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ABSTRACT 

Android is a widely used operating system but with its success, it also faces issues with 

malware threats. With advanced technology, malware is also becoming complex making it 

challenging to detect. Android malware detection techniques are used to detect malware on 

Android operating systems. There are mainly two types of detection techniques which are 

static and dynamic analysis. This thesis is focused on the dynamic analysis of Android 

malware. 

The use of machine learning or deep learning for malware detection requires datasets. These 

datasets Malware Researchers developed many machine learning models and deep learning 

models to detect Android malware considering static as well as dynamic features-based 

datasets. We consider features extracted from system executions and we perform multi-class 

classification of malware categories in this study, by considering all malware classes 

(Adware, Backdoor, File Infector, PUA, Ransomware, Riskware, Scareware, Trojan, Trojan-

Banker, Trojan-Dropper, Trojan-SMS, Trojan-Spy and zero-day) by using deep learning 

algorithm as it outperforms machine learning in high dimensional data. 

We use the CIC-AndMal-2020 dataset, the newly developed dataset for multi-class 

classification. It consists of 13 prominent malware classes and 141 features. We also perform 

statistical analysis on the dataset (p-value analysis and correlation) to identify the relationship 

between features and statistical analysis of the model (bias and variance) to arrive at the 

optimal model. We evaluate the proposed algorithm using performance metrics i.e. accuracy, 

precision, recall, ROC-AUC analysis, and F1-Score and, finally, compare our results with 

existing studies. Our results outperform previous dynamic analysis results. 
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CHAPTER 1 

INTRODUCTION 

 In this modern age, society is aware of computer security threats. Rapid technological 

advancements have also made enhancements in the mobile phone industry. With the 

increase in mobile phones, the market share value of the mobile industry has increased 

by 8% in 2023 as compared to 2022 [1]. According to Global Stats, Android has become 

the widely used OS for being an open-source architecture [2]. 

However, it is pertinent to highlight that a survey conducted and presented in [3]. that 

there is a malware present on every 1 out of 20 devices running Android Operating 

System (O/S). Malware developers are constantly developing complex malware that is 

undetectable. These developers used multi-platform development tools that make it 

difficult to determine the level of maliciousness therefore this is a significant challenge 

to detect potential threats. The increase in Android malware threats in the 2022 year is 

presented in Fig 1.1. 

 

 

Figure 1. 1 Adopted from [3] 
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To overcome this challenge, Android malware detection techniques are developed to 

protect Android devices from malware. Android malware analysis consists of three 

approaches, static analysis, dynamic analysis, and hybrid analysis. The static analysis [4], 

consists of signature, permission, and component-based investigation. It analyzes 

applications to detect malicious behavior without executing it in real real-time 

environment. The dynamic analysis [5], consists of behavioral analysis of the application 

by executing the application in an android emulator or real-time environment. 

Researchers have developed several machine learning techniques to detect malicious 

applications, these techniques are used to identify hidden patterns of previously 

encountered malicious apps. Machine learning (ML) uses a set of features with a 

corresponding class to train the model which classifies between benign and malicious 

apps. This classification is utilized to identify malware and classify it into corresponding 

malware families. , deep learning (DL) is a subset of machine learning and appeared as a 

mechanism that shows remarkable results in traditional artificial intelligence (AI) tasks 

related to computer vision, natural language processing (NLP), and speech processing 

fields. It is also emerging as an active area of research [6]. 

1.1  Motivation 

The motivation of this thesis is to improve the Android malware analysis mechanism 

using dynamic-based features. The primary focus of the study is to perform a multi-class 

classification of Android malware by developing a deep learning-based algorithm to 

improve the Android malware analysis mechanism. We use newly developed CIC-

AndMal-2020 dataset and we select the significant set of features by performing a 

statistical analysis on features. To enhance the Android malware detection mechanism 

machine learning (ML) and deep learning (DL) techniques are implemented but most of 

them perform binary classification or consider fewer number of malware classes. The 

dataset mattered a lot in the detection mechanism of Android malware. The CIC-AndMal-

2020 dataset is a newly generated dataset that consists of 14 malware categories and 141 

features. Most of the research consider fewer number of malware classes to detect 

Android malware. 

1.2  Research Gap 
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Android is the in-demand operating system and with an increase in its users, the security 

of Android smartphones is important to keep out malware attacks from acquiring sensitive 

information. To alleviate this threat several initiatives have been undertaken to analyze 

malware. There are three types of android malware analysis techniques which are static 

analysis, dynamic analysis and hybrid analysis [7]. Static analysis extracts detailed 

information from APK without executing it and utilizes requested permission to identify 

threats in applications but detecting malware exclusively with permission may not 

guarantee a high detection rate [8]. The dynamic analysis performs behavioral modeling 

of the APK on run time by executing the code on an Android emulator or device. The 

advantage of dynamic analysis over static analysis is in code obfuscation and real-time 

monitoring, [9][10][11]. The hybrid analysis combines both static features and dynamic 

features to detect android malware but majority of the studies has consider few number 

of malware classes (Adware, Ransomware, Scareware, and Trojan-SMS malware 

categories) to perform multiclass classifications [7] [12][13][14]. Malware is anticipated 

to get more complex in the future and malware developers employ novel encryption 

methods that can make the detection of malware difficult [15]. Malware developers use 

various strategies to avoid static analysis (encryption, code obfuscation, etc.) but dynamic 

analysis is tolerant to such strategies and provides more insight into malware which can 

improve detection capabilities [16][17].  Researchers have developed several machine 

learning (ML) and deep learning (DL) based algorithms focusing dynamic analysis to 

identify malware categories but earlier studies were focused on binary classification 

[18][19][20][21][22][23][24][25]. With the rapid advancement in technology, malware 

also become more sophisticated to detect, due to this data scientists developed datasets 

that contain samples of malware categories and malware families [26][27]. Researchers 

analyze newly generated datasets using machine learning (ML) and deep learning (DL) 

based techniques but the majority among them considered fewer number of features 

(mostly API and memory features) as compared to features present in newly developed 

datasets or less number of malware classes to detect malicious activities [28][29][30] 

[31][32].  Deep learning algorithms are more effective than machine learning algorithms 

in the scenario that data is large and high dimensional [33] [34]. There is a need for deep 

learning (DL) based models that can efficiently classify a variety of dynamic features and 

malware categories with a multi-class classification.  
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1.3  Problem Statement 

Malware analysis datasets are large in size due to several features and available examples. 

Deep learning-based models generally outperform machine learning techniques when 

datasets of larger size are available. The majority of existing studies consider a limited 

number of features and malware categories using static analysis-based datasets. Android 

malware analysis using datasets based on feature extraction from dynamic analysis is 

more robust as compared to static analysis resulting in datasets. We need to analyze how 

we can consider a broader range of malware categories, use dynamic analysis resulting 

datasets, and consider deep-learning models with optimal configuration to improve 

results.  

1.4  Research Questions 

RQ 1: How can we consider more dynamic features for multiclass classification? 

RQ 2: How can we use deep learning models for multiclass classification to improve the 

accuracy and performance of Android malware detection considering dynamic features 

analysis?  

1.5   Research Objectives 

1. To consider the dynamic features to detect Android malware and perform multiclass 

classification.   

2. To develop a deep learning model that can improve accuracy (performance) by 

considering 13 malware categories for multi-classification.  

1.6  Contribution of the study 

This section of the thesis describes the contributions resulting from the proposed study 

 The CIC-AndMal-2020 is a newly developed dataset to perform multi-class 

classification.  

 We perform statistical analysis on the dataset by performing p-value analysis and 

identifying the correlation of features of the dataset. 
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 This study performs multi-class classification using a deep learning algorithm by 

considering all features and malware categories of the dataset. 

 This study also performs statistical analysis of the model by identifying the bias 

and variance by experimenting with different hyper parameters, hidden layers, 

and activation functions.  

 We evaluate the performance of the proposed algorithms by identifying accuracy, 

precision, AUC-ROC analysis, recall, and F1-score. 

 We compare the results of the best-performing model with existing studies. 

1.7  Thesis Outline  

The arrangement of this thesis is described below. 

 Chapter 2 addresses the literature review related to Android malware concerning 

dynamic analysis based on deep learning and machine learning algorithms.  

 Chapter 3 addresses the research methodology, implementation, and research 

processes regarding the proposed study. 

 Chapter 4 addresses the details of implementation and results. We also performed 

a comparative analysis with existing studies. 

