. In this case, they reported

that friction coefficient is highly dependent on the nanofluid concentration.

Many scholars utilise a number of approaches to deal with heat transfer or

heat and mass transfer in porous media [61–71], as well as related fields, among

which the finite element method has been a popular option among many re-

searchers. The finite element approach has been effectively used to a variety

of phenomena involving porous media and various effects [62–71].

Magnetohydrodynamics is the study of how a moving highly conduc-

tive fluid reacts with an electromagnetic field (MHD). Lorentz force occurs

when a magnetic field exists. The buoyant force causes natural convection

fluid flow. Lorentz force and buoyancy force interact with one an other when

a magnetic field is applied to a fluid, influencing flow fields and heat distribu-

tion. Due to the reduced velocities, the magnetic field suppresses convection.

To estimate MHD natural convection in cavities, several numerical studies

have been carried out. Free convection in a square cavity was examined by

Mahmoudi et al. [72]. They drew the conclusion that magnetic field direction

modulates flow and temperature fields. Miroshnichenko et al. [73] demonstrate

the magnetic influence on free convective flow in a trapezoidal cavity at varied

inclinations. It has been observed that an increase in the Hartmann num-

ber diminishes thermal resistance, but an increase in the nanoparticles volume

fraction improves heat transfer. Sheremet et al. [74] interrogate the magne-

tohydrodynamics impulsive convection flow in a wavy inclined cage holding

nanofluid. The impact of these factors on fluid flow and heat transfer in-

side the hollow have received the most attention. In the form of streamlines,

isotherms, and average Nusselt numbers, numerical data have been offered.

Parvin and Akhter [75] demonstrate that magnetic fields impact natural con-

vection in a prismatic cavity. The Hartmann number modulates heat exchange
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in cavity with buoyancy significance. Sahi et al. [76] investigate free convec-

tive flow in a T-shaped confinement. The results emphasised the enclosure’s

performance condition and disclosed that the Rayleigh number, as well as the

strength and direction of the magnetic field, had an impact on the heat and

fluid flows. Increasing the Hartmann number deadens fluid flow, reduces con-

vection currents, reduces the average Nusselt number at the cold surface, and

has the effect of delaying the transition to convection and extends the conduc-

tion region. The free convective flow of MHD fluid in a corrugated enclosure

was studied by Haq et al. [77]. For complicated shapes, various numerical and

theoretical work has been done to assess the effects of magnetic field on mixed

convection heat movement in the wall driven enclosure. Chamkha et al. [78]

numerically analyzed the study of the influence of a heat sink and a source of

heat, as well as their lengths and orientations, on MHD mixed convection flow

and heat transfer in a porous enclosure filled with a Cu-water nanofluid in the

presence of partial slip effect. Both of the lid-driven vertical walls are ther-

mally segregated and move in their own axis at uniform and equal velocities,

with partial slip imposed at both ends. Along all the cavity, it is discovered

that adding nanoparticles diminishes rate of heat transfer inside the porous

cavity. The results concerning the impacts of the magnetic field reveal that

when the Hartmann number increases, the average Nusselt number decreases

significantly. Saha et al. [79] explored numerically mixed convection flow in

the presence of a magnetic field in a lid-driven square cavity with internal heat

generation/absorption with uniform heat at bottom wall. Variations in the

Richardson number, Hartmann number, and the heat generation/absorption

parameter for heat transfer rate (Nuesselt number) were thoroughly investi-

gated. As the intensity of the applied magnetic field was raised, the average

Nusselt number decreased. Furthermore, heat creation is expected to lower

the average Nusselt number, whilst heat absorption is expected to raise it.

We made an assumption that the flow inside a cavity is two-dimensional
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steady laminar flows while executing our computations. The majority of com-

putational experiments on driven cavity flow likewise demonstrate this to be

the case. Use fine grid meshes in cavity designs for flow stability. The overall

findings, which are based on the engineering and industrial aspects covered

in this thesis, can be used as an evidence for decision by industries to choose

the suitable design for better heat transfer. The analysis and discussions also

provide a framework for future study and investigation to gain insight on the

application of CFD simulations for model improvement through various types

of convection.

2.2 Basic definitions

2.2.1 Fluid

Solids, liquids, and gases are the three states of matter, with liquid

and gas being both fluids. A fluid is a substance (gas or liquid) that keeps

changing form under the influence of external forces, or any material that flows

continuously. Because a fluid cannot resist deformation pressure, it moves or

flows under the influence of the force, changing its shape constantly as long as

the force is applied. As seen, fluid flow is a regular phenomenon in our daily

situations. According to earlier centuries, the four basic elements are earth,

air, fire, and water, with air, fire, and water being fluids among these three.

Fluids are classified into two categories: ideal and viscous fluids. The most

effective internal force in ideal or inviscid fluids is pressure, which operates in

such a way that the fluid flows from high stress to low stress. The viscosity of

Newtonian fluids is independent of shear rate, which means that the viscosity

remains constant at any temperature and pressure. Furthermore, these are

the fluids that follow Newton’s viscosity law, which stipulates that the shear

stress is proportional to the shear rate.
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2.2.2 Heat transfer phenomenon

Many natural, industrial, and biological systems rely on heat transfer

mechanisms to function. The shift of energy in response to temperature vari-

ations is known as heat transfer. Heat transportation occurs in three ways:

conduction, convection, and radiation. The temperature differential inside a

medium causes conductive heat transfer in solids by causing molecular ener-

getic mobility. The exchange of thermal energy between two or more bodies

using electromagnetic waves is referred to as radiative heat transfer. Surpris-

ingly, no medium is required. The transmission of energy through liquids,

gases, and fluids in general moving near the surface is known as convective

heat transfer. Convection heat exchange may be further split into three types:

forced convection, natural convection, and mixed convection. The fluid flow

in a forced convection process is aided by external sources like as fans, suction

devices, and pumps. When a fluid is heated, only natural buoyancy forces are

responsible for fluid motion, a process known as natural or free convection.

Density differences in various parts of the fluid create natural convection flow.

This density shift, along with gravity’s effect, creates a buoyancy force, which

causes the heavier fluid to sink and the lighter fluid to rise. The density varia-

tion in natural convection flows might be caused by temperature variations or

changes in chemical species concentrations. Air flows around our rooms and

other technical applications are examples of frequent buoyant fluxes. When

these two heat transmission mechanisms (forced and natural convection) oc-

cur together, the condition is known as mixed convection. Heat transfer is a

very significant phenomena in which fluid plays a vital part in speeding up

the process. Another major source for increasing the heat transfer rate is the

inclusion of solid nanoparticles in the base fluid.
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2.3 Nanofluids

Modifying the flow shape, changing the boundary conditions, or in-

creasing the thermal conductivity of the base fluid can all help to enhance

the convective heat transfer process. Maxwell [80] discovered in 1881 that by

mixing micro-sized particles in the base fluid, the heat transfer rate may be

increased. After Maxwell, it was discovered that, while adding micro-sized ma-

terial particles to the base fluid increased the rate of heat transfer, the issues of

clogging, rapid sedimentation, erosion, and high pressure drop caused by these

particles kept the technology from being used in practical applications for a

long time. Masuda et al. [81] initially demonstrated that combining nanopar-

ticles to the base fluid boosts its thermal conductivity. Choi [82] invented

the term nanofluid in 1995 while working at Argonne National Laboratory

in U.S.A. A nanofluid is a suspension of solid nanoparticles (with diameters

ranging from 1-100 nm) in a familiar liquid such as water, oil, or ethylene

glycol. Nanofluids accelerated heat transfer phenomena, making them useful

in a variety of heat transfer applications such as fuel cell technology, micro-

electronics, hybrid turbines, and pharmaceutical applications. In comparison

to the pure fluid, nanofluids have a higher convective heat transfer efficiency

and thermal conductivity. Nanofluid can be created using various nanoparti-

cle and base fluid combinations. The thermophysical features of nanoparticles

influence the heat transfer rate of nanofluid. Viscosity, density, specific heat,

thermal diffusivity, and thermal conductivity are some of the physical prop-

erties of nanoparticles. These parameters’ numerical values change when the

nanoparticle ingredient and the base fluid change. For the material properties

of nanofluids, scientists and researchers utilize well-known inferential relations.
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2.3.1 Thermophysical properties of nanofluid

Thermophysical characteristics of nanofluid have a significant impact

on the flow issues under consideration. Several scientists have developed vari-

ous sorts of models for describing the thermophysical characteristics of nanoflu-

ids. Thermal conductivity, electrical conductivity, density, viscosity, and spe-

cific heat are estimated using formulae that are used as an empirical relation-

ship between the base fluid and nanoparticles.

Table 2.1: Thermophysical properties of Water and various Nanoparticles

Physical properties Base fluid (water) SWCNT Cu CuO Al2O3

Cp(J/kgK) 4179 425 383.1 535.6 765

ρ(kg/m3) 997.1 2600 8954 6500 3970

k(W/mK) 0.613 6600 386 20 40

β × 10( − 5)(1/K) 21 0.33 1.67 1.8 0.85

σ(S/m) 0.05 1 ×105 5.96 ×107 - 3.7 ×107

2.3.2 Density

The density of nanofluid may be determined analytically using the

physical concept of the mixing law. This rule may be used to calculate the

weight and volume of coagulation and the density of nanofluid. Knowing the

densities of both components and nanofluid density may be used to calculate

the particle volume fraction. Recognizing the densities of both components and

nanofluid density generally used to estimate the particle of volume fraction (φ)
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as [83–85]

ρnf = (1− φ)ρf + φρp. (2.1)

2.3.3 Specific Heat

Specific heat capacity is defined as the amount of heat required to

increase the temperature of one kilogramme of a material by one Kelvin. In

convective heat transfer nanofluid flows, specific heat is expressed as and is

based on basic mixing theory.

(ρcp)nf = (1− φ)(ρcp)f + φ(ρcp)p. (2.2)

2.3.4 Thermal conductivity

In the prior literature, there are several theoretical models that can

predict the effective thermal conductivity augmentation of CNT suspensions.

Fourier’s law of heat conduction is used in all of these models. Maxwell [80]

demonstrated in 1873 that adding solid particles to a liquid increases its ther-

mal conductivity and presented a mature relationship between the thermal

conductivity of nanoparticles and the base fluid, expressed as

knf
kf

=
(kp + 2kf )− 2φ(kf − kp)
(kf + 2kf ) + φ(kf − kp)

. (2.3)

In (1904) Maxwell [86] specified an explicit association between the effective

thermal conductivity in term of the thermal conductivity ratio α∗ = kCNT

kf
, and

the volume fraction:

knf
kf

= 1 +
3(α∗ − 1)φ

(α∗ + 2) + (α∗ − 1)φ
. (2.4)

Hamilton and Crosser [87] in (1962) established a theoretical model that takes

into consideration the particle shape feature.

knf
kf

=
α∗ + (n− 1)− (n− 1)(1− α∗)φ

α∗ + (n− 1) + (1− α∗)φ
. (2.5)
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where n represents the shape of nanoparticles. The earlier models, according

to Xue (2005), are only applicable for spherical or rotatory elliptical particles

with a modest axial ratio. Furthermore, these models ignore the influence of

the CNTs’ spatial distribution on thermal conductivity. Xue [88] developed a

theoretical framework based on Maxwell theory that takes account rotational

elliptical nanotubes with a large axial ratio and compensate for the effects of

spatial distribution on CNTs.

knf
kf

=
1− φ+ 2φ kCNT

kCNT−kf
ln

kCNT +kf
2kf

1− φ+ 2φ
kf

kCNT−kf
ln

kCNT +kf
2kf

. (2.6)

2.3.5 Effective electrical conductivity

With increasing particle concentration and temperature, the electrical

conductivity of nanofluid improves. When the concentration of nanoparti-

cles is fixed, electrical conductivity is shown to be greater for smaller parti-

cles in nanofluid. Maxwell [83–85] stated the effective electric conductivity of

nanofluid as

σnf
σf

= 1 +
3
(
σp
σf
− 1
)
φ(

σp
σf

+ 2
)

+ φ
(
σp
σf
− 1
) . (2.7)

2.3.6 Thermal diffusivity

It is the rate at which heat is carried out from a thermal body. It is

the ratio of thermal conductivity to volumetric heat capacity in mathematics.

In convective heat exchangers, the thermal diffusivity of nanofluid is expressed

as

αnf =
knf

(ρcp)nf
. (2.8)

2.3.7 Viscosity

Engineers and scientists use a variety of methods to calculate the effec-

tive dynamic viscosity of a nanofluid as a function of solid volume percentage.
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As a function of low volume fraction, Einstein [89–91] calculated the effective

viscosity of a suspension of spherical solid particles (less than two percent ).

Brinkman [92] later proposed a new relationship by altering Einstein’s equation

of viscosity correlation for particle volume fractions smaller than four percent.

The basic mixing theory [83–85] may be used to calculate the nanofluid’s vis-

cosity, which is given as

µnf =
µf

(1− φ)2.5
. (2.9)

2.4 Dimensionless numbers in heat and mass transfer

The transfer co-efficient is usually stated in terms of Nusselt number

in the study of heat and mass transfer because it is helpful to display the

transport co-efficient as well as other critical characteristics in terms of experi-

encing positive dimensionless groups in many circumstances. In dimensionless

groupings, other important variables and properties that influence the heat

and mass transfer coefficient are also listed.

2.4.1 Prandtl Number

The Prandtl number (Pr) is named after Ludwig Prandtl, a German

mathematician who played a pivotal role in viscous flow studies in the early

twentieth century. Pr denotes the ratio of momentum diffusion coefficient to

heat diffusion coefficient.

Pr =
ν

α
=

µ/ρ

k/(ρcp))
=
µcp
k
, (2.10)

where, µ is the dynamic viscosity,

cp is the specific heat

and k is the thermal conductivity.

Prandtl number is a non-dimensional number.
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2.4.2 Grashof Number

The ratio between the buoyancy force to viscous force is called Grashof

number, which is a dimensionless number and is used in flow analysis in natural

convection. Mathematically,

Gr =
gβ(T ∗h − T ∗c )L3

ν
, (2.11)

where, g is the gravitational acceleration, β is the coefficient of thermal ex-

pansion, (T ∗h − T ∗c ) difference of heated and cold wall temperature. In free

convection, it is the most important parameter that governs the flow design.

2.4.3 Reynolds Number

It is the ratio between the inertial and viscous force and is denoted by

Re. Mathematically,

Re =
VoL

ν
. (2.12)

Reynolds number is dimensionless and its varies for different flow like the flow

is laminar for Re < 2000, it is unstable for 2000 < Re < 4000 and the flow is

turbulent for Re > 4000, accordingly.

2.4.4 Nusselt Number

Nusselt number is a dimensionless number that describes the relation-

ship between convection and conduction heat transport over a boundary. Heat

transfer by convection is h∇T ∗, while heat transfer by conduction is k∇T ∗

L
. As

a consequence, Nusselt number is rendered as

Nu =
h∇T ∗

k∇T ∗/L
=
hL

k
. (2.13)

The larger the Nusselt number, the more heat is transferred by convection,

whereas Nu = 1 means heat is transferred by conduction. The average Nusselt

number is obtained by integrating the local Nusselt number along the heated
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surface (Ω) and is defined as:

Nuavg =
1

Ω

∫
Ω

Nux∗dΩ. (2.14)

2.4.5 Rayleigh Number

It is the dimensionless number affiliated with the buoyancy driven flow

called as free or natural convection. It can also be defined as, “The product

of the Grashof number and the Prandtl number”. Mathematically,

Ra = Gr.Pr =
gβ(T ∗h − T ∗c )L3

αν
. (2.15)

2.4.6 Richardson Number

Richardson number is a dimensionless number that describes the rel-

ative intensity of buoyancy and compressive stresses. It’s also easy to express

it in terms of the Grashof and Reynolds numbers.

Ri =
Gr

Re2
. (2.16)

For Ri < 0.1, natural convection is almost negligible and for Ri > 10, natural

convection dominates. Whereas, significant effect of natural and forced con-

vection dominate for Richardson number between 0.1 to 10. However, forced

convection is large as compared to natural convection.

2.4.7 Darcy Number

It is the dimensionless number and is defined as “The ratio between

the permeability of the medium to its cross-section area”. Mathematically,

Da =
k

L2
, (2.17)

where k is the permeability of the medium and L is the characteristic length.
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2.4.8 Hartmann number

Hartmann number is a dimensionless number that explains the corre-

lation between electromagnetic and viscous forces. It can be written as

Ha = BoL

√
σ

µ
, (2.18)

where Bo denotes the strength of the magnetic field, µ the dynamic viscos-

ity, and σ the electrical conductivity of the fluid. It determines the effect of

magnetic fields on electrically conducting fluid mobility.

2.4.9 Sherwood number

The dimensionless number is defined as “The ratio of the convective

and diffusive mass tansfer”. Mathematically,

Sh =
KL

D
, (2.19)

where, K is the mass transfer coefficient and D is the mass diffusivity. Since

the Nusselt number is used as heat transfer, so the Sherwood number is used

as mass transfer.

2.5 Mathematical form of basic law

The essential governing equations for nanofluid flow, especially the

laws of mass, momentum, and energy conservation, are the same as for pure

fluid flow. Taking nanofluids into consideration, however, modifies these as-

pects to some extend. Using the Buongiorno model and the Tiwari and Das

model, two well-known nanofluid models were used. As a result, there must

be a modification in the controlling constitution.
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2.5.1 Equation of continuity

The continuity equation, which is written in vector notation as follows,

is a well-known principle of mass conservation for fluid flow.

1

ρf

∂ρf
∂t

+∇ · V ∗ = 0. (2.20)

The above equation is appropriate for pure fluid and Buongiorno formulations,

however ρf has been substituted by ρnf for Tiwari and Das configurations.

Because the density of an incompressible fluid is constant, the equation of

continuity (2.21) reduces to

∇ · V ∗ = 0. (2.21)

2.5.2 Law of Conservation of Momentum

When a fluid particle is at rest, in a steady state, or in constant

motion, it obeys Newton’s second law of motion. The sum of all external forces

acting on an item equals the temporal rate of change of its linear momentum,

according to this rule. This law is written as in vector notation for steady

state problem as;

ρ(V∗ · ∇)V∗ = divΥ + ρb, (2.22)

whenever it concerns towards the Navier-Stokes equation,

Υ = −p∗I + +µA∗1, (2.23)

where A∗1 is the tensor and Rivlin-Erickson constructed it for the first instance.

A∗1 = grad V ∗ + grad V ∗t. (2.24)

The material time derivative or total derivative is denoted by d
dt

, V ∗ is the

velocity field, ρ density, Υ Cauchy stress tensor, b is the body forces, and p∗

is the pressure and µ dynamic viscosity in the preceding equations.
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In matrix form, the stress tensor is displayed as

Υ =


σ∗x∗x∗ Υx∗y∗ Υx∗z∗

Υy∗x∗ σ∗y∗y∗ Υy∗z∗

Υz∗x∗ Υz∗y∗ σ∗z∗z∗


. (2.25)

The normal stresses are σ∗x∗x∗ , σ∗y∗y∗ and σ∗z∗z∗ be although the shear stresses are

otherwise. For two-dimensional, we have V ∗ = [u∗(x∗, y∗, 0), v∗(x∗, y∗, 0), 0]

and thus

grad V ∗ =



∂u∗

∂x∗
∂u∗

∂y∗
0

∂v∗

∂x∗
∂v∗

∂y∗
0

0 0 0


. (2.26)

For steady momentum equation will take form along x∗-component

∗∂u
∗

∂x∗
+ v∗

∂u∗

∂y∗
= −1

ρ

∂p∗

∂x∗
+ ν

(
∂2u∗

∂x∗2
+
∂2u∗

∂y∗2

)
, (2.27)

Similarly, again with y∗-component, we repeat the method as follows:

u∗
∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
= −1

ρ

∂p∗

∂x∗
+ ν

(
∂2v∗

∂x∗2
+
∂2v∗

∂y∗2

)
. (2.28)

2.5.3 Energy Equation

The first law of thermodynamics, when applied to the flowing fluid

constituent, is a statement of this premise. The steady, incompressible and

two dimensional flow of energy equation is;

(ρcp) [(V ∗.∇)T ∗] = −div−→q , (2.29)

where,

−→q = −k∇T ∗ = −k
(
∂T ∗

∂x∗
+
∂T ∗

∂y∗

)
, (2.30)

(ρcp)

[
u∗
∂T ∗

∂x∗
+ v∗

∂T ∗

∂y∗

]
= −div

[
−k
(
∂T ∗

∂x∗
+
∂T ∗

∂y∗

)]
, (2.31)

(ρcp)

[
u∗
∂T ∗

∂x∗
+ v∗

∂T ∗

∂y∗

]
= k

(
∂2T ∗

∂x∗2
+
∂2T ∗

∂y∗2

)
. (2.32)
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CHAPTER 3

RESEARCH METHODOLOGY

3.1 Research epistemology

Utilizing FEM computation, the interim concept of parametrization

framework is built and refined in engineering heat exchange systems with epis-

temic uncertainty, confronted with constrained experimental measurements,

and the results are compared for validation. Iteration or mesh efficiency ap-

proach is suggested as a predicted computational response interval in order to

increase computational efficiency.

