
ASK BU

Voice Chat Bot with 3D Avatar

MUHAMMAD AIZAZ

01-135201-048

HIFSAH JABEEN

01-135201-025

Group ID: IT-S23-08

Supervisor: JAWWAD IJAZ

Bachelors of Science in Information Technology

Department of Computer Science

Bahria University, Islamabad



© Muhammad Aizaz and Hifsah Jabeen, 2023



3

Certificate

We accept the work contained in the report titled “Ask BU”, written by Hifsah Jabeen &

Muhammad Aizaz as a confirmation to the required standard for the partial fulfillment

of the degree of Bachelors of Science in Information Technology.

Approved by:

Supervisor: Mr. Jawwad Ijaz

Internal Examiner:

External Examiner:

Project Coordinator: Dr. Faisal Imran

Head of the Department: Dr. Arif ur Rahman

October, 2023



i

Abstract

Numerous high school students encounter challenges when they strive for university

admission, mainly because of the diverse and confusing admission procedures and

eligibility criteria that vary across different institutions. The process becomes even

more overwhelming when navigating multiple university websites, making it a time-

consuming and frustrating experience. In response to this widespread difficulty, the

project, known as “ASK BU with 3D avatar”, presents an effective solution. This

initiative introduces a user-friendly voice chatbot featuring a 3D avatar, significantly

streamlining the admission process. The avatar engages with students conversation-

ally, providing quick and easy-to-understand answers to their questions. This not

only streamlines the entire admission journey but also eases the complexities associ-

ated with accessing vital information. By offering a straightforward and accessible

approach, that project aims to empower students, making the university admission

process a more manageable and less stressful experience for everyone involved.



ii

Acknowledgments

In the name of Allah, the most beneficent and the most merciful. We are highly

grateful to the One who created us and blessed us with a privileged life. We would

like to thank our parents who have always been a pillar of strength and support.

Furthermore, We would like to declare our deeper acknowledgment and gratitude to

our supervisor Mr. Jawwad Ijaz for his expert guidance, provision of detailed infor-

mation regarding the project. We are also thankful to the FYP project coordinator,

Dr. Faisal Imran, for the exchange of information regarding project milestones and

meetings. Last but not least, we would like to thank our friends who make studying

and hard times less challenging. May ALLAH (SWT) guide us to the right path.

Hifsah Jabeen

Muhammad Aizaz

Bahria University Islamabad, Pakistan

October, 2023



“Out of clutter, find Simplicity. From discord, find Harmony. In the middle of

difficulty lies Opportunity”

Albert Einstein

iii



Acronyms and Abbreviations

API Application Programming Interface

DOM Document Object Model

CSS Cascading Style Sheet

GPU Graphics Processing Unit

GUI Graphical User Interface

IDE Integrated Development Environment

NLP Natural Language Processing

SGD Stochastic Gradient Descent

SSD Solid State Drive

SSML Speech Synthesis Markup Language

HTML Hypertext Markup Language

UI User Interface

OS Operating System

iv



Table of Contents

Abstract v

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Project Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.6 Feasibility Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.7 Solution Application Area . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 5

2.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Existing system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Health and Medical Field: . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Language Learning: . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.3 Personalized . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.4 Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Requirements Specifications 10

3.1 Existing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Proposed System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Requirement Specifications . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.1 Functional Requirement . . . . . . . . . . . . . . . . . . . . . 11

3.3.2 Non-Functional Requirement . . . . . . . . . . . . . . . . . . . 11

3.4 Software Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 System Design 21

v



vi TABLE OF CONTENTS

4.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Design Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Design Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 High Level Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4.1 Sequence Diagram . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4.2 Activity Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5 GUI Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.5.1 Usability Principles . . . . . . . . . . . . . . . . . . . . . . . . 27

5 System Implementation 28

5.1 Integrated Development Environment (IDE) . . . . . . . . . . . . . . 28

5.2 Tools and Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 Processing Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4.1 Dataset Collection . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4.2 Preprocessing Technique . . . . . . . . . . . . . . . . . . . . . 33

5.4.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4.4 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.5.1 3D Avatar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.5.2 Text To Speech . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5.3 Audio Sync with Expression . . . . . . . . . . . . . . . . . . . 39

5.5.4 Speech to text . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 System Testing and Evaluation 41

6.1 Reason For Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1.1 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Functional Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2.1 Unit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2.2 Integration Testing . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2.3 System Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3 Non Functional Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3.1 Usability testing . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3.2 Compatibility testing . . . . . . . . . . . . . . . . . . . . . . . 45

6.3.3 Performance testing . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4 API Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4.1 Postman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



Table of Contents vii

6.5 Design and Documentation . . . . . . . . . . . . . . . . . . . . . . . . 50

6.5.1 Lucid Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.5.2 Latex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.6 GUI Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.6.1 Test Case 1 : Open Application . . . . . . . . . . . . . . . . . 50

6.6.2 Test Case 2 : Asking Questions . . . . . . . . . . . . . . . . . 51

6.6.3 Test Case 3 : Receives Responses . . . . . . . . . . . . . . . . 51

6.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Conclusion 53

7.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

References 55



List of Figures

2.1 Molly Chatbot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Mondly Chat-bot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Siri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Use Case: Open Application . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Use Case: Ask Question . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Use Case: Receive Response . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Sequence Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Sequence Diagram - Ask Question . . . . . . . . . . . . . . . . . . . . 25

4.4 Sequence Diagram - Receive Response . . . . . . . . . . . . . . . . . 25

4.5 Activity Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.6 3D Avatar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4 Blender - 3D Avatar-1 . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.5 Blender - 3D Avatar-2 . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.6 Text To Speech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.7 Viseme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.8 Viseme Working . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.1 Error, Fault, Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 BrowserStack - Testing Platform . . . . . . . . . . . . . . . . . . . . . 46

6.3 Testing Application on Mac OS - Safari . . . . . . . . . . . . . . . . . 47

6.4 Testing Application on Windows 11- Microsoft Edge . . . . . . . . . . 47

6.5 Testing Application on iPhone 15- Safari . . . . . . . . . . . . . . . . 48

viii



List of Figures ix

6.6 Postman API Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



List of Tables

3.1 Use Case 01: User Opens the Application . . . . . . . . . . . . . . . . 15

3.2 Use Case 02: User Asks a Question in Voice . . . . . . . . . . . . . . 17

3.3 Use Case 03: User Asks a Question in Text . . . . . . . . . . . . . . . 18

3.4 Use Case 04: User Receives a Response . . . . . . . . . . . . . . . . . 20

6.1 Test Case: Open Application . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Test Case: Asking Question . . . . . . . . . . . . . . . . . . . . . . . 51

6.3 Test Case: Receives responses . . . . . . . . . . . . . . . . . . . . . . 51

x



Chapter 1

Introduction

1.1 Overview

Significant progress has been made in the field of information and technology. It is

helping humans to asset them with their daily operations by providing them with

IT solutions in their hands. Application is the most important tools; it is powerful

to access information and perform functionalities. Students also need such a sys-

tem that provides them with a solution to their problems. After completing high

school, students often face challenges in choosing a university for admission. They

require information about specific courses offered by various universities, as well as

details about admission procedures, requirements, and criteria. In line with this,

our objective is to develop a voice chatbot seamlessly integrated with a 3D avatar,

providing users with a human-like interaction. Tailored for a university context, this

chatbot ensures swift access to information related to admission processes. Students

and individuals seeking details about the university can effortlessly acquire relevant

information within minutes through a conversation with the chatbot. This user-

friendly approach eliminates the need to navigate the website, conduct searches,

and invest valuable time. By simulating human conversation, the integrated avatar

enhances the user experience, fostering a genuine sense of interaction. This innova-

tive solution not only streamlines the information retrieval process but also creates

an engaging and personalized interface, facilitating easier connections with the uni-

versity’s resources. The goal is to improve accessibility and efficiency, providing a

conversational and immersive user experience.

1



2 Introduction

1.2 Background Study

In the fast-paced world of higher education, providing a seamless and efficient expe-

rience for students seeking information is difficult. Ask BU offers a personalized and

interactive medium, making it an attractive solution for students to access infor-

mation. Previous research on higher education applications has demonstrated their

effectiveness in handling student queries, including course registration, scheduling,

and academic advice. However, these chatbots often rely on text-based interfaces,

which may not deliver the desired level of engagement or interactivity for users.