 Chapter 5 addresses the conclusion and future work. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter presented the literature review on Android malware detection using dynamic 

analysis techniques. This research primarily concentrates on the multiclass classification 

of dynamic feature analysis based on deep learning. The algorithms, validation methods, 

and performance evaluation metrics used in dynamic analysis based on ML and DL were 

discussed. Lastly, we presented existing datasets. This chapter concludes with an open 

research gap. 

2.1  Android Malware Detection Techniques  

Android malware detection analysis consists of three approaches i.e., static, dynamic, and 

hybrid analysis. The static analysis analyzes code to detect malicious behavior without 

executing the APKs in an Android virtual device or real-time device. It extracts detailed 

information (signatures) from APK (Android Application kit). The execution of code in 

an Android virtual device or real-time device is considered by Dynamic Analysis. It 

analyzes the behavior of the APK file on run time. The advantages of dynamic analysis 

include dynamic code loading detection and record of run time application behavior [5].  

2.2  Android Malware Detection w.r.t Dynamic Analysis 

This section discusses the existing studies concerning Android malware detection using 

dynamic analysis. 

2.2.1 Android Malware Detection Based on Machine Learning 

There are several approaches suggested to discover Android malware analysis based on 

ML. These approaches are further distinguished into multi-class and binary classification. 
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2.2.1.1 Binary Classification 

Authors develop a dataset and apply a set of ML classification techniques which are NB, 

Decision Tree (J48), RF, SL, and k-star [35]. The dataset consists of 11000 Android 

applications out of which 6971 are malware samples and the rest are benign samples the 

study extracted 123 dynamic permissions from the dataset and performed binary 

classification on it. The experimental results achieved an accuracy of 99.7% with the SL 

machine-learning technique. This study developed the largest dataset till then and gives 

the highest accuracy of previously proposed approaches but lacks discussion about multi-

class classification. 

Authors develop a dynamic syscall-capture system that extracts system call traces from 

the application during their interaction with a phone on runtime [23]. Due to this, 50 

malicious and 50 benign applications are collected by them from the Android malware 

genome project and Google Play Store respectively to process them into aggregate 

datasets. The experimental results showed that Decision Tree Algorithms gave 85% and 

Random Forest gave 88% of accuracy. 

A comparative analysis was performed by authors on emulator-based vs device-based 

Android malware detection [36]. The study shows 23.8% more efficient analysis of 

Android applications and extraction of features from mobile devices as compared to 

emulated environments. The dataset consists of 2444 Android applications, out of which 

1222 malware samples were collected from the Genome project and benign samples were 

collected from Intel Security. The study performed information gain to extract the top 

100 features which consist of API calls from the dataset. The author applied machine 

learning algorithms that as RF, NB, Multilayer Perceptron, SL, J48 decision tree, PART, 

and SVM (linear) for binary classification. The experimental results gave 0.926 F-

Measure for phone-based analysis, 93.1% TPR, and 92% FPR with the RF classifier.  

Authors proposed host host-based detection system called ServiceMonitor, which 

dynamically detects malware on mobile phones [37]. The ServiceMonitor used the 

Markov chain model to analyze how applications request services from mobile phones 

and transform them into feature vectors. The proposed study developed a dataset 

composed of 8034 malware samples obtained from Androzo, Drebin, and Genome 

Project. The benign samples which were of 10024 in size were collected from Google 

Play. This study performed Principal Component Analysis (PCA) to extract 200 features 
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from a dataset having maximum variance. The RF classifier is used for binary 

classification. 96.7% accuracy was achieved in the experimental results.  

The authors proposed the selection of relevant attributes for improving locally extracted 

features using classical feature selectors (SAILS), which is a feature selection technique 

[38]. The proposed study used a dataset composed of 4949 samples, 2475 were benign 

and 2474 were malware applications from Drebin. The features consist of system calls 

extracted during the executions of applications. The experimental results show reformed 

values for evaluation metrics as compared to conventional feature selection methods for 

ML classifiers that is LR, CART, RF, XGBoost, and DNN with a recall rate of 24.79 %to 

92.2%, and a true positive rate is reported from 95.2 and 99.79%.  

A dynamic analysis technique in Android malware detection known as SelFDroid was 

proposed by the authors in [39]. The suggested approach consists of the collection of data, 

extraction, and selection of features, and classification process. The study collected 200 

Android applications to develop a dataset, 100 were malware samples collected from 

Androzo datasets and 100 were benign applications collected from APKPure. The system 

calls, Network Packets, CPU Usage, and Battery Usage features were extracted from 

applications in an emulated environment. This study used a Sequential Minimal 

Optimization (SMO) classifier to evaluate results and achieved 91.7% accuracy, 93.1% 

precision, 90.0 recall, and 8.3 error rate. 

The authors proposed a dynamic analysis approach called DATDroid [40]. In this 

methodology, the authors collected 200 dataset samples from which 100 samples were 

benign, collected from the APKPure market and 100 were malicious which were collected 

from Genome Project. The five features were extracted which included system call, errors 

and time of system call process, CPU usage, memory, and network packets. The 

experimental results gave an accuracy of 91.7%, a precision of 93.1%, and a recall rate 

of 90.0% by using the Random Forest algorithm.  

The authors proposed a two-stage mixed detection model which consists of RF and 

Markov models. The RF model is to detect ransomware [41].  The study extracted 30967 

features out of a total of 6393 by dynamic analysis from 7 categories that is Windows 

API call stats, Registry keys operations, file system operations, Strings, File extensions, 

Directory operations, and Dropped file extensions. The machine learning algorithm i.e. 

RF is used to achieve an accuracy of 97.3% with 4.8% FPR and 1.5% FNR. 
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A detailed analysis is being done to analyze all categories of dynamic analysis and their 

features by using different filter and wrapper methods [18]. The CIC-AndMal-2020 

dataset is being used. This paper is focused on the dynamic analysis part of the dataset. 

The Information Gain and Backward elimination methods are used to find the categories 

of features with the highest significance which are Memory and API. Constant feature 

and Genetic Algorithm techniques are used to identify a feature of high significance from 

the API and Memory category and hence 35 features are extracted (11 from Memory and 

24 from the API category). Random Forest is applied for classification and the number of 

trees is set to 5. The F1 score of the system is increased to 0.82 after the removal of 

irrelevant features. 

The author presented entropy-based dynamic behavior analysis for Android malware 

detection is being done on six classes of features extracted from the CIC-AndMal-2020 

dataset [11]. The study extracted 141 dynamic features i.e. 105 API features, 2 battery 

features, 4 network features, 1 process feature, and 6 logcast features after executing APK 

files in the sandbox environment. The Shannon entropy is computed for every malware 

sample before and after rebooting to understand behavior changes. The RF classifier is 

used to classify malware categories with 0.984 precision and 0.983 recall values.   

The author proposed web based framework, which detects malware from Android devices 

MLDroid [21]. The study collected 56,871 samples from AndroMalShare and 1200 

Android Malware Genome projects and developed a dataset consisting of 50,000 unique 

samples. The study extracts 1532 permissions and 310 API calls from the dataset. The 

features are then divided into 30 unique feature sets. The feature selection approaches are 

Gain-ratio, Chi-Squared test, Information gain, OneR, PCA, and Logistic Regression 

applied to the feature. The study also applied feature subset selection approaches which 

are Correlation-based, Rough set, Consistency subset evaluation approach, and Filtered 

subset evaluation on distinct feature sets. The study implemented 21 different ML 

algorithms which are SVM, NB, RF, MLP, LR, BN, AB, decision tree (DT), KNN, deep 

neural network (DNN), self-organizing map (SOM), Kmean, farthest first clustering (FF), 

filtered clustering (FC), density-based clustering (DB), J48? YATSI (Y-J48), SMO 

YATSI (Y-SMO), MLP YATSI (Y-MLP), best training ensemble approach (BTE), 

majority voting ensemble approach (MVE), and nonlinear ensemble decision tree forest 

approach (NDTF) to find the suitable model to detect android malware. The experimental 

results show that models developed by considering features selected by the feature 
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selection approach as an input can detect malware more effectively rather than models 

developed by using all extracted feature sets and gave the highest accuracy of 98.8%. 