3.2 Research approach

Convection heat transfer assessment using many irregular cavities is

developed. Various restrictions are made to the cavity’s walls. Heat produced

inside the cavity by simulation through fin or lid walls. On a staggered grid

system, the governing mathematical equations have been discretized using the

finite element method. Simulations are performed for a range of rising values

of parameters in the cavity problem.

3.3 Research strategy

The literature contains a number of geometric models for the convec-

tional exchange of heat. This thesis uses the finite element approach for cavity
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models. Heat transfer is studied for geometries like square, curved, corrugated,

trapezoidal, and circular. Prior to creating meshes, discretize the domain into

subdomains. Elements develop out of nodes, and each element is described by

an algebraic equation. System of equations is simulated for unknown function

through simulation. Mesh is modified until solution converges.

3.4 Solution methodology

3.4.1 Finite Element Method

Clough was the first to develop the finite element method, which is

now regarded as a strong computer-oriented methodology. It is a method for

estimating the response to physics and engineering concerns. The finite el-

ement technique splits a considerable variation into smaller, finite elements.

The primary idea behind FEM is to convert the governing equations into a

weak or variational form that is more suitable. The governing equations are

multiplied by certain appropriate functions termed weight functions or test

functions in a weak formulation, and then integrated over the entire domain.

The weighted residual technique of the Glarekin approach was used to formu-

late the subdomain. FEM is used to model the behaviour of fluids, such as

air, water, and oil, inside cavities. To determine the pressure, velocity, and

other characteristics of the fluid inside the cavity, the Navier-Stokes equations,

which describe the motion of fluids can be solved using FEM.

Galerkin weighted residual method process

The Galerkin weighted residual technique is the most prevalent ap-

proach for computing the global stiffness matrix among the finite element

methods. The following steps are followed to resolve the problems using the

finite element method.

• Multiply both sides of the problem is actually conservation equations by
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the test function w(x) ∈ W , which is fading away on the domain’s edges,

where W is a test field.

• Perform segment integration such that some derivative from the trial

function is conveyed to the test function.

• In the perimeter integrals, impose intrinsic boundary conditions, and in

the testing and trial spaces, impose necessary boundary conditions. This

is referred to as a weak formulation or variational formulation.

• Create a mesh or a triangulation, whoever is most appropriate. Con-

struct non-overlapping items out of the full domain. Mesh is a set of

points in one dimension, x∗0 = 0, x∗1, x
∗
2, ..., x

∗
N = 1; where x∗i is a node

and ei = [x∗i , x
∗
i+1], is an element such that ei ∩ ej = Φ for i 6= j. Let

hi = x∗i − x∗i−1 for i = 0, 1, 2, 3, ..., N . hi is the mesh size.

• Use the bounded dimensions spaces Vh and Wh to approximate the infi-

nite dimensional trial and testing spaces V and W , respectively.

V ∗h (finite dimensional space) ⊂ V ∗(the solution space). (3.1)

Following example to demonstrate the Galerkin weighted residual procedure.

Example:

Using Galerkin weight residual method to solve the possion equation

−∇(a∇u∗) = f, (3.2)

where the unknown functions are a(x∗, y∗), f(x∗, y∗) and u∗(x∗, y∗). In the

xy-plane equation becomes

− ∂

∂x∗

(
a
∂u∗

∂x∗

)
− ∂

∂y∗

(
a
∂u∗

∂y∗

)
= f, (3.3)

weight residual integral statement of this DE is∫
Ω

[
−aw∂

2u∗

∂x∗2
− aw∂u

∗2

∂y∗2
− fw

]
dΩ = 0. (3.4)
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Second order derivative of u∗ can be reduced to First order using the following

general equations ∫
Ω

w
∂F

∂x∗
= −

∫
Γ

F
∂w

∂x∗
dΩ +

∮
Γ

wFnx∗dΓ, (3.5)

∫
Ω

w
∂F

∂y∗
= −

∫
Γ

F
∂w

∂y∗
dΩ +

∮
Γ

wFny∗dΓ. (3.6)

Eq. (3.4) takes form after applying the above general equations∫
Ω

[
−w ∂

∂x∗

(
a
∂u∗

∂x∗

)
− w ∂

∂y∗

(
a
∂u∗

∂y∗

)
− wf

]
dΩ = 0. (3.7)

−
∫

Ω

a
∂u∗

∂x∗
∂w

∂x∗
dΩ +

∮
Γ

aw
∂u∗

∂x∗
nx∗dΓ

−
∫

Ω

a
∂u∗

∂y∗
∂w

∂y∗
dΩ +

∮
Γ

aw
∂u∗

∂y∗
ny∗dΓ = 0.

(3.8)

Elemental weak form is:

−
∫

Ωe

a

(
∂u∗

∂x∗
∂w

∂x∗
+
∂u∗

∂y∗
∂w

∂y∗

)
dΩ =

∫
Ωe

wfdΩ

+

∮
Ωe

w

(
a
∂u∗

∂x∗
nx∗ + a

∂u∗

∂y∗
ny∗

)
dΓ.

(3.9)

Where nx∗ and ny∗ are the Cartesian components of the unit outward normal

of Γe. Approximate solution over an element is

u∗
e

=
NEN∑
j=1

u∗jeSje(x
∗, y∗). (3.10)

To get the i-th equation of element e. Substituting approximate u∗
e

into the

elemental weak form and selected w = Sei .∫
Ωe

a

[
∂

∂x∗

(
NEN∑
j=1

u∗
e

j S
e
j

∂Sei
∂x∗

)
+

∂

∂y∗

(
NEN∑
j=1

u∗
e

j S
e
j

∂Sei
∂y∗

)]
dΩ

=

∫
Ωe

Sei fdΩ +

∮ e

Γ

Sei qndΓ,

(3.11)

NEN∑
j=1

[∫
Ωe

(
a
∂Sej
∂x∗

∂Sei
∂x∗

+
∂Sej
∂y∗

∂Sei
∂y∗

)
dΩ

]
u∗

e

j =

∫
Ωe

Sei fdΩ +

∮
Γe

Sei qndΓ. (3.12)
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Figure 3.1: 2-D Quadrilateral and Triangular master element for shape func-

tions

NEN × NEN elemental system is

[Ke]u∗
e

= F e +Qe,

Ke
ij =

∫
Ωe

(
a
∂Sej
∂x∗

∂Sei
∂x∗

+
∂Sej
∂y∗

∂Sei
∂y∗

)
dΩ,

F e
i =

∫
Ωe

Sei fdΩ,

Qe
i =

∮
Γe

Sei qndΓ.

To calculate the above integrals, we will introduce master elements in the

triangular and quadrilateral form. The master element coordinates used for

shape function. 2-D Jacobian transformation for that elements. To regain

integral GQ used in the form of partition. Master element is in the form of

square in the case of quadrilateral of size 2 × 2. The order of numbering of

nodes are taken in CCW order, it start from corner (−1,−1).

35



Shape function for two dimensional Quadrilateral master element:

The general form of two-dimensional for Four nodal element:

S = A + Bξ∗ + Cη∗ + Dξ∗η∗. (3.13)

Unknown A, B, C and D obtained using the property Kronecker Delta, which

satisfy the shape function. The shape function equation in that case:

S1 =
1

4
(1− ξ∗) (1− η∗) ,

S2 =
1

4
(1 + ξ∗) (1− η∗) ,

S3 =
1

4
(1 + ξ∗) (1 + η∗) ,

S4 =
1

4
(1− ξ∗) (1 + η∗) .

(3.14)

Shape function for two dimensional Triangular master element:

The general form of two-dimensional for three nodal element:

S = A+Bξ∗ + Cη∗. (3.15)

Unknown A, B and C obtained using the property Kronecker Delta, which

satisfy the shape function. The shape function equation in that case:

S1 = 1− ξ∗ − η∗,

S2 = ξ∗,

S3 = η∗.

(3.16)

In Ke
ij the derivative of S w.r.t x∗ and y∗ appear. But that coordinate are in

the form of ξ∗, η∗. For 1-D relation:

x∗ =
he

2
ξ∗ +

x∗
e

1 + x∗
e

2

2
. (3.17)

This relation expressed as:

x∗ =
NEN∑
j=1

x∗
e

j Sj. (3.18)
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Similarly, for y∗-axis,

y∗ =
NEN∑
j=1

y∗
e

j Sj. (3.19)

These are used for both quadrilateral and triangular element and that will be

the corner point of the element.

Te transformation from one to other coordinate will be in the form of

∂S

∂ξ∗
=

∂S

∂x∗
∂x∗

∂ξ∗
+
∂S

∂y∗
∂y∗

∂ξ∗

∂S

∂η∗
=

∂S

∂x∗
∂x∗

∂η∗
+
∂S

∂y∗
∂y∗

∂η∗
.

(3.20)

Nodes and Elements:

The enclosing domain is discretized into tiny sections in FEA. These

are called finite elements. All of the unique points (called Nodes) on their

circumference are linked by these elements. Shape functions are a series of

equations that form this “connection.” Nodes and elements in FEM are em-

ployed in cavity models to discretize the cavity region into smaller, simpler

elements in order to solve for the distribution of the electric field and other

physical parameters inside the cavity. In the FEM cavity model, the elements

represent the small, simplified sections of the cavity region that connect the

nodes, while the nodes indicate the places at which the cavity region is di-

vided. By meshing the cavity region with the help of an appropriate meshing

technique, which creates the nodes and elements, the cavity model is normally

built. Once the FEM cavity model has been established, it can be used to solve

the distribution of electromagnetic fields inside the cavity, which is essential

for identifying how the cavity operates. To accomplish this, an ensemble of

partial differential equations that explain how the electric field behaves inside

each component of the cavity are solved. The resulting solution offers a thor-

ough representation of the electric field distribution inside the cavity, which

can be used to enhance the cavity’s performance and design. In the end, the

use of nodes and elements in FEM cavity models enables precise and effec-
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tive study of the electric field distribution within the cavity, which is essential

for the design and operation of several devices, including particle accelerators,

microwave cavities, and laser resonators.

Numerical Algorithm:

The partial differential equations in the cavity problems are numeri-

cally solved by FEM and simulated by open source freefem++ software, the

programming of the software is based upon the C++ language.

1. Set

→ The initial form for the shape of domain (Ω) has a triangular mesh Λ.

Solve ∇ u = f on Ω and u = g on Γ.

mesh Th = domain(m,m); // unite square

→ Choose a starting value for the augments coefficient l0, b0 > 0.

2. Principle loop for n = 0,...

func f=1; func g=0;

Vh u,v;

(I) On the mesh Λ of Ω, determine the solution (um, vm) to the Navier-Stokes

equation. Stokes problem A(u,v,solver) =

double integral(Th)(dx(u) ∗ dx(v)+dy(u) ∗ dy(v))

+ intalledges(Th) (// loop on all edge of all triangle)

- double integral(Th)(f ∗ v)

- integral(Th)(g ∗ dn(v) ∗ g ∗ v) ;

(II) Establish the partial derivatives system on Ωm solution (V m, qm).

(III) Determine the shape gradient (φm) of Ωm → (Ω, l0, b0 ).

int n = Vh.ndof, n1 = n+1; func f=1+x-y;

Grad(u) [dx(u),dy(u)] //

varf va(uh,vh) = double integral(Th)( Grad(uh) ∗ Grad(vh)) ;

varf vL(uh,vh) = double integral(Th)( f ∗ vh ) ;

varf vb(uh,vh)= double integral(Th)(1. ∗ vh);
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matrix A=va(Vh,Vh);

real[int] b=vL(0,Vh), B = vb(0,Vh);

real[int] bb(n1),x(n1),b1(1),l(1); b1=0;

matrix AA = [ [ A , B ] , [ B’, 0 ] ] ; bb = [ b, b1];

set(AA,solver); // set the type of linear solver.

x = AA−1 ∗ bb; [uh [ ],l] = x; // solve the linear system

plot(uh,wait=1); // set the value

(IV) If the ultimate mesh is inappropriate, revert to step 1 and modify the

mesh quantity.

3.5 Mesh independency analysis

In a computational finite element approach, the accuracy of the re-

sult is checked in the form of convergence of the solution and mesh number

independence. Mesh convergence specifies how many elements are necessary

in a framework to ensure that increasing the mesh size has no effect on the

analysis. With decreasing number of nodes, the response of the system (stress,

deformity) will converge to a consistent solution. Further mesh improvement

after convergence has no influence on the outcomes. The model and its output

is now independent of the mesh. The FEA model has convergent to a solution,

according to a mesh convergence analysis. It also justifies mesh independence,

indicating that further improvement is useless. In cavity models, which involve

the simulation of heat transfer within an enclosed space, the accuracy of the

simulation depends on how well the flow and temperature fields are resolved

within the cavity. This, in turn, depends on the quality of the mesh used in

the simulation as shown in Fig. 3.2. A coarse mesh can lead to inaccurate

results, while a fine mesh can lead to excessively long simulation time and can

increases computational costs.
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Figure 3.2: Response of isotherm profile against of different number of nodes

and elements
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CHAPTER 4

HEAT TRANSFER ANALYSIS OF WATER BASED

SWCNTS THROUGH PARALLEL FINS ENCLOSED

BY SQUARE CAVITY

4.1 Introduction

To enhance heat transfer inside a square cavity, heated and cold fins

are frequently utilised in engineering applications. Electronic cooling uses

heated and cooled fins physically applied in a square cavity. Analysis of nat-

ural convection due to various positions of bottom heated fin is performed in

a square cavity that is filled by water-based Single Wall Carbon Nanotubes

(SWCNTs) via finite element method (FEM). Three vertical parallel fins and

one top horizontal fin is placed inside the cavity. The upper surface of the

cavity is adiabatic, however the rest of three parts of the square cavity are

cold. Convection is driven through lower horizontal fin and vertically central

fin. For convection, horizontal and middle vertical fins are heated with uni-

form temperature T ∗h and remaining vertical parallel fins are fixed as cold (T ∗c ).

Mathematical structure is constructed in the form of system of nonlinear par-

tial differential equations (PDEs) with constraint at the surface expressions

of nanofluid relations are incorporated into the mathematical model. Effec-

tive thermal conductivity model of nanofluid is depending upon the radius of

nanoparticle and fluid molecules at nanoscale. Dimensionless form of PDEs
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are tackled through Galerkin technique-based finite element method. Results

are obtained for temperature profile and stream function that includes emerg-

ing parameters such as: Rayleigh number (Ra), nanoparticle volume fraction

(φ), position of heated horizontal fin, variation in length for bottom heated fin

HT ∗ , Hartmann number (Ha) and effect of middle vertical fin (adiabatic, cold,

hot). The analysis describes the significant effect of heat transfer which is ob-

tained in the presence of nanoparticles and heated length of bottom fin. Heat

transfer rate increases by enlarging the heated length of the lower horizontal

fin, and decreases by improving the value of Ra and solid volume fraction of

nanoparticles.

Table 4.1: A table demonstrating the contrasts between the approaches being

offered

Authors Enclosure Nanofluids Fins MHD Method

Garoosi et al. [5] Square CuO No No FEM

Jou et al. [8] Rectangular Cu No No FDM

Sheremet et al. [10] Trapezoidal Concentration No No FDM

Khanafer et al. [16] Square No Yes Yes ADI

Haq et al. [1] Triangular SWCNTs No Yes FEM

Present Square SWCNTs Yes Yes FEM
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Figure 4.1: Physical domain of the mathematical model

4.2 Problem Formulation

In this section, necessary assumptions have been introduced, in order

to construct the mathematical model. For this we have considered the two

dimensional flow enclosed in a square cavity that contains horizontal and ver-

tical parallel fins which are heated from different side. Cavity is filled with

water based single wall carbon nanotubes (SWCNTs). Various constraints

have been adjusted at fins to handle the heat transfer performance within the

closed cavity. The constraint at outer square walls are defined in such a way

that, top wall is consider to be adiabatic ∂T ∗

∂y∗
= 0 and rest of wall are consider

to be cold T ∗ = T ∗c . Different cases have been implemented at central vertical

fin by considering three modes (heated,cold and adiabatic). Fig. 5.1 describes

the description of entire structure of the model.
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4.2.1 Mathematical Model

Based upon the constraints defined in the problem description, math-

ematical model is constructed that is emerged with nanofluid expressions in

the form of conservation law of mass, momentum and energy:

∇ ·V∗ = 0, (4.1)

V∗ · ∇u∗ = − 1

ρnf

∂p∗

∂x∗
+
µnf
ρnf
∇2u∗, (4.2)

V∗ · ∇v∗ = − 1

ρnf

∂p∗

∂y∗
+
µnf
ρnf
∇2v∗ − σ

ρnf
B2
ov
∗ +

g(ρβ)nf
ρnf

(T ∗ − T ∗c ), (4.3)

V∗ · ∇T ∗ =
knf

(ρCp)nf
∇2T ∗. (4.4)

In the above equation V∗ = (u∗, v∗, 0) and ∇ =
(

∂
∂x∗
, ∂
∂y∗
, 0
)

represents the

velocity field and nabla operator for two dimensional fluid flow. The expression

of nanofluid with physical quantities are density ρnf , dynamic viscosity µnf ,

specific heat capacity (Cp)nf and thermal expansion coefficient of nanofluid

βnf , developed by Tiwari and Das [93].

µnf = µf (1− φ)−2.5,

(ρβ)nf = (1− φ)(ρβ)f + φ(ρβ)p,

(ρCp)nf = (1− φ)(ρCp)f + φ(ρCp)p.

(4.5)

Thermal conductivity model [94] is

knf
kf

= 1 +
kCNTφrl

3kl(1− φ)rCNT
. (4.6)

The numerical of all expression based upon base fluid and CNT are defined in

Table. 4.3.
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4.2.2 Boundary conditions:

At outer square wall

:

u∗(x∗, y∗) = v∗(x∗, y∗) = 0 and T ∗(x∗, y∗) = T ∗c at Ω1 ∪ Ω2 ∪ Ω4,

u∗(x∗, y∗) = v∗(x∗, y∗) =
∂T ∗

∂y∗
= 0 at Ω3,

Ω1 = {x∗, y∗ ∈ R /0 ≤ x∗ < L ∧ y∗ = 0},

Ω2 = {x∗, y∗ ∈ R /x∗ = L ∧ 0 ≤ y∗ < L},

Ω3 = {x∗, y∗ ∈ R /0 ≤ x∗ < L ∧ y∗ = L},

Ω4 = {x∗, y∗ ∈ R /x∗ = 0 ∧ 0 ≤ y∗ < L}.

(4.7)

Inner horizontal and vertical fins:

u∗(x∗, y∗) = v∗(x∗, y∗) = 0 and T ∗(x∗, y∗) = T ∗h at Ω5,

u∗(x∗, y∗) = v∗(x∗, y∗) = 0 and T ∗(x∗, y∗) = T ∗c at Ω6,

u∗(x∗, y∗) = v∗(x∗, y∗) = 0 and T ∗(x∗, y∗) = T ∗h at Ω7,

u∗(x∗, y∗) = v∗(x∗, y∗) = 0 and T ∗(x∗, y∗) = T ∗c at Ω8,

u∗(x∗, y∗) = v∗(x∗, y∗) = 0 and T ∗(x∗, y∗) = T ∗h at Ω9,

Ω5 = {x∗, y∗ ∈ R/aL ≤ x∗ < bL ∧ y∗ = a1L , b1L},

Ω6 = {(x∗, y∗ ∈ R/cL ≤ y∗ < dL ∧ x∗ = c1L , d1L},

Ω7 = {x∗, y∗ ∈ R/eL ≤ x∗ < fL ∧ y∗ = e1L , f1L},

Ω8 = {x∗, y∗ ∈ R/gL ≤ y∗ < hL ∧ x∗ = g1L , h1L},

Ω9 = {x∗, y∗ ∈ R/iL ≤ y∗ < jL ∧ x∗ = i1L , j1L}.

(4.8)

To non-dimensionalize form of the variables are:

X =
x∗

L
, Y =

y∗

L
, U =

u∗L

αf
, V =

v∗L

αf
, θ =

T ∗ − T ∗c
T ∗h − T ∗c

,

P =
p∗L2

ρfα2
f

, νf =
µf
ρf
, Ra =

gβf (T
∗
h − T ∗c )L3

νfαf
,

Ha = BoL

√
σ

ρfνf
, P r =

νf
αf
, αnf =

knf
(ρC)nf

.

(4.9)
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Where L, νf , Ra and Pr show the characteristic length, kinematic viscosity,

Rayleigh number, and Prandtl number, respectively. Using the above non-

dimensional, equation in Eqs. (4.1)–(4.4), we get

∂U

∂X
+
∂V

∂Y
= 0, (4.10)

U
∂U

∂X
+ V

∂U

∂Y
= − ρf

ρnf

∂P

∂Y
+ Pr

νnf
νf

(
∂2V

∂X2
+
∂2V

∂Y 2

)
, (4.11)

U
∂V

∂X
+ V

∂V

∂Y
= − ρf

ρnf

∂P

∂Y
+ Pr

νnf
νf

(
∂2V

∂X2
+
∂2V

∂Y 2

)
−Ha2PrV +

(1− φ)ρfβf + φρpβp
ρfβf

RaPrθ,

(4.12)

U
∂θ

∂X
+ V

∂θ

∂Y
=
αnf
αf

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
. (4.13)

4.2.3 Dimensionless boundary conditions:

At outer square wall

:

U(X, Y ) = V (X, Y ) = 0 and θ(X, Y ) = 0 at Ω1 ∪ Ω2 ∪ Ω4,

U(X, Y ) = V (X, Y ) =
∂θ

∂Y
= 0 at Ω3,

Ω1 = {X, Y ∈ R/0 ≤ X < 1 ∧ Y = 0},

Ω2 = {X, Y ∈ R/X = 1 ∧ 0 ≤ Y < 1},

Ω3 = {X, Y ∈ R/0 ≤ X < 1 ∧ Y = 1},

Ω4 = {X, Y ∈ R/X = 0 ∧ 0 ≤ Y < 1}.