1.3 Problem Description

Students require easy access to accurate and timely information about university-

related matters. However, many higher education institutions face challenges in

providing efficient and user-friendly communication channels for addressing queries.

These challenges can be attributed to the following factors:

• Limited resources and staff availability: University staff members often

manage multiple responsibilities, leading to limited availability for addressing

individual student queries. As a result, students may experience delays in

obtaining crucial information or assistance.

• Inefficient communication channels: Traditional communication methods,

such as email and phone calls, can be time-consuming and may not provide

immediate responses. Additionally, these channels may not be suitable for ad-

dressing high volumes of inquiries, leading to potential bottlenecks and delays.

• Lack of engagement and interactivity: Many existing chatbot solutions

rely on text-based interfaces, which may not offer an engaging and interactive

experience for students. This can result in decreased user satisfaction and a

lower likelihood of students seeking information through these platforms.

• Inconsistency in information: In the absence of a centralized platform for

accessing university-related information, students may receive inconsistent or

outdated information from various sources, leading to confusion and potential

errors in decision-making.



1.4. Objective 3

1.4 Objective

The primary goal of Ask BU is to develop an engaging and interactive voice-enabled

chatbot with a 3D avatar that effectively addresses students’ university admission-

related queries, enhancing their overall experience. To achieve this, we aim to create

a centralized platform that provides accurate, up-to-date, and relevant information

for students, ensuring consistent information dissemination and facilitating well-

informed decision-making. By incorporating an interactive interface and a voice-

enabled chatbot, we strive to deliver a superior user experience that fosters a sense

of community and belonging within the university.

Furthermore, the project seeks to streamline university processes by implementing

a chatbot solution capable of handling high volumes of inquiries, reducing response

times, and alleviating the workload on university staff members. Additionally, we

aim to promote inclusivity by ensuring accessibility for users with different abilities

and preferences through voice-enabled functionality, fostering a more inclusive user

experience.

1.5 Project Scope

In addition to its core functionalities, this chatbot is designed to cater to the indi-

vidual needs and preferences of prospective students, ensuring a personalized and ef-

ficient interaction. The chatbot employs natural language processing to understand

and respond to a wide range of queries, allowing users to engage in conversations

as if they were interacting with a human admissions representative. It addresses a

broad spectrum of admission-related queries, providing detailed information on pro-

cedures, requirements, criteria, and specific subjects across departments of Bahria

University. With a user-friendly interface, it ensures a seamless experience, offering

instant and accurate responses.

Notably, its personalized approach extends to furnishing insights into department-

specific subjects, aiding applicants in making informed decisions aligned with their

academic goals. The chatbot’s efficiency and accessibility streamline the admis-

sion process, acting as a dynamic repository of knowledge continuously adapting

through machine learning. By offering real-time, up-to-date information, it exempli-

fies Bahria University’s commitment to a technologically enhanced and user-centric

admission experience, ultimately contributing to a positive and informed entry into

the university community.



4 Introduction

1.6 Feasibility Study

1. Risks Involved: Given that we are creating a dataset, there is a possibility

that we may overlook certain questions during the creation process.

2. Resource Requirement: We need an account in Blender, and Microsoft

Azure speech cognitive services API, and also the use of libraries and frame-

works to integrate and run applications.

3. Other Requirements:

• Hardware: Minimum hardware requirements needed are:

– 64-bit quad-core CPU with SSE4.2 support

– 8 GB RAM

– 2 GB VRAM Graphics Card that supports OpenGL 4.3

– 1920x1080 Full HD display

• Software:

– Windows: Windows 8 or 10, 64-bit

– MacOS: MacOS 10.13 or later

1.7 Solution Application Area

For now, this project primarily focuses on students pursuing admission to under-

graduate programs, particularly those who have recently completed their Higher

Secondary Education. The aim is to provide comprehensive support and informa-

tion as they navigate their options and consider pursuing a bachelor’s degree for

their academic journey.



Chapter 2

Literature Review

2.1 Analysis

The rise in popularity of voice chat bots represents a significant trend in modern

communication and customer service. Businesses and organizations have embraced

these computer programs, powered by artificial intelligence, as valuable tools to en-

gage with and assist their customers. These chat bots are designed to mimic human

conversation, offering more than just answers to queries. They can deliver infor-

mation, provide recommendations, and, in some cases, even carry out transactions,

thereby enhancing the overall customer experience.

This surge in technology adoption isn’t confined to the business sector alone. The

effective integration of technology in higher education is a subject of growing interest

within academic literature. Notably, the exploration of voice-enabled systems in the

educational landscape aims to streamline services and elevate the quality of user

experiences.

In the field of higher education, voice-enabled systems offer the potential to rev-

olutionize the way students and faculty interact with university resources. These

systems can provide swift and personalized assistance to students, aiding them with

admission inquiries. Such advancements in technology align with the broader goal

of making educational services more efficient and responsive to the needs of the

academic community.

As the use of voice chat bots continues to evolve, it is likely to play an increasingly

integral role in the realms of customer service and education, further enhancing user

experiences and driving improvements across various sectors.

5



6 Literature Review

2.2 Existing system

2.2.1 Health and Medical Field:

1. Sensely: The virtual medical assistant named Molly can assess the patient’s

symptoms using speech, text, images, and video [1]. Then, Molly’s computer

brain figures out what might be wrong and tells you what to do, like if you

should see a doctor or just take care of yourself. Molly also helps you find

nearby medical services and gives you lots of information to take care of your-

self.

Figure 2.1: Molly Chatbot



2.2. Existing system 7

2. Orbita: Orbita is a company that helps hospitals and doctors talk to their

patients using computers. They make virtual helpers that can do things like

schedule appointments, remind patients to take their medicine, and ask how

patients are feeling. These computer helpers are designed to be friendly and

helpful so patients can understand and trust them. Orbita also works with

voice and chat technology to make healthcare easier and better. They have

received money from investors to make their technology even better and have

partnered with big companies like Philips to make healthcare more modern [2].

2.2.2 Language Learning:

1. Duolingo: Duolingo is one of the popular language learning chatbot platform

in the U.S (and possibly around the world). This chatbot platform is fully

equipped with AI algorithms to understand the user context and respond to

users contextually and uniquely, meaning that different users get a different

response for a similar inquiry [3]. With their virtual language tutors leading the

language learning chatbot front, Duolingo has helped thousands of people learn

a new language comfortably and without embarrassment that might happen

by miscommunication with a native speaker. Originally the bots were only

able to communicate between English, Spanish, German, or French. Now they

are capable of discussing topics in over 23 different languages (and growing).

2. Mondaly: Mondly is a popular language learning tool for phones. It offers

help with 33 languages and uses chatbots to assist you. These chatbots can help

you practice ordering food or drinks in a foreign language. Mondly helps more

than 100 million people in 190 countries learn 41 different languages. It’s been

around since 2014 and is known for its success in the mobile learning space.

Recently, it joined Pearson, a big educational company, to continue making

language learning fun and easy [4]. Mondly is a language learning platform

that comes with a website and various apps. It’s designed to make learning a

new language fun and engaging. It uses technology to help you improve your

vocabulary, pronunciation, and grammar. Whether you’re a beginner or an

advanced learner, Mondly aims to boost your confidence in speaking a foreign

language.



8 Literature Review

Figure 2.2: Mondly Chat-bot

2.2.3 Personalized

1. Alexa (Amazon’s virtual assistant): Alexa is like a helpful assistant for

your home. It can make your life easier in several ways. First, it can control

your smart home gadgets like lights, thermostats, and locks using just your

voice. No need to get up and fiddle with buttons. Alexa can also answer

questions about the weather, sports scores, and other stuff from the internet.

It’s like having a mini-encyclopedia at your beck and call. If you’re in the

mood for entertainment, Alexa can play your favorite music, podcasts, and

even control your TV. You can also set reminders, alarms, and make to-do

lists with it. Need to do some shopping? Alexa can help you buy stuff online

or just add things to your shopping list. And the coolest part is, it can do even

more thanks to its special skills. These are like apps that you can talk to, and

they can do things like order food or call a ride for you [5].

2. Siri (Apple’s virtual assistant): Siri is a helpful tool on Apple devices. It

can answer questions, find stuff on the internet, and share general knowledge.

Also, it can do things on your device, like making calls and changing settings.