The author proposed an Android malware detection model based on APIs and permission 

features [19]. Two datasets are used, The first one is the Malgenome dataset, which 

consists of 3800 Android applications (1260 malware apps, 2539 benign apps, and 3800 

applications with permissions and API calls) and the second one is the Maldroid dataset 

which consists of 11599 samples categorized as benign, adware, banking malware, and 

mobile riskware. A detailed analysis is being done on existing ML classification models 

from which KNN, SVM, NB, and DT are selected to perform classification. The result 

shows an accuracy of 86% on the Maldroid dataset and a precision of 99% on the 

Malgenome dataset with SVM.  

Authors have proposed a dynamic analysis framework, called Android, which can detect 

malware and classify malware families based on multiple types of dynamic features [42]. 

The 2 datasets are used, the first one consists of the Drebin dataset, which consists of 

5560 malicious applications and 8806 benign applications gathered from different sources 

i.e. Google Play and Androzo called M1, and the second one consists of 5000 benign and 

5000 malicious applications gathered from Androzo called M2. EnDroid extracts 58709 

total features from the dataset and chi-square feature selection method is used to select 

5000 features from it. Multiple ML models are applied for classification and Stacking 

outperforms others giving the F-Measure of 0.9521 for M1 and 0.9642 for M2. 

2.2.1.2 Multi-Class Classification 

The systematic and functional approach is being use identify malware classes and families 

on dynamic layers [43]. The CIC-AndMal-2020 dataset is being used. The paper focused 

on the dynamic analysis (before rebooting) part of the dataset. 141 features are being 

extracted from 6 characteristics (Memory, API, Network, Battery, Logcat, and Process) 

for dynamic analysis. The comparison between machine learning techniques (Decision 

tree (J48), NB, SVM, AB, LR, KNN, RF, and Multilayer Perceptron (MLP)) is being 

done to evaluate the effectiveness of the proposed model. RF shows an accuracy of 

96.86% and becomes the most effective classifier than others in the malware 

categorization phase while in malware family classification RF shows an accuracy of 

99.65%. After comparison, the proposed model (Random Forest) shows better accuracy 
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than existing models by accurately classifying 180 malware families and 14 malware 

categories. 

The study developed an ensemble-based machine-learning model for multiclass 

classification to detect Android malware [31]. The study used the CCCS-CIC-AndMal-

2020 dataset. The dataset consists of 14 malware classes and 141 features. The study only 

considers 12 malware classes and 45 features out of 141 for multi-class classification. 

The study used an ensemble ML model composed of RF, KNN, MLP, Decision Trees, 

SVM, and LR classifiers. The model used a voting mechanism to identify malware 

classes. The experimental results show an accuracy of 95% of accuracy. 

The study developed a framework for dynamic analysis called EnDroid [44]. EnDroid 

framework is composed of an ensemble-based machine learning algorithm. The study 

considered a dataset to show the effectiveness of the proposed framework. Dataset 1 

consists of 8806 benign applications and 5213 malicious applications gathered from 

Androzoo and applications collected from AndroZoo. The framework extracts 58709 

dynamic behavior from dataset 1 but after applying chi-square only 5000 remain as 

features. The features consist of system calls. The experimental results show that the M1 

dataset has achieved 0.9735 F-measure, and 0.9682 AUC, whereas on the M2 dataset, 

0.9830 F-measure and 0.9702 AUC are achieved. 

Table 2. 1 Selected Studies of ML 

Ref Dates Machine 

Learning 

Features Dataset Performance 

Metrics 

Limitations 

Islam et al. 

2023 [31] 

2023 Ensemble Model API, Memory, 

and Network 

CIC-AndMal-

2020 

Acc 95%  Only consider 

45 features out 

of 141 and 

performed ML  

HashSem et 

al. [43] 

2022 Random forest  CIC-AndMal-

2020 

Acc 96.86% Performed ML 

[18] 2022 Random forest APIs and 

Memory 

CIC-AndMal-

2020 

F1 0.82 Performed 

binary 

classification 

with  ML  
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Amer et al. 

[19] 

2022 KNN, SVM, 

NB, and 

decision tree 

APIs and 

permission 

Malgenome 

(1260 malware 

apps, 2539 

benign apps) 

and 

Maldroid(1159 

samples) 

Acc 86% on 

the Maldroid 

dataset and 

precision of 

99% on the 

Malgenome 

dataset.  

 

Performed 

binary 

classification  

[20] 2021 Random forest Memory, API, 

Network, 

Battery, logcat, 

and Process. 

CIC-AndMal-

2020 

Precision 

0.984 and 

0.983 recall 

values 

Permorfed 

binary 

classification 

Thangaveloo 

et al.  [39] 

2021 Sequential 

Minimal 

Optimization 

(SMO) 

System calls, 

CPU usage, 

memory usage, 

and network 

packets. 

Genome 

Project by 

Zhou and 

Jiang 

Accuracy 

91.7, 

Precision 

93.1, Recall 

90.0, Error 

Rate 8.3 

binary 

classification is 

performed with 

ML 

Ananya et 

al.[38] 

2020 LR, CART, RF, 

XGBoost, and 

DNN 

System calls  A total of 

4949 samples 

comprising 

2475 benign 

and 2474 

Drebin 

applications 

Recall rate of 

24.79 %to 

92.2% and a 

true positive 

rate is 

reported from 

95.2 and 

99.79%. 

binary 

classification is 

performed with 

ML 

Hwang et al. 

[41] 

2020 Random Forest API Calls Sample size of 

2,507 from 

ransomware 

and 3,886 

from the 

normalware 

group. 

Acc 97.3%, 

4.8% FPR 

and 1.5% 

FNR 

binary 

classification is 

performed with 

ML 

Thangaveloo 

et al. [40] 

2020 RF System calls, 

CPU usage, 

memory usage, 

and network 

packets. 

Genome 

Project by 

Zhou and 

Jiang 

accuracy of 

96.67% binary 

classification is 

performed with 

ML 

Salehi et al. 

[37] 

2019 Random forest  200 features 9560 samples, 

from 194 

different 

families, 

obtained from 

AndroZoo, 

Drebin, and 

 

96.7% 

Accuracy 
binary 

classification is 

performed with 

ML 
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Malware 

Genome 

datasets 

Mahindru et 

al. [35] 

2017 Simple Logistic 123 unique 

permissions 

(Default 

permissions, 

Development 

tools, Hardware 

control, Network 

communications, 

Phone Calls, 

Services that 

cost money, 

storage, System 

tools, accounts, 

messages, and 

Personal 

information) 

11,000 

samples (out 

of which 6,971 

are malware 

samples and 

the rest were 

benign) 

Accuracy 

99.7% 

Performed 

binary 

classification 

Alzaylaee et 

al. [36]  

2017 Random Forest  API Calls  Android 

malware 

genome 

project and 

Intel Security 

(McAfee 

Labs). 

0.926 F-

measure  

93.1% TPR 

92% FPR 

Binary 

Classification 

Performed  

Bhatia et al. 

[23] 

2017 Random Forest  System calls  50 malicious 

samples from  

Genome 

Project and 50 

benign 

samples from 

the Google 

Play Store 

88% 

Accuracy  

Performed 

Binary 

classification 

  

2.2.2 Android Malware Detection Based on Deep Learning 

Numerous deep learning-based methodologies have been suggested to identify Android 

malware. These approaches are further divided into binary classification and multi-class 

classification. 
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2.2.2.1 Binary Classification 

Authors have proposed a dynamic analysis method named the Component Traversal 

method, which can automatically execute the entire Android application code [45]. The 

study has extracted Linux kernel system calls from executing applications with the help 

of dynamic analysis. The DL architecture-based model Stacked AutoEncoder (SAEs) is 

used to learn and identify Android malware patterns. For the experimental study, the 

dataset collected from Comodo Cloud Security Center consists of 1500 benign apps and 

1500 Android malware. A comparison between traditional ML models and the DL model 

is performed. The DL model outperforms the ML model giving an accuracy of 93.68%. 

Authors proposed a DL-Droid, a deep learning-based model that can detect Android 

malware through dynamic analysis [46]. The dataset consists of 31,125 Android 

applications that have been used out of which 11505 were malware samples and the rest 

19620 were benign. The dataset is obtained from Intel Security (McAfee Labs). 

Information Gain is used to determine the ranking of features i.e. API calls, Intents, and 

Permissions. A comparative study is performed between the proposed model and 7 ML 

models i.e. SVM Linear, SVM RBF, NB, SL, PART, RF, and J48 Decision Tree. DL-

Droid outperforms other classifiers by giving an accuracy of 97.76% with dynamic 

features. 