(4.14)

At inner horizontal and vertical fins in dimensionless form :

U(X, Y ) = V (X, Y ) = 0 and θ(X, Y ) = 1 at Ω5,

U(X, Y ) = V (X, Y ) = 0 and θ(X, Y ) = 0 at Ω6,

U(x, Y ) = V (X, Y ) = 0 and θ(X, Y ) = 1 at Ω7,

U(X, Y ) = V (X, Y ) = 0 and θ(X, Y ) = 0 at Ω8,

U(X, Y ) = V (X, Y ) = 0 and θ(X, Y ) = 1 at Ω9.

(4.15)
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Ω5 = {X, Y ∈ R/a ≤ X < b ∧ Y = a1 ∧ b1},

Ω6 = {X, Y ∈ R/c ≤ Y < d ∧ X = c1 ∧ d1},

Ω7 = {X, Y ∈ R/e ≤ X < f ∧ Y = e1 ∧ f1},

Ω8 = {X, Y ∈ R/g ≤ Y < h ∧ X = g1 ∧ h1},

Ω9 = {X, Y ∈ R/i ≤ Y < j ∧ X = i1 ∧ j1}.

(4.16)

All the above mentioned lengths for both horizontal and vertical cases vary,

that depends upon the coordinates a, b, c, d, e, f, g, h, i, j, a1, b1, c1, d1, e1, f1, g1,

h1, i1, j1. In the ordered pair form, these lengths can be described as: (a, b),

(c, d) and (a1, b1), (c1, d1) be the coordinate of length and width of horizontal

fins, respectively. Similarly, the coordinate of vertical fins along horizontal

varies are (e, f), (i, j), (g, h) and (e1, f1), (i1, j1), (g1, h1), respectively. To

perform the simulation the middle fin is considered to be heated.

Table 4.2: Position of fins according to coordinate system

a = 0.3 b = 0.7 a1 = 0.19 b1 = 1

c = 0.3 d = 0.7 c1 = 0.80 d1 = 0.81

e = 0.3 f = 0.7 e1 = 0.29 f1 = 0.30

g = 0.3 h = 0.7 g1 = 0.70 h1 = 0.71

i = 0.3 j = 0.7 i1 = 0.80 j1 = 0.81

4.3 Numerical Procedure

Using the Galerkin weighted residual method to solve the equation

(4.11)-(4.13) subject to boundary conditions (4.14)-(4.16). To eliminate pres-

47



Table 4.3: Thermophysical properties of Water and Nanofluid

Physical properties Base fluid (water) SWCNT

Cp(J/kgK) 4179 425

ρ(kg/m3) 997.1 2600

K(W/mK) 0.613 6600

β (1/K) 21× 105 0.33× 105

r (nm) 0.1 10

sure terms using continuity equation, for that applying Penalty method. Using

the incompressible condition, the Penalty parameter γ is developed as follows:

P = −γ
(
∂U

∂X
+
∂V

∂Y

)
. (4.17)

Using (4.17) in Eqs. (4.11)-(4.13), we get

U
∂U

∂X
+ V

∂V

∂Y
= γ

ρf
ρnf

∂

∂X

(
∂U

∂Y
+
∂V

∂Y

)
+ Pr

νnf
νf

(
∂2U

∂X2
+
∂2U

∂Y 2

)
, (4.18)

U
∂V

∂X
+ V

∂V

∂Y
= γ

ρf
ρnf

∂

∂Y

(
∂U

∂X
+
∂V

∂Y

)
+ Pr

νnf
νf

(
∂2U

∂X2
+
∂2U

∂Y 2

)
−Ha2PrV +

(1− φ)ρfβf + φρpβp
ρfβf

RaPrθ.

(4.19)

Using bi-quadratic basis functions to approximate the unknown velocity and

temperature functions. Sk=i be the 4-nodal square elements such as

U =
4∑

k=1

Ukφ
∗
k(X, Y ), V =

4∑
k=1

Vkφ
∗
k(X, Y ), θ =

4∑
n=1

Tkφ
∗
k(X, Y ). (4.20)
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Nonlinear residual equations obtained by using the Glarekin weighted residual

technique used inside the domain of Ω.

R1
j =

N∑
k=1

Uk

∫
Ω

[(
N∑
k=1

Ukφ
∗
k

)
∂φ∗k
∂X

+

(
N∑
k=1

Vkφ
∗
k

)
∂φ∗k
∂Y

]
φ∗jdXdY

+γ
ρf
ρnf

[
N∑
k=1

Uk

∫
Ω

∂φ∗j
∂X

∂φ∗k
∂X

dXdY +
N∑
k=1

Vk

∫
Ω

∂φ∗j
∂X

∂φ∗k
∂Y

dXdY

]

+Pr
νnf
νf

N∑
k=1

Uk

∫
Ω

[
∂φ∗j
∂X

∂φ∗k
∂X

+
∂φ∗j
∂Y

∂φ∗k
∂Y

]
dXdY,

(4.21)

R2
j =

N∑
k=1

Vk

∫
Ω

[(
N∑
k=1

Ukφ
∗
k

)
∂φ∗k
∂X

+

(
N∑
k=1

Vkφ
∗
k

)
∂φ∗k
∂Y

]
φ∗jdXdY

+γ
ρf
ρnf

[
N∑
k=1

Uk

∫
Ω

∂φ∗j
∂Y

∂φ∗k
∂X

dXdY +
N∑
k=1

Vk

∫
Ω

∂φ∗j
∂Y

∂φ∗k
∂Y

dXdY

]

+Pr
νnf
νf

N∑
k=1

Uk

∫
Ω

[
∂φ∗j
∂X

∂φ∗k
∂X

+
∂φ∗j
∂Y

∂φ∗k
∂Y
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dXdY

−Ha2Pr
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[
N∑
k=1

Ukφ
∗
k

]
φ∗jdXdY

+
(1− φ)ρfβf + φρpβp

ρfβf
RaPr

∫
Ω

[
N∑
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Tkφ
∗
k

]
φjdXdY,

(4.22)

R3
j =

N∑
k=1

Tk

∫
Ω

[(
N∑
k=1

Ukφ
∗
k

)
∂φ∗k
∂X

+

(
N∑
k=1

Vkφ
∗
k

)
∂φ∗k
∂Y

]
φ∗jdXdY

+
αnf
αf

(
N∑
k=1

Tk

∫
Ω

[
∂φ∗j
∂X

∂φ∗k
∂X

+
∂φ∗j
∂Y

∂φ∗k
∂Y

]
dXdY

)
φ∗jdXdY.

(4.23)

To approximate the solution using the Newton-Raphson technique iteratively.

Using the relation of velocity in the form of stream functions for fluid motion

is as follow:

U =
∂ψ

∂Y
, V = − ∂ψ

∂X
. (4.24)

4.3.1 Comparison of results and Grid Independency

In this section a comparsion is presented with the existing literature

published by Khanfer et al. [7]. Numerical result of average Nusselt number
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of present work compared with [7] as shown in Table. 4.4. Consider different

number of nodes along the X-axis and Y -axis of cavity. We can observe that

increase the grid size the maximum and minimum value of stream functions

are repeating as shown in Table. 4.5. This shows that results are repeated

and no longer affected on the higher number of grids and hence this procedure

is known as grid independency. Fig. 4.2 represents the comparison of current

work with the experimental result developed by Parocini and Covaro [95]

which are based upon isotherms plots. Fig. 4.3 is mesh generation at different

positions of the square cavity.

Table 4.4: Comparison between present results and other works for the av-

erage Nusslet number: (Nuavg)

Ra Present work Khanfer et al. [7] %Error

103 1.05012 1.118 6

104 1.926 2.245 16

105 4.06148 4.522 11

106 8.05925 8.826 9

4.4 Results and Discussion

In this section the numerical result has been analysed to determine

the natural convection of nanofluid. The simulation is performed in square

cavity filled with carbon nanoparticles and obstacles are adjusted in the form

of thin fins. The magnetic filed has been carried out through these fins. This
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Figure 4.2: Isotherm comparison between the experimental present work

and numerical study of Parocini and Covaro [95], , Pr = 6.2, Ra = 1.24× 105,

HL = 0.25

IVIII

III

IV

I
II

III

Figure 4.3: Mesh generation at different vertices of cavity
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Table 4.5: Comparison of the ψ for different grid resolution by removing the

inner fins from the square cavity at Pr = 6.2, Ra = 106, φ = 0.1, Ha = 0.

No of Grid ψmin ψmax

20× 20 -156.021 155.871

30× 30 -157.409 157.514

40× 40 -155.872 156.458

50× 50 -157.038 156.394

55× 55 -156.57 156.703

computational result acquired by using Finite element method. Here, the

simulation inside the square cavity along with the various constraints at middle

fins (cold, adiabatic, hot) and other physical parameters: Rayleigh number

(105, 106 and 107), Hartmann number (0 ≤ Ha ≤ 10), length variation in

heated lower fin, at different positions of lower heated fin and nanoparticle

volume fraction (φ = 0.0, 0.1 and 0.2). For such simulation Prandtl number is

considered to be 6.2. The valuable results are obtained through simulation and

effects of heat transfer rate, velocity and temperature distribution are plotted

for emerging parameters.

Effects of various condition on vertical middle fin:

Engineer uses for heated and cooled fins range from electronic cooling

to industrial drying and refrigeration. They are an important tool in the design

and optimization of thermal processes since their application can considerably

increase a system’s performance and efficiency. In refrigeration systems, cold
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fins are frequently utilised. The fins in a refrigeration system are used to

transfer heat from the air around it to a refrigerant. The system’s heat is

subsequently removed by the refrigerant, which cools the air inside the square

cavity. The effect of middle vertical fin (cold, adiabatic, hot) on the streamline

and isotherm are expressed in Fig. 4.4(a-f) for the value of fixed parameter

Pr = 6.2, Ha = 0, Ra = 106, φ = 0.1. In such cases, the cold middle vertical

fin creates strong streamline around the lower heated fin. This streamline

is stronger than heated and adiabatic middle vertical fin. Fig. 4.4(a and c)

demonstrate that around the vertical fins, the streamline shows the strong

concentration of molecules around the vertical sides of fin. However, these

effects vanish when cold case is considered. In Fig. 4.4(c), the concentration

of molecules are much stronger along a vertical side fins. It seems that the

streamlines are in excess case of hot vertical fin than cold in cavity. Fig.

4.4(d)-(f) be the isotherms result for different cases of middle fin. Fig. 4.4(e)

describes that heat cannot pass through vertical fins to upward, it is restricted

around the lower horizontal fin, due to the cold vertical fin. But Fig. 4.4(f)

reveals that the heat flows upward inside the entire cavity. Buoyancy forces

play their role to transfer the heat in the upward direction.

The heat transfer rate, velocity and temperature distribution for dif-

ferent vertical middle fin (cold, adiabatic, hot) is described in Fig. 4.5(a-e).

The heat transfer rate at the lower face of bottom fin is higher for heated

vertical fin than the cold and adiabatic fin. Fig. 4.5(c) shows that at the end

point of the lower face of bottom fin is the highest rate, as well as the upper

face of bottom fin is maximum for heated vertical fin. But in case of adiabatic

fin normal heat rate flows for both faces of fin. In Fig. 4.5(d) one can depict

the effects on temperature due to various middle fins. In the first half, between

left vertical fin, temperature increases due to the heated middle fin and also

satisfies its boundary condition. But in case of cold fin, temperature suddenly

decreases and it tends to come at zero. At the middle of vertical fins, it again
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rises up due to the bottom hot fin and it attains maximum heat. In heated fin,

the case along the mean path increases and satisfies the boundary condition

towards the end point. At the boundary or away from the middle fin, there

is consistent temperature in all cases. The effect of cold, adiabatic and hot

fins in horizontal and vertical velocity in Fig. 4.5(a)-(b) is demonstrated. In

all three cases, the effect on horizontal velocity are different. In case of hot,

middle fin velocity attains maximum and minimum molecular motion in mean

path near the walls of square cavity. On the other hand, at the middle, the

motion of molecule is less in case of hot fin than that of adiabatic case.

Effects of length in various heated fin:

The streamline and isotherms behaviour in a square cavity is described

in Fig. 4.6(a-f). Heat transfer is dominant and intensed with respect to in-

crease in length of heated portion. From Fig. 4.6(a-c), which depicts that

length of heated portion may reduce the flow rate of streamlines. However, on

the other hand isotherms behaviour is significantly enhanced due to enlarge-

ment of heated bottom length. It can be further observed that, due to small

heated length, isotherms just pass through vertically parallel fins. However,

when we increase the length of heated bottom portion then isotherms are ex-

panded outside of the vertically parallel fins. Fig. 4.7(a) and (b) describes the

variation of velocities (U and V ) along the X and Y -directions, respectively.

One can observe the variation of velocity for three different heated portion

lengths are (HT = 0.2, 0.4 and 0.8). Symmetric but inverse behaviour of veloc-

ity U is observed and higher velocity distribution is attained with respect to

extended length of heated fin. In Fig. 4.7(b), velocity is quite dominant near

to the lower heated fin but low behaviour of velocity moves away from heated

portion due to high fluid’s molecular motion. Nusselt number at upper and

lower face of heated portion has been plotted in Fig. 4.6(c-d). In both upper

and lower faces of the heated portion, heat transfer behaviour at the surface

of fin is increasing with respect to the increase in heated length. Temperature
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Figure 4.4: Effects on streamline and isotherms due to variation of middle

fin
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Figure 4.5: Effects of variation in middle fin on the velocity, temperature

distribution and Nusselt number
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profiles along vertically mean position is plotted in Fig. 4.7(e). Since outer

cavity is adjusted for cold walls, therefore temperature profile starts from zero

and attains the maximum heat which is being adjusted for heated fin.

Table 4.6: Influence of heat transfer rate in cavity due to increasing heated

fin’s length from 0.2 to 0.8

Length of heated fin Nuavg % Increased

0.2 2.16 -

0.4 2.39 10

0.8 2.51 16

Effects of position of lower fin on the cavity:

Fig. 4.8(a-f), demonstrates the position of heated bottom length and

one can observe that both isotherms and streamlines behave with respect to the

position of heated length at different positions (right, left, mean), the position

of fin. In Fig. 4.8(a) the heated fin is on the left position, then the maximum

flow of streamline passes through right vertical fin. But in Fig. 4.8(c) when the

position of heated fin at the right position the streamline is enhanced through

left vertical fin. Streamline is symmetric in cavity when the heated fin is at

the mean position as shown in Fig. 4.8(c). Fig. 4.8(d-f) illustrates the effects

on isotherms due to the position of that heated fin. Heat transfer through

the heated lower fin, that is why flow of heat depends on the position of fin,

when fin is placed at left position, flow of heat is maximum near the heated

fin similarly when fin is placed it right position, isotherm generates through

the right. In Fig. 4.8(e) isotherm is equally distributed throughout in cavity.

Fig. 4.9(a-e) shows the effect of position of heated fin on velocity,
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Figure 4.6: Effects on streamline and isotherms due to variation in length of

middle fin
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distribution and Nusselt number
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temperature and Nusselt number. Fig. 4.9(a) clearly describes that horizontal

velocity increases on the right position when heated fin is in the left position.

When heated fin is placed on the right position, velocity increases on the left

side. Vertical velocity in Fig. 4.9(b) signifies maximum on the left side when

fin is placed on left side but when it is placed on right side velocity is uniform.

On Nusselt number, the effect of heated fin position is shown in Fig. 4.9(c

and d). The lower face of heated fin could not have significant effect because

of the position of heated fin on Nusselt number. Similarly, in the upper face

of heated fin, when the fin is moved towards left to right as shown in Fig.

4.9(d). Fig. 4.9(e) depicts that the temperature is distributed equally when

fin is moved towards its mean position and when placed on the right side,

temperature move towards the right side.

Table 4.7: Effect of heated fin placement inside the square cavity

Position Nuavg % Error

Mean position 3.33 -

left position 3.47 4.2

Right position 3.49 4.80

Effects of Rayleigh number:

The effects of Rayleigh (105 ≤ Ra ≤ 107) on isotherm and streamlines

in Fig. 4.10(a-f), which shows that streamlines are stronger with enhancement

of Rayleigh number. Fig. 4.10(a-c) describes that the streamlines are strong

near the lower heated fin when Rayleigh number is increased. The streamline is

closer to the heated fin when in Fig. 4.10(c) as compare to the Fig. 4.10(a and

b). In case of isotherm, temperature is distributed when Ra increases. In Fig.
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Figure 4.8: Effects on streamlines and isotherm due to position variation of

lower fin
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4.10(d-f), when Ra is increased, more heat is transmitted in cavity. Fig. 4.10(f)

is noticeable in which whole cavity is filled with heat. In the case of increasing

Ra more intensive free convection on free flow of isotherm is observed. Fig.

4.11(a-e) shows the effect of Rayleigh number on the heat transfer rate at

bottom and upper face of lower heated fin, temperature and horizontal and

vertical velocity distribution. Velocity attains its maximum position at the

end point of vertical fins. Heat transfer enhances as Ra increases. In Fig.

4.11(b) vertical velocity against heated lower fin are increased in cavity when

Rayleigh number is increased in the left and right region of vertical fins. It also

acquires that velocity is zero towards its end point of solid fins. Flow rate to

mean position of bottom face, lower heated fin decreases when Ra is increased.

The heat transfer due to the lower face of lower heated fin can clearly be

seen in Fig. 4.11(c) which illustrates that the transfer of heat decreases when

Rayleigh number increases. Fig. 4.11(d) depicts the heat transfer rate due to

the upper face of heated fin. Rayleigh number enhances the heat flow in cavity.

Temperature distribution in that case is quite interesting when the Rayleigh

number increases. Temperature arises through lower heated fin which moves

upward in this case when Ra increases, temperature in cavity also increases.

Effects of volume fraction of nanoparticles:

The effects of nanoparticles on isotherm are expressed in Fig. 4.12(a-

c). In first figure, it indicates that streamline is stronger near the heated fin but

gradually weakens with increasing nanoparticles (0 ≤ φ ≤ 0.2). The transfer

of heat increases when quantity of φ increases. Fig. 4.12(f) illustrates that the

temperature increases due to the nanoparticles. Fig. 4.13(a-e) elaborates the

effects of nanoparticles on velocity (horizontal and vertical) and heat transfer.

Heat transfer rate increases when nanoparticle increases. The transfer of heat

increases near the heated fin and maximum heat is transferred at the end point.

Fig. 4.13(a) demonstrates that at the end point, Ω5 there is maximum heat

transfer rate. However, that is the transfer of heat on lower face of fin. Fig.
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Figure 4.10: Effects on streamline and isotherms due to variation in Ra
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Figure 4.11: Effects of Ra on the velocity, temperature distribution and

Nusselt number
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4.13(d) represents the upper face, heat transfer rate decreases with increasing

nanoparticles. It attains maximum position at the end point of heated length

which also satisfies the boundary condition. Moreover, horizontal velocity on

the left side of heated fin, nanoparticle increases and it has inverse on the right

side of fin. Vertical velocity decreases when the nanoparticle increases on both

side of heated fin in cavity.

Effects of Hartmann number:

Fig. 4.14(a-f) depicts the effects of Hartmann number (0 ≤ Ha ≤ 10)

on the isotherms and streamline. The effects of magnetic field in the presence

of nanoparticle do not affect significantly. Isotherms profile depict that in all

the cases simulation is quite similar. Fig. 4.15(a-e) also describes that there

is no significant effect on heat flow due to the variation of Hartmann number.

4.5 Conclusion

Natural convection with heat generation inside of square cavity hav-

ing horizontal and vertical thin fins is analyzed in the presence of carbon

nanoparticle. The governed partial differential equations are solved by finite

element method. The simulation is performed for different state of fins that

have various effects (cold, adiabatic, hot) while the position of lower hori-

zontal heated fin is (left, right, mean position), length of heated lower fin is

(Th = 0.4), Rayleigh number (105 ≤ Ra ≤ 107), nanoparticle (0.0 ≤ φ ≤ 0.2)

and magnetic strength (Hartmann number) (0 ≤ Ha ≤ 10) on the velocity,

temperature and Nusslet number. After the simulation the following results

are concluded:

• For hot, middle vertical thin fin has significant effect on the flow be-

haviour based upon streamline between vertical fins. Due to the natural

convection, more heat transfer is obtained in case of hot middle thin fin.

• Variation of lower heated length has major effects in the heat transfer in
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Figure 4.12: Effects on streamline and isotherms due to variation of nanopar-

ticle volume fraction
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Figure 4.13: Effects of nanoparticles on the velocity, temperature distribution

and Nusselt number
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Figure 4.14: Effects on streamline and isotherms due to variation of Ha
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Figure 4.15: Effects of magnetic field on the velocity, temperature distribu-

tion and Nusselt number
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the cavity for heat generation. For maximum length, transfer of heat is

spread in the entire cavity.