You can talk to Siri without touching your device, which is handy when you’re



2.2. Existing system 9

busy [6]. Plus, Siri can control smart devices in your home, like lights and

cameras. It even works with different apps, so you can use your voice to send

messages or make reservations. And it’s smart – it knows what’s going on with

your device, where you are, and your schedule, so it can help you better.

Figure 2.3: Siri

2.2.4 Education

1. University of Southern California (Ask Max): Ask Max is a helpful

computer program made by the University of Southern California. It’s like a

smart friend that can talk to you and help you find stuff at school. It knows

a lot about classes, what’s happening on campus, and where to get help. It

can even help you make appointments, find your way around, and order food.

You can talk to Ask Max anytime, day or night, using the USC website, your

phone, or even Amazon Alexa. Ask Max gets smarter all the time because it

uses computer smarts to learn and get better. Since it started in 2019, Ask

Max has answered more than a million questions and done more than 100,000

tasks. People at USC really like it because it’s easy to use and saves them

time [7].



Chapter 3

Requirements Specifications

3.1 Existing Systems

There are already many applications that provide facilities for the students and

multiple application that performing similar task as explained in section 2.2. Our

application is different from them in such a way that in our application we providing

a voice Chatbot which answers student queries. Not only a voice chatbot but it

integrated with 3D avatar which gives more realistic to interact with.

3.2 Proposed System

This proposed system introduces a versatile voice chatbot designed to enhance user

interaction. Users can seamlessly engage with the system by either typing queries

or speaking, with the implemented avatar providing prompt and conversational re-

sponses. The core strength lies in the system’s robust voice recognition, ensuring

accurate understanding of user inputs, regardless of accents or speech variations.

A 3D avatar is like a virtual version of the person talking. It’s designed to be friendly

and easy to recognize. The avatar moves and reacts based on what the person is

saying, with realistic facial expressions, like blinking. This makes the conversation

feel more real and immersive, like talking to a virtual friend.

This system is designed to meet the needs of different users. You can speak or type

to communicate. It also understands spoken words and turns them into text for

easier handling. Essentially, This system combines advanced voice technology and

interactive avatars to give users a natural, interesting, and easy-to-use way to talk.

10



3.3. Requirement Specifications 11

3.3 Requirement Specifications

3.3.1 Functional Requirement

• Avatar Representation The main goal of employing a 3D avatar or character

model is to offer an easily recognizable and user-friendly visual representation

of the speaker, enhancing their presence and interaction.

• Realistic Eye Blinking The system incorporate realistic eye blinking as part

of the facial animations, adding a natural and lifelike element to the avatar’s

expressions and enhancing the overall authenticity of the visual representation.

• Text Input The system allow users to input text with their questions or

queries, enabling them to interact with the avatar and obtain responses or

information in a convenient and user-friendly manner.

• Voice Recognition The system is made to understand what users say accu-

rately, regardless of their accents or variations in speech, making the conver-

sation smooth and natural. Having good voice recognition is really important

so the system knows what users are asking and can give the right answers.

• Speech to Text The input received from the user in the form of speech will

be converted into text so that it can be easily processed further.

• Text to Speech The system have the capability to convert the response gener-

ated by the model into synthesized speech. This feature enhances accessibility,

allowing users to hear responses and ensuring a comprehensive and inclusive

communication experience.

• Voice Synchronization with Expressions: Ask BU aims to make interac-

tions feel more like talking to a person. When it answers questions, it will show

expressions on its face, synchronizing with spoken words for a more natural

and engaging conversation. It’s like talking to a virtual friend.

• Avatar Interaction The avatar should respond to user input by speaking

the provided text and displaying corresponding facial animations that match

the expressions conveyed by the spoken words, creating a more immersive and

engaging communication experience.

3.3.2 Non-Functional Requirement

• Availability Ask BU ensures effortless accessibility on various devices, includ-

ing mobile phones, computers, and laptops. It operates seamlessly across all



12 Requirements Specifications

operating systems and web browsers, providing round-the-clock assistance and

maintaining a high level of availability.

• Performance The system swiftly processes and translates user input, deliver-

ing speedy and precise responses regardless of input length. Users can trust Ask

BU to maintain high performance, even in the face of complex input scenarios.

• Usability Ask BU is designed to be user-friendly, providing a seamless expe-

rience across various devices. It engages users in uncomplicated and natural

conversations, facilitating easy expression of needs and interaction with the

system.

• Reliability Ask BU operates with a high degree of reliability, minimizing

downtime and system failures. It consistently delivers dependable service, en-

suring users can rely on it for information and communication needs without

disruptions.

• Compatibility The app is compatible with a wide range of mobile devices,

including various Android and iOS versions 14.

3.4 Software Requirements

This application will use following software:

• Blender It’s a free and open-source 3D software, for crafting 3D avatars.

Packed with features like modeling, animation, and rendering, it caters to

a diverse range of creative projects, from animated films to virtual reality

experiences.

• VS Code It’s a free and open-source code editor developed by Microsoft.

Renowned for its lightweight design and extensibility.

• Anaconda It’s a distribution of open-source programming and data science

tools designed for simplifying package management and deployment.

• Microsoft Azure Microsoft Azure is a comprehensive cloud computing plat-

form offered by Microsoft. It provides a wide range of services, including

computing power, storage, databases, machine learning, analytics, networking,

and more.



3.5. Use Cases 13

3.5 Use Cases

The system’s interaction can be visually represented through a diagram showcasing

the dynamic connections between actors and system functionalities. When the user

opens the application, they act as an actor interacting with the frontend. Subse-

quently, the actor poses a question to the system, initiating a request. The system

processes this query and generates a response, which is then conveyed back to the

actor. This representation offers a concise overview of the system’s behavior, illus-

trating the flow of interaction from the user’s engagement with the frontend to the

exchange of questions and responses within the system.

Figure 3.1: Use Case



14 Requirements Specifications

Figure 3.2: Use Case: Open Application

Users start by opening the Ask BU application and interact with the system using

the app’s interface to ask questions or find information. The app processes their

queries, making it easy for users to get the information they need and improving

their overall experience.



3.5. Use Cases 15

Table 3.1: Use Case 01: User Opens the Application

Ask BU: Use Case 01

Use Case Name Open Application

Use Case ID BU-001

Actor User

Expected Output Application opens successfully.

Description Specifies the process of opening the
application.

Success Factor Avatar appears and chatbox to
communicate.

Pre-Condition Must have internet connections.

Post-Condition Application is ready to accept user
questions.

Basic Flow
1. User initiates the opening of

the application.
2. Application successfully opens.

Alternative Flow Website can’t open, need an internet
connection.

The table describes “Use Case 01”, where a user opens the application. It includes

details such as the actor (user), expected output (successful application launch).

Preconditions involve having an open website, and the post-condition ensures the

voice chatbot is ready. The basic flow outlines user initiation and successful appli-

cation opening. It provides a concise overview of the steps and conditions in this

user interaction.



16 Requirements Specifications

Figure 3.3: Use Case: Ask Question

The system adapts to users by accepting both voice and text inputs, creating a

personalized experience that meets expectations. This flexibility showcases the sys-

tem’s user-friendly design, making it easy for users to interact in the way that suits

them best.



3.5. Use Cases 17

Table 3.2: Use Case 02: User Asks a Question in Voice

Ask BU: Use Case 02

Use Case Name Question in Voice Format

Use Case ID BU-002

Actor User

Expected Output User’s voice question is submitted
and proceed.

Description The user can interact with the chat
bot by asking questions in voice
format.

Success Factor User successfully asks a question
using voice input.

Pre-Condition Application must be opened.

Post-Condition User’s voice question has been
successfully submitted for processing.

Basic Flow
1. Press and hold the microphone

button.
2. Ask a question and release the

button.

Alternative Flow Microphone is not working:

The table describes “Use Case 02” where the user submits a voice question. The

expected outcome is a successful submission. It emphasizes user interaction via voice

queries, defining success as effective voice input. Preconditions include an open

application, and the post-condition ensures successful voice question submission.

The basic flow involves pressing the microphone button, asking a question, and

releasing. An alternative flow addresses microphone malfunctions.



18 Requirements Specifications

Table 3.3: Use Case 03: User Asks a Question in Text

Ask BU: Use Case 03

Use Case Name Question in Text Format

Use Case ID BU-003

Actor User

Expected Output User question is submitted and
proceed.

Description The user interacts with the chatbot
by asking questions in text format.