The study developed a DL-based NLP model to identify Android malware [47]. The study 

developed an internet-based real-world dataset from Drebin and Google Play Store, which 

is composed of 3567 malicious applications and 3536 benign samples. The study extracts 

semantic information from system calls as features. The study used an LSTM classifier 

and developed an NLP model for binary classification. The experimental results of the 

model achieved 96.6%, 91.3%, 93.7%, and 9.3% of recall, precision, accuracy, and low 

FPR respectively. 

The study performed CNN-based android malware detection [48]. The study also 

developed a technique of transformation that converts a series of event logs into flattened 

data with two-dimensional features as CNN works best with flattened data. The study 

collected non-malignant applications from Google Play and malware application samples 

were collected from a private company consisting of 423 different kinds of malware 

categories to develop their dataset. The dataset consists of 17,000 benign and 17,000 
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malicious applications. The features consist of API Calls. The experimental results show 

93.012% accuracy and 12.9% FNR. 

The study developed a DL-based CNN model [49]. The dataset consists of 5560 

applications, 3536 trusted, and 3564 malware belonging to 179 different families. The 

system calls were used as features. The experimental results give an accuracy ranging 

between 0.85 and 0.95. 

The study developed a DL-based hybrid model composed of CNN and RNN for malware 

classification [50]. The authors developed a dataset by running malware samples on a 

cuckoo sandbox. The API calls are considered features and used as behavior modeling. 

The study used a numeric label against each malware sample from the VirusTotal web 

service. The VirusTotal consists of different antivirus and each antivirus signature has its 

methodology to label the malware sample. The experimental results show 85.6% 

precision and 89.4% recall which gives better results than ML models. 

The study proposed a tool called VizMal, which can picture the implementation steps of 

Android applications and emphasize the traces of potentially malicious behavior [51]. 

The dataset consists of non-malignant apps from the Google Play Store and malware apps 

from Drebin. It consists of 500 Android applications, which consist of 250 non-malware 

applications and 250 of the remaining applications are malware. The features consist of 

system calls. The study performed a questionnaire to validate the tool. The experimental 

results show that VizMal basing LSTM gave better results than other ML classifiers by 

giving 0.098 FPR and 0.551 FNR. 

The study proposed a maxNet framework that consists of RNN architecture [52]. The 

proposed algorithm can detect malware as soon as it occurs. The study developed a dataset 

that consisted of 361,265 samples. The experimental results show the 0.96 F1-Score and 

96.2% TPr at 1.6% FPr.  

2.2.2.2 Multi-Class Classification 

The study proposed a DL-based framework to identify Android malware [24]. The study 

considered network features of the dataset CICAndMal2017 for Android malware 

analysis. The dataset consists of Adware, Ransomware, Scareware, and SMS Malware 

categories. The study developed a hybrid model based on CNN and LSTM. The 
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experimental results give the accuracy of 99.79%, 98.90%, and 97.29% on binary, 

category, and family classification respectively. 

The study performed a semi-supervised learning technique for DNN called pseudo-label 

on the set of labeled and unlabeled observations [32]. The study developed their dataset 

called CICMalDroid2020, which consists of 17341 samples of five malware categories 

that are Adware, Banking, SMS, Riskware, and Benign. The experimental results show 

97.84% F1-Score and 2.76% FPR. 

The study proposed a Two-level Filtering learner Algorithm (TLFL) algorithm to 

effectively identify mislabeled samples and remove them to enhance the malware 

detection mechanism [30]. The study used the CCCS-CICandMal-2020 dataset but only 

considered 4 categories that are Adware, Riskware, Trojan, and Zero-Day. The study only 

considers 2465 out of 9504 features using ExtraTreesClassifier. The study conducted two 

experiments, the first experiment only considered Adware, Riskware, and Trojan 

categories by comparing CNN with the TLFL algorithm which gave an accuracy of 93.4 

and 96.7% respectively. The second experiment considered Adware, Riskware, Trojan, 

and Zero-Day categories by comparing CNN with the TLFL algorithm which gave an 

accuracy of 83% and 90.61% respectively. 

The study proposed the method BIR-CNN to identify Android malware [28]. The 

proposed system consists of a CNN with batch normalization and inception residual. The 

study only considered network features from the CICAndMal2017. The dataset is 

composed of 429 malware samples and 5065 benign. The experiment result shows an 

accuracy of 99.73% in binary classification, an accuracy of 99.53% in multi-class 

classification by considering Adware, Ransomware, Scareware, and SMSmalware 

categories, and an accuracy of 94.38% with 35 malicious families’ classifier 94.38%. 

The study proposed a hybrid model that is a Deep Learning classifier called DL Dense 

Classifier with LSTM [29]. The study used the CIC-AndMal-2020 dataset by considering 

12 malware categories that are Adware, Backdoor, File Infector, PUA, Ransomware, 

Riskware, Scareware, Trojan, Trojan-Banker, Trojan-Dropper, Trojan-SMS, Trojan-Spy, 

and 141 features. The results from the experiment give an accuracy of 91%.  
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Table 2. 2 Selected Studies of DL 

Ref Dates Deep 

Learning 

Features Dataset Performance 

Metrics 

Limitations 

Gulbarga et 

al. [29] 

2023 DL+LSTM API, 

Memory, 

Network, 

Battery and 

logcat  

CIC-AndMal-

2020 

Acc 91% 

Recall 90% 

Precision 

92% 

F-Score 91% 

Didn’t consider 

Zero Day 

Category  

Liu et al. [28] 2022 BIR-CNN Network  CIC-AndMal-

2020 

Acc 99.73% 

(binary)  

Acc 99.53% 

(multi class) 

Acc 94.38% 

(35 families) 

Only consider 

Adware, 

Ransomware, 

Scareware, and 

SMSmalware 

categories 

Allogmani et 

al. [30] 

2022 Ensemble 

Algorithm  

2456 

features 

CICandMal-2020 Acc 96.7% 

(Adware, 

Riskware and 

Trojan) 

Acc 90.61% 

(Adware, 

Riskware, 

Trojan, and 

Zero-Day) 

Only consider 

Adware, 

Riskware, Trojan, 

and Zero-Day 

categories 

Gohari et al. 

[24] 

2021 CNN+LSTM Network CICAndMal2017 Acc of 

99.79%, 

98.90%, and 

97.29% on 

binary, 

category, and 

family 

classification 

respectively. 

Only consider 

Adware, 

Ransomware, 

Scareware, and 

SMS Malware 

Mahdavifar et 

al. [32] 

2020 DNN  17341 

features 

CICMalDroid2020 97.84% F1-

Score and 

2.76% FPR. 

Only consider 
Adware, Banking, 

SMS, Riskware 

and Benign  
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Lorenzo et al. 

[51] 

2020 LSTM System 

calls 

250 non-malware 

applications from 

Google Play and 

250 malware 

applications from 

Drebin  

0.098 FPR 

and 0.551 

FNR 

Binary 

Classification 

Performed  

Alzaylaee et 

al. [46] 

2020 DL-Droid API calls, 

Intents, and 

Permissions 

Intel Security 

(McAfee Labs) 

Accuracy 

97.76% Binary 

Classification 

Xiao et al. 

[47] 

2019 LSTM System 

calls 

3567 malicious 

applications from 

Drebin  and 3536 

benign samples 

from Google Play  

Recall of 

96.6% with 

precision of 

91.3%, 

accuracy of 

93.7% and 

low FPR of 

9.3%. 

Binary 

classification 

Gronát et 

al.[52] 

2019 RNN 1383 

features 

dataset consisting 

of 361,265 

samples 

0.96 F1-

Score and 

96.2% TPr at 

1.6% FPr. 

Binary 

classification 

Hou et al. 

[45] 

2017 Stacked 

AutoEncoder 

(SAEs) 

System 

Calls 

Comodo Cloud 

Security Center 

1500 benign apps 

and 1500 Android 

malware 

Accuracy of 

93.68%. Binary 

Classification 

Martinelli et 

al. [49] 

2017 CNN  System 

calls  

3536 trusted and 

3564 malware 

belonging to 179 

different families 

 

accuracy 

ranging 

between 0.85 

and 0.95 

Binary 

classification 

Kolosnjaji et 

al. [50] 

2016 CNN + RNN  API Calls  85.6% on 

precision and 

89.4% on 

recall 

Performed Binary 

classification 

Yeh et al. [48] 2016 CNN  API Calls 17,000 benign and 

17,000 malicious 

applications 

93.012% 

accuracy and 

12.9% FNR 
Binary 

classification 

 

2.3  Android Malware Detection w.r.t Hybrid Analysis 

This section discusses the existing studies concerning Android malware detection using 

hybrid analysis. 
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2.3.1 Machine Learning  

There are several approaches suggested to discover Android malware using hybrid 

analysis based on ML.  

