

ANDROID MALWARE DETECTION USING DYNAMIC FEATURE

ANALYSIS

SADIA RASHID

01-241211-009

A thesis submitted in fulfillment of the

Requirements for the award of the degree of

Master of Science (Software Engineering)

Department of Software Engineering

BAHRIA UNIVERSITY ISLAMABAD

January, 2024

ii

APPROVAL FOR EXAMINATION

Scholar's Name: _Sadia Rashid_______ Registration No. 01-241-211009__

Program of Study: __MS (Software Engineering) __

Thesis Title: Android Malware Detection Using Dynamic Features Analysis__

It is to certify that the above scholar's thesis has been completed to my satisfaction and, to

my belief, its standard is appropriate for submission for examination. I have also conducted

a plagiarism test of this thesis using HEC-prescribed software and found a similarity index

__17%_ that is within the permissible limit set by the HEC for the MS degree thesis. I have

also found the thesis in a format recognized by the BU for the MS thesis.

Principal Supervisor’s

Signature:___

Date: __

Name:__

iii

AUTHOR’S DECLARATION

I, Sadia Rashid hereby state that my MS thesis titled “___Android Malware Detection using

Dynamic Feature Analysis_" is my work and has not been submitted previously by me for

taking any degree from this university Bahria University Islamabad, or anywhere else in the

country/world.

At any time if my statement is found to be incorrect even after my graduation, the University

has the right to withdraw/cancel my MS degree.

Name of scholar: Sadia Rashid (01-241211-009)

Date: ___________________________________

iv

PLAGIARISM UNDERTAKING

I, _Sadia Rashid_____, solemnly declare that the research work presented in the thesis titled

"__Android Malware Detection using Dynamic Feature Analysis__” is solely my research

work with no significant contribution from any other person. Small contribution/help

wherever taken has been duly acknowledged and that complete thesis has been written by

me.

I understand the zero-tolerance policy of the HEC and Bahria University towards plagiarism.

Therefore I as an Author of the above titled thesis declare that no portion of my thesis has

been plagiarized and any material used as reference is properly referred to/cited.

I undertake that if I am found guilty of any formal plagiarism in the above-titled thesis even

after the award of my MS degree, the university reserves the right to withdraw/revoke my

MS degree and that HEC and the University have the right to publish my name on the

HEC/University website on which names of scholars are placed who submitted plagiarized

thesis.

Scholar / Author’s Sign: ________________________

 Name of the Scholar: Sadia Rashid (01-241211-009)

v

DEDICATION

To my bright future

vi

ACKNOWLEDGEMENT

I would start by thanking ALLAH Almighty, with gratitude for giving me strength in every

aspect of life and helping me in this thesis as well.

I wish to express appreciation to my thesis supervisor, Dr. Tamim Ahmed Khan, for his

guidance throughout this thesis.

I want to acknowledge my efforts that I didn't give up even when the odds were against me

and lastly completed this thesis on time.

vii

ABSTRACT

Android is a widely used operating system but with its success, it also faces issues with

malware threats. With advanced technology, malware is also becoming complex making it

challenging to detect. Android malware detection techniques are used to detect malware on

Android operating systems. There are mainly two types of detection techniques which are

static and dynamic analysis. This thesis is focused on the dynamic analysis of Android

malware.

The use of machine learning or deep learning for malware detection requires datasets. These

datasets Malware Researchers developed many machine learning models and deep learning

models to detect Android malware considering static as well as dynamic features-based

datasets. We consider features extracted from system executions and we perform multi-class

classification of malware categories in this study, by considering all malware classes

(Adware, Backdoor, File Infector, PUA, Ransomware, Riskware, Scareware, Trojan, Trojan-

Banker, Trojan-Dropper, Trojan-SMS, Trojan-Spy and zero-day) by using deep learning

algorithm as it outperforms machine learning in high dimensional data.