Success Factor User successfully submit a question
by typing in text box..

Pre-Condition Application must be opened.

Post-Condition User’s text question has been
successfully submitted for processing.

Basic Flow
1. Type the question in the

textbox.
2. Press the submit button.

Alternative Flow
1. User fails to submit the

question.
2. System prompts the user to

retry the submission.

The table describes “Use Case 03” where The user, submits a text question, aiming

for successful processing. The interaction involves typing in the textbox and pressing

submit. Success is defined by the user effectively submitting a question. Precon-

ditions demand an open application. The post-condition ensures successful text

question processing. An alternative flow handles user submission failure, prompting

a retry.



3.5. Use Cases 19

Figure 3.4: Use Case: Receive Response

After processing, the system displays the user’s query response on the front-end,

featuring synthesized audio enriched with expressive elements. This combined text,

audio, and expressive presentation enhances user comprehension, ensuring a seamless

interaction and satisfaction with the provided information.



20 Requirements Specifications

Table 3.4: Use Case 04: User Receives a Response

Ask BU: Use Case 04

Use Case Name Receive Response

Use Case ID BU-004

Actor User

Expected Output User receives a spoken response to
their question.

Description The user interacts with the chatbot
to obtain spoken answers to their
queries.

Success Factor User successfully receives a spoken
response.

Pre-Condition A question must have been asked by
the user.

Post-Condition The avatar provides a spoken
response.

Basic Flow
1. User asks a question.
2. Avatar responds by speaking

the answer.

Alternative Flow
1. Avatar remains silent.
2. User didn’t hear the voice.

The table describes “Use Case 04” where the actor, seeks a spoken answer to their

question. Success is defined as the user receiving a spoken response. Preconditions

require a user-posed question, and the post-condition is the avatar providing a spo-

ken response. The basic flow involves the user asking a question and the avatar

responding by speaking the answer. An alternative flow addresses scenarios where

the avatar remains silent or the user didn’t hear the voice.



Chapter 4

System Design

4.1 System Architecture

An architectural diagram is a visual representation of a software system, offering

a holistic view of its structure. This illustrative tool serves as a valuable asset

by presenting the overall functioning of the software in the real world. It acts as a

detailed snapshot, aiding in the comprehension of the system’s intricate components

and their interrelationships, providing a concise and insightful understanding of the

software’s comprehensive design.

Figure 4.1: System Architecture

21



22 System Design

The system architecture is comprised of three essential components: the frontend,

backend, and chatbot. Whether the user provides input in text or voice, the system

seamlessly handles both scenarios. In the case of voice input, it undergoes an initial

conversion to text before being transmitted from the frontend to the backend.

Subsequently, the backend transfers the input to the chatbot for processing. Upon

receiving the chatbot’s response in text, the backend generates a corresponding voice

output, carefully synchronized with expressive elements. This synthesized response

completes a smooth cycle as it is transmitted back to the frontend.

4.2 Design Constraints

There are some design constraints in our project.

• Ensure accurate mapping of avatar elements in coding for optimal responsive-

ness.

• Design the chatbot to answer fast, especially for urgent questions.

• Build it to work well even when many people are using it at the same time.

• Ensure the chat bot understands correctly and gives accurate answers.

• It relies on 3rd party APIs like for speech synthesis or facial animations, changes

in services may not impact the design.

• The non-availability of questions in dataset.

4.3 Design Methodology

We are using waterfall methodology plan for the development of a software system

with several iterations includes creating a data-set, 3D Avatar, Speech-to-text, text-

to-speech module, Audio syn with expressions, Integrating all modules, training,

and testing, and finally delivering the software system . Each iteration is focused on

delivering a working product increment, ensuring that the software system meets all

requirements, and providing ongoing support to end-users. This approach allows for

a collaborative and iterative development process, resulting in a timely and efficient

delivery of the software system.



4.4. High Level Design 23

4.4 High Level Design

High level design provides us a detailed overview of how different functionalities

and features coordinate and interact with each other. This section highlights the

basic workflow along with alternative paths just in case a failure occurs. Following

diagrams are used to demonstrate how different functions will work.

4.4.1 Sequence Diagram

A sequence diagram is a graphical representation that illustrates the chronological

order of interactions among a group of objects in a system. It showcases the flow

of messages exchanged between these objects over time, detailing the sequence of

actions and responses. This diagram helps visualize the dynamic behavior of a sys-

tem, depicting the collaboration and communication between different components

or entities. By showing the temporal aspects of interactions, a sequence diagram

provides valuable insights into the runtime behavior of a system, aiding in design

and analysis of complex processes.



24 System Design

Figure 4.2: Sequence Diagram

In this operational sequence, users can pose questions in either text or voice format.

If it’s a voice query, it’s converted into text, which then travels to the back-end

and is directed to the model for query processing, resulting in a textual response.

This response undergoes transformation into audio, synchronized with an expression

file to enhance conversational quality. The amalgamated audio, expression file,

and original text collectively compose a comprehensive response transmitted to the

front-end for user display. This continuous loop ensures a dynamic and responsive

interaction, facilitating additional user questions by repeating the process. The

iterative nature maintains a seamless conversational flow, enabling the system to

adapt and effectively respond to successive user inquiries.



4.4. High Level Design 25

In the “Ask Question” use case, users interact with a voice chatbot, posing questions

through text or voice. This dual-input feature enhances convenience, emphasizing

user-friendly versatility and providing a dynamic, inclusive experience for seeking

information.

Figure 4.3: Sequence Diagram - Ask Question

In the “Receive Responses” use case, the system sequentially processes user queries:

sent to the back-end, forwarded to the model, and transformed into speech. The sys-

tem adds emotive nuances by synchronizing the spoken response with an expression

file. The cohesive package of audio, expression, and original text is then displayed to

the user on the front-end, ensuring a dynamic and expressive interaction experience.

Figure 4.4: Sequence Diagram - Receive Response



26 System Design

4.4.2 Activity Diagram

This activity diagram explains the behavior of the system from the starting point

to the ending point in the form of flowchart.

When the application starts, the user poses a query in Voice/text form. Based on

this query, a response is generated. Simultaneously, the text is transformed into

an audio file, and an expression file is created to match the audio. The resulting

audio, expression file, and the original text are presented to the user. This process

continues in a loop, allowing the user to ask additional questions. When the user

has no further queries, the system gracefully concludes.

Figure 4.5: Activity Diagram



4.5. GUI Design 27

4.5 GUI Design

This application has a user-friendly interface. When user open the web version, they

will meet an avatar that introduces itself. Then, they just need to ask your question,

and the avatar will respond with voice. This back-and-forth conversation continues

until their question is answered. We’ve intentionally kept the graphical interface

straightforward and consistent, avoiding any unnecessary complexity to ensure that

users find it easy and trouble-free to use.

Figure 4.6: 3D Avatar

4.5.1 Usability Principles

• User-Centered Design: Design the chatbot with the needs, preferences,

and goals of the users in mind. Prioritize user satisfaction and ease of use

throughout the design process.

• Simplicity: Keep the chatbot’s interface and interactions simple and straight-

forward. Avoid overwhelming users with complex menus or options. Provide

clear instructions and guidance.

• Clear and Concise Communication: The chatbot’s responses should be

concise and easy to understand. Provide relevant information without unnec-

essary details.

• Consistency: Maintain a consistent design and interaction style throughout

the chatbot. This consistency helps users learn how to interact with the chatbot

more quickly.



Chapter 5

System Implementation

5.1 Integrated Development Environment (IDE)

The Implementation requires the translation of the design into programs that work

successfully. In the implementation phase, the system is installed, all the processes

are completed, and the documentation is provided to the user. Once this phase

is completed, the application will be in static production, when the system enters

static production, It will verify to ensure that all the requirements that we have

planned are met and that we have obtained an acceptable result. In this section,

we’ll elucidate the integration process of our system, which involves the development

of the “Ask BU” Web application. Our chosen development platform is Microsoft

Visual Studio Code.

The important steps needed to set up our computer program and our project are as

follow:

• Install Visual Studio Code: The first step is to download and install the

Visual Studio Code.

• Configure Packages: After installing Visual Studio Code, the next task is to

set up the necessary Python packages. Specifically, we need to install packages

eg Flask, Crossflask, nodeJS, expressJs.

• Begin Project Development: Once the prerequisites are in place, we start

our project within Visual Studio Code.