2.3.1.1 Multiclass Classification 

The author proposed Tree Augmented naïve Bayes which is TAN TAN-based hybrid 

detection system [7]. The study considers 1650 malware Apps from Drebin, AMD, 

Androozo, and GitHub repositories and 1650 benign Apps from Androozo and Google 

Play. The study considers Trojan spy, Trojan SMS, Backdoor, Ransomware, and Adware. 

The study considers API, permissions for static analysis, and system calls for dynamic 

analysis. The study performed static analysis on samples using the APK tool and then 

APKs were dynamically analyzed. The experimental study shows 99% accuracy. 

The study proposed a novel framework for wrapping feature selection with the 

combination of Random forest and greedy stepwise (RFGreedySW) [13]. The study used 

the CIC-InvesAndMal2019 dataset. The static features are permissions and intents while 

dynamic analysis are API calls and logs. The preprocessing of the feature is done with 

the proposed framework and later ML models (RF, DT, and SVM RBF) are applied to 

detect Android malware categories. The study considers Adware, PremuimSMS, 

Ransomware, Scareware, and SMS malware. The experimental study shows that RF gives 

an accuracy of 75% on dynamic layer and DT gives an accuracy of 91.8% on static 

analysis. 

2.3.2 Deep Learning 

There are several approaches suggested to discover Android malware using hybrid 

analysis based on DL. These approaches are further divided into binary and multiclass 

classification. 

2.3.2.1 Binary Classification 

The author proposed a deep learning-based hybrid analysis malware detection algorithm 

[25]. The hybrid DL model consists of DBN and GRU. The study used a benign dataset 

which consist of 7000 samples from Google Play and APKpure. The malware dataset 

consists of 6298 samples which is further divided into obfuscated malware gathered from 
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PRAGuard (collection of MalGenome and Contagio minidump datasets) and non-

obfuscated malware from VirusShare. The study extracted 351 features which are 303 

static features (124 resource features and 179 semantic features) and 48 dynamic features 

(API functions). The experimental results show an accuracy of 96.82 %. 

2.3.2.2 Multiclass Classification 

The author proposed a deep learning-based hybrid analysis malware detection model 

which is DroidDetectMW [12]. The study considers the CICAndMal2017 dataset. The 

dataset consists of Adware, Ransomware, Scareware, and SMS malware categories. The 

static features include command strings, API calls, intents, and permissions and dynamic 

features are system calls, cryptographic activities, dynamic approvals, and information 

leakage. The study used feature selection techniques which are chi-square, fisher score, 

and information gain to select relevant features from static and two-stage fuzzy 

metaheuristic dynamic analysis. The comparative analysis is done with ML models which 

are KNN, SMO, SVM, RF, DT, NB, and MLP, and the proposed model gives the best 

result out of them of 95.4% accuracy in malware categories and 88% accuracy in malware 

families. 

The author proposed deep learning-based hybrid analysis to detect Android malware by 

developing Res7LSTM [14]. The study used a hybrid model which consists of ResNet 

(Residual Network) and LSTM. The study used the CICAndMal2017 dataset. The APKs 

are first statically analyzed by binary classification and then resulting malware APKs 

from it dynamically analyzed by performing multiclass classification. The study performs 

binary classification with static analysis and multiclass classification with dynamic 

analysis. The experimental study shows an accuracy of 94.04%. 

 

 

Table 2. 3 Selected Studies of Hybrid Analysis 

Ref Dates DL ML Features Dataset Performa

nce 

Metrics 

Limitations 

Taher et 

al. [12] 

2023 EHHO-ANN  command 

strings, API 

calls, intents 

and 

CIC-AndMal-

2017 

Acc 95.4% 

in malware 

categories  

Only consider 

Adware, 

Ransomware, 

Scareware, 
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permissions 

(static) 

system calls, 

cryptographi

c activities, 

dynamic 

approvals, 

and 

information 

leakage 

(dynamic)   

 

and 

SMSmalware 

categories 

Santosh 

K. et al 

[13] 

2022  RF, DT, and 

SVM RBF 

permissions 

and intents 

(static) and 

API calls 

and logs 

(dynamic) 

CIC-

InvesAndMal2

019 

accuracy 

of 75% on 

(dynamic)

DT acc of 

91.8% 

(static) 

Only consider 

Adware, 

PremuimSMS, 

Ransomware, 

Scareware, 

SMSmalware 

Ding et 

al. [14] 

2021 ResNet + 

LSTM 

  CICAndMal20

17 

Accuracy 

94.04%. 

Only consider 

Adware, 

Ransomware, 

Scareware, 

and 

SMSmalware 

categories 

Surendra

n et al. 

[7] 

2020  Tree 

Augmented 

Naïve Bayes 

API, 

permissions 

for static 

analysis, and 

system calls 

for dynamic 

analysis 

1650 malware 

and 1650 

benign Apks 

from Drebin, 

AMD, 

Androozo, 

Github 

repositories  

99% 

accuracy 

Only consider 

Trojan spy, 

Trojan-SMS, 

Backdoor, 

Ransomware 

and Adware  

Lu et al. 

[25] 

2020 DBN + GRU  124 resource 

features 179 

semantic 

features and 

48 dynamic 

features 

(API 

functions) 

7000 samples 

from Google 

Play and 

APKpure. 

6298 samples 

from 

PRAGuard 

Acc  

96.82 %. 

Binary 

classification 

performed 
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CHAPTER 3 

RESEARCH METHODOLOGY 

3.1  Introduction 

In this section, we concentrate on the preprocessing of the dataset. A suitable dataset is 

relatively important for the detection of malware. The limitations of available studies are 

discussed in chapter 2. To overcome the limitations, we develop a deep learning model 

for multiclass classification. 

This chapter explains the preprocessing steps of the dataset as well as the development of 

a deep learning model. Additionally, the feature selection processes are also presented in 

this chapter.  

The preprocessing phase includes the cleaning of data, transformation, and normalization, 

extracting, and selecting features. It is the prime phase and it needs a great amount of 

effort and time. It not only augments the efficiency of the model system but also affects 

the storage of the system [53].  

3.2  Research Methodology 

We performed applied research methodology which is presented in Figure 3.1. In this 

applied research, the problems regarding CIC dataset cleaning, feature selection, and 

multi-class classification of malware categories are discussed and solutions are 

implemented.  
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     Results 

Figure 3. 1 Proposed Methodology 
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3.3  Proposed Architecture  

The proposed architecture is presented in Figure 3.2. Following are the research of 

proposed research. 

1. Analysis of existing proposed research of malware detection concerning ML and 

DL is performed. 

2. The problems are identified regarding the selection of features and multi-class 

classification of malware android classes. 

3. The Android malware detection system for multi-class classification using deep 

learning has been developed. 

4. Existing studies based on deep learning and machine learning are studied. 

5. Pre-processing of the dataset is performed which consists of data cleaning. 

6. Statistical analysis of the dataset is performed to obtain the features. 

7. Features are passed as input to the DL algorithm. This study implemented a DNN. 

8. Evaluation of the models is performed with different evaluation measures. 

 
 



25 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 2 Proposed Deep Neural Network Architecture
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3.4 Dataset 

We use CIC-And-Mal Dataset 2020, which is a publicly available dataset developed by 

the Canadian Institute for Cybersecurity. The dataset consists of 200k benign and 200k 

malware samples with 14 malware categories and 191 distinguished malware families. 

We only consider the dynamic analysis part of the dataset which contains 141 features 

that are further classified into logcat (6 features), API (105 features), Memory (23 

features), battery (2 features), Network (4 features) and Process (1 feature). The dataset 

consists of 53439 samples that are classified into 14 malware types including 

No_Category, Riskware, Adware, Trojan, Zero_day, Ransomware, Trojan_Spy, 

Trojan_SMS, Potentially Unwanted Apps (PUA), Scareware, File Infector, 

Trojan_Banker, Trojan_Dropper. The division of malware categories labeled in the CIC 

dataset is shown in Figure 3.3.  