• In case of various positions of heated fin, the maximum heat is obtained

at the mean position. Nusslet number is variant with the variation of

length of thin fin.

• Temperature and Nusslet number increase with the increasing value of

Rayleigh number. Isotherm increases and is symmetric with an increase

in Re.

• Nusselt number deceases with increase in solid volume fraction of nanopar-

ticles. For smaller value of φ isotherm lines are maximum.

• Hartmann number does not have significant effect on the temperature

and velocity.
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CHAPTER 5

COMBINED HEAT GENERATION AND NATURAL

CONVECTION PROCESS FOR COPPER

OXIDE-WATER NANOFLUID IN AN ENCLOSED

CURVED PARTIALLY HEATED POROUS DOMAIN

5.1 Introduction

In a symmetrical normal shape enclosure, natural convection and fluid

flow process has been presented for CuO-water nanofluid that has been as-

sessed numerically by FEM. At the middle of the bottom wall, symmetric

heated wall is considered to determine the thermal investigation. Vertical and

horizontal walls are considered as cold and central part of symmetric curve

is adiabatic. The governed equations are converted into dimensionless PDEs

and then solved through FEM with Glariken weighted residual approach. The

effect of various parameters such as Rayleigh number (Ra), nanoparticles (φ),

Darcy number (Da), heat generation and absorption parameter (Q), size of

heated wall and shape of nanoparticles are examined. Results are shown in

the form of isotherms, streamline, velocity, temperature and average Nusselt

number. With higher Rayleigh number, the average Nusselt number increases,

the inclusion of porosity while it significantly decreases with the higher value of

Q. Vertical velocity at the middle increases with the increase in nanoparticles

whereas temperature decreases at vertical mean position.
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Table 5.1: A table demonstrating the contrasts between the approaches being

offered

Authors Enclosure Porosity Heat generation Method

Chamkha et al. [17] Triangular Yes Yes FDM

Sheikholeslami et al. [31] Circular No No FEM

Badruddin et al. [67] Square Yes No FEM

Khanafer et al. [16] Square Yes Yes ADI

Parvin et al. [75] Prism No No FEM

Present Curved Yes Yes FEM

5.2 Problem Formulation

Numerical simulation of natural convection in porous symmetric curve

cavity is examined in this chapter. Physical model is being shown in Fig. 5.1(a)

with boundary assumptions. Lower heated symmetric curve is considered for

convection with heat generation/absorption coefficient. Various size of heated

symmetric curve is being examined for convection. Fig. 5.1(b) represents the

numerous mesh generation at the various position in cavity model.

5.2.1 Mathematical Model

In two-dimensional Cartesian coordinates, the conservation laws of

mass, momentum and energy written in dimensional form as follows:

∇ ·V∗ = 0, (5.1)
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bution its different position

V∗ · ∇u∗ = − 1

ρnf

∂p∗

∂x∗
+ νnf∇2u∗ − νnf

k
u∗, (5.2)

V∗ · ∇v∗ = − 1

ρnf

∂p∗

∂y∗
+ νnf∇2v∗ − νnf

k
v∗ +

(ρβ)nf
ρnf

g(T ∗ − T ∗c ), (5.3)

V∗ · ∇T ∗ = αnf∇2T ∗ +
Q0

(ρCp)nf
(T ∗ − T ∗c ). (5.4)

To examine the heat transfer in symmetric enclosure, introduce the following

dimensionless variables on the Eqs.(5.1)-(5.4);

(X, Y ) =

(
x∗

L
,
y∗

L

)
, (U, V ) =

(
u∗L

αf
,
v∗L

αf

)
, T ∗ = T ∗c + (T ∗h − T ∗c ) θ,

P =
p∗L2

ρfα2
f

, Ra =
gβf (T

∗
h − T ∗c )L3

νfαf
, P r =

νf
αf
, Q =

Q0L
2

(ρCp)fαf
.

(5.5)

In non-dimensional form Eqs.(5.1)-(5.4) will take the form as:

∂V

∂Y
+
∂U

∂X
= 0, (5.6)

V
∂U

∂Y
+ U

∂U

∂X
= −

(
ρf
ρnf

)
∂P

∂X
+ Pr

(
νnf
νf

)(
∂2U

∂Y 2
+
∂2U

∂X2
− U

Da

)
, (5.7)
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Table 5.2: Values of shape factor for various shape of nanoparticles

Particle shapes Spherical Cylinder Platelets Brick

n 3 4.8 5.7 3.7

Table 5.3: Thermo-physical properties of Based fluid and Nanoparticles

Physical properties Base fluid (water) CuO

Cp(J/kgK) 4179 385

ρ(kg/m3) 997.1 8,933

K(W/mK) 0.613 401

β (1/K) 2.1× 10−4 1.67× 10−5

V
∂V

∂Y
+ U

∂V

∂X
= −

(
ρf
ρnf

)
∂P

∂Y
+ Pr

(
νnf
νf

)(
∂2V

∂Y 2
+
∂2V

∂X2
− V

Da

)
+RaPr

(1− φ)ρfβf + φρpβp
ρfβf

θ,

(5.8)

V
∂θ

∂Y
+ U

∂θ

∂X
=

(
αnf
αf

)(
∂2θ

∂Y 2
+

∂2θ

∂X2

)
+Q

(ρCp)f
(ρCp)nf

θ. (5.9)

5.2.2 Dimensionless boundary conditions:

At the bottom solid walls(Ω1):

Ω1 = {(X, Y ) ∈ R/0 ≤ X < 0.35 and Y = 0} ,

(U, V, ) = (0, 0), θ = 0,
(5.10)
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At the vertical walls(Ω2):

Ω2 = {(X, Y ) ∈ R/0 ≤ Y < 0.35 and X = 0} ,

(U, V, ) = (0, 0), θ = 0,
(5.11)

At the upper lower symmetric curve(Ω3):

Ω3 = {(X, Y ) ∈ R/0.35 < X ≤ 0.65 and 0 ≤ Y ≤ 0.2} ,

(U, V ) = (0, 0), θ = 1,
(5.12)

At the upper symmetric curve (Ω4 and Ω5):

Ω4 = {(X, Y ) ∈ R/0.7 < X ≤ 1 and 0.2 < Y ≤ 0.5}

(U, V ) = (0, 0), θ = 0,

Ω5 = {(X, Y ) ∈ R/0.0 ≤ X < 0.3 and 0.2 ≤ Y < 0.5}

(U, V ) = (0, 0), θ = 0,

(5.13)

At the upper surface of the symmetric curve: (Ω6):

Ω6 = {(X, Y ) ∈ R/0.3 ≤ X < 0.7 and 0.5 ≤ Y ≤ 0.7} ,

(U, V ) = (0, 0),
∂θ

∂Y
= 0.

(5.14)

The average Nusselt number is well-defined to represent rate of heat transfer

on the inner single corrugated heated surface as:

Nuavg = − 1

π

∫
Ω3

√(
∂θ

∂X

)2

+

(
∂θ

∂Y

)2

ds. (5.15)

5.3 Numerical Procedure:

To solve the Eqs. (5.6)–(5.9) subject to boundary conditions Eqs.

(5.10)–(5.14), the Galerkin weighted residual method is being used as dis-

cussed in chapter 3. In this section, we validate with other manuscripts of

the computational results for the current work on isotherm profile in limiting

condition on walls. Numerical results of our mathematical model are validated

with the experimental result of Paroncini [95].
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Table 5.4: Comparison of average Nusselt number achieved by the present

solution with previous for various Rayleigh numbers when Pr = 0.7.

Ra Present work Sheikholeslami et al. [31] %Error

103 1.17 1.14 2.63

104 2.29 2.27 0.88

105 4.52 4.51 0.22

5.4 Results and Discussion

In this chapter, numerical simulation of natural convection fluid flow

and heat transfer of CuO nanofluid inside the porous symmetric curved cavity

is depicted with heat generation/absorption. The simulation is performed for

various Rayleigh number (103 ≤ Ra ≤ 105.5), Darcy number (10−5 ≤ Da ≤ 1),

heat generation/absorption coefficient (−103 ≤ Q ≤ 7.5×10), volume fraction

of nanoparticles (0 ≤ φ ≤ 0.05), shape of nanoparticles (spherical, cylindrical

and bricks) and the length of heated wall. Effects of various parameters on

isotherm and streamlines are examined in this study.

Effects of Rayleigh number:

Fig. 5.2(a-f) show the effects of Ra on isotherms and streamline. For

fixed quantity of concentration of nanoparticles, the streamlines create eddies,

which are stronger for higher values of Rayleigh number. Due to maximum

fluid flow, eddies are stronger with increasing Ra. In isotherm case, for smaller

value of Rayleigh number, isotherms are congested near the heated wall, and

gradually increases the heat inside the enclosure. Due to buoyancy forces, heat

is transferred to adiabatic wall in upward direction. Generation of a symmetry
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of isotherms are seen inside the cavity. Fig. 5.3 illustrates the vertical velocity

and temperature profile for different Rayleigh numbers. Vertical velocity for

smaller value of Ra is almost same and moderately increases with increasing

Rayleigh numbers. Maximum velocity is observed for maximum value ofRa. In

Fig. 5.3(b), temperature distribution at vertical mean position demonstrates

that for higher value of Ra, the temperature increases sufficiently. At mean

position temperature gradient decreases and increases at the corner of the

porous medium as Rayleigh number increases. The isotherm layer remains at

rest at the right corner in all cases of Ra in temperature profile.

Effects of volume fraction of nanoparticles:

Fig. 5.4 represents the effect of volume fraction of nanoparticles in

spherical shape. In case of base fluid, smaller eddies are developed near the

heated symmetric wall as shown in Fig. 5.4(a). Fig. 5.4(b) depicts that the

streamlines increase when 2.5% of nanoparticles are added in base fluid as well

as the size of the eddies increases. With the 5% of nanoparticles, the intensity

of fluid flow increases intensively. Fig. 5.4(d-f) shows the effects of nanoparti-

cles on isotherms, in case of base fluid (φ = 0) the isotherms are dominant near

the heated curve and heated lines decrease gradually with increasing nanopar-

ticles with convection dominated in the enclosure. Temperature near the upper

curve decreases with increasing concentration of nanoparticles. Fig. 5.5(a-b)

represents the vertical velocity and temperature profile at mean position for

various nanoparticles of Copper Oxide - Water CuO in spherical shape. Ver-

tical velocity increases with increasing the quantity of nanofluid, it creates

symmetric bolus for various quantity of concentration. At the bottom of the

right end of enclosure, velocity gets zero and increases in the middle of cavity

due to the maximum heat transfer. Temperature distribution shows that on

the left portion of the cavity, it attains maximum temperature and gradually

decreases but for the maximum value of nanoparticles, smaller temperature is

recorded as compared to the base fluid as shown in Fig. 5.5(b).
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Effects of Darcy number:

Fig. 5.6(a-h) illustrate the Darcy effect on the fluid flow and heat

transfer for fixed value of Prandtl number. For low Darcy number (Da), the

heat transfer increases due to conduction in the enclosure. In this case, larger

eddies are formed in the streamlines. For higher values of Da, conduction

in cavity reduces and convection phenomena dominate so the smaller eddies

continue to be formed for maximum value of Da = 1 as shown in Fig. 5.6(d).

Isotherm profile indicates that for smaller value of Darcy number, heat is

congested near the heated wall and significantly heat transfer is reduced for

maximum porosity. It shows that the heat distribution in cavity increases near

the upper adiabatic wall. Fig. 5.7(a-b) shows the effects of porous medium on

velocity and temperature profile at vertical mean position. Velocity and tem-

perature increases with an increase in Darcy number. Due to high convection,

more heat transfer occurs inside the cavity and velocity profile creates bolus

whose size increases with the increase porosity. Temperature distribution pro-

file indicates that for low Da, minimum heat is recorded and it increases at

the middle with increasing porosity.

Effects of heat generation/absorption coefficient:

Fig. 5.8 illustrates the effect of heat generation/absorption coefficient

on isotherm. For (Q < 0), heat absorptions and (Q > 0) heat generation are

shown in the Fig. 5.8(a-h). Temperature distribution lines or heat transfer

are restricted near the heated wall and heat transportation increases with

decreasing heat generation coefficient. For Q = 0, stable symmetric heat

transfer is recorded inside the cavity. For Q > 0, heat generated in cavity due

to convection more heated lines are developed near the adiabatic wall as shown

in Fig. 5.8(g). For Q = 75 the symmetry of the isotherm is distorted, which

gradually changes due to linear flow. Vertical velocity increases in case of heat

generation coefficient and decreases for absorption as depicted in Fig. 5.9(a).

Temperature profile indicates that more heat is created for higher values of
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Figure 5.2: Variation of (a)-(d) streamlines and (e)-(h) isotherm with respect

to Ra when Da = 10−3, φ = 0.05, Q = 10, m = 3
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Figure 5.3: Variation of (a) vertical velocity, (b) vertical temperature with

respect to Ra

Q. We see that the heat generation has significant effect on the temperature

profile.

Effects of various size of heated wall:

Size of heated symmetric wall on isotherm and streamlines are illus-

trated in Fig. 5.10. Streamlines are symmetric for different size of heated wall

but the streamlines increase with the increase in size of heated wall. Elliptic

shape of eddies formed in the cavity and the eddies gradually increase the size

of eddies with the increase in the shape. Isotherms are recorded minimum for

smaller size and more heat flows as the size increases. Isotherms increase near

the adiabatic wall with increasing the size of heated wall. Velocity decreases

with increasing the size of heated wall as shown in Fig. 5.11(a) at vertical

mean position. Temperature profile shows that for larger size of heated wall,

more heat flow inside the cavity. At the middle of cavity, temperature profile

clearly indicates the significant effects of size.

Effects of various shape of nanoparticles:

Fig. 5.12(a-f) depict the effects of different shape of nanoparticles

on fluid flow and heat transfer. Shape of nanoparticle has significant effect
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Figure 5.4: Variation of (a)-(c) streamlines and (d)-(f) isotherm with respect

to φ when Ra = 105, Da = 10−2, Q = 10, m = 3

82



(a) Vertical mean position

V

0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

50

60
φ= 0.0
φ= 0.025
φ= 0.05

?

?

(b) Vertical mean position

θ

0.2 0.3 0.4 0.5 0.6 0.7
0.7

0.8

0.9

1
φ= 0.0
φ= 0.025
φ= 0.05

Figure 5.5: Variation of (a) vertical velocity, (b) vertical temperature with
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on the isotherms. Maximum heat is recorded in case of spherical shape near

the heated wall. Velocity profile shows that shape of nanoparticle doesn’t have

significant effect on velocity at vertical mean position as shown in Fig. 5.13(a).

Temperature at vertical mean position increases in case of spherical shape of

nanoparticles and decreases in platelet’s shape.

Fig. 5.14 shows the variation of average Nusselt number with Rayleigh

number. Fig. 5.14(a) describes the various heat generation/absorption coef-

ficient effect with variation of Ra. Average Nusselt number increases with

increase in Q for its particular case but decreases with comparison of various

values of Q. In case of heat absorption, more heat in the fluid flow is recorded

than heat generation. For maximum value of Q, there is a minimum heat flow.

Fig. 5.14(b) illustrates the effect of porous medium with respect to Ra. A

larger average Nusselt number is recorded for larger values due to the active

convection of Ra and Da.
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Figure 5.6: Variation of (a)-(d) streamlines and (e)-(h) isotherm with respect

to Da when Ra = 105, φ = 0.05, Q = 10, m = 3
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5.5 Conclusion

In current work, the effect of CuO water nanofluid on free convection

is simulated in a symmetric porous cavity with heat generation/ absorption. At

the centre heated symmetric wall is attached to examine the heat flow in cav-

ity. Finite element method is used to solve the problem numerically. The effect

of various parameters Rayleigh number (103 ≤ Ra ≤ 105.5), solid volume frac-

tions (0 ≤ φ ≤ 0.05), Darcy number (10−5 ≤ Da ≤ 1), absorption/generation

parameter (−500 ≤ Q ≤ 75), shape of nanoparticles (spherical, cylindrical and

platelets) and size of heated wall on isotherm, streamline profile, velocity, tem-

perature (at vertical mean position) and average Nusslet number were briefly

discussed in this chapter. The study concluded with the following remarks:

• For small value of Rayleigh number heat conduction is dominant. While,

as Ra increases, convection increases in cavity.

• Vertical velocity increases with increase in Ra which tends to decrease

thermal layer thickness. Temperature increases at the middle with in-

crease in Ra.
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Figure 5.8: Variation of (a)-(h) isotherm with respect to Q when Ra = 105,

φ = 0.05, Da = 10−3, m = 3
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to Q

• Thermal conductivity increases when spherical shape of nanoparticles

are used. For higher value of φ, more heat is transferred in cavity.

• Heat flow increases with increasing porosity parameter due to flow of

heat. Significant effect of Darcy number on isotherm is recorded.

• More heat is developed near the adiabatic wall for Q > 0. Temperature

increases and Nusselt number decreases with increasing of heat sink pa-

rameter. Due to the heat generation, isotherm lines rapidly increase in

cavity.

• Size of heated wall has major effects on isotherm and streamlines formed

in elliptic eddies around the heated wall.

• Average Nusselt number decreases when Q increases with increase in

Ra. While, average Nusselt number increases with increase in porosity

parameter with increase in Rayleigh number.
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Figure 5.10: Variation of (a)-(c) streamlines and (d)-(f) isotherm with re-

spect to size of heated wall when Ra = 105, φ = 0.05, Da = 10−2, Q = 25,

m = 3
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Figure 5.12: Variation of (a)-(c) streamlines and (d)-(f) isotherm with

respect to spherical, cylindrical and platelet’s shape of nanoparticles when

Ra = 105, φ = 0.05, Da = 10−3, Q = 10
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CHAPTER 6

NUMERICAL SIMULATION OF LID DRIVEN

FLOW IN A CURVED CORRUGATED CAVITY

FILLED WITH COPPER OXIDE-WATER IN THE

PRESENCE OF POROUS MEDIUM & HEAT

GENERATION/ABSORPTION

6.1 Introduction

In this part of thesis, numerical simulation is performed for mixed con-

vection lid-driven flow of CuO-water nanofluid enclosed in a curved corrugated

cavity. Cylindrical obstacle having three different constraints: (adiabatic, cold

and heated) at its surface are considered. Internal heat generation/absorption

and uniform heat is provided at the vertical wall of the cavity. The bottom

wall is insulated, and the curved surfaces are maintained with cold tempera-

ture. Mathematical equations are developed from physical problems and solved

through Galerkin weighted residual method of FEM formulation. The effects

of various Reynolds number (Re), Darcy number (Da), solid volume fraction

of nanoparticles (φ), heat generation/absorption coefficient (Q) and various

cylindrical obstacle on velocity, Nusselt number, molecular movements and

the flow structure have been studied. Nusselt number increases for high Darcy

number due to the convection in lid cavity. For high Reynolds number gener-

ally Nusselt numbers decrease or remain the same at the wall with an increase
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in nanoparticles in porous medium. Their significant effects of heat sink coef-

ficient on temperature profile and Nusselt number decrease with increasing Q.

Table 6.1: A table demonstrating the contrasts between the approaches being

offered

Authors Enclosure Porosity Heat generation Obstacle

Hussain et al. [20] Square No Yes No

Alleborn et al. [35] Rectangular Yes No No

Haq et al. [77] Corrugated Yes No No

Sivasankaran et al. [96] Sinusoidal walls No No No

Present Double Corrugated Yes Yes Yes

6.2 Problem Formulation

Fig. 6.1 illustrates the curved corrugated of two-dimensional porous

lid-driven cavity has been examined in this unit. The circular cylindrical ob-

stacle inscribed inside enclosure. The nanofluid is formed of base fluid (water)

and copper oxide solid spherical shape of nanoparticles. The fluid is assumed

to be laminar and incompressible. The bottom wall is thermally insulated(
∂T ∗

∂y∗
= 0
)

, while the curved surface is sustained with low temperature T ∗c and

left vertical wall with high temperature (T ∗H) to induce the buoyancy effect.

Left vertical wall moves with uniform velocity. H represents the characteristic

length in horizontal and vertical direction in curved corrugated cavity. Var-

ious constraints have been adjusted at cylinder (adiabatic, cold and hot) for
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Figure 6.1: Curved Corrugated geometry with its (a) physical domain (b)

computational domain with mesh distribution at various positions

observing the heat transfer within the enclosure.

6.2.1 Mathematical Model

The governing equation for incompressible, Newtonian, laminar and

steady state (thermal equilibrium) lid driven convection in a curve corrugated

enclosure filled with nanofluids in the form of Navier-Stokes formulation (mass,

momentum and energy) are written as Eqs.(5.1)-(5.4).