28



5.2. Tools and Technologies 29

Visual Studio Code is a versatile, free, and open-source text editor offered by Mi-

crosoft. It is compatible with Windows, mac OS, and Linux, making it accessible

to a wide range of developers. This editor stands out due to its robust feature set,

including debugging support, task management, and version control integration. Its

user-friendly interface simplifies the development process, ensuring that developers

can focus on their tasks without being overwhelmed by complex layouts.

5.2 Tools and Technologies

The tools and technologies used in our system are:

Blender Blender, a versatile and open-source 3D creation suite, empowers us with

powerful tools for modeling, animation, and rendering. Harnessing its capabilities,

we use Blender to craft 3D avatars, adding a dynamic and visually captivating

dimension to our digital interactions.

Visual Studio The IDE that we are using for Our Application is VS code. The

reason behind using this IDE is that its UI is more user friendly then other software

developing platforms [8]. User just have to download the dependencies of the tech-

nology in VS code on which he/she want to work and after installing user can work

easily even if there is no internet connection. Its main feature of live server is very

effective user can easily check the live result of his/her application using that live

server in VS code.

Python Python is most popular and highly demand programming language for

creating software, Its easy syntax make it popular in a very little time, Python is

use for developing websites , software and for data analysis.

Python is employed for several key tasks in this project. First, it is used for data

preprocessing, which involves cleaning and preparing the data for analysis. Next,

Python is utilized for implementing machine learning models and training them,

allowing the system to learn and make predictions. Additionally, Python is employed

for creating a Flask web application to facilitate communication with a 3D avatar,

enabling seamless interaction between users and the virtual character.

Javascript JavaScript is a versatile, high-level programming language that enables

us to add interactivity and functionality to our web application. It allows us to

manipulate the Document Object Model (DOM), making it possible to dynamically

update content, handle user interactions, and create seamless user experiences.



30 System Implementation

• React: React plays a pivotal role by enabling the creation of a component-

based frontend structure. It manages the application’s state, facilitates data

binding, and controls component rendering based on user interactions. React’s

lifecycle methods, event handling, and component communication are lever-

aged to build a dynamic and responsive user interface. Additionally, React

optimizes rendering, promotes component reusability, and integrates seam-

lessly with third-party libraries, making it a powerful tool for simplifying the

development of project

• Node.js: Node.js serves as the backend runtime environment. It handles static

file serving, runs a web server for the React frontend, manages API endpoints

for receiving text, converts text to speech using external services, sends audio

responses to the frontend, and handles CORS for communication between the

frontend and backend. Node.js acts as the middleware bridging the frontend

and external services, enabling the avatar to speak based on user input.

• Express.js: Express.js is a web application framework for Node.js that sim-

plifies the process of building the backend server. It plays a central role in

handling various aspects of this project, including routing, request handling,

and middleware management. Specifically, Express.js is responsible for defin-

ing routes and endpoints, handling incoming HTTP requests from the frontend,

and providing responses. It also handles CORS (Cross-Origin Resource Shar-

ing) to allow communication between the frontend and backend. Express.js

acts as the backbone of your backend server, facilitating the flow of data be-

tween the frontend, external services, and the server itself.

• Three.js: Three.js is a JavaScript library used for 3D rendering and anima-

tions in the frontend. It plays a crucial role in creating and animating the 3D

avatar model and its facial expressions. Three.js handles 3D model rendering,

animation, and integrates seamlessly with React to provide an interactive and

visually appealing user experience

HTML/ CSS HTML (Hypertext Markup Language) and CSS (Cascading Style

Sheets) play essential roles in structuring and styling the web application’s user

interface. HTML defines the content and structure of the page, while CSS controls

its visual appearance and layout. These technologies work together to create an

appealing and user-friendly interface for the talking avatar application.



5.3. Processing Logic 31

Microsoft Azure Microsoft Azure, a cloud computing platform.It is used to seam-

lessly convert text into speech which is generated by the chatbot as a response to

user query.

Viseme A viseme is like a visual guide for how your face and mouth should look

when you’re saying a particular sound in a language. Using the lip sync feature,

we can figure out the right facial movements and timing from computer-generated

speech. This helps us make animated characters (like avatars) move their mouths

in sync with the words they’re speaking, making it look more natural and realistic.

5.3 Processing Logic

The processing logic has always three components that include input, processing,

and output.The information flow of our system is given below.

• Input: The user ask a question either in text or voice. If its a voice then it is

converted into text.

• Processing: The model process it and generate the response.

• Text to Speech: Microsoft Azure convert the response into speech.

• Sync: Viseme sync the Audio file with Avatar expressions.

• Output: That response is given back to user.

• Repeat: If a user has another question, he can ask again and again in a con-

versation manner and if not, exit.

5.4 Experimental Setup

Python, a versatile programming language renowned for its applications in website

and application development, task automation, and data analysis. Python’s sim-

plicity and versatility make it accessible to a broad audience. Our chatbot, built on

the Python foundation, is tailored for data analysis, utilizing robust AI algorithms.

This adaptability allows the chatbot to efficiently handle diverse tasks, establishing

Python as an optimal choice for developing intelligent and interactive systems. Its

ease of comprehension and extensive libraries contribute to a seamless integration

of AI capabilities, enhancing the overall performance of our experimental setup.



32 System Implementation

5.4.1 Dataset Collection

We collected our dataset by conducting interviews with first-semester students. We

asked them about the difficulties they faced before taking admission and what kind

of admission queries they had. Then, we gathered all the data from the university’s

website and conducted manual research to create a separate dataset. This dataset

consists of simple and commonly occurring questions along with their corresponding

answers.

The dataset is structured within a JSON file, employing intents to encapsulate user

goals, assigning tags for effective categorization, providing illustrative patterns as

examples of user input, defining responses for each intent, and utilizing contextset

to adeptly manage the conversation flow based on context or prior interactions.

Figure 5.1: Dataset



5.4. Experimental Setup 33

5.4.2 Preprocessing Technique

Here are a few preparation techniques that were essential for preparing the input

and target data, ensuring that they are in a suitable format for training the chatbot

model.

• Tokenization: It is a common technique used in natural language processing

tasks. It converts text into a sequence of tokens or words, making it easier for

the model to process and analyze textual data.

• Lemmatization and Cleaning: The words we take from the patterns are

made simpler and more consistent. We make them all lowercase, so they look

the same. Then, we turn each word into its basic form (like “running” becomes

“run”). Lastly, we get rid of certain punctuation marks, like question marks

and commas, to clean up the text.

• Creating a Bag of Words: For every pattern, we make something called a

“bag of words”. This is like a checklist of all the words we have in our ’words’

list. We create a special list for each pattern, and in that list, if a word from

our ‘words’ list is in the pattern, we put a ‘1’ to say it’s there, and if it’s not in

the pattern, we put a ‘0’ to show it’s not there. This helps us see which words

are in each pattern.

• Label Encoding: For every pattern, we make a special list that tells us which

intent class it belongs to. This list is like a secret code, where the length of the

code is the same as the number of different intent classes. We put a ‘1’ in the

position that matches the correct intent class, and all the other positions get

’0s’. This way, we can figure out which intent class each pattern belongs to.

• Sorting Words and Classes: The ‘words’ and ‘classes’ lists are sorted alpha-

betically for consistency and to ensure that they are in the same order when

saving and loading.

• Saving Data: The ‘words’ and ‘classes’ lists are saved using the ‘pickle.dump()’

function. This allows the data to be loaded and reused in future sessions with-

out the need to preprocess it again.



34 System Implementation

5.4.3 Model

The model is structured as a Sequential neural network that processes text data

for multi-class classification. It starts with an input layer expecting a numerical

representation of the text (bag-of-words) [9]. Two fully connected (dense) layers

follow, with ReLU activation functions to learn data patterns. Dropout layers are

introduced to prevent overfitting. The output layer assigns probabilities to different

categories using Softmax activation. Stochastic Gradient Descent (SGD) optimizes

the model’s internal parameters, and metrics like categorical crossentropy and ac-

curacy measure its performance. In summary, this model’s architecture enables it

to understand and categorize text data effectively.

Model Architecture:

• Input Layer: The model starts with an input layer that consists of 128 neu-

rons, each activated by the rectified linear unit (ReLU) activation function.

Following the input layer, there is a dropout layer set at a rate of 0.5. This

dropout layer helps prevent overfitting by randomly deactivating a fraction of

the neurons during the training process.

