

FINAL YEAR PROJECT REPORT

GD-LIFTER In fulfillment of the requirement for degree of Bachelors in Computer Engineering (BCE)

By

MUHAMMAD HAMZA ARSHMAN HAIDER FURQAN HAIDER 65018 64994 64993

SUPERVISED BY ENGR AHMED FARAZ

BAHRIA UNIVERSITY (KARACHI CAMPUS)

SPRING-2023

Submission Performa

Name	(1)	nan Haider
Address		olock 4 fb area karimabad, Karachi block A, Kazimabad, Karachi
	•	block A. Kazimabad, Karachi

Title of Report:

GD-Lifter

Project Supervisor's Name:

Engr. Ahmed Faraz.

This report is submitted as required for the Project in accordance with the rules laid down by the Bahria University as part of the requirements for the award of the degree of Bachelor of Engineering. I/We declare that the work presented in this report is my/our own except where due reference or acknowledgement is given to the work of others.

Signatures of students	Dato
(1) Damza	17/07/2023
(2)	17/7/23
(3)	
Signature of Supervisor	Date 17/7/23

Intellectual Property Right Declaration

This is to declare that the work done under the supervision of Engr. Ahmed Faraz having title "GD-Lifter" carried out in partial fulfillment of the requirements of Bachelors of Engineering in Computer Engineering, is the sole property of Bahria University and is protected under the Intellectual Property right laws and conventions. Bahria University asserts legal and beneficial ownership rights over all Intellectual Property developed as a result of support either directly from or channeled through Bahria University, or created at the request or direction of Bahria University, or developed as a result of utilization of Bahria University Resources including copyright in any material. It can only be considered/ used for purposes like extension for further enhancement, product development, adoption for commercial/organizational usage, etc., with the permission of the university and in adherence to its policies.

The above statements apply to all students and faculty members.

Date: June, 18th 2023

Author(s):

Name: Muhamamad Hamza

Name: Arshman Haider

Name: Furgan Haider

Supervisor(s):

Name: Engr. Ahmed Faraz

Signature:

Signature:

Signature:

Signature

Acknowledgments

Final Year Project is a demonstration for undergraduate students which is combination of teamwork and implementation of theoretical and practical knowledge. It enhances abilities of students to step up in their field. With this willingness, we affiliated with this project.

In the successful accomplishment of our project, we would like to express our sincere gratitude and appreciate those people who are actively involved in our project.

Foremost, all thanks to Allah (S. W. T) for being able to compete with a great feat in these endeavors and helped out to make our project successful in this pandemic situation.

Next, we are highly obliged in taking the opportunity to sincerely thank our project Coordinator Dr. Rizwan Iqbal for helping us in managing and other project tasks. We also want our deepest thanks to the Head of CE department Dr. Shoaib Mughal for his support and kind cooperation in our difficult phases. Lastly, all of our team express great appreciation and special thanks to our project supervisor Engr. Ahmed Faraz for guiding, monitoring, and support us throughout the project lifecycle with his great experience and knowledge.

Abstract

This project focuses on the development of a low-budget, efficient, and user-friendly lift system operated via a mobile application using Bluetooth technology. The objective is to create a lift with a height of 6 feet and three floors, capable of lifting up to 3kg. The project involves the use of a microcontroller for control and integration, along with automatic doors on each floor. The project milestones include motor testing, frame and cabin construction, mobile application development, and system integration. The final deliverables will be a functional lift system that consumes minimal energy, operates silently, and offers a seamless user experience.

The benefits of this project lie in its cost-effectiveness, energy efficiency, and ease of use. The wooden frame construction ensures durability and affordability, making it suitable for various applications. The integration of a microcontroller enables precise control and automation, resulting in optimal performance and energy savings. The mobile application provides a convenient interface for users to operate the lift effortlessly. Overall, this project aims to deliver a reliable and accessible lift solution that meets the requirements of small-scale residential or commercial settings, while being environmentally friendly and budget-friendly.