Following dimensionless parameters are introduced;

(X, Y ) =

(
x∗

H
,
y∗

H

)
, (U, V ) =

(
u∗

Vo
,
v∗

Vo

)
, T ∗ = T ∗c + (T ∗h − T ∗c ) θ,

P =
p∗

ρfV 2
o

, Ri =
Gr

Re2
, Q =

Q0H
2

(ρCp)fαf
, P r =

νf
αf
,

(6.1)

into Eqs.(5.1)-(5.4), in dimensionless form equations become

∂V

∂Y
+
∂U

∂X
= 0, (6.2)

V
∂U

∂Y
+ U

∂U

∂X
= − ∂P

∂X
+

(
1

Re

)(
νnf
νf

)(
∂2U

∂Y 2
+
∂2U

∂X2
− U

Da

)
, (6.3)
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V
∂V

∂Y
+ U

∂V

∂X
= −∂P

∂Y
+

1

Re

(
νnf
νf

)(
∂2V

∂Y 2
+
∂2V

∂X2
− V

Da

)
+Ri

(ρβ)nf
ρfβf

θ,

(6.4)

V
∂θ

∂Y
+ U

∂θ

∂X
=

(
αnf
αf

)(
1

PrRe

)(
∂2θ

∂Y 2
+

∂2θ

∂X2

)
+

(
Q

PrRe

)
(ρCp)f
(ρCp)nf

θ.

(6.5)

6.2.2 Dimensionless boundary conditions:

At the bottom solid wall (Ω1):

(U, V ) = (0, 0),
∂θ

∂Y
= 0. (6.6)

At the upper curved surface(Ω2):

(U, V ) = (0, 0), θ = 0. (6.7)

At the left vertical wall(Ω3):

(U, V ) = (0, 1), θ = 1. (6.8)

At the lower curved surface(Ω4):

(U, V ) = (0, 0), θ = 0. (6.9)

At the surface of inner circle(Ω5):

(U, V ) = (0, 0), and (θ = 0 or θ = 1 or
∂θ

∂nΩ5

= 0). (6.10)

The local Nusselt number for the heat transfer rate estimate is calculated as;

Nu(Y ) = −knf
kf

(
∂θ

∂X

)
X=0

. (6.11)

6.3 Numerical Procedure

The governed dimensionless Eqs. (6.2)-(6.5) along the boundary con-

ditions are solved by Galerkin weighted residual finite element formulation.
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Figure 6.2: Variation of average Nusselt number for various number of ele-

ments

6.3.1 Comparison of results and Grid Independency:

The study of various element against the average Nusselt number in-

terpreted in Fig. 6.2. Variation of various number of element in enclosure

does not have significant effect on the average Nusselt number. In this section,

we validate the computational result of present work with other manuscript.

Mixed convection in lid-driven cavity problem is compared to earlier findings

by Sivasankaran et al. [96] in Fig. 6.3(a), our present thermal contour anal-

ysis is depicted in Fig. 6.3(b). Excellent result validation of average Nusselt

number against different Re to the work of Iwatus et al. [33] and Khanafer &

Chamkha [34] in limiting case.
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Table 6.2: Numerical results comparison of average Nu of present article

with Iwatus et al. [33] and Khanafer & Chamkha [34] for a vertical gravity at

Ri = 0.01.

Re Present work Iwatus et al. [33] Khanafer & Chamkha [34] % Error

102 2.11 1.94 2.01 8.76

4× 102 2.84 3.84 3.91 35

103 6.27 6.33 6.33 0.95

6.4 Results and Discussion

Improved heat transmission and fluid dynamics are possible with the

use of double corrugated enclosures in lid-driven flow. Lid-driven flow describes

a fluid’s movement within a cavity that is being initiated by a moving lid. In

lid-driven flow, the design of heat sinks for electronics cooling is one physi-

cal application of double corrugated enclosure. Heat generated by electronic

components needs to be dissipated by heat sinks in order to avoid damage

and insure optimum efficiency. A more effective heat sink design is made pos-

sible by the use of twin corrugated enclosures, which expand the amount of

surface area available for heat transfer. A numerical work has been done in

this section of thesis to study the flow structure and temperature profile for

the various values of Reynolds number (100 ≤ Re ≤ 400), Darcy number

(Da = 10−5 to 10−1), nanoparticles’ volume fraction (0.0 ≤ φ ≤ 0.05), heat

generation/absorption, Richardson number (0.01 ≤ Ri ≤ 100) and different

states of circular cylinder (adiabatic, cold and heated) inside the lid-driven

cavity. Throughout the numerical computation Prandtl number (Pr = 6.2) is

97



Figure 6.3: Comparison of thermal contour analysis in a square cavity with

sinusoidal boundary condition in limiting case: (a) Sivasankaran et al. [96]

versus (b) Present study

fixed.

Effects of Reynolds number:

Fig. 6.4(a-f) describes the effects of Reynolds number on isotherms

and streamline. It indicates that most of the cavity is filled by symmetrical

undistorted isotherms, while the isotherms endorse some form of distortion in a

small part of the cavity near the top moving lid. For low Reynolds number, the

isotherm is distributed on the whole enclosure, and gradually decreases with

increasing Re. For maximum Re, the heat effect around the moving heated

vertical wall is shown in Fig. 6.4(c). Flow distribution for various number of

Re can be seen in Fig. 6.4(d-f). For small Reynolds number, it can be noticed

that the circular clockwise rotation of streamlines are developed. Small eddy

has generated, and with an increasing values of Re the eddy moves towards the

centre. Fig. 6.5(a) represents the effect of horizontal velocity due to the vari-

ation of Re. It is clear that the velocity at centre increases with the increase

in Reynolds number. For broader aspect, it is obvious that the centre of the

vortices layer smaller than near the corner of the cavity. Furthermore, it can
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be observed that the layers are established near the boundary along the solid

wall as Re increases and heat swings from the solid boundary with a uniform

vorticity. Fig. 6.5(b) indicates that velocity near the centre decreases and

creates a narrow boundary layer near the walls. Temperature profile at hori-

zontal mean position is shown in Fig. 6.5(c). The average fluid temperature

sharply decreases with an increasing Re, due to volume fraction of nanopar-

ticles. Temperature also decreases in the cavity where the forced convection

is dominant. Nusselt number against heated vertical wall is illustrated in Fig.

6.5(d).

Effects of nanoparticles:

Fig. 6.6 illustrates the effects of nanoparticle volume fraction on

isotherm and streamline. Thermal conductivity and viscosity of fluid enhances

when the nanoparticles are mixed with base fluids. Fig. 6.6(a-c) describes the

dominant nature of heat transfer of forced convection, which occurs due to

the heated mode of vertical lid moving with uniform velocity. Isothermline

reveals that the prevailing heat transfer modes are forced convection caused

by the movement of vertical velocity. While the free convection is having a

limited role in cavity due to the nanoparticles. Fig. 6.6(d-f) represents the

streamlines for various values of nanoparticles (φ). It can be clearly seen in

the graph that at the top of circular cylinder, the eddy is developed due to the

interacting of two larger eddy clockwise rotating roles which form a large eddy

near the lid wall. With an increase in φ, the streamlines are more stronger

around the circular surface of the cylindrical obstacle. In Fig. 6.7(a-f), the ef-

fects of nanoparticles on the velocity, temperature profile and Nusselt number

are illustrated. Horizontal velocity increases with increasing volume fraction

of nanoparticles and attains its maximum position at the end points. But

vertical velocity decreases with the increase in φ. Fig. 6.7(c) represents the

temperature distribution against the horizontal mean position. In case of base

fluids φ = 0, the cavity temperature remains maximum at the end point but
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Figure 6.4: Variation of (a)-(c) isotherm and (d)-(f) streamlines with respect

to Re when Ri = 0.01, Da = 10, φ = 0.05, Q = 50 for cold cylindrical obstacle
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zero at the centre. While for φ = 0.1 and 0.05 temperature rapidly decreases

due to the higher thermal conductivity of nanoparticles and streamlines inten-

sity decreases only significantly, as volume fraction increases, and temperature

gradient decreases. With a reduction in temperature gradient and increas-

ing volume fraction, there can be no specific estimation for the overall heat

transfer within the cavity. As φ increases, nanofluid thermal conductivity also

enhances while marginally temperature gradient decreases. In a cavity, as heat

transfer rate increases, there will be enhancement in forced convection that can

be clearly seen in Fig. 6.7(d) in the form of Nusselt number.

Effects of Richardson number:

Fig. 6.8(a-h) shows the isotherms and streamline of assisting forced

flow for different values of Ri at the fixed value of Re. In isotherm, the region

affected by the heated vertical lid wall is quite small for small values of Ri and

gradually increases with its increasing value. For higher value of Richardson

number, the buoyancy effects are much stronger and have more vigorous loops

in the enclosure appeared in the figure. The intensity of the circulation in the

form of bolus increases with the increase in Ri in the streamline. At Ri =

0.1, the forced convection dominates due to the vertical lid driven. However,

at this value of Ri, the natural convection has been slightly affected at the

corner which can almost be neglected. With the increase in Ri = 1, the

mixed convection (inertial and buoyancy forces) balanced in the enclosure.

At Ri = 100, the forced convection decreases and buoyancy effect dominates

as seen in Fig. 6.8(d). Fig. 6.9(a-b) shows the variation of velocity against

Ri horizontally and vertically. Here, velocity decreases with an increase in

the values of Ri for both cases. Forced convection is dominant for the smaller

values of Ri and increases with the larger values of Ri which turns to be natural

convection as shown in Fig. 6.9(c). Local Nusselt number in the vertical mean

position of the lid wall increases for the forced convection and decreases for

natural convection.
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Figure 6.6: Variation of (a)-(c) isotherms and (d)-(f) streamline with respect

to φ when Ri = 0.01, Da = 0.01, Re = 350, Q = 10 for cold cylindrical

obstacle
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Effects of porous medium:

Fig. 6.10 illustrates the effects of Darcy number on isotherms and

streamlines. The permeability in cavity has significant effects on heat transfer

and flow of the molecular movement. For a small number of Da = 10−5, heat

is located near the lid wall. For Da = 10−3, as shown in Fig. 6.10(b), the

convection of heat is raised and then heat is moved and is created around

the cold circular surface of cylinder. Due to an increasing Da, heat transfer

rate is increased. The convection is denominated with the increase in Darcy

number. That’s why, temperature gradient moves towards the down surface

where the conduction is dominant due to the minimal flow activities of the

fluid in cavity. Fig. 6.10(d-f) illustrates the result of different Da for maximum

value of Reynolds number. For Da = 10−5, the flow of lines are restricted near

the vertical wall and for the recirculation, small intensity of the flow of fluid is

being observed due to the moving lid wall. The streamline for the recirculation

flow region is elongated due to the increase in Darcy number. For the Da, the

small eddy moves towards downward to the centre point and the lines of stream

are symmetric throughout the region. Horizontal and vertical velocity related

to various Darcy number is reported in Fig. 6.11. For greater value of Da, both

velocities (horizontal and vertical) increase at the centre of the enclosure due

to the greater convection for greater value of Da. For energy transportation,

the inertial effects are retarded. For higher value of Da, the temperature is

slightly titled down to the centre which is shown in Fig. 6.11(c). Temperature

in cavity decreases due to the inertial coefficient which decreases with the

increase in porosity. Fig. 6.11(d) illustrates the effects of heat transfer. It can

be observed in Fig. 6.11(d) that in the middle of cavity, the influence of Da

will have a greater impact on Nu due to the convection. The transfer rate of

heat is less near the right cold wall but higher near the heated wall for all Da.

It can be seen that the porous medium enhances the transformation of energy

in enclosure.
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Figure 6.8: Variation of (a)-(d) isotherms and (e)-(h) streamline with respect

to Ri when Re = 100, Da = 0.01, φ = 0.05, Q = 10 for cold cylindrical obstacle
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Effects of heat generation/absorption:

Fig. 6.12 shows the effects of heat coefficient parameter Q on the

molecular movement and streamline in the curved cavity. It has significant

role in energy equation. The variation in isotherms mostly appears due to

the dependency on Q as it varies. Q < 0 represents the absorption of heat

whereas, Q > 0 represents the internal heat generation. Near the closer area

of the heated wall, the temperature effect becomes less as Q becomes smaller.

Furthermore, the heat which is produced in this region increases both the

domain temperature as well the temperature gradient near the cold wall. Fig.

6.13(c) illustrates that in case of heat generation (Q > 0), the temperature

increases in cavity. The internal heating in energy equation represents the

temperature rising near the vertical wall specially. Due to the dominant role

of heat generation in Nu, it decreases gradually as illustrated in Fig. 6.13(d).

Effects of different of state cylindrical surface:

Isotherms and streamline result due to the various states (adiabatic,

cold and heated) of circular cylinder as shown in Fig. 6.14. In cold and adi-

abatic case, the intensity of heat near the heated wall and circular surface is

high and it gradually decreases towards the cold curved wall. Fig. 6.14(d-f)

represents the variation of streamline due to the various state of cylinder. In

each case, the same eddy is being created near the heated wall which results

as the vertical wall moves and the movement of fluid particles in clockwise

direction. In adiabatic case, the streamline spreads around the curved surface

but in case of hot obstacle, the streamlines are away from the curved surface.

The effects on velocities, temperature and Nusselt number are shown in Fig.

6.15. The horizontal velocity is being measured from (0, 0.3) as depicted in

Fig. 6.15(a). It seems that the horizontal velocity is same near the heated

vertical wall but is away from the wall which decreases in case of cold wall and

increases in hot and adiabatic. Due to the hot surface, the velocity attains its

maximum point in the middle of cavity. Fig. 6.15(c) represents the tempera-
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Figure 6.10: Variation of (a)-(d) isotherms and (e)-(h) streamline with re-

spect to Da when Ri = 0.01, φ = 0.05, Re = 450, Q = 10 for cold cylindrical

obstacle
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Figure 6.12: Variation of (a)-(d) isotherms and (e)-(h) streamline with re-

spect to Q when Ri = 0.01, φ = 0.05, Re = 350, Da = 0.1 for cold cylindrical

obstacle 111
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ture at horizontal mean position. In case of a cold surface of cylinder, when

the temperature from the heated wall moves towards the centre it gradually

decreases at zero and for 0.25 it drops to zero. Whereas, in case of the hot

cylinder, when the temperature from the cylinder moves towards the cold wall

it attains its maximum point at 0.25. Temperature sharply increases in cavity

and decreases in case of cold cylinder. Nusselt number decreases in heated

curved surface and increases in cold case clearly seen in Fig. 6.15(d).

In Fig. 6.16(a) of an average Nusselt number, increasing the Reynolds

number (Re) increases the Richardson number (Ri) due to the vertical heated

lid wall. Fig. 6.16(b) depicts the minor increase in the average Nusselt number

for smaller values of Darcy number with the increase in Re, whereas the minor

increase in Nuavg is observed against the higher values of Da with the same

rate of Re. Fig. 6.16(c) shows the effects of heat generation/absorption with

respect to fixed Ri and various values of Re. It can be observed that increase in

the internal heat absorption increases the convection of heat transfer. Whereas

the increase in internal heat generation decreases the average Nusselt number.

Fig. 6.16(d) depicts the variation of the average Nusselt number for various

values of volume fraction and Reynolds number where it is seen that increasing

the volume fraction causes the increase in the heat transfer for different values

of Re.

6.5 Conclusion

The effects of Reynolds number (100 ≤ Re ≤ 400), nanoparticles

(0 ≤ φ ≤ 0.05), Darcy number (10−5 ≤ Da ≤ 0.1), different state of cylindrical

obstacle (adiabatic, cold and heated) and heat generation/absorption parame-

ter (−100 ≤ Q ≤ 50) on isotherms, streamline profile, temperature and Nusslet

number were briefly discussed in this section. The study concluded with the

following remarks:

• For a high Reynolds number, the forced convection is dominant, so the
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Figure 6.14: Variation of (a)-(c) isotherms and (d)-(f) streamline with re-

spect to adiabatic, cold and hot cylindrical obstacle when Ri = 0.01, φ = 0.05,

Re = 350, Da = 0.1 Q = 10
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heat transfer rate is high. Nusselt number increases with increase in Re.

• With increase in Re, the symmetrical eddy moves towards the centre of

cavity.

• Small eddy is created near the wall in streamline due to the clockwise

rotation of fluid.

• Nanoparticles enhance the thermal conductivity of the fluid, so greater

heat convection in cavity is done when φ = 0.05.

• Temperature distribution decreases near the heated wall with increases

in Darcy number. Isotherm lines are gradually limited around the heated

vertical wall for high Darcy number.

• Temperature increases in case of heated cylindrical surface and Nusselt

number decreases. Heated lines are restricted at end face of heated wall

in case of cold obstacle and getting stronger in heated region.

• Maximum heat generation is obtained in the cavity for positive values of

Q. Temperature increases and Nusselt number decreases with increasing

Q.
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CHAPTER 7

THERMAL PERFORMANCE OF WATER DRIVEN

FLOW OF NANOPARTICLES’ SHAPE DUE TO

DOUBLE SIDED FORCED CONVECTION

ENCLOSED IN A POROUS CORRUGATED DUCT

7.1 Introduction

In this chapter, a complex nature structure is simulated by introduc-

ing the nanofluid that contains various shape of nanoparticles through forced

convection and thermal diffusion. Double sided lid-driven in a porous curved

cavity is constructed to handle the forced convection phenomena. Addition-

ally, effects of internal heat generation/absorption is also considered. The

horizontal and vertical walls are moving with a constant speed Uo and Vo, re-

spectively, which are further divided into two moving lids. The flat and curved

walls are kept at constant temperature T ∗h and T ∗c , respectively. The govern-

ing equations are discretized and solved through Galerkin residual method

by means of finite element method (FEM). The effects of various directional

velocities, porous medium (Da), Reynolds number (Re), internal heat genera-

tion/absorption coefficient (Q) and solid concentration of nanoparticles (φ) are

investigated on transfer rate of heat in the form of Nusselt number, isotherms,

streamline, temperature and velocity profile. Results reveal that heat is gener-

ated in cavity when the direction of velocities of moving wall is in the opposite
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inward direction. The heat transfer rate decreases in the case of internal heat

generation and increases for nanoparticles.

Table 7.1: A table demonstrating the contrasts between the approaches being

offered

Authors Enclosure Porosity Heat generation Lid driven

Hussain et al. [20] Square No Yes Double

Alleborn et al. [35] Rectangular Yes No Single

Haq et al. [77] Corrugated Yes No No

Sivasankaran et al. [96] Sinusoidal walls No No Single

Present Corrugated Yes Yes Double Split

7.2 Problem Formulation

Consider the two-dimensional viscous flow enclosed by curved shape

that is heated from the bottom and left wall, flow is due to the fully heated

walls of lid driven. In order to construct the mathematical model for physical

partially corrugated cavity (see Fig. 7.1), with defined various constraints

which are mandatory to examine the theoretical investigation.

7.2.1 Mathematical Model

The governing equations of incompressible, Newtonian, laminar and

steady state (thermal equilibrium) lid driven convection in a curved corrugated

enclosure filled with a nano-fluid in the form of Navier-Stokes formulation
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Figure 7.1: Geometry of the lid-driven cavity

(mass, momentum and energy) have already been discussed in Chapter 5. For

spherical nanoparticles thermal conductivity (knf ) modelled by [97] is written

in Eq. (2.3).

7.2.2 Dimensionless boundary conditions:

At the bottom solid wall(Ω1 and Ω2):

(U, V ) = (1, 0), θ = 0,when

Ω1 = {(X, Y ) ∈ R2/0.27 ≤ X < 0.365 and Y = 0}, (7.1)

Ω2 = {(X, Y ) ∈ R2/0.365 ≤ X < 1 and Y = 0}.

At the left solid wall(Ω3 and Ω4):

(U, V ) = (0, 1), θ = 1,when

Ω3 = {(X, Y ) ∈ R2/0.27 < Y ≤ 0.365 and X = 0}, (7.2)

Ω4 = {(X, Y ) ∈ R2/0.365 < Y ≤ 1 and X = 0}.
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Figure 7.2: Comparison of isotherms in a square cavity: (a) Khanafer and

Chamkha [34] (straight line) and Iwatsu et al. [33] (dotted line) when Re = 103

(b) Present work.

At lower curvy wall(Ω5):

(U, V ) = (0, 0), θ = 0,when

Ω5 = {(X, Y ) ∈ R2/X2 + Y 2 = r2
2}. (7.3)

Where center of inner circle is (0,0) and radius is 0.27. The local Nusselt

number in dimensionless form at horizontal and vertical lid wall is written in

mathematical form as:

NuΩ1 = NuΩ2 = −knf
kf

(
∂θ

∂Y

)
Y=0

. (7.4)

NuΩ3 = NuΩ4 = −knf
kf

(
∂θ

∂X

)
X=0

. (7.5)

7.2.3 Comparison of results and Grid Independency

In this section, we have validated numerical results of present problem

with other manuscript. Thermal performance in lid-driven square model can be
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compared with earlier work done by Khanafer and Chamkha [34] and Iwatsu

et al. [33] in Fig.7.2(a), our current thermal work in contour with limiting

conditions is depicted in Fig.7.2(b).

7.3 Results and Discussion

In this unit, forced convection of water based nanofluid in a corrugated

porous cavity with partially double lid driven wall is investigated using finite

element method (FEM). Numerical results are illustrated for various values of

Reynolds number (Re = 100 to 400), double lid wall with different uniform

velocities, Darcy number (Da = 0.0001 to 10), Heat generation coefficient

(Q = −1000 to 75) and the solid volume fraction of nanoparticles. In case of

spherical shape, maximum values of Nusselt number are recorded. Simulation

is performed for different parameters when spherical shape of nanoparticle is

used.