• Hidden Layer: Afterward, a hidden layer is added, consisting of 64 elements

activated by the ReLU function. Following this, there’s another dropout layer,

similar to the one mentioned earlier, added after the second hidden layer. This

extra dropout layer helps with additional regularization, ensuring the model

generalizes well during training.

• Output Layer: The output layer is set up with neurons equal to the number

of different classes identified in the training data. Using the softmax activation

function, this layer generates probability distributions for each class, making

it suitable for tasks that involve classifying into multiple categories.

• Optimizer and Regularization: The Stochastic Gradient Descent (SGD)

optimizer is utilized to fine-tune the model parameters. The hyperparameters

for SGD include a learning rate of 0.01, weight decay set at 1e-6, momentum

of 0.9, and Nesterov momentum. These settings enhance the model’s ability to

converge efficiently during training and improve its generalization capabilities.

• Loss Function: Categorical crossentropy serves as the chosen loss function

for model compilation. This choice aligns with the multi-class classification

nature of the chatbot’s intent prediction task.



5.4. Experimental Setup 35

Figure 5.2: Model Architecture



36 System Implementation

5.4.4 Model Training

For chatbot training, several important things have been done. First, it reads a

file with pre-defined intents and the sentences people might say. It cleans up the

words in these sentences to make them easy to understand. Then, it turns these

sentences into numbers so the computer can learn from them. It uses a special

type of computer program called a neural network to do this learning. The program

trains the neural network by showing it lots of examples and telling it which category

each example belongs to. After the training is finished, the code saves the trained

chatbot model, and it’s ready to understand and respond to what people say.

Figure 5.3: Model Training



5.5. Methodology 37

5.5 Methodology

Our application is developed using a Water-Fall Model, keeping in mind the en-

hancements that might be made in the future. The application was developed in

different phases.

5.5.1 3D Avatar

This application showcases a 3D avatar, crafted using Blender, a popular 3D model-

ing and animation software [10]. To infuse the avatar with various facial expressions,

we created a file to store these expressions, acting as a repository for the avatar’s

emotive capabilities.For seamless integration of the 3D avatar onto our website, we

Three.js, a JavaScript library known for crafting 3D graphics in web applications.

Three.js facilitated the effortless embedding and rendering of the 3D avatar, enhanc-

ing the visual experience on our website.To enhance user interaction and customiza-

tion, we implemented React, a JavaScript library for building user interfaces. React

effectively manages and controls background elements and input boxes, empowering

users to engage with the 3D avatar and manipulate its expressions according to their

preferences.

Figure 5.4: Blender - 3D Avatar-1



38 System Implementation

Figure 5.5: Blender - 3D Avatar-2

5.5.2 Text To Speech

When the model generates an output, we utilize Microsoft Azure to transform that

generated text into audible speech. This conversion process allows us to create an

audio file containing the spoken content, which can then be stored and employed for

various purposes, such as integrating it with visual elements or animation, resulting

in a more engaging and comprehensive multimedia experience.

Figure 5.6: Text To Speech



5.5. Methodology 39

5.5.3 Audio Sync with Expression

In syncing 3D avatar’s expressions with audio, we employ Viseme. Blend shapes

play a pivotal role in governing the avatar’s facial movements, represented by a code

comprising rows and frames [11]. Each row signifies a specific moment, containing

instructions for manipulating 55 distinct facial positions. This meticulous arrange-

ment ensures a nuanced and synchronized portrayal of the avatar’s expressions in

correspondence with the audio input.

Figure 5.7: Viseme



40 System Implementation

The viseme turns the input text or SSML (Speech Synthesis Markup Language) into

Viseme ID and Audio offset which are used to represent the key poses in observed

speech, such as the position of the lips, jaw and tongue when producing a particular

phoneme. With the help of a 2D or 3D rendering engine, viseme output can be use

to control the animation of your avatar.

The overall workflow of viseme is depicted in the flowchart below.

Figure 5.8: Viseme Working

5.5.4 Speech to text

When users input voice queries, our system employs React frameworks to seamlessly

transcribe spoken content into text. This integration enhances accessibility and

facilitates streamlined interactions, ensuring a user-friendly experience. Leveraging

the capabilities of React, the conversion process is swift and accurate, enabling our

system to effectively interpret and respond to vocalized inquiries.



Chapter 6

System Testing and Evaluation

System testing is a crucial evaluation process conducted on a system to ensure it

operates as intended and aligns with specified requirements. It plays a vital role in

the system or application development, aiming to identify errors and locate faults

or defects. In this comprehensive examination, both qualitative, which delves into

detailed user needs, and quantitative, which focuses on objectivity and group be-

havior, are employed. Recognizing that perfection is elusive, the assessment involves

understanding where the system excels and where it may have shortcomings. Var-

ious testing types are employed during this phase to uncover and address errors,

faults, and potential failures, with errors being mistakes by programmers leading to

faults, faults being defects or bugs, and failures occurring when system requirements

are not met.

The following figure shows the relation between error, fault, and failure in system

testing.

Figure 6.1: Error, Fault, Failure

41



42 System Testing and Evaluation

6.1 Reason For Testing

6.1.1 Verification

Verification involves testing items to ensure that the software aligns with its spec-

ifications. This process is a form of static testing, where we analyze the software

without executing it. Verification helps confirm that the code is built according to

the planned design and meets the outlined requirements.

6.1.2 Validation

Validation is the assessment conducted to confirm that the software fulfills the speci-

fied requirements. Validation ensures that the software not only adheres to technical

specifications but also satisfies the needs and preferences of the customer.

6.2 Functional Testing

Functional testing is basically in which through our team of testers a quality assur-

ance is determined whether our application is acting the way it is supposed to as our

defined or mentioned requirements. In our system, the functional testing would be

testing the functionalities of the web application such as the user interaction, and

as well as the tasks or functionalities are being performed correctly and logically.

Our main purpose is to make sure that the quality is being met according to our

expectations of the system and to also reduce errors so that in return there is a

complete customer satisfaction.The functional testing, we performed as follows:

6.2.1 Unit Testing

nit testing is like checking small building blocks of a computer program to make

sure they work correctly. We carefully looked at every part of the application to

find and fix any mistakes or issues. We tested each function multiple times to make

sure everything runs smoothly. The app is working perfectly, and our unit testing

was a success! This detailed testing not only ensures each piece works well but also

makes the whole application more reliable and efficient.



6.2. Functional Testing 43

6.2.2 Integration Testing

• Avatar Representation Verify the 3D avatar’s implementation to guarantee

a recognizable and user-friendly visual representation, enhancing user presence

and interaction.

• Realistic Eye Blinking Validate the incorporation of realistic eye blinking in

facial animations to enhance the avatar’s authenticity and natural expressions

during interaction.

• Voice Recognition Perform testing to ensure accurate understanding of user

speech for seamless and precise conversation.

• Speech to Text Perform testing to confirm the accurate conversion of user

speech input into text for further processing within the system.

• Text Input Verify the system’s capability to accept text input for user queries,

enabling interaction with the avatar.

• Text to Speech Test the system’s ability to convert model-generated re-

sponses into synthesized speech, ensuring comprehensive and inclusive com-

munication by making information accessible and audible to users.

• Voice Synchronization with Expressions Ensure that the avatar’s facial

expressions synchronize seamlessly with the spoken responses, mimicking real-

person interactions and contributing to a more relatable and friendly user

experience.

• Avatar Interaction Test the avatar’s responsiveness to user input, evaluating

its ability to speak provided text and display facial animations that match

spoken expressions for an immersive communication experience.

6.2.3 System Testing

System testing plays a critical role in evaluating how the pictures, buttons, and

overall appearance function in a computer program. Essentially, it’s about making

sure everything on the screen, like moving characters in 3D, responds correctly

when users interact with it. This phase delves into ensuring smooth interactions,

checking the responsiveness of input methods, and validating the lifelike portrayal

of 3D avatars. It’s not just about technical stuff; it’s also ensuring the program

looks good and is user-friendly. This thorough testing guarantees that users have

a seamless and enjoyable experience, encountering minimal glitches or issues while

using the system.



44 System Testing and Evaluation

Chat box

• Text Input Field Ensure the text input field operates seamlessly, accept-

ing user input accurately and providing a conducive environment for typing

queries.