 

 

 

 

 

 

 

 

Figure 3. 3  Division of various malware categories in the dataset 
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3.5  Preprocessing Phase 

The pre-processing phase is an important part of data analysis and deep learning. It 

includes normalization, data transformation, label encoding, and removal of outliers from 

raw data. 

3.5.1 Missing Data Handling 

The use of missing value imputation is important as a dataset with missing values cannot 

present accurate results. Imputation techniques are applied to fill in missing values of the 

dataset to make it more comprehensive for the results of model training. The objective is 

to reduce the impact of data that is missing on the validity of dataset results. We divided 

the dataset into 10 data frames, each data frame consisting of 10 columns or features to 

find the missing values from the dataset. We have used the mean approach from 

ScikitLearn Library [54]. We have applied the "isnull().sum()" method to identify the 

mean of the data frames. The mean of all data frames is zero resulting in no missing values 

present in the dataset. 

3.5.2 Data Normalization 

Normalization is the process of transforming different variables of the dataset into a 

standardized scale so that each feature can contribute equally to the training of the model 

[55]. We have performed both feature scaling and outlier removal at the dataset. 

3.5.2.1 Feature Scaling 

In this study, we applied MinMax Scaler from ScikitLearn Library. MinMax Scaler takes 

the maximum value as 0 and the minimum value as 1 and linearly scales the rest of the 

features in between them using the formula as shown below. 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  
𝑋 − min (𝑋)

max(𝑋) − min (𝑋)
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3.5.2.2 Outlier Handling 

The observation or finding that differs from the majority of the data present in the dataset 

is called an outlier [56]. As we are working on a dynamic nature dataset which is CIC-

AndMal-2020, it is highly skewed in nature. We have applied the Z-score to detect 

outliers and later removed them using the formula as shown below. The vast difference 

can be seen in Table 3.1 after applying outlier handling. 

𝑋𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =  
𝑋 − mean (𝑋)

𝑠𝑡𝑑(𝑋)
 

 

 Table 3. 1 Outlier Handling of Dataset 

3.5.3  Label Encoding 

Label encoding uses the Keras library to transform categorical labels into numerical 

values through one hot encoding process [57]. The CIC dataset has malware categories 

Malware Category  Number of Samples with 

Outliers 

Number of Samples 

After Removing Outliers 

Zero Day 2146 1344 

Trojan _Spy 1039 642 

Trojan 4025 1935 

Scareware 424 179 

Ransomware 1550 1017 

PUA 625 284 

File_Infector 119 95 

Trojan_Banker 123 81 

Trojan_Dropper 733 494 

Adware 5142 2930 

Backdoor 546 296 

Riskware 6792 3946 
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as labels which are converted into numerical values so that the machine can understand it 

for multi-class classification. 

3.5.4 Random Oversampling 

The CIC-And-Mal 2020 dataset is highly imbalanced. Riskware has the most frequency 

in the dataset whereas Trojan-Banker has the least frequency. The 1:58 is the ratio present 

between them. Such imbalance figures affect the training of the model which eventually 

will affect the prediction results. The approach to tackle the class imbalance problem is 

to resample the dataset randomly. We have applied the Synthetic Minority Oversampling 

Technique which is also known as SMOTE to balance the dataset. It generates artificial 

instances from the minority class of the dataset to balance the class division of the dataset 

[58]. The division of Android malware samples is shown in Table 3.1 and Figure 3.5 

shows the effect of applying SMOTE. 

 

Figure 3. 4 Results of Applying SMOTE on the Dataset 

3.6  Train and Test Splitting 

The training and testing split for cross-validation is accepted as the gold standard in the 

training of ML models [59]. For a fair comparison, the dataset in deep learning is divided 

into two parts: training and testing data or it can be called validation data. We use 

evaluation metrics to assess the model on testing data after training it on training data. 

We divided the dataset into 80 20 percent ratio of training and testing data respectively. 

3.7  Model Development Phase 
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3.7.1 Deep Learning Algorithm 

In this phase, we applied a DL-based algorithm which is a Deep Neural Network (DNN) 

on the CIC-And-Mal 2020 dataset. To evaluate the performance and find the best possible 

results, we applied different numbers of layers, hyper parameters, and activation functions 

to develop the model. We iterate these steps until we get satisfying results. We selected 

DNN algorithm to find optimal model for multi classification of malware classes. 

3.7.2 Model Parameters 

Activation functions, the number of layers, and hyperparameter tuning constitute the 

model parameter. 

3.7.2.1 Hyperparameter Tuning 

The hyper parameter tuning is the most important phase of deep learning model 

development. There is no set standard to select the hyperparameter, it is mostly based on 

the nature and volume of the training dataset. To select the suitable parameters the 

constraints of tradeoffs and limitations of memory were to be also considered [60]. In this 

research, we have executed several experiments to get satisfactory results, we analyze the 

parameter's values before recording the findings. As the size of the dataset increased after 

applying SMOTE, it took 1 to 2 days to train the single model.  

The hyperparameter consists of the following.  

1) Batch Size: The amount of training samples used in one iteration is defined by the 

batch size. The training dataset is divided into multiple batches and based on the error 

calculated on each batch the model is updated [61]. We apply different batch sizes 

from 64 up to 330. We performed several experiments and concluded 320 batch size 

as it gives the best possible results. Although the larger the batch size the more amount 

of memory space and processing time it will need 

2) Epochs: The epoch indicates one pass through which the model passes through the 

entire training data and calculates the loss function. Each epoch consists of one 

forward and backward propagation. After each epoch, the model updated its 

parameters according to the loss function [62]. In our research, we used the 

EarlyStopping function to determine suitable epoch numbers for the training of the 
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model and to prevent overfitting of the model [63]. The EarlyStopping consists of two 

parts. 

 Monitor Metric: It consists of a metric that we have to monitor which is in 

our case loss function. 

 Patience Level: It consists of a value that we set and based on which it 

analyzes sequential epochs with no enhancement on monitored metrics. We 

set the value of 10. 

 Early Stopping Condition: When the condition is met according to the 

patience parameter, the training of the model stops immediately.  

3) Drop Out: It is used to avoid overfitting in neural networks [64]. We experiment with 

different dropout values from 0.05 up to 0.2.   

4) Optimizer Function: The Optimizer function is used to calculate the loss function in 

backpropagation. In our research, we use Adam as an optimizer function. 

3.7.2.2 Hidden Layers 

The complexity of neural networks depends on the number of layers. In our study, we 

have experimented with 2 layers up to 9 layers architecture and analyzed the performance 

of models based on hidden layers. 

3.7.2.3 Activation Function 

The activation function is applied to each neuron of the neural network. It is a 

mathematical operation that describes the output of neurons concerning the weight of 

input features. The generally applied activation functions in Deep Neural Networks are 

sigmoid, hyperbolic tangent (tanh), and Rectified Linear Unit (ReLU). 

Sigmoid:  It is usually used in the output layer of classification either binary or multiclass 

classification. It transforms a vector of numbers into probability distribution to predict 

results and its range encompasses (0, 1) [65]. It is defined as the following expression. 

𝑆(𝑥) =  
1

1 + 𝑒−1
 

 

Rectified Linear Unit (ReLU): ReLU improves DNN learning on multi-dimensional 

input. The benefit of ReLU in its activation functions is that it doesn't require any costly 
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computations, it just performs multiplication and comparison [66]. We use ReLU on 

hidden layers of DNN, it trains significantly deep networks as compared to Sigmoid and 

Tanh. It is calculated by the following expression. 

𝑅𝐸𝐿𝑈 (𝑥) = max (0, 𝑥) 

 

Hyperbolic Tangent: It is defined as a ratio of hyperbolic cosine and sine tangent [67]. 

Tan h =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 − 𝑒−𝑥
 

3.8  Evaluation Measures 

In this research, we are implementing multi-class classification of malware classes and 

we evaluate the proposed model using standard evaluation metrics that are F1-Score, 

recall, confusion matrix, accuracy, precision, and AUC-ROC analysis. Detailed 

explanations and standard formulas to measure them are as follows. 