Effects of the double moving lid-wall direction:

Case I : Horizontal lid moves left to right and vertical lid

wall moves bottom to top.

Fig. 7.3(a) represents the streamline due to the moving lid wall with

constant temperature. In this case of lid walls, symmetric lines are generated

near the lid walls and heat is generated inside the cavity. Fig. 7.3(b) illustrates

the streamline profile in this case. Molecular movement of the particles is quite

similar around the lid walls. It creates two bigger eddies near the wall.

Case II : Lid walls move with opposite inward directional

velocities.

Fig. 7.3(c) and (d) illustrate isotherms and streamline profile respec-

tively. The more heat is generated in this case and heat generated inside the

enclosure is due to the inside movement of the two-lid moving walls. Heat

generation is clearly seen in the middle of the lid walls. Fig. 7.3(d) illustrates

the path of the molecular movement inside the enclosure. More eddies are
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created due to the opposite direction of lid moving walls and counter clock-

wise rotation of the molecular movements. This eddy may be the formation of

secondary eddies due to the partition of the major eddies.

Case III : Lid walls move with opposite outward directional

velocities.

From Fig. 7.3(e), it is observed that the isotherm spreads near the

wall and a major part of the heat is located near the corrugated wall. The

symmetry of the isotherm lines created due to the opposite direction of bottom

vertical and left horizontal wall. Fig. 7.3(f) demonstrates streamline in the

shape of two larger and two smaller eddies near the wall.

Case IV : Horizontal walls move from right to left and ver-

tical walls move from top to bottom.

Fig. 7.3(g) illustrates the effect of inside movement of the lid walls on

streamlines. It is observed that the heat distribution near the corrugated wall

is maximum than the lid wall and isotherm lines are quite stable away from

the lid walls. Through the molecular movement of the particles, two bigger

eddies are created which covers the whole cavity in the form of lines.

Fig. 7.4(a)-(e) represents the temperature, velocity profile and Nusselt

number for different lid wall constraints. Fig. 7.4(a) illustrates that the max-

imum heat transfer is noticed because of the right horizontal and top vertical

partial wall which moves with the velocity UR = VT = −1. Inside movement

of the walls, more heat is created within cavity. Minimum temperature gra-

dient is recorded in the case of outside movement of all lid walls. Minimum

temperature gradient is recorded in case of outside movement of all lid walls.

Fig. 7.4(b) and (c) illustrate the Nusselt number horizontal and vertical mean

position. Nusselt number decreases in case of outside movement of the lid

walls. But attains its maximum flow rate of heat when the velocity of moving

wall is UL = VB = −1. In that case significant Nusselt number increases in

the middle of the cavity. Horizontal and vertical velocity profile in this case is
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demonstrated in Fig. 7.4(d) and (e). It significantly effects on velocity profile,

due to drag forced variation near the moving walls.

Effects of the Reynolds number:

Fig. 7.5(a-h) shows the impact of Reynolds number on streamlines

and isotherms for nanofluid particles in a corrugated enclosure. As it can be

noticed from isotherm plots that at lowRe, the contour is uniformly distributed

with the heat on both sides of the lid walls. Isotherm lines create a circular

format, and the isotherm lines are stronger as Reynolds number increases. The

effects of forced convection in a corrugated enclosure are weaker for decreasing

values of Re, the number of heated lines is reduced. However, as the Reynolds

number rises, heat in an enclosure steadily rises. For a maximum value of

Re, the heat flux rises, making forced convection the dominating mode of

transportation of heat in the form of isotherms. This indicates the dominant

forced convection of heat in cavity. Due to the lid moving at the middle of

the lid walls the heat lines tilt towards the upward direction with the increase

in Re. For low Reynolds number, the flow pattern is symmetric and creates

eddies around the moving walls. For smaller value of Reynolds number small

circular vortex rotation generates near the lid walls. With increase in Re,

vortex rotation size increases and remains quite stable for maximum value of

parameter. As with increasing of Re, the symmetry of the flow is disturbed

as shown in Fig. 7.5(h). Fig. 7.6(a)-(e) present the effects of Re on velocity,

temperature and Nusselt number in lid cavity. Fig. 7.6(a) illustrates that the

temperature distribution increases inside the cavity with increasing Re. For

high Re, greater convection is produced inside the cavity. Heat flow increases

due to the molecular movement of the particles. Nusselt number also varies due

to the moving lid walls and increasing of Re. In the middle, strong convection

is being observed. Horizontal and vertical velocity decreases with the increase

in Re in the middle of the cavity. But increases in the end of the cavity due

to the moving walls with constant velocities.
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Figure 7.3: Effects of various lid moving walls on the isotherm and stream-

lines
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Effects of the Porous Medium:

Fig. 7.7(a)-(h) presents the effects of Darcy number on isotherm and

streamline profile for maximum value of Reynolds number. The heat transfer

rate is maximum at the bottom left corner and lowest at the right corrugated

wall. The fluid is revolving anti-clockwise at a high temperature, which is the

physical reason for this phenomenon (higher than hot wall temperature). As

a result, the hot wall’s left bottom corner created a massive temperature, as

depicted in figures. It can be observed from the Fig. 7.7(a), when Da is small

the convection inside the enclosure is strong and the isotherms are considerably

distorted. The flat lines of isotherm in the middle of cavity indicate a small

conduction. As Da increases, the forced convection is dominant and circular

format of isotherm is created as seen in Fig. 7.7(d). For high number of

Da, flat lines are negligible due to the greater convection of lid moving. Fig.

7.7(e)-(h) illustrate the effects on streamline for various Darcy numbers when

it moves towards left and bottom lid walls. One can observe that the domain

of the cavity is dominated from two re-circular eddies, which are being created

from the moving wall with constant velocity. As Da increases from 10−5 to 10,

the streamline increases and near the lid wall lines are created in thinner form.

Convection is expanded across the fluid rather than localized at the boundary

as shown in Fig. 7.7(h), for the maximum permeability.

Fig. 7.8(a) shows the effects of Darcy number on temperature profile

at horizontal mean position of double lid driven cavity. Because the permeabil-

ity of the medium increases as the Darcy number rises, the convective mode

becomes stronger. As a result, the Darcy number rises, the temperature gra-

dient across the hot wall rises too. For high permeability of the medium more

heat is generated near the lid walls. Fig. 7.8(b) and (c) illustrate that the

heat transfer increases with increasing of Darcy number. For higher Da, the

heat transfer rate is higher in the middle of the cavity and suddenly decreases

at 0.9. The external heat increases with increasing or decreasing of internal
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heat. One can see that the localized clusters with consistent Reynolds number

of heat concentrated towards the horizontal boundary, and the cooler parts on

the curve boundary. Hence, increased Darcy number causes the convection to

increase across the medium as permeability is increased. The symmetric be-

haviour of the bolus can be observed for high number of Da in velocity profile

in Fig. 7.8(d) and (e). For smaller Da the horizontal and vertical velocity are

same throughout the region.

Effects of heat Generation/Absorption coefficient:

Fig. 7.9(a)-(e) illustrates the absorption coefficient and Fig. 7.9(f)-(i)

depicts the internal heat generation coefficient effect on isotherms. The heat

transfer is significantly increased in the molecular composition of the fluid with

increasing of internal heat inside the cavity. One can see that for Q = −103 the

heat absorption is exceptionally low causing cooler patches within the fluid,

however the value of Q increases, it is obvious to observe that the internal heat

generation is significantly increased within the domain. As increasing Q we

see a gradual convection of heat from the vertical boundary into the clockwise

spiral notion towards the center of the cross-section. Similarly, in Fig. 7.9(e)-

(f) one can see a more abrupt change in heat flow as the absorption coefficient

is increased and heat begins to be generated internally. For maximum value

of Q, cavity is filled with heat as shown in Fig. 7.9(i). The heat transfer

rate is maximum at the bottom left corner and lowest at the right corrugated

wall. The fluid is revolving anti-clockwise at a high temperature, which is the

physical reason for this phenomenon (higher than hot wall temperature). As

a result, the hot wall’s left bottom corner created a massive temperature, as

depicted in Figures. Fig. 7.10(a)-(b) shows the effect of Q at temperature

and Nusselt number. Temperature gradient inside the cavity increases with

the increase in Q. For smaller value of Q internal heat is reduced inside the

cavity, which almost approaches to zero due to absorption. Heat transfer rate

at horizontal mean position decreases with the increasing Q in Fig. 7.10(b).
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Figure 7.7: Effects of Darcy number on isotherms (a)-(d) and streamline

(e)-(h)
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Figure 7.9: Effects of internal heat generation/absorption on isotherms (a)-

(i)

Effects of concentration of the nanoparticles:

The effects of concentration of nanoparticles on isotherm and stream-

lines are shown in Fig. 7.11(a)-(c) and Fig. 7.11(d)-(f), respectively. The

heated lines decrease with increasing of nanoparticles and the heat transfer is

spirally localized near the lid wall. Hence, heat stemming is increased from the

vertical and horizontal lid in Fig. 7.11(a). Where φ = 0.0 although this settles

as approach towards Fig. 7.11(c) where φ = 0.2, and hence more cooling effect

can be seen. From Fig. 7.11(d) – (f), one can see the streamlines, where the
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Figure 7.10: Effects of internal heat generation/absorption coefficient tem-

perature profile and Nusselt number

localized hot and cold patches, with the cold regions being vertically domi-

nant, and the greater heat is being more dominant at the horizontal boundary.

Fig. 7.12(a)-(f) illustrates the effects of nanoparticles on the Nusselt num-

ber, temperature and both horizontal and vertical velocity profiles. For the

base fluid, maximum temperature is obtained throughout the cavity. But with

the increasing of nanoparticles, temperature gradient gradually decreases. In-

creasing concentration of solids, increases nanofluid thermal conductivity while

marginally decreasing gradient of temperature. Convection in cavity increases

so more heat transfer is done in cavity that is clearly seen in Fig. 7.12(b)

and (c) in the form of local Nusselt number against the horizontal and vertical

moving walls. Both horizontal and vertical velocity decrease at the middle

of the cavity with increasing concentration of nanoparticles as shown in Fig.

7.12(d) and (e).
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Figure 7.11: Effects of solid volume fraction of nanoparticles on isotherms

(a)-(c) and streamline (d)-(f)
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7.4 Conclusion

After carefully examining the present model, we have developed the

conclusion that describes the key factor of entire study. As defined in the

model that current model is based upon forced convection due to lid driven

of left vertical and bottom horizontal walls. We have discussed the different

direction of moving lid, then we analyze the model for various value of Reynolds

number, Richardson number, heat generation parameter, porous medium and

nanoparticle volume fraction. Following are the key findings of present model:

• In isotherms, the opposing directional (inside) movement of the lid walls

generate more heat inside the cavity.

• In streamlines, the opposite directions of velocity produce more eddies

than the velocity in the same direction.

• The effects of velocities (in opposite outward direction) yields the max-

imum flow of heat transfer at the mean position from where it acts like

a symmetric behaviour in local Nusselt number.

• Increase in Reynolds number has caused an increase in isotherm lines

and this effect on streamline causes the eddies movement towards center.

Maximum velocity is observed in both ends of the cavity and minimum

in the middle with greater Reynolds number.

• An increase in permeability region decreases the heat generation near

the lid walls and pushes it away from the lid wall.

• For the minimum value of Q, heat is absorbed in the cavity and restricted

to the lid walls whereas there is maximum heat generator in the cavity

for greater value of Q = 75. Local Nusselt number decreases with an

increase in heat absorption coefficient.
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CHAPTER 8

MIXED CONVECTION ANALYSIS IN A SPLIT

LID-DRIVEN TRAPEZOIDAL CAVITY HAVING

ELLIPTIC SHAPED OBSTACLE

8.1 Introduction

Various physical processes, such as fluid mixing, heat transfer, and

chemical reactions, can be carried out in a split lid driven trapezoidal cavity.

Because it produces vortices and recirculation zones, the trapezoidal cavity’s

unique shape enhances fluid mixing. Chemical engineers can also employ split

lid driven trapezoidal cavity to increase the effectiveness of chemical processes.

As a result of improved mass transfer and reactant mixing made possible by the

formation of vortices and recirculation zones in the trapezoidal cavity, chemical

processes’ yield and selectivity can be greatly increased. In this chapter, ther-

mal performance of nanofluid enclosed by a split lid-driven trapezoidal cavity

is presented that comprises elliptic shaped obstacle. Bottom wall maintained

the constant temperature (cold) and slant walls are considered as insulated

(adiabatic). Energy is transferred through top horizontal wall of the cavity

and driven from split lid walls which are moving with constant velocities. Fi-

nite element method is applied to handle the dimensionless system of partial

differential equations for velocity, temperature and concentration. The impact

of emerging parameters such as: Richardson number (10−2 ≤ Ri ≤ 10), Lewis
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number (0.1 ≤ Le ≤ 10), Reynolds number (300 ≤ Re ≤ 500) and buoyancy

ratio (−10 ≤ Br ≤ 10) for different directional velocities, temperature and

concentration profiles are analysed. To determine the heat transfer rate due

to forced convection is manipulated local Nusselt number along the heating

surface. Graphical interpretation of these profiles represent that Lewis num-

ber has significant impact at isotherms and concentration. For smaller value

of buoyancy ratio parameter, maximum heat transfer is obtained inside the

direction of lid walls. Lewis number proves the dominant effects at isotherms

and concentrations due to high thermal diffusion in the entire domain of the

cavity.

Table 8.1: A table demonstrating the contrasts between the approaches being

offered

Authors Enclosure Obstacle Method Lid driven

Hussain et al. [20] Square No FEM Double

Sheikholeslami et al. [21] Curved No CVFEM Single

Alleborn et al. [35] Rectangular No FDM Single

Haq et al. [77] Corrugated No FEM Double

Present Trapezoidal Elliptic FEM Split

8.2 Problem Formulation

The trapezoidal shape cavity is displayed in Fig. 8.1 with inner elliptic

obstacle. It has a length of L and a length of 0.4L on its lower wall. The

inclined walls of the enclosure are kept insulated. The top wall splits partially
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Figure 8.1: Physical domain of partial lid driven trapezoidal cavity

and moves with different velocities from left to right and right to left. The

top wall retains the steady temperature T ∗h and concentration c∗h. The inner

elliptical obstacle is considered as cold throughout the numerical investigation.

With the exception of the density fluctuations in the buoyancy conditions. If

the Boussinesq approximation is used in the following way, all the thermo-

physical properties of the fluid are assumed constant.

ρ = ρo[1− βT ∗(T ∗ − T ∗c ) + βc∗(c∗ − c∗1)], (8.1)

where ρo represents the mean density, the mean temperature and concentration

of T ∗0 = (T ∗h + T ∗c )/2 and c∗0 = (c∗h + c∗1)/2, respectively. βT ∗ and βc∗ be the

coefficient of thermal and solutal expansion, respectively.
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8.2.1 Mathematical Model

For the steady, laminar, two-dimensional lid-driven heat and mass

flow, the established equations of mass, momentum, energy and species con-

centrations are as follow:

∇ ·V∗ = 0, (8.2)

V∗ · ∇u∗ = −1

ρ

∂p∗

∂x∗
+ ν∇2u∗, (8.3)

V∗ · ∇v∗ = −1

ρ

∂p∗

∂y∗
+ ν∇2v∗ + g[βT ∗(T ∗ − T ∗c ) + βc∗(c∗ − c∗1)], (8.4)

V∗ · ∇T ∗ = α∇2T ∗, (8.5)

V∗ · ∇c∗ = D∇2c∗. (8.6)

In the above equations, V∗ = (u∗, v∗, 0) and ∇ =
(

∂
∂x∗
, ∂
∂y∗

)
represent the

velocity field and nabla operator for two dimensional fluid flow. ρ and ν are

the density and kinematic viscosity of the fluid, respectively. Moreover, T ∗ the

temperature, p∗ pressure, c∗ the concentration, g the gravitational acceleration,

α the thermal diffusivity and D the mass diffusivity are represented in above

equations.

By replacing the main parameters with their related dimensionless

variables that are specified below, the model Eqs. (8.2)–(8.6) can be modified

to their dimensionless forms.

(X, Y ) =

(
x∗

L
,
y∗

L

)
, (U, V ) =

(
u∗

uo
,
v∗

uo

)
, T ∗ = T ∗c + (T ∗h − T ∗c ) θ,

P =
p∗

ρu2
o

, c∗ = c∗1 + (c∗h − c∗1)C, (8.7)

∂U

∂X
+
∂V

∂Y
= 0, (8.8)

V
∂U

∂Y
+ U

∂U

∂X
= − ∂P

∂X
+

1

Re

(
∂2U

∂Y 2
+
∂2U

∂X2

)
, (8.9)

V
∂V

∂Y
+ U

∂V

∂X
= −∂P

∂Y
+

1

Re

(
∂2V

∂Y 2
+
∂2V

∂X2

)
+Ri(θ +BrC), (8.10)

V
∂θ

∂Y
+ U

∂θ

∂X
=

(
1

RePr

)(
∂2θ

∂Y 2
+

∂2θ

∂X2

)
, (8.11)
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V
∂C

∂Y
+ U

∂C

∂X
=

(
1

RePrLe

)(
∂2C

∂Y 2
+
∂2C

∂X2

)
, (8.12)

where the evolving physical parameters are Reynolds number (Re), Richardson

number (Ri), Lewis number (Le), Prandtl number (Pr) and the buoyancy ratio

(Br) are defined as follows:

Re =
uoL

ν
, Ri =

gβT ∗(T ∗h − T ∗c )L3

ν2Re2
,

Le =
α

D
, Pr =

ν

α
, Br =

βc∗(c∗h − c1)

βT ∗(T ∗h − T ∗c )
.

(8.13)

The dimensionless boundary conditions to the corresponding Eqs. (8.8)–(8.12)

are as follows;

At bottom wall(Ω1):

(U, V ) = (0, 0), θ = 0 = C. (8.14)

At inclined wall(Ω2 and Ω5):

(U, V ) = (0, 0),
∂θ

∂n
= 0 =

∂C

∂n
. (8.15)

At top left part of wall(Ω3):

(U, V ) = (−1, 0), θ = 1 = C. (8.16)

At top right part of wall(Ω4):

(U, V ) = (1, 0), θ = 1 = C. (8.17)

At the surface of inner obstacle(Ω6):

(U, V ) = (0, 0), and θ = 0 = C. (8.18)

The local Nusselt number is determined using the above equations for the heat

transfer rate calculation.

Nu = −
(
∂θ

∂Y

)
Y=0

. (8.19)
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Figure 8.2: Optimizing mesh at various places of the cavity

The following equations are used to measure the average Nusselt and Sherwood

numbers along the heat and mass source on the top split wall:

Nuavg =
1

0.5

∫
Ω3

(
− ∂θ
∂Y

)
Y=0

dX, (8.20)

Shavg =
1

0.5

∫
Ω3

(
−∂C
∂Y

)
Y=0

dX. (8.21)

8.3 Numerical Procedure

The governed dimensionless equations along the boundary conditions

are solved by Galerkin weighted residual finite element formulation as discussed

in chapter 3. We formalize the FEM penalty in order to acquire the numerical

solutions of equations.

8.3.1 Mesh Analysis

Mesh analysis at different vertices corners of the enclosure are estab-

lished in Fig. 8.2. A mesh study of the lid trapezoidal cavity was shown in Fig.
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Figure 8.3: Optimizing mesh at various places of the cavity

8.3 against of average Nusselt number. The mesh quantity of convergence was

examined against the average Nusselt number. For various numbers of meshes

on different walls have been executed, until the repetitive Nusselt number is

reached, these are selected as experiment.

8.4 Results and Discussion

The flow structure and temperature profile for the different values of

Richardson number (0.01 ≤ Ri ≤ 10), direction of partial lid walls, Reynolds

number (100 ≤ Re ≤ 500), Lewis number (0.1 ≤ Le ≤ 10) and buoyancy

ratio parameter (−10 ≤ Br ≤ 10) within the partially lid-driven trapezoidal

cavity have been analysed numerically in this chapter. In numerical analysis,

the Prandtl number (Pr = 0.71) and the cold elliptic obstacle are set during

the execution.

Effects of Richardson number:

Fig. 8.4(a-f) demonstrate the effects of variation of the Ri on the

streamline and isotherms. A small recirculating cell is present in the trape-

zoidal enclosure for small Richardson number (Ri = 0.01) and the heat transfer

between the lid walls and elliptic obstacle is medicated by heat conduction and
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this is due to the mechanical influence of the forced convection. For small value

of Ri, recirculation cells are maximum near the lid wall and gradually recir-

culation cells move to the lower wall. Fig. 8.4(b) displays temperature field

aligned with the opposite configuration. As Ri rise, the isotherms also rises

due to the forced convection as the main transport mechanism and some small

recirculation non-uniform cells are observed within the cavity. Fig. 8.4(c) il-

lustrates the effect of Ri on concentration field. Concentration ratio decreases

with the increase in Richardson number inside of cavity. Heat flow near the

lid wall is recorded maximum. Due to forced convection, significance of forced

convection mass transfer in cavity is recorded in the form of heat.