• Mic Button Verify the functionality of the microphone button, confirming

that it responds appropriately when held for speech input. During speech,

ensure that words are accurately transcribed and displayed in the text box.

• Send Button Evaluate the send button’s effectiveness in transmitting user

queries to the backend. Confirm that clicking the send button initiates the

transfer process promptly.

• Text Erasure Validate that the text entered by the user is effectively erased

upon clicking the send button, providing a clean slate for subsequent interac-

tions.

Avatar

• Eye Blinking Examine the avatar’s eye blinking mechanism, ensuring that it

occurs at regular intervals (e.g., every 1 second) to enhance realism and user

engagement.

• Subtle Movement Assess the avatar’s movements for realism, checking for

slow and subtle motions that mimic natural behavior. Confirm that these

movements contribute to an authentic user experience.

• Integration of Avatar Parts Verify the seamless integration of all avatar

components, including hair and facial features. Confirm that each part con-

tributes cohesively to the overall realism of the avatar.

6.3 Non Functional Testing

6.3.1 Usability testing

Enhancing usability involves evaluating the ease and practicality of using a system

or app. The goal is to ensure user satisfaction and happiness. In our efforts to create

a user-friendly app, we incorporated several features to enhance the overall experi-

ence. For instance, we introduced avatars to cultivate a friendly and conversational

interaction reminiscent of discussing university admissions with a friend.



6.3. Non Functional Testing 45

To cater to diverse user preferences, we implemented both text and voice input

options, allowing users to choose the method that suits them best. This flexibility

is aimed at accommodating a wide range of user needs and preferences.

We knew it was essential to get opinions from people outside our team. So, we asked

our classmates to try out our app and tell us what they thought. Getting feedback

from different people helps us find problems, understand how users feel, and make

our app better for everyone. This teamwork not only helps us evaluate the app more

thoroughly but also keeps making it easier for users.

6.3.2 Compatibility testing

Compatibility testing is akin to ensuring that our system seamlessly integrates with

various computing environments. Our objective is to ascertain which computers can

effectively run our application. Specifically, our web application exhibits compati-

bility across all major web browsers, while our client-side app functions seamlessly

on both Mac OS and Windows computers.

Key components of compatibility testing encompass:

• Software Testing: Our application interfaces with Microsoft Azure for text-

to-speech conversion and synchronization of audio with facial expressions. This

ensures smooth collaboration with third-party software crucial for enhancing

user experience.

• Device Testing: Rigorous testing guarantees that our application consis-

tently functions with various devices, including Bluetooth peripherals and

hands-free configurations, ensuring a diverse user experience.

• Hardware Tests: Comprehensive hardware testing ensures our application’s

compatibility with a wide array of hardware configurations, affirming its adapt-

ability to different computing setups.

• Network Testing: Thorough network testing confirms the application’s abil-

ity to operate seamlessly across networks with varying bandwidths, addressing

potential challenges related to connectivity and performance.

• Version Testing: Stringent version testing guarantees that our application

performs flawlessly across all prominent browsers, ensuring a consistent and

reliable user experience.

• Browser Testing: Confirming compatibility with earlier browser versions en-

sures that our application remains accessible to users across various platforms,



46 System Testing and Evaluation

regardless of their browser preferences.

• Mobile Testing: Thorough Mobile testing ensures that our application seam-

lessly integrates with all major mobile platforms, including iOS, Android, and

other mobile operating systems.

• OS Tests: Ensuring our application is compatible with diverse operating sys-

tems, such as Linux, Mac, Windows, and others, guarantees a smooth experi-

ence for users using different mobile devices.

BrowserStack

It is a cloud web and mobile testing platform that provides developers with the

ability to test their websites and mobile applications across on-demand browsers,

operating systems and real mobile devices.

Figure 6.2: BrowserStack - Testing Platform

The BrowserStack interface, depicted in this image, presents a range of options in-

cluding Android, iOS, Windows, and MacOS, each featuring various devices. To

test our application’s compatibility, we simply choose the desired operating system

and device. Afterward, we insert the application’s URL to determine whether it

functions seamlessly on the selected device. BrowserStack streamlines this process,

allowing efficient testing across different environments, ensuring that our applica-

tion is well-suited for diverse platforms without the need for elaborate setups or

configurations.



6.3. Non Functional Testing 47

Figure 6.3: Testing Application on Mac OS - Safari

Here, I’ve selected MacOS, specifically Sonoma, and the latest version of Safari. The

results indicate that the application runs successfully, affirming its compatibility

with this device.

Figure 6.4: Testing Application on Windows 11- Microsoft Edge

Here, I’ve selected Windows 11, Microsoft Edge latest version. The result indicate

that the application runs successfully, affirming its compatibility with this device.



48 System Testing and Evaluation

Figure 6.5: Testing Application on iPhone 15- Safari

Here, I’ve selected iPhone 15, Safari. The result indicate that the application runs

successfully, affirming its compatibility with this device.

By conducting extensive compatibility testing across software, devices, hardware,

networks, versions, browsers, mobile platforms, and operating systems, we ensure

that our application delivers a consistent and reliable experience to users across

a wide spectrum of computing environments. This meticulous testing approach is

vital for enhancing user satisfaction and broadening the reach of our application.

6.3.3 Performance testing

Performance testing is crucial for evaluating how effectively our application functions

under different levels of load, providing insights into the system’s efficiency. Our

primary focus is on the speed and accuracy of query responses, with the current

system demonstrating an average response time of 50 seconds and an accuracy rate

of approximately 88

Key aspects addressed in performance testing include:

• Testing the System Under Varying Load Levels: Assessing how the

system performs when subjected to different levels of user activity, ensuring

stability and responsiveness even during peak usage.

• Measuring Response Times Within Acceptable Limits: Monitoring

and verifying that the response times align with predefined acceptable limits,

guaranteeing a seamless user experience.



6.4. API Testing 49

• Testing Bot’s Ability to Match User Questions and Answers: Val-

idating the bot’s proficiency in accurately associating user queries with the

appropriate responses from the dataset, ensuring reliable and contextually rel-

evant answers.

• Handling Variations in Questions: Checking the bot’s adaptability to

variations in questions, such as different phrasings or structures, to verify its

robustness in understanding and responding appropriately.

6.4 API Testing

6.4.1 Postman

Postman, a popular API testing tool, was critical in evaluating the functionality of

the Chatbot API. Various HTTP queries were sent to the back-end using Postman,

and the replies were reviewed to ensure that the API worked as expected. This tool

speeds up the testing process by allowing for rapid iteration and debugging.

Figure 6.6: Postman API Testing



50 System Testing and Evaluation

6.5 Design and Documentation

6.5.1 Lucid Charts

System architecture diagrams, Use Cases, Sequence Diagrams, Activity Diagrams

were created using Lucid Charts. This representations offered a clear grasp of our

Application structure, data flow, and component interaction. These graphics were

quite useful for both development and documentation.

6.5.2 Latex

LaTeX is an effective and adaptable tool for writing professional documents, espe-

cially in scientific and academic settings. For writers working on technical docu-

ments and research papers, its cross-referencing capabilities, automatic formatting,

and ability to handle complex mathematical notation make it a preferred choice.

The advantages in terms of document quality and consistency outweigh the learning

curve.

6.6 GUI Testing

6.6.1 Test Case 1 : Open Application

In test case 1, we will be testing our web application’s accessing process. We tested

this process and our web application successfully passed this test without any bugs

and errors.

Table 6.1: Test Case: Open Application

Test ID 1

Test Case Description Verify if the user can open
application

Initial State Internet should be connected

Input User will open application

Expected Output The application should start and be
ready to accept user questions.

Output The voice chatbot starts successfully.

Status Pass



6.6. GUI Testing 51

6.6.2 Test Case 2 : Asking Questions

In test case 2, we will be testing our application’s Asking Questions process. We

tested this process and we were able to ask questions both text and voice and web

app passed this test successfully without any errors.

Table 6.2: Test Case: Asking Question

Test ID 2

Test Case Description Verify if the user can ask a question
to the chat bot.

Initial State Application Should be Running

Input User asks a question.

Expected Output The question should be submitted
and proceed.

Output The question is submitted.

Status Pass

6.6.3 Test Case 3 : Receives Responses

In test case 3, we will be testing our client-side application receiving responses. We

tested this process and we were able to receive response relevant to the question.