3.8.1 Accuracy 

Accuracy gives a ratio of how frequently the model classifies correct instances which 

makes the overall performance of the model. It is measured by the below equation. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑡𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 

3.8.2 Precision 

Prediction emphasizes on ratio of accurately positive predictive instances to total positive 

instances. It is measured by the following metric. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
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3.8.3 Recall 

Recall metric is the ratio of accurately classified positive occurrences divided by the total 

occurrence of positively identified. It is crucial when false-negative instances are more 

significant than false negatives. It is calculated by the following formula. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

3.8.4 F1- Score 

The mean of precision and recall value is the F1-score metric. It has ranges of 0 to 1. 1 

represents optimal precision and recall, and 0 represents a value of recall and precision 

will be as low as possible. The mathematical expression of the F1-score is as follows. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑅𝑒𝑐 ∗ 𝑃𝑟𝑒𝑐

𝑅𝑒𝑐 + 𝑃𝑟𝑒𝑐
 

3.8.5 AUC-ROC Analysis 

The area Under the Reciever Operating Characteristic Curve is known as AUC-ROC. The 

curve is a graphical representation of the classification algorithm. It is the ratio of the 

True positive rate and the False Positive Rate[68]. 

3.8.6 Confusion Matrix 

The Confusion matrix consists of a table that gives the synopsis of many actual and 

expected values that the model of classification generates for multi-class classification 

performance. 
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CHAPTER 4 

RESULTS AND EVALUATION 

This section describes the DL-based detection of malware models concerning dynamic 

analysis. The model consists of a DNN algorithm. We considered the dynamic analysis 

part of the CIC-AndMal-2020 dataset and performed featured selection on it. We 

performed correlation-based feature selection. This chapter consists of implementation 

details of model development and evaluation of that model. 

4.1  Statistical Analysis of the Dataset 

4.1.1 P-Value Analysis 

We perform a p-value analysis on the dataset. P value stands for probability value and it 

signifies whether there is any association between two variables or not. The association 

depends on the p-value, if the value is more than 0.05 then there is the likelihood to be no 

association and vice versa. Under statistics gold standard, states that a p-value lower than 

0.05 is considered significant [69]. 

4.1.2 Correlation  

The dataset that has features with similar programming can correlate. Correlation is the 

method to identify the relationship between two variables. We have performed the 

Spearman correlation (p) and Pearson correlation (r) to measure the strength and direction 

of the linear relationship between features. It can range from -1 to 1. 

Correlation coefficients that range from 0.7 to 0.9 are considered highly correlated. To 

train the model the redundant values need to be removed beforehand as they can affect 

the results later. The value of >= ± 0.75 indicates a high correlation and allows us to 

remove redundancy [70]. 

We find most of the features correlated except for a few. The python gives a warning that 

is shown in Figure 4.1. According to the error message input array of the columns is 
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constant which means that 27 of the features out of 141 have constant values for samples. 

So according to correlation and probability value, we dropped them out of the dataset and 

performed experiments on the rest of the 114 features which is presented in Figure 4.2.  

                        

Figure 4. 1 Correlation of dropped features 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 2 Correlation of 114 features 
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4.2  Experimental Setup 

We utilize Jupyter Notebook for the execution of experiments of the proposed algorithm. 

Python is commonly used with ML and DL as Python provides numerous built-in libraries 

for visualization, classification, and analysis of data. Sklearn is a machine learning library 

that is used to perform machine learning calculations. The NumPy library deals with 

multi-dimensional arrays which is important for ML numerical operations and it also 

stores data at run time. Panda library helps in data manipulation by providing data as data 

frames. Tensor flow library is developed by Google which we used to develop the deep 

neural network. It is a deep-learning library that is utilized to develop neural networks. 

We also used Keras in the development of model development. Keras is an API for neural 

networks developed to act as an interface in developing neural networks for several 

frameworks of deep learning. 

4.2.1 Pre-Processing Phase 

This phase consists of data cleaning by removing outliers and data normalization.  

4.2.1.1 Dataset 

We consider dynamic analysis part of the CIC-AndMal-2020 dataset. Which consists of 

141 features and 13 malware categories that are Backdoor, Trojan, PUA, Scareware, 

Trojan-Dropper, Trojan-Spy, Zero-day, Ransomware, Trojan-SMS, Scareware, 

Riskware, File Infector, and Adware. Figures 4.3 and 4.4 explain the structure and 

description of a dataset. 

 

Figure 4. 3 Dataset Structure 
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Figure 4. 4 Description of Dataset 

4.2.1.2 Missing Data Handling 

We first performed missing data handling by identifying null values present in the dataset. 

We did not find any null values in the dataset as presented in Figure 4.5. 

 

 

 

 

 

 

 

Figure 4. 5 Dataset without Null Values 

4.2.1.3 Dropped Features 

According to correlation we dropped 27 features out of 141 performed experiments and 

trained the proposed model on the remaining 114 features as presented in Figure 4.6. 
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Figure 4. 6 Dropped Features 

4.2.1.4 Data Normalization 

The dataset is in the form of an alphanumeric state so we performed normalization on it 

to transform it into a standard scale. 

4.2.1.4.1 Feature Scaling  

We applied the MinMax scaler to transform features between 0 and 1 as presented in 

Figure 4.7. 

 

Figure 4. 7 Feature Scaling of Dataset 

4.2.1.4.2 Outlier Handling 

The CIC-AndMal-2020 is highly skewed in nature so we performed outlier handling to 

tackle this problem as presented in Figure 4.8. 
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Figure 4. 8 Outlier Handling of Dataset 

4.2.1.4.3 Label Encoding 

We performed Label encoding to transform categorical data into numerical data as 

presented in Figure 4.9. 
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Figure 4. 9 Label Encoding of Malware Categories 

4.3  Model Development 

The model development phase consists of the following steps. 

4.3.1 Train Test Split 

The dataset is split into 80:20 ratios for train data and test data respectively.  

 

Figure 4. 10 Tran Test Split 

4.3.2 Algorithm for Deep Neural Network 

The DNN model that is proposed, is composed of 114 features as input to input layer. It 

consists of 5 hidden layers. The first hidden layer has 1024 neurons and 5 hidden layers 

consist of 64 neurons. The value of the output layer is 13 as we are performing multi-

class classification.  
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4.3.2.1 DNN Algorithm  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4  Results 

The implementation of DNN is done by Python 3.10 version and Keras framework. 

Furthermore, TensorFlow, Numpy, Sklearn, and Keras Turner were implemented. Jupyter 

Notebook from Anaconda is used as an environment to develop the proposed algorithm 

while Matplot library is used for visualization. We execute over 100 experiments with a 

combination of various hidden layers (neurons), and hyper-parameters. The observations 

are as follows. 

𝑰𝒏𝒑𝒖𝒕: ( 𝐹𝑆)𝑛 𝑎𝑠 𝑎 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑎𝑛𝑑 𝑙𝑎𝑏𝑒𝑙𝑠𝑶𝒖𝒕𝒑𝒖𝒕: 𝑀𝑢𝑙𝑡𝑖-class 

classification of malware categories  

 

DNN Model: Create a deep neural network with hidden layers represented as L1…Ln 

L1 : inp  Dense (1024, ‘relu’, ‘l2(0.0001)’)  Dropout (0.05) 

L2 : Dense (512, ‘relu’, ‘l2(0.0001)’)  Dropout (0.05) 

L3 : Dense (256, ‘relu’, ‘l2(0.0001)’)  Dropout (0.05) 

L4 : Dense (128, ‘relu’, ‘l2(0.0001)’)  Dropout (0.05) 

L5 : Dense (64, ‘relu’, ‘l2(0.0001)’)  Dropout (0.05) 

Output Layer 

Dense (13, ‘softmax’)  

Training: 

      model.compile(optimizer=’adam’,’loss=categorical_crossentropy’, 

     metrics=[‘accuracy’]) 

     Early stopping: monitor ‘loss’,patience =10 

    Train(NN, X_train, y_train, ‘epochs’,’batch_size=320’,callbacks=[earlystop]) 

Evaluate(Model, X_test,Y_test) 

 

Return Multi-class classification of malware categories based on performance 

metrics 
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4.4.1 DNN Results 

To examine the impact of epochs, batch size, dropout, optimizer, layer count, and 

activation functions. Different results have been acquired using the DNN algorithm. 

 

Figure 4. 11 DNN Model Evaluation 

Epochs: We have used the early stopping function to find out the best possible 

combination of epochs to give the combination of the best possible results. We have given 

the maximum number of values 1000 to the epochs so that the early stopping function 

will train the model as much as possible and stop at when its conditions are met. Table 

4.1 explains the results. 

Table 4. 1 Effect of Epochs on Dataset 

 

 

 

Batch Size: We experimented with different batch sizes to evaluate the impact of batch 

size. The minimum batch size we consider is 64 and 320 batch size gives the best results. 