Fig. 8.5(a) illustrates that horizontal temperature increases with in-

crease in Ri on the left region of the cavity because the left partial half of the

wall moves outside, where the velocity in (0.15–0.4) region increases. Contrary

to this, the velocity in the remaining region (0.6–0.85) decreases due to the

opposite movement of the left partial half of the wall. Fig. 8.5(b) represents

the temperature profile w.r.t. various Ri. For the forced convection, maximum

temperature is recorded and it gradually decreases when natural convection

is dominated in the cavity. Similar behaviour is depicted in Fig. 8.5(c) for

the concentration profile. Fig. 8.5(d) shows that the local Nusselt number

increases with the increase in Ri. Since, both the partial lid-wall moves with

the opposite velocity to each other, the heat transfer rate increases in partial

halves.

Effects of various directional velocities of lid walls:

Fig. 8.6(a-d) depicts the streamlines profile against the different di-

rectional velocity of the partial lid-wall. Streamlines increase while the lid-wall

moves to the left Fig. 8.6(d) and same behaviour is observed for the lid-wall

that moves to the right Fig. 8.6(a). In Fig. 8.6(b), the outward movement

of the lid wall reduces the streamlines whereas, in Fig. 8.6(c), we observe a

record number of streamlines by the internal movement of the partial lid-wall.
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Figure 8.4: Variation of (a-d) streamlines, (e-h) isotherms and (i-l) concen-

tration with respect to Ri when Re = 102, Br = 1, and Le = 0.5 for cold

elliptic obstacle
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Fig. 8.6(e-h) and Fig. 8.6(i-l) illustrate the isotherms and iso-concentration

profile, respectively. Maximum heat is observed along the same direction of

velocity of partial lid wall in Fig. 8.6(e and h). In the opposite direction of

the velocity of partial lid-walls, two different nature of heat are seen. When

both the partial lid-walls move in opposite direction (outward), maximum heat

transfer is developed in the corner lid walls whereas in the opposite (inward)

direction of lid-walls, the maximum heat transfer is found in the centre of the

lid-walls as shown in Fig. 8.6(f and g). Similar behaviour is observed for the

mass transfer profile as depicted in Fig. 8.6(i-l).

Fig. 8.7(a) shows the horizontal velocity against the different direc-

tional of the partial lid-walls. The region (0.15–0.3) illustrates the decrease in

velocity with the same direction and opposite (inward) direction of lid-walls

and it suddenly increases near the cold, elliptic obstacle. However, the region

(0.6–0.7) shows that velocity increases with the inward direction of the lid-

walls and a sudden decrease in seen near the right adiabatic inclined wall. In

Fig. 8.7(b), the region (0–0.4) depicts that the temperature decreases due to

the same direction of the movement of lid-walls and increases in the region

(0.6–1.0). Symmetric behaviour of the temperature is observed while the lid-

walls move in the opposite (outward) direction. In case of an inward direction

of walls the temperature decreases on the left wall and increases on the right

half wall as shown in Fig. 8.7(b). Observing the concentration profile in Fig.

8.7(c) for various direction of lid-walls, the behaviour of concentration is simi-

lar to the behaviour of temperature profile. Fig. 8.7(d) depicts the behaviour

of heat rate flow of the temperature in local Nusselt number against the direc-

tions of lid-walls. The same direction of lid-walls affects the heat transform to

be increasing when the walls move to the right and decreasing when the wall

moves to the left. In Fig. 8.7(d), the opposite (inward) direction of lid-walls

results in the maximum heat transfer at the middle of the cavity. On the

contrary, the minimum heat transfer is seen at the middle of the cavity while
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moving the lid-walls in opposite (outward) direction.

Effects of Lewis number:

The Lewis number is a ratio of a fluid’s thermal diffusivity to its mass

diffusivity. As a result, a high Lewis number indicates a low mass diffusivity

value. In the ongoing inquiry, the Lewis number was varied between 0.1 and 10.

Fig. 8.8 illustrates the effects of Lewis number on streamline, isotherms and

iso-concentration for fixed Ri. The mass diffusion rate tends to be stratified in

the vertical direction at Le = 0.1, with the exception of the top right corner,

where the moving lid causes flow circulation. In this case, forced convection

is dominated due to partial lid walls. A large bolus is developed near the

lid-walls. Circular clockwise and counter clockwise rotation formed due to the

opposite direction of partial lid-walls. The temperature in isotherms has no

significant effects on Lewis numbers. It can be observed clearly that the wavy

isotherms are formed at the top of the cavity and heat converges around the

cold elliptic obstacle at the centre. In other words, as the value of Le rises, the

strength of the simple mass flow patterns decreases. Furthermore, the findings

show that Le appears to have a major impact on the isotherms, as shown in

Fig. 8.8(e-h). Fig. 8.8(i-l) depicts the iso-concentration at different values of

Le for fixed Ri = 0.01. For Le = 0.1, the iso-concentration becomes smaller

wavy at the top of cavity and with the gradual increase in Lewis number, the

fluid becomes thicker in the middle and higher mass transfer is observed for

the maximum value of Le = 10 which occurs due to the higher mass diffusivity.

Thinner solutal boundary layers cluster underneath the hot lid and above the

cold floor, indicating a significant increase in mass transfer rate. This is further

shown by the fact that Le has been raised to a value of 10 (dominant mass

transfer regime).

Fig. 8.9(a-d) represent the effects of Lewis number on horizontal ve-

locity, temperature, concentration and Nusselt number. Horizontal velocity

decreases in the region (0.15–0.3) and suddenly increases to zero at the centre
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Figure 8.6: Variation of (a-d) streamlines, (e-h) isotherms and (i-l) concen-

tration with respect to various directional velocity of lid-walls when Ri = 0.1,

Re = 300, Le = 0.5, Br = 4 for cold elliptic obstacle
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due to clockwise rotation of the left partial lid-wall for increasing Le. On the

same Lewis number to the horizontal velocity, the converse behaviour is seen

in the region (0.6–0.85) because of the counter-clock rotation of right lid wall.

In Fig. 8.9(b), the increasing behaviour of temperature on top left side of the

cavity has been demonstrated with the increase in Le and inverse behaviour is

observed on the top right side of the cavity for the same values of Lewis num-

ber. In Fig. 8.9(c), the effects of Lewis number on iso-concentration profile

its horizontal mean position is illustrated that the concentration increases at

the mean position with the increase in Le due to thermal diffusivity and this

behaviour is observed on both the moving partial lid-walls. In Fig. 8.9(d),

the heat transfer is slightly increasing with the increase in Lewis number while

moving the left partial lid wall towards right. On the moving of the right

partial lid wall towards left, the obvious decrease in the heat transfer has been

observed with the same values of Le.

Effects of Reynolds Number:

Fig. 8.10(a-c) depict the effects of Reynolds number on streamlines.

For Re = 300, small circular vortex rotation is created near the lid-wall. With

increase in Re, vortex rotation size increases and is quite stable and symmetric

for higher values of Reynolds number. Temperature in the form of isotherms

is observed in cavity with the increase in Re. For various values of Reynolds

number, the left partial wall moves to the right and right partial wall moves

to the left. In other words, direction of lid walls is opposite inward. Due to

inward direction of lid-walls, maximum heat is recorded at the centre of cavity

and decreases at the end of walls as shown in Fig. 8.10(d-f). The streamline

patterns depict a primary clockwise recirculating cell that is mostly caused

by the moving lid and takes up the majority of the cavity volume. The flow

characteristics are caused by the mechanical or shear effect of the moving top

lid at the wall, which overcomes the buoyancy force. Fig. 8.10(g-i) represents

the iso-concentration profile with variations of Re in cavity, smaller lines are
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Figure 8.8: Variation of (a-d) streamline, (e-h) isotherms and (i-l) concen-

tration with respect to Le when Re = 200, Ri = 0.1, Br = 4 for cold elliptic

obstacle
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observed. The wavy heated lines increase with increase in Reynolds number.

Fig. 8.11(a-d) shows the effect of Re on horizontal velocity, tempera-

ture and concentration profile and local Nusselt number at the mean position.

Horizontal velocity increases on the left side of the cavity due to maximum heat

flow with increase in Re, and decreases at right face of cavity with increasing of

Reynolds number. Temperature profile for different values of Reynolds number

illustrates that heat production at left side is minimum and increases on right

side due to opposite inward direction of partial lid walls. Forced convection is

dominated near the left lid-wall so maximum heat is developed near the walls

but conversely near the right phase of lid. Similar effect is observed in Fig.

8.11(c) for concentration profile. Fig. 8.11(d) represents the heat transfer rate

for different Re. Phase of heat transfer in cavity is not symmetric due to op-

posite directional velocity of top walls. Maximum heat transfer is depicted in

middle of cavity for small values of Reynolds number due to inward direction

of lid walls.

Effects of Buoyancy ratio:

Fig. 8.12(a-d) demonstrate the effects of Br on the streamlines in

which the boundary layer thickness decreases with the increase in Buoyancy

ratio and circular vortex of the streamline decreases on the both of the partial

partial lid-walls. The strength of flow circulation is observed to increase as

the buoyancy ratio increases. Fig. 8.12 depicts the influence of the buoyancy

ratio on the isotherms (e-h). The isotherm values increase marginally as the

buoyancy ratio increases. Fig. 8.12 demonstrates the iso-concentration con-

tours for various Br values (i-l). The concentration lines are horizontal at

the top surfaces of the cavity and vertical in the region. The concentration

boundary layers at the right and left parts of the split walls are deformed as

the Br value is increased. A concentration vortex appeared near the centre of

the top surface as Br increased. It has also been discovered that increasing

the buoyancy ratio contributes to higher concentration contour values. The
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Figure 8.10: Variation of (a-c) streamline, (d-f) isotherms and (g-i) concen-

tration with respect to Re when Ri = 0.01, Le = 0.1, Br = 5 for cold elliptic

obstacle
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iso-concentration profile shows that high mass transfer in the form of molec-

ular movement has been recognized for Br = 10. Cavity near the lid walls is

gradually filled due to high mixture of species particle for maximum buoyancy

ratio.

In Fig. 8.13(a), the effects of Br on horizontal velocity at the mean

position demonstrate the opposite behaviour of the velocity on both the par-

tial lid-walls that is velocity increases on the left and decreases on the right

partial lid wall. Conversely, the heat and mass transfer imply the behaviour

of temperature and concentration as seen in Fig. 8.13(a). Fig. 8.13(d) shows

the behaviour of Br on Nusselt number that increasing the Br decreases heat

transfer on the left partial lid-wall and increases on the right partial lid-wall.

The effect of Richardson number with variance of Reynolds number is repre-

sented in Fig. 8.14(a) on the average Nusselt number. Heat transfer increases

steadily for smaller Re heat transfer and unexpectedly increases heat transfer

for greater value of Re = 300 at smaller value of Ri while in the middle, less

heat transfer is acquired. The end decreases for the highest value of the Ri

Nusselt number. While the Lewis number increases, concentration and tem-

perature increases, so heat transfer with the consequence of greater Richard-

son number against greater Lewis number also increases, as depicted in Fig.

8.14(b). Fig. 8.14(c) indicates that the rate of heat transfer improves with the

increase in the buoyancy ratio as well as the increase in Ri. For greater value

of Br, further heat transferred into cavity. Fig. 8.15 illustrates variation of the

average Sherwood number with variation of Richardson number for Pr = 0.71

and various values of Re, Le, Br and different directional split lid movement.

In Fig. 8.15(a) Shavg decreases with increasing of Re and Ri. For Re = 300,

average Sherwood number increases with increase in Ri which happens due to

less mass transfer with increasing of Re. The rate of mass transfer are stable

for various value of Le and it slightly decreases with increase in Ri as shown

in Fig. 8.15(b).
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Figure 8.12: Variation of (a-c) streamline, (d-f) isotherms and (g-i) concen-

tration with respect to Br when Ri = 0.1, Re = 100, Le = 10 for cold elliptic

obstacle
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Figure 8.13: Variation of (a) horizontal velocity, (b) temperature, (c) con-

centration and (d) local Nusselt number with respect to Br for cold elliptic

obstacle
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Figure 8.14: Variation of average Nusselt number with respect to the

Richardson number at the different values of (a) Reynolds number (b) Lewis

number (c) Buoyancy ratio (d) velocity direction
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8.5 Conclusion

Forced convective heat transfer is implemented in a two-dimensional,

partially lid-driven trapezoidal cavity with elliptic cold obstacle concentration.

The effect on streamlines, isotherms and iso-concentration activity is taken

into account by the different directional velocity of the partial lid wall. Lewis,

Reynolds, Richardson numbers, and buoyancy ratio roles are shown.

• Moving partial lid walls have a larger impact on isotherms. The core

of the cavity tends to have optimum streamlines in the case of opposite

inner path of the lid walls.

• With velocity direction of partially lid walls, the heat and mass transfer

rate has been greatly attained.

• Converse variation of Ri is observed on the horizontal velocity, temper-

ature, concentration and local Nusselt number because of the opposite

direction of the velocity on partial lid-walls.

• Mass transfer in the cavity is significantly increased with the increase
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in Lewis number whereas heat transfer rate has a contrary impact of

increasing and decreasing on different lid walls with the variation of Le.

• The impact of the streamlines and the isotherms has been addressed with

their increasing nature. However, transfer rate of the heat in the cavity

has partially been increased when the Reynolds number has increased

and vice versa.

• The effect of buoyancy ratio parameter on local Nusselt number is seen

that the smaller value of Br affects the increase in mass transfer in the

cavity.
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CHAPTER 9

THERMAL DRIFT AND FORCED CONVECTION

ANALYSIS OF NANOFLUID DUE TO PARTIALLY

HEATED TRIANGULAR FINS IN A POROUS

CIRCULAR ENCLOSURE

9.1 Introduction

In the presence of Magnetohydrodynamics (MHD), partially lid tri-

angular walls in circular ducts can be used to improve heat transfer. In sev-

eral physical applications, such as nuclear engineering, plasma physics, and

geophysics, the presence of a magnetic field is capable of altering the char-

acteristics of fluid flow and heat transfer. The main emphasis of this model

simulation is to analyze the simultaneous effects of thermal drift and forced

convection on water based single wall carbon nanotubes (SWCNTs) in a porous

circular duct. Equilateral triangular fins which are enclosed in a circular cav-

ity having vertical and horizontal side of triangular fins are moving. Internal

heat generation/absorption is considered to determine the thermal drift. Im-

pact of inclined Magnetohydrodynamics (MHD) has been introduced. The

governed equations are solved through weighted residue method of FEM. Ef-

fects of various parameters, they are Reynolds number, nanoparticles, porous

medium and absorption/generation on flow patterns and heat transfer were

worked out. The heat transfer rate at different heated fins has been investi-

164



gated for various parameters. This study carries out significant impact of Q on

temperature profile and local Nusselt. Local Nusselt number against heated

walls decreases with increase in porosity parameter and also increases in case of

heat generation. Streamlines decrease with increase of quantity in solid volume

fraction in enclosure. Significant effect of Re is observed in transformation of

heat in circular duct. Numerous physical applications of this flow configura-

tion exist, such as the cooling of high-temperature electronics, thermal control

of nuclear reactors, and improved heat transfer in geothermal energy systems.

The efficiency and efficacy of these systems can be greatly enhanced by using

partially lid triangular walls in circular ducts to increase exchange of heat in

the presence of MHD. Fluid mixing may also be accomplished by partially

moving the triangle walls of a circular duct. It is possible to improve the mix-

ing of various fluids, which is advantageous for applications including chemical

reactions, emulsion formation, and particle suspension.

Table 9.1: A table demonstrating the contrasts between the approaches being

offered

Authors Enclosure Obstacle MHD Heat generation

Sheikholeslami et al. [19] Elliptic Rectangular Inclined No

Sheikholeslami et al. [21] Curved No Inclined No

Chamkha [39] Square No Normal Yes

Saha et al. [79] Square No Normal Yes

Present Circular Triangular Inclined Yes
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Figure 9.1: Physical domain of circular duct with partially heated fins

9.2 Problem Formulation

The necessary assumptions were added in this section which are ap-

plied on momentum and energy equations. The constructed equations are

based upon two-dimensional flow enclosed in a circular duct that contain par-

tially heated triangular fins. Vertical and horizontal sides of triangular fins are

moving with constant velocity that provide the anti-clockwise source of heat

transfer and fluid motion. Water-based SWCNTs are analyzed for current

model. In order to manage the heat transfer output inside the closed cavity,

different restrictions were modified on the fins. Fig. 9.1 defines the geometry

of the model.
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9.2.1 Mathematical Model

A mathematical model that emerges with nanofluid expression in the

form of continuity, momentum and energy is constructed based on the con-

straints described in the problem description [98].

∇ ·V∗ = 0, (9.1)

V∗ · ∇u∗ = − 1

ρnf

∂p∗

∂x∗
+ νnf∇2u∗ − νnf

k
u∗

+
σnfB

2
0

ρnf

(
v∗sinΦcosΦ− u∗sin2Φ

)
,

(9.2)

V∗ · ∇v∗ = − 1

ρnf

∂p∗

∂y∗
+ νnf∇2v∗ − νnf

k
v∗ +

(ρβ)nf
ρnf

g(T ∗ − T ∗c )

+
σnfB

2
0

ρnf

(
u∗sinΦcosΦ− v∗cos2Φ

)
,

(9.3)

V∗ · ∇T ∗ = αnf∇2T ∗ +
Q0

(ρCp)nf
(T ∗ − T ∗c ), (9.4)

Thermal diffusivity of the nanofluid is defined by [99] as Eq. (2.8) and electri-

cal conductivity mentioned in Eq. (2.7) introduced by [83–85]. knf considering

the nanoparticle shape’s impact are defined as:

knf
kf

= 1 +
kCNTφrl

3kl(1− φ)rCNT
, (9.5)

Introducing the following dimensionless set;

X =
x∗

H
, Y =

y∗

H
, U =

uH

αf
, V =

vH

αf
, θ =

T ∗ − T ∗c
T ∗h − T ∗c

,

P =
p∗H2

ρfα2
f

, νf =
µf
ρf
, Ra =

gβf (T
∗
h − T ∗o )H3

µαf
,

Ha = BoH
2

√
σf
ρfνf

, P r =
νf
αf
, αnf =

knf
(ρC)nf

.

(9.6)

Where, the characteristic length is H, kinematic viscosity ν, Reynold num-

ber Re, and Prandtl number Pr. By invoking the defined variable the non-

dimensional form of equations (9.1)–(9.4) are
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∂U

∂X
+
∂V

∂Y
= 0, (9.7)

U
∂U

∂X
+ V

∂U

∂Y
= − ρf

ρnf

∂P

∂X
+ Pr

νnf
νf

(
∂2U

∂X2
+
∂2U

∂Y 2
− U

Da

)
+

σnf

σf
ρnf

ρf

Ha2Pr(V sinΦcosΦ− Usin2Φ),

(9.8)

U
∂V

∂X
+ V

∂V

∂Y
= − ρf

ρnf

∂P

∂Y
+ Pr

νnf
νf

(
∂2V

∂X2
+
∂2V

∂Y 2
− V

Da

)
+

(1− φ)ρfβf + φρpβp
ρfβf

RaPrθ +

σnf

σf
ρf
ρf

Ha2Pr(UsinΦcosΦ− V cos2Φ),

(9.9)

U
∂θ

∂X
+ V

∂θ

∂Y
=
αnf
αf

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
+Q

(ρCp)f
(ρCp)nf

θ. (9.10)

9.2.2 Dimensionless boundary conditions:

At the outer circular surface (Ω1):

U = 0, V = 0 and θ = 0,

Ω1 =
{

(X − h)2 + (Y − k)2 = r2/ radius = 0.5 and center h = k = 0.5
}
.

(9.11)

At horizontals fins of upper (Ω9) and lower (Ω2) triangular fin:

U = −1, V = 0 and θ = 1,

when Ω2 = LH = {(X, Y ) ∈ R/0.35 ≤ X < 0.65 and Y = 0.25} ,

U = 1, V = 0 and (θ = 1) ,

when Ω9 = LH = {(X, Y ) ∈ R/0.35 ≤ X < 0.65 and Y = 0.75} .

(9.12)

At vertical fins of right (Ω5) and left (Ω13) sides of triangular fin:

U = 0, V = −1 and (θ = 1) ,

when Ω5 = LH = {(X, Y ) ∈ R/0.35 ≤ Y < 0.65 and X = 0.25} ,

U = 0, V = 1 and (θ = 1) ,

when Ω13 = LH = {(X, Y ) ∈ R/0.35 ≤ Y < 0.65 and X = 0.25} .

(9.13)
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At inclined sides of triangular fin:

U = V = 0 = θ,

when Ω3 =

{
(X, Y ) ∈ R/0.5 < X ≤ 0.65 and Y = −5

3
X +

1

3

}
,

U = V = 0 = θ = 0,

when Ω4 =

{
(X, Y ) ∈ R/0.5 < X ≤ 0.65 and Y =

5

3
X − 1

3

}
,

U = V = 0 = θ,

when Ω6 =

{
(X, Y ) ∈ R/0.5 < X ≤ 0.75 and Y = −3

5
X +

1

5

}
,

U = V = 0 = θ,

when Ω7 =

{
(X, Y ) ∈ R/0.5 < X ≤ 0.75 and Y = −3

5
X +

4

5

}
,

U = V = 0 = θ,

when Ω8 =

{
(X, Y ) ∈ R/0.5 < X ≤ 0.65 and Y =

5

3
X − 1

3

}
,

U = V = 0 = θ,

when Ω10 =

{
(X, Y ) ∈ R/0.35 < X ≤ 0.5 and Y = −5

3
X +

4

3

}
,

U = V = 0 = θ,

when Ω11 =

{
(X, Y ) ∈ R/0.25 < X ≤ 0.5 and Y =

3

5
X +

1

5

}
,

U = V = 0 = θ,

when Ω12 =

{
(X, Y ) ∈ R/0.25 < X ≤ 0.5 and Y = −3

5
X +

4

5

}
.