We use the CIC-AndMal-2020 dataset, the newly developed dataset for multi-class

classification. It consists of 13 prominent malware classes and 141 features. We also perform

statistical analysis on the dataset (p-value analysis and correlation) to identify the relationship

between features and statistical analysis of the model (bias and variance) to arrive at the

optimal model. We evaluate the proposed algorithm using performance metrics i.e. accuracy,

precision, recall, ROC-AUC analysis, and F1-Score and, finally, compare our results with

existing studies. Our results outperform previous dynamic analysis results.

viii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 APPROVAL FOR EXAMINATION ii

 AUTHOR’S DECLARATION iii

 PLAGIARISM UNDERTAKING iv

 DEDICATION v

 ACKNOWLEDGEMENT vi

 ABSTRACT xiii

1 INTRODUCTION 1

 1.1 Motivation 2

 1.2 Research Gap 2

 1.3 Problem Statement 4

 1.4 Research Questions 4

 1.5 Research Objectives 4

 1.6 Contribution of the study 4

 1.7 Thesis Outline 5

2 LITERATURE REVIEW 6

 2.1 Android Malware Detection Techniques 6

 2.2 Android Malware Detection w.r.t Dynamic Analysis 6

 2.2.1 Android Malware Detection Based on Machine Learning 6

 2.2.2 Android Malware Detection Based on Deep Learning 13

 2.3 Android Malware Detection w.r.t Hybrid Analysis 18

 2.3.1 Machine Learning 19

 2.3.2 Deep Learning 19

3 RESEARCH METHODOLOGY 22

 3.1 Introduction 22

 3.2 Research Methodology 22

 3.3 Proposed Architecture 24

 3.4 Dataset 26

 3.5 Preprocessing Phase 27

ix

 3.5.1 Missing Data Handling 27

 3.5.2 Data Normalization 27

 3.5.3 Label Encoding 28

 3.5.4 Random Oversampling 29

 3.6 Train and Test Splitting 29

 3.7 Model Development Phase 29

 3.7.1 Deep Learning Algorithm 30

 3.7.2 Model Parameters 30

 3.8 Evaluation Measures 32

 3.8.1 Accuracy 32

 3.8.2 Precision 32

 3.8.3 Recall 33

 3.8.4 F1- Score 33

 3.8.5 AUC-ROC Analysis 33

 3.8.6 Confusion Matrix 33

4 RESULTS AND EVALUATION 34

 4.1 Statistical Analysis of the Dataset 34

 4.1.1 P-Value Analysis 34

 4.1.2 Correlation 34

 4.2 Experimental Setup 36

 4.2.1 Pre-Processing Phase 36

 4.3 Model Development 40

 4.3.1 Train Test Split 40

 4.3.2 Algorithm for Deep Neural Network 40

 4.4 Results 41

 4.4.1 DNN Results 42

 4.4.2 Discussion 44

 4.4.3 Confusion Matrix 45

 4.4.4 AUC-ROC Analysis 46

 4.5 Statistical Analysis of Model 46

 4.5.1 Bias and Variance 46

x

 4.6 Comparing Results with Existing Approaches 47

5 CONCLUSION 49

 5.1 Conclusion 49

 5.2 Future Work 49

REFERENCES 51

APPENDIX 58

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

2. 1 Selected Studies of ML 11

2. 2 Selected Studies of DL 17

2. 3 Selected Studies of Hybrid Analysis 20

3. 1 Outlier Handling of Dataset 28

4. 1 Effect of Epochs on Dataset 42

4. 2 Effect of Batch Size on Dataset 43

4. 3 Effect of Drop Out on Dataset 43

4. 4 Effect of Layers on Dataset 44

4. 5 Comparison with Existing Approaches 48

xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

3. 1 Proposed Methodology 23

3. 2 Proposed Deep Neural Network Architecture 24

3. 3 Division of various malware categories in the dataset 26

3. 4 Results of Applying SMOTE on the Dataset 29

4. 1 Correlation of dropped features 35

4. 2 Correlation of