Table 6.3: Test Case: Receives responses

Test ID 3

Test Case Description Verify if the user receives accurate
responses from the chat bot.

Initial State The user has asked a question.

Input User’s question has been submitted

Expected Output The chat bot should respond with a
relevant and accurate answer.

Output The chat bot provides a response
that is accurate and relevant to the
user’s question.

Status Pass



52 System Testing and Evaluation

6.7 Limitations

• Limited Scope: The voice chat-bot is specifically designed for admission-related

queries, restricting its ability to address inquiries outside this domain.

• Language Understanding Constraints: Understanding nuances, accents, and

variations in spoken language can be challenging for the chat-bot, potentially

leading to misinterpretation of user queries.

• Inability to Display Visual Information: Unlike text-based chat-bots, a voice-

only chat-bot lacks the ability to provide visual aids or links, limiting its ca-

pacity to share detailed information or visual content.

• Handling Complex Queries: Tackling intricate or multifaceted questions re-

lated to admissions, such as specific program details or complex application

scenarios, might exceed the chat-bot’s capabilities.

• Lack of Personalization: The chat-bot may struggle to provide personalized

guidance tailored to the unique circumstances or needs of individual users,

potentially leading to a less satisfactory user experience.



Chapter 7

Conclusion

In summary, the development of Ask BU is a big step forward in changing how

students get help with their studies. This innovative voice chat-bot, with its 3D

avatar, helps students find answers to questions about getting into school. The

project focuses on making it easy for students to use and adds a personal touch

with a virtual friend.

Ask BU was created because students in Pakistan often find it frustrating to look

for information on websites. Even though many websites are easy to use, students

still have a hard time finding answers. Ask BU is designed to simplify students’

access to information through a conversational platform, similar to talking with a

friend.

The 3D avatar in Ask BU is a key feature that makes it stand out. Unlike regular

chat-bots, the 3D avatar makes the interaction more human-like. This helps students

feel more connected and supported during the stressful process of applying to school.

The avatar talks in a way that feels familiar, understanding the local language and

culture, creating a connection that goes beyond typical virtual assistants.

In short, Ask BU is not just a tool, it’s changing how students get help with their

education. By using advanced technology in a way that feels friendly and personal,

Ask BU is a guide for future projects aiming to make education support more acces-

sible and enjoyable. As Ask BU keeps growing, it sets a new standard for combining

technology with a human touch to support students around the world.

53



54 Conclusion

7.1 Future Works

• Multilingual Support:Breaking Language Barriers for Global Reach

In the pursuit of making Ask BU a globally relevant solution, a key avenue for

enhancement involves extending the chat bot’s capabilities to provide informa-

tion in multiple languages. This strategic move aims to cater to a more di-

verse audience, ensuring that students worldwide, regardless of their linguistic

backgrounds, can seamlessly access admission-related information. The imple-

mentation of multilingual support not only broadens Ask BU’s reach but also

fosters inclusively, aligning with the increasingly global nature of education.

• Comprehensive Dataset Expansion:

Recognizing that students’ needs extend far beyond the admission process, the

next significant proposal is to expand Ask BU’s dataset. By incorporating

a broader range of student queries, including career guidance, course selec-

tion, and scholarship information, Ask BU transforms into a comprehensive

educational companion. This expansion aligns with the vision of Ask BU as

a reliable resource for students throughout their academic journey, providing

holistic support and guidance beyond the initial admission-related inquiries.

• Real-Time Information Integration:

To further bolster Ask BU’s real-time capabilities, a crucial avenue for im-

provement involves the integration of website scraping techniques. This entails

extracting information directly from relevant websites to provide instantaneous

updates on application status and other student-specific data. By adopting

this approach, Ask BU evolves from a repository of static information to a

dynamic and proactive assistant, ensuring that students are continuously in-

formed about the latest developments in their application processes. Website

scraping becomes particularly valuable in the fast-paced realm of admissions,

offering up-to-the-minute insights crucial for informed decision-making.



References

[1] Dr. Bertalan Mesko. The top 10 healthcare chatbots. https://

medicalfuturist.com/top-10-health-chatbots/, Aug. 2022.

[2] Orbita. About orbita - automation with empathy. https://orbita.ai/

about-orbita/, Oct. 2022.

[3] Michael-Ross. 7 of the best language-learning chat-

bot apps. https://blog.vsoftconsulting.com/blog/

7-of-the-best-language-learning-chatbot-apps, Aug. 2022.

[4] Wikipedia Contributors. Mondly. https://en.wikipedia.org/wiki/Mondly,

Jan. 2023.

[5] Amazon alexa – learn what alexa can do. https://www.amazon.com/b?node=

21576558011.

[6] E. Mixon and C. Steele. Siri. https://www.techtarget.com/

searchmobilecomputing/definition/Siri, Feb. 2023.

[7] Campus Voice. Office of the CIO,USC. https://cio.usc.edu/initiatives/

campus-voice/.

[8] Visual Studio Code. Visual studio code. ĺınea]. Available: https://code. visual-

studio. com, 2019.

[9] Marco Fraccaro, Søren Kaae Sø nderby, Ulrich Paquet, and Ole Winther.

Sequential neural models with stochastic layers. In D. Lee, M. Sugiyama,

U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information

Processing Systems, volume 29. Curran Associates, Inc., 2016.

[10] Lance Flavell. Beginning blender: open source 3d modeling, animation, and

game design. Apress, 2011.

55

https://medicalfuturist.com/top-10-health-chatbots/
https://medicalfuturist.com/top-10-health-chatbots/
https://orbita.ai/about-orbita/
https://orbita.ai/about-orbita/
https://blog.vsoftconsulting.com/blog/7-of-the-best-language-learning-chatbot-apps
https://blog.vsoftconsulting.com/blog/7-of-the-best-language-learning-chatbot-apps
https://en.wikipedia.org/wiki/Mondly
https://www.amazon.com/b?node=21576558011
https://www.amazon.com/b?node=21576558011
https://www.techtarget.com/searchmobilecomputing/definition/Siri
https://www.techtarget.com/searchmobilecomputing/definition/Siri
https://cio.usc.edu/initiatives/campus-voice/
https://cio.usc.edu/initiatives/campus-voice/


56 REFERENCES

[11] Yulin-Li. Get facial position with viseme - azure ai ser-

vices. https://learn.microsoft.com/en-us/azure/ai-services/

speech-service/how-to-speech-synthesis-viseme?tabs=visemeid&

pivots=programming-language-javascript, Jul. 2023.

https://learn.microsoft.com/en-us/azure/ai-services/speech-service/how-to-speech-synthesis-viseme?tabs=visemeid&pivots=programming-language-javascript
https://learn.microsoft.com/en-us/azure/ai-services/speech-service/how-to-speech-synthesis-viseme?tabs=visemeid&pivots=programming-language-javascript
https://learn.microsoft.com/en-us/azure/ai-services/speech-service/how-to-speech-synthesis-viseme?tabs=visemeid&pivots=programming-language-javascript

	Abstract
	Introduction
	Overview
	Background Study
	Problem Description
	Objective
	Project Scope
	Feasibility Study
	Solution Application Area

	Literature Review
	Analysis
	Existing system
	Health and Medical Field:
	Language Learning:
	Personalized
	Education


	Requirements Specifications
	Existing Systems
	Proposed System
	Requirement Specifications
	Functional Requirement
	Non-Functional Requirement

	Software Requirements
	Use Cases

	System Design
	System Architecture
	Design Constraints
	Design Methodology
	High Level Design
	Sequence Diagram
	Activity Diagram

	GUI Design
	Usability Principles


	System Implementation
	Integrated Development Environment (IDE)
	Tools and Technologies
	Processing Logic
	Experimental Setup
	Dataset Collection
	Preprocessing Technique
	Model
	Model Training

	Methodology
	3D Avatar
	Text To Speech
	Audio Sync with Expression
	Speech to text


	System Testing and Evaluation
	Reason For Testing
	Verification
	Validation

	Functional Testing
	Unit Testing
	Integration Testing
	System Testing

	Non Functional Testing
	Usability testing
	Compatibility testing
	Performance testing

	API Testing
	Postman

	Design and Documentation
	Lucid Charts
	Latex

	GUI Testing
	Test Case 1 : Open Application
	Test Case 2 : Asking Questions
	Test Case 3 : Receives Responses

	Limitations

	Conclusion
	Future Works

	References