(9.14)

The average Nusselt number

Nu =

∫ 1

0

NuXdX

and Nusselt number along the heated fins are written as;

At lower (Ω2) triangular heated fin:

NuX = −knf
kf

(
∂θ

∂Y

)
Y=0.25

, (9.15)
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At right (Ω5) triangular heated fin:

NuY = −knf
kf

(
∂θ

∂X

)
X=0.75

, (9.16)

At upper (Ω9) triangular heated fin:

NuX = −knf
kf

(
∂θ

∂Y

)
Y=0.75

, (9.17)

At upper (Ω13) triangular heated fin:

NuY = −knf
kf

(
∂θ

∂X

)
X=0.25

. (9.18)

9.3 Results and Discussion

In this chapter, a numerical study is performed to investigate the

influence of the inclined magnetic field by heating the horizontal and vertical

sides of the triangular fins etched in the circular cavity. The study is performed

for Reynolds number (300 ≤ Re ≤ 1000) where Richardson number is fixed

as 0.05, nanoparticles of volume fraction (0 ≤ φ ≤ 0.2), Darcy number (105 ≤

Da ≤ 10) and heat absorption/generation parameter (−100 ≤ Q ≤ 50). These

effects are obtained for the fixed parameter Pr = 6.2, Φ = 45 and the diameter

of circular cavity is 1.

Effects of Reynolds number:

The impact of Reynolds number on the isotherms and streamlines is

illustrated in Fig. 9.2(a)–(h). For increasing Re, heat transfer in cavity also

increases and distributes into the whole cavity. With this effect the wall of

circular cavity becomes fully heated. Fig. 9.2(e)–(h) represents the stream-

lines effect with variation of Re, streamlines are symmetrically stable near the

heated fins,for the fixed value of Ri. It means that the velocity of the whole

duct is modified with the equal proportions to the velocity of the heated con-

nectives and this is because of the internal heat generation. Fig. 9.3(a)–(b)

represents the temperature profile with variation of Re. The heated vertical
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and horizontal fins, which are the sides of triangular shape, are inscribed in

circular cavity. However, the temperature profile increases with the enhance-

ment of Reynolds number. At the mediate section of the duct, maximum

height is obtained. For the horizontal and vertical cases, the same transfer of

heat is developed in cavity. The Nusselt number for various heated fins due

to the variation of Re is represented in Fig. 9.3(c)–(f). Due to the lid walls,

by increasing the Reynolds number isotherm lines increases near the circular

wall of cavity, that’s why maximum amount of local Nusselt can be observed.

Conversely, at the opposite side of the heated fin, there is a decrease in local

Nusselt number. In all such cases, every heated fin reduces the transfer of heat

at lower side and increases towards the heated fins.

Effects of nanoparticles:

The streamlines and temperature field inside the circular cavity with

horizontal and vertical heat source for different nanoparticles are represented in

Fig. 9.4(a)–(h). Reynolds number, Darcy number and heat absorption/generation

are fixed. For increasing volume fraction of nanoparticles, the intensity of the

central cells decrease. Heated lines gradually decreases with increasing quan-

tity of volume fraction of nanoparticles. Fig. 9.4(c)–(d) clearly identifies that

streamlines are restricted near the heated lid fins. For maximum quantity of

nanofluid, heated lines are quite stable and confined near the fins. The tem-

perature field at the end is fixed on the heated walls. Fig. 9.4(e)–(h) shows

the streamlines, which is quite stable with increasing the nanoparticles. In

circular duct, the effect of nanoparticles plays a significant role with the exis-

tence of heat generation/absorption parameter. Fig. 9.5(a)–(f) illustrates the

heat transfer variations as volume fraction varies. In enclosure, heat trans-

fer increases with the enhancement of nanoparticle for vertical and horizontal

implementation of heated fins. With increasing the solid concentration the

heat transfer increases near the wall. With increasing the concentration of

nanofluid the flow rate increases at the middle of cavity. At the middle local
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Figure 9.2: Steady state isotherms and flow pattern due to the variation of

Reynolds number
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Nusselt number sufficiently increases due to less resistance in heat flow. Impact

of volume fraction on flow rate against different heated lengths are similarly

repeated on left and right side of figure. Fig. 9.5(c)–(f) shows the Nusselt

number at heated fins for different nanoparticles. As thermal conductivity in-

creases, nanoparticle also increases near the heated fins and it increases from

left to right as examined in Fig. 9.5(c)–(d) but is converse in the case when

heated fins are at left position.

Effects of Porous medium:

As an inexpensive and promising way of improving the energy effi-

ciency of houses, numerous researchers have explored porous materials. In ad-

dition, some of the physical media that are used in the development of energy

technologies are porous. Darcy number (Da) is the permeability measurement

in porous cavity or medium. Fig. 9.6(a)–(h) illustrates the streamlines and

isotherms as Darcy number varies. Due to the high resistance, the flow of

heat is minimum in cavity for low Darcy number. The Darcy number effect

illustrates the impact of changing permeability of the porous medium on the

thermal field. However, by increasing the Darcy number resistance decreases

and heat moves outside the porous medium and circulates circular wall. Fig.

9.6(e)–(h) represents the streamlines effect, which clearly shows that the flow

penetrates deeper into the cavity with increasing of Da. In the present prob-

lem, four various horizontal and vertical heated fins are investigated. Heated

fins are inscribed in circular cavity in the form of the sides of triangles. Fig.

9.7(a)–(b) conforms that with an increase the Darcy number the temperature

linearly increases or decreases where the permeability of medium increases. It

means that the flow resistance decreases and hence there is an increase in the

porosity of heat transfer in cavity. The impact of Darcy number on Nusselt

number at heated fins (horizontal and vertical) is represented in Fig. 9.7(c)–(f).

It can be seen that at the boundary, heat transfer increases with an increase in

Da. But it decreases near the cold inclined fins. Nusselt number rises as the
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Figure 9.4: Steady state isotherms and flow pattern due to the variation of

solid volume fraction
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Figure 9.5: Influence of solid volume fraction on temperature profile and Nu
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porosity increases. Further, heat transfer also increases as Da increases. At

the lower heated fin, there is a significance of buoyancy effect and heat transfer

increases with increasing the Da. Similarly, left and right sided vertical fins

also transfer heat with increasing the permeability region.

Effects of heat generation/absorption:

Thermal effect in circular cavity through fins has significant role in

industrial field. Heat development in circular duct through fins and exter-

nal source has significant impact in industrial field. The impact of absorp-

tion/generation is illustrated on the temperature profile (against horizontal

and vertical mean position), Nusselt number (Nu) on the surface of heated

fins in Fig. 9.8(a)–(f). Heat increases due to convection near the heat fins in

generation case and decreases in case of absorption. In both horizontal and

vertical temperature profiles behave same with the variation of Q. The impact

of Q on Nusselt number at lower and right triangular fins is examined in Fig.

9.8(c)–(d). It can be observed that as Q increases, there is a decrease in Nus-

selt number. Due to the lid walls of triangular fins, it is predicted that heat

absorption increases the Nusselt number, on the contrary, the heat generation

coefficient increases as the Nusselt number decreases.

9.4 Conclusion

The mixed convection of transfer of heat in circular duct with partially

lid-driven fins in triangular form is numerically investigated. The cavity is filled

with copper nanoparticles, Pr = 6.2, Ri = 0.05, Ha = 10 and Φ = 45 are fixed.

The effects of Reynolds number (300 ≤ Re ≤ 1000), where Richardson number

is fixed as 0.05, nanoparticle volume fraction (0 ≤ φ ≤ 0.2); Darcy number

(10−5 ≤ Da ≤ 10) and heat absorption/generation parameter (−100 ≤ Q ≤

50) on isotherm, streamlines, temperature profile and local Nusselt number

were investigated. After the simulation, the outcomes are as follows:

• With increasing the Reynolds number (Re), there is also an increase in
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Figure 9.6: Steady state isotherms and flow pattern due to the variation of

Darcy number
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the local Nusselt number. The stream function values increases due to

the convective heat transfer at higher Re.

• Significant effect on temperature distribution evaluated in duct with in-

crease in Reynolds number. In case of forced convection the temperature

in cavity exceeds with increasing Re.

• The result of isotherms and streamlines were analysed against the dif-

ferent nano-particles. The study concludes that isotherms decrease with

increasing nanoparticles. The lines gradually emerging to the heated

surface of fins.

• As temperature and Nusselt number increase volume fraction of nano-

particles also increases. Further, in case of nanoparticles, the heat trans-

fer is surplus as compared to base fluid (water).

• The effect of Da can be seen when the flow patterns are highly affected

by permeability within the duct. Heat transfer in cavity augments as

Darcy number increases. For increasing Q, the internal heat transfer also

increases. Temperature profile is enhanced in cavity in case of Q > 0.
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CHAPTER 10

CONCLUSION AND FUTURE WORK

10.1 Conclusion

We investigated heat and mass transport processes in a variety of cav-

ity models using nanoparticles in this dissertation. The role of nanoparticles

in natural and forced convection in regular and irregular enclosures is inves-

tigated from a physical standpoint. In the literature, there exists a variety

of nonlinear partial differential equations of nanofluid models. The models

provided by Buongiorno, Tiwari and Das are the most popular among them.

The Buongiorno nanofluid model adds a transport equation for nanoparticle

concentration to the fundamental transport equations for fluid flow and heat

transfer. The Brownian diffusion (deterministic motion of nanoparticles), ther-

mophoresis (particle diffusion owing to temperature gradient), and Brownian

motion are differentiated by Buongiorno, whereas the Tiwari and Das model

focus on the various thermophysical characteristics of the nanofluid. Fine grid

meshing is utilized for a 2-D steady flow to maintain the flow as laminar in

closed geometry. In this case, the obtained numerical solution remains stable

across the cavity.

10.1.1 Comprehensive finding of entire thesis:

Natural convection (Chapters 4 and 5) and forced convection (Chap-

ters 6, 7 and 9) are the two primary forms of flows, studied in this research.
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FEM is being used to systematically assess steady laminar incompressible two-

dimensional nanofluid flows in complex geometries. In case of square cavity

fins play a vital role for heat generation and transfer. Heated length of fins

directly influence the transfer rate of heat. In natural convection local Nusselt

number increases with increase in heated length. Chapter 5 includes curved

cavity and partially heated curve is allocated for heat flow inside cavity. For

this, we use extended equation with the addition of porous medium for simu-

lation and an energy equation with heat generation/absorption term for heat

creation and elimination. In such situation, porosity plays significant role to

maintain heat in cavity. In curved cavity, transfer rate of heat increases with

increasing porosity of the medium. In square cavity, heat is developed through

horizontal fin whereas, split curved plays a vital role for heat generation and

transfer in cavity. One factor Q, which is used for heat generation plays im-

portant role to develop heat inside the porous cavity. For maintenance of heat

this parameter is also used as absorption. In this presence of Q, heat flow

faster with the help of porosity in this situation. In both problems free con-

vection is adopted, that is generated with the help of fin and curved heated

wall. Deformation of the lower heated curved wall also works for more heat

generation and in square enclosure the same work is done due to the length

of fin. Similar impact of the fin and heated curved wall are also developed on

velocity, temperature and local Nusselt number on square and curved cavity.

In both cavities, FEM is applied for numerical solution of heat transfer.

Unlike the previous two chapters, chapters (6,7 and 9) represented

to forced convection analysis on different cavities (irregular and corrugated

heated walls). In chapter 6, the cavity is taken as corrugated which has one

side moving lid wall with the uniform velocity. A circular obstacle is also

placed inside the cavity which is helpful in heat transfer. The medium of cor-

rugated enclosure is kept porous. Heat generation and absorption are applied

to maintain the heat transfer in the cavity. In addition to 6, chapter 7 is taken
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with the double sided lid driven on the corrugated duct. Same parameters for

heat flow are utilized to check and measure the effects of heat in the cavity

without circular obstacle whereas various directional velocity of lid walls on

streamlines, isotherms, velocity, temperature, and Nusselt number has been

observed. It is evident to see the effects of heat transfer with the movement

of lid walls. Moving the lid walls inside produces heat inside the cavity while

the movement of lid walls outside produces heat away from the corrugated

wall. In connection to the previous chapter, chapter 8 discuss as the third

type of convection that is the mixed convection. This convection is taken in

the trapezoidal cavity with the split lid driven on the top wall moving in var-

ious direction that affects the heat mass transfer in enclosure. The effects of

buoyancy ratio parameter and lewis number are observed in the enclosure with

the impact of upper wall (lid driven). Chapter 9 deals with partially heated

triangular fins and lid driven in the fins. Heat is generated in the cavity in the

presence of inclined MHD and porosity. Heated lines or flow of heat decreases

with increasing φ in all cases of geometry. Darcy number or resistance effect

on isotherm clearly shows that with increasing of porosity parameter isotherm

decreases. Heat generation coefficient creates heat inside cavity, so rate of heat

transfer decreases in all problems.

10.1.2 Parametric based finding for flow and heat transfer:

When the Rayleigh number is raised in natural convection, the stream-

lines near the lower heated fin or wall become very strong. When the buoy-

ancy driven is at its maximum, the streamline moves closer to the heated area,

progressively heating the entire cavity. As Ra increases, there is more free

convection on the free flow of the isotherm. When Rayleigh number is rising

in the left and right regions of vertical fins, vertical velocity against heated

lower fins increases in cavity. It is also realized that its velocity is zero as it

approaches the solid fins’ end point. When Ra is raised, the location of the
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bottom face lower heated fin drops. The heat transfer from the bottom heated

fin’s lower face may be seen distinctly. This shows when the Rayleigh number

rises, the thermal flow drops.

This research work focuses on convection through lid walls in several

complex geometries. For low Richardson numbers, isotherms are confined near

the lid wall. Shear forces dominate in the cavity at Ri = 0.01, and streamlines

are primarily limited to the area near the moving wall. When Ri is increased

to 1, both shear and buoyancy forces contribute equally, resulting in more

streamlines near the wall. Due to free convection, fluid flow has been detected

throughout the cavity around the centre impediment as Ri increases from 1 to

10. With an increase in Ri, the velocity at the vertical and horizontal mean

position decreases. In this instance, the temperature gradient is the most vital

role. The rate of heat transfer decreases as the Richardson number increases

due to the dominance of heat in cavity.

The influence of Reynolds number on isotherms and streamlines demon-

strates that symmetrical undistorted isotherms cover the most of the cavity,

while the isotherms endorse some sort of distortion towards the top moving lid.

The isotherm is dispersed throughout the enclosure at low Reynolds number

and gradually decreases as Re increases. The heat effect around the moving

heated vertical wall should be maximised for maximum Re. It is obvious,

when the Reynolds number rises, the velocity at centre rises with it. The

centre of vortices layer is obviously smaller than towards the cavity’s corner.

Furthermore, as Re increases, the layers form at the solid wall’s boundary,

and heat is emitted with a uniform vorticity from the solid boundary. The

effect of Reynolds number on nanofluid particle streamlines and isotherms in

a corrugated enclosure, in case of a double lid is observed. At low Re, the

contour is uniformly distributed, with temperature on both sides of the lid

walls. Isotherm lines form a circular rotation, and when Re rises, the isotherm

lines become stronger. For lower values of Re, the effect of forced convection
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is smaller, and the number of heated lines is reduced. The heat flux rises as

Re increases, making forced convection the dominant mode of transport. This

suggests that forced convection is the primary mode of heat transfer in the

cavity.

For base fluid, the flow structure of molecular movement near the

heated wall is quite laminar and congested. The strength of heated lines in

isotherms increases as the concentration of nanofluid in the base fluid increases.

When 5% mixture is added to the fluid in a natural convection instance, the

velocity at mean position increases as well. However, due to the highest rate of

heat transfer, the temperature in cavity declines at that instant. The transfer

of heat is increased in the case of forced convection because the vertical lid wall

moves with a specific velocity. In this case, the role of free convection is limited,

and the isotherm profile shows a clockwise circular flow of the fluid. With an

increase in nanoparticle concentration in the cavity, the circular rotation near

the obstacle increases. Due to the movement of the lid wall, eddy develops

around it in streamlines.

In the case of natural convection, the effect of a heated fin on heat

transport in the cavity is significant. The maximum length of a fin has a greater

impact on the isotherm, but the flow structure in the form of streamlines near

the fins decreases. Heated lines vary in structure and cluster around the other

cold fins in the case of adiabatic fins. However, heat is confined around the top

and lower fins in the case of cold fins. For a cool middle fin case, the horizontal

and vertical velocity are relatively low. The rate of heat transfer at the upper

and lower faces of the heated fin is inversely proportional to the length of the

heated fin. Heat rises inside the circular duct when the lid is driven with a

specific velocity.

Heat transfer increases as the heat generation coefficient is reduced,

and temperature distribution lines or heat transfer is restricted near the heated

wall. Inside the cavity, when Q = 0, stable symmetric heat transport is ob-
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served. Heat infection is transmitted in various cavity models as a result of

natural and lid wall action. As the internal generation increases, more heat is

generated along the heated walls, which then spreads throughout the cavity.

As shown in cavities, vertical velocity rises when the heat generation coefficient

is high and falls when the heat generation coefficient is low. For larger values of

Q, the temperature profile shows that more heat is produced. Heat transporta-

tion increases as the heat generation coefficient is reduced, and temperature

distribution lines or heat transfer is restricted near the heated wall.

For natural convection, Darcy number has significant influence on the

heat transfer rate. For maximum porosity, more heat generated in the cavity.

As a result of its high rate of heat transfer, velocity decreases at the mean

location. Heated lines in forced convection emphasize that permeability is

restricted at the lid walls for minimum permeability. For maximum porosity,

a parabolic bolus of velocity is found. The Darcy effect which is caused by the

double lid driven walls, has an effect on the isotherms and streamlines. Eddies

are more stable and bigger when the material is less porous. Due to the high

velocity on the lid walls, velocity also decreases for Da = 10, but heat transfer

rate increases. The generation of heat by moving fins in a circular cavity has

developed as the cavity has become larger, as has the transfer rate in the case

of maximal porosity. The effect of the Darcy parameter on the circular duct’s

vital element in the isotherm profile in the current steady state. The average

Nusselt number rises as the porosity of the medium rises.

Due to the dominance of lid velocity, the role of Lewis number on

streamlines vortex is constructed for all Le with equal flow strength filling

essentially the whole enclosure. At Ri = 0.1, forced convection domination

occurs, and the flow pattern is nearly same for all Le, with the vortex rotating

clockwise to generate eddies. There is also a stagnated zone in the enclosure’s

upper mid wall. Overall, this indicates that atRi = 0.1, the Le has no influence

on the streamlines. The iso-concentrations near the top of the cavity get wavy
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as Le approaches 1. For Le = 5, the iso-concentrations begin to collect around

the cavity’s top wall and finally thicken for Le = 10, indicating increased

mass transport due to mass diffusivity depreciation. Due to the asymmetrical

movement of the lid walls, Le has the opposite effect on velocity, temperature,

Nusselt, and concentration profile on both split lid walls. The mass diffusivity

has a considerable influence on the concentration profile for high Le.

The effects of buoyancy ratio on streamlines, where the boundary layer

thickness reduces as the buoyancy ratio increases, and the circular vortex of the

streamline decreases on both partial lid-walls. As the buoyancy ratio increases,

the strength of the flow circulation is found to increase. As the buoyancy ratio

rises, the isotherm values rise to some extent. At the cavity’s upper surfaces,

the concentration lines are horizontal, while in the area, they are vertical. As

the buoyancy ratio value rises, the concentration boundary layers at the right

and left sections of the split walls distort. As Br grew, a concentration vortex

emerged at the top surface’s centre. Significant effect of buoyancy ratio on

velocity profile it develops parabolic bolus, which decreases on left phase of

the cavity and increases on the right section of the cavity with variation of

buoyancy ratio parameter.

10.2 Future Work

So far, this dissertation has dealt with several regular or irregular

geometries of convection problems for the steady case, but future work will be

focused on physical difficulties such as phase change material, solidification,

and melting. In such instances, several unsteady flow challenges for both free

and forced convection models are also taken into account.
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[98] F. Selimefendigil, H. F. Öztop, A. J. Chamkha, Mhd mixed convection

and entropy generation of nanofluid filled lid driven cavity under the influ-

ence of inclined magnetic fields imposed to its upper and lower diagonal

triangular domains, Journal of Magnetism and Magnetic Materials 406

(2016) 266–281.

[99] B. Ghasemi, S. Aminossadati, Mixed convection in a lid-driven triangular

enclosure filled with nanofluids, International Communications in Heat

and Mass Transfer 37 (8) (2010) 1142–1148.

201