Table of Contents

Contents

1.	INT	ro:	DUCTION	1
	1.1	PUR	POSE OF THIS PROJECT	1
	1.2	COM	PLEX ENGINEERING PROBLEM STATEMENT	2
	1.3	Овл	ECTIVE OF THIS PROJECT	2
	1.4	Sco	PE OF THE PROJECT	2
	1.5	Pur	POSE OF THE DOCUMENT	3
	1.6	Mor	DULES IN THE PROJECT	3
	1.7	GEN	ERAL OVERVIEW AND DESIGN GUIDELINES/APPROACH	4
2.	BA	CKC	ROUND AND LITERATURE REVIEW	5
	2.1	Exis	STING SYSTEMS	5
	2.1.	1	Existing Systems Description	6
	2.1.		Problems in the Existing Systems	6
	2.2	REL	ATED WORK	7
3.	SY		M ANALYSIS	
	3.1		RK ANALYSIS	
	3.1.		Work Flow Diagram	9
	3.1. 3.1.	_	Work Breakdown Structure	10
	3.2	DAT	A ANALYSIS	11
	3.2.	1	Data Flow Diagram	11
	3.3	SYS	TEM REQUIREMENTS	12
	3.3.		Clients, Customer and Users	13
	3.3.		Resource Requirements	13
	3.3.	.3	Data Requirements	13
	3.3.	4	Non-Functional Requirements	15
	3.4		POSED SOLUTION	
4.	SY		M DESIGN	
	4.1	PRO	JECT MODULES	18
	4.2	DES	IGN CONSTRAINTS	18
	4.3	HA	RDWARE AND SOFTWARE ENVIRONMENT	18
	4.3	.1	Hardware	19
	4.3	.2	Software	າາ ກາ
	4.4	AR	CHITECTURAL STRATEGIES	20 21
	4.4	1.1	Algorithm to be used	21 21
	4.4	1.2	Development Method	21 22
	4.5		DEVELOPMENT NETHOUS DIECT MANAGEMENT STRATEGIES PROJECT SCHEDULE	23
	4.5		PROJECT SCHEDULE	24
	15	2	CANTI CHARI	

GD-Lifter		CE Department
4.5.3	QUALITY MANAGEMENT	23
4.5.4	HUMAN RESOURCE MANAGEMENT	25
4.5.5	RISK MANAGEMENT	25
4.6 DA	TA CONVERSIONS	26
4.7 AP	PLICATION PROGRAM INTERFACES	26
4.8 Us	ER INTERFACE	26
4.9 F	PERFORMANCE	27
4.10 A	ARCHITECTURE DESIGN	28
4.10.1	Logical View	29
4.10.2	HARDWARE ARCHITECTURE	29
4.10.3	SOFTWARE ARCHITECTURE	
4.10.4	SECURITY ARCHITECTURE	32
	Use-Case	33
	EMENTATION	
5.1 IMI	PLEMETING CODE	34
5.2 Blu	uetooth Module	38
5.3 Mi	crocontroller Atmega328	38
5.4 DC	C Gear Motor	38
5.5 IR	Sensor	39
5.6 Re	lay	39
5.7 Sw	vitch	39
5.7 Sw 5.8 Ad	lapter	40
5.0 Au	ndroid	40
	ING	
6.1 Pu	RPOSE OF THE TEST PLAN	41
6.2 Fu	INCTIONAL TESTING	41
6.2.1	Tost Dieles / Issues	41
6.2.2	Items to be Tested / Not Tested	42
6.2.3	Test Approach(s)	42
6.2.4	Test Regulatory / Mandate Criteria	43
	Test Pass / Fail Criteria	43
6.2.5	Test Entry / Exit Criteria	43
6.2.6	Test Deliverables	43
6.2.7	Test Suspension / Resumption Criteria	45
6.2.8	Test Environmental / Staffing / Training Needs	45
6.2.9	REFORMANCE TESTING	45
	ERFORMANCE TESTING	4.5
6.3.1	Load Testing	45
6.3.2	Test Risks / Issues	46
6.3.3	Items to be Tested	40
6.3.4	Test Approach(s)	46
• • • • • • • • • • • • • • • • • • • •	Test Pagulatory / Mandate Criteria	40
6.3.5	Test Dags / Fail Criteria	4/
6.3.6	Test Deliverables	47
6.3.7	YSTEM TESTING	48
	YSTEM TESTING Test Risks / Issues	48
641	Test Risks / Issues	

GD-Lifter	Lance Lance J	CE Department
6.4.2	IIPMS IO DE IESTEA	
6.4.3	Security check	48
6.4.4	Functionality check	····· 47
6.4.5	Test Regulatory / Mandate Criteria	49
6.4.6	Test Pass / Fail Criteria	······ 47
7. IMPA	CT OF PROJECT ON SOCIETY AND ENVIRONMENT.	
7.1 RE	SPONSIBILITIES OF ENGINEER	50
7.1.1	SOCIAL RESPONSIBILITIES	
7.1.2	CULTURAL RESPONSIBILITIES	
7.1.3	GLOBAL RESPONSIBILITIES	50
7.1.4	ENVIRONMENTAL RESPONSIBILITIES	31
7.2 NO	ORMS FOR IMPLEMENTING THE PROJECT	51
7.2.1	PROFESSIONAL NORMS	51
7.2.2	ETHICAL NORMS	51
8. RESU	LTS AND DISCUSSION	52
8.1 RE	SULTS	52
8.2 RE	SULTS AFTER PERFORMCE TESTING	55
	SCUSSION	
	CLUSIONS AND FUTURE WORK	
01 00	ONCLUSION	58
9.1 Co	TURE WORK	58
9.2 Fu	TURE WORK	/ 0
10. REFE	RENCES	60
APPENDICES		61
A DDENIDI		
W DDD ENIT	Y 41	