Table 4.2 explains the results. 

 

Layers Epochs DNN   

    Accuracy  Precision Recall  F1-Score 

5  203/1000 93.9 %  94 % 94 % 94 % 
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Table 4. 2 Effect of Batch Size on Dataset 

Layers Batch 

Size 

DNN   

    Accuracy 

(%)  

Precision 

(%)   

Recall 

(%)    

F1-S  

(%) 

5  64  92 93 93 93 

5  128 91.2  92  92 92 

5  256 92.84 93  93  93 

5  320  93.9  94  94 94 

 

 Drop Out: We examine the effect of dropout with different dropout rates. We 

experimented with distinct dropouts presented in Table 4.3. 

Table 4. 3 Effect of Drop Out on Dataset 

 

 

 

 

 

 

Layers: The effect of several layers on the model has been examined. The results of 

experiments with different numbers of layers are presented in Table 4.4 

 

 

 

 

 

 

Layers Drop 

Out  

DNN   

    Accuracy 

(%)  

Precision 

(%)  

Recall 

(%)   

F1-S 

(%)  

5  0.05  93.9 94 94 94 

5  0.1 93.8  93  93 93 

5  0.2 92.38 92  92  92 

5  0.3  90.1  90  90 90 
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Table 4. 4 Effect of Layers on Dataset 

Layers Training 

Accuracy  

DNN   

    Accuracy  

(%) 

Precision 

(%)  

Recall 

(%)   

F1-S 

(%)  

3  92.9 92.4 93 93 93 

4  96.16 93.3  93 93 93 

5  96.3 93.9 94 94 94 

6   94.8 91.5 92 92 92 

7 94.8 92 93 93 93 

4.4.2 Discussion 

We analyze the effect of parameters of the DNN algorithm by performing several 

experiments that give significant predictions to elaborate the results. 

4.4.2.1 Deep Neural Network 

The proposed DNN algorithm has obtained effective findings by modifying the 

parameters of the model based on experimental results. 

Number of Layers Effect on Model: The number of hidden layers has significantly 

impacted the training accuracy of the model. When we increase the number of hidden 

layers, the value of accuracy, precision, recall, and F1-Score also increases or decreases 

accordingly. We use a geometric sequence with a ratio of 2 in adjusting the value of 

neurons in models. The minimum number of neurons we use is 64 and the maximum is 

4096. We selected 5 5-layer models out of all the experiments we conducted as it give 

better results of evaluation metrics than others. The 5-layer model has a training accuracy 

of 96.3 as compared to 3 layers which have a training accuracy of 92 and on 6 layers 

model the training accuracy started to decrease from 96 to 94 as well as accuracy, 

precision, recall and F1-score value also decreased as presented in Table 4.4. We achieve 

a high accuracy of 93.9 at 5 layers which consist of neurons that are 1024, 512, 256, 128, 

and 64 respectively. 

Hyper Parameter Effect: The earlystopping function is used to identify the number of 

epochs for each experiment. When we gave the standard value of epochs it did not give a 
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satisfactory result. By setting a patience value of 10 on the early stopping function and a 

maximum value of 1000 we determine the number of epochs for each experimental 

model. 

The model has significantly affected by batch size. The accuracy of the model increases 

with the increase in batch size before it surpasses threshold size. Later on, the accuracy 

of the model starts dropping. In this research, we utilize 320 as a batch size that provides 

significantly improved results than others. We utilize a geometric sequence with a ratio 

of 2 in adjusting batch size values in experiments. The minimum count of batch size we 

experimented with is 64 up to 512. We select the batch size of 320 which gives recall, 

precision, and F1-Score of 94% and accuracy of 93.9% respectively as shown in Table 

4.2. We use rate of dropout rate of 0.5,0.1,0.2 and 0.3. We obtained better results on 0.05 

dropout that is 93.9, 94,94,94 of accuracy, recall, precision, and F1-Measure which are 

presented in Table 4.3 respectively. The sigmoid function is used in the output layer and 

in the hidden layers we use relu. 

4.4.3 Confusion Matrix 

The proposed model correctly classifies malware categories in their respective classes. 

Figure 4.12 shows that the proposed approach performs distinguished for multi-class 

classification. The proposed model can classify multi-class malware categories efficiently 

while maintaining overall distinguished performance.  

 

 

 

Figure 4. 12 Confusion matrix of the DNN Model 
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4.4.4 AUC-ROC Analysis 

The ratio of the True Positive Rate and False Positive Rate is defined as the ROC 

Curve. The ROC curve shows that the proposed algorithms accurately classify between 

TPR and FPR.  The AUC value is 1 of the proposed algorithm which means it is a 

perfect classifier. Figure 4.13 presents the results. 

 

 

 

 

 

 

 

 
 

Figure 4. 13 ROC-AUC Analysis of DNN 

4.5  Statistical Analysis of Model 

This division discusses the statistical analysis of the proposed DNN algorithm. The 

experiments have been performed with several combinations of hyper parameters and 

layers to find the best possible model which neither has overfitting nor under fitting.  

4.5.1 Bias and Variance 

To identify the best possible model we performed k-fold cross-validation on models 

where the value of k =10. Through cross-validation, we find bias and variance of all 

experimented models and plot it to get the model that is neither over fitted nor under 

fitted. According to the bias and variance graph, the intersection point is close to point 5 

so we select the 5-layer model which is presented in Figure 4.14 



47 

 
 

 

 

 

 

 

 

Figure 4. 14 Trade-off of Variance and Bias 

4.6  Comparing Results with Existing Approaches 

This division discusses the comparison of the proposed model with the existing studies. 

Few studies applied the multi-class classification to detect Android malware concerning 

dynamic analysis. One new malware category from the CIC-AndMal-2020 dataset which 

is not detected before is detected in the proposed model. We perform a comparison 

analysis of the proposed DNN model with existing models. The majority of existing 

studies considered few malware classes or features. The proposed study surpasses 

existing studies by performing statistics analysis of the dataset and model with a 

proficient deep learning algorithm as presented in Table 4.5.  
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Table 4. 5 Comparison with Existing Approaches 

Study Features Algorithm Malware 

Categories 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

Proposed API, Memory, 

Network, 

Battery and 

Logcat 

DNN 13 93.9 94 94 94 

[29] API, Memory, 

Network, 

Battery and 

Logcat 

DL+ 

LSTM 

12 91 92 90 91 

[31] API, Memory, 

Network 

ML-

Ensemble 

12 91 92 91 91 

[28] Network  BIR-CNN 4 99.53 - - - 

[30] Network TLFL 

Algo 

4 90.61 - - - 
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CHAPTER 5 

CONCLUSION 

This section consists of future work and the conclusion of the thesis. 

5.1 Conclusion 

The Android is most demanding operating system. With its popularity, it also faces threats 

against Android malware. Researchers used detection approaches to identify malicious 

activities in APKs. It consists of two types of detection approaches which are dynamic 

analysis and static analysis. This study is focused on the dynamic analysis of Android 

malware. Researchers have proposed many ML and DL-based algorithms to identify 

malware but the majority of the research is focused on binary classification but with 

technology advancements, there is a need to identify malware categories with diverse 

features. 

This study proposed a deep learning-based deep neural network algorithm that can detect 

13 malware classes (Backdoor, Trojan, PUA, Scareware, Trojan-Dropper, Trojan-Spy, 

Zero-day, Ransomware, Trojan-SMS, Scareware, Riskware, File Infector, and Adware). 

We train this model on CIC-AndMal-2020 which is a newly developed dataset via CIC. 

It consists of 141 features and 13 malware categories. We performed statistical analysis 

of the dataset by performing p-value analysis and correlation. Based on it we dropped 27 

features out of 141 features and trained the model on the remaining 114 features 

(Memory, API, Logcat, Battery, and Process). We compare our research with existing 

studies which outperform them by giving an accuracy of 93.9% of accuracy, 94% of 

accuracy, 94% of accuracy, and 94% of f1 score. 

5.2 Future Work 

In this research, we performed multi-class classification with a deep learning-based 

algorithm on the newly developed dataset by the Canadian Institute of Cybersecurity i.e. 

CIC-And-Mal-2020. Later on, we will develop our dataset by analyzing APKs in an 
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emulated environment and performing dynamic analysis. We can also identify zero-day 

attacks with different deep learning algorithms as there is a need to identify newly 

generated malware. 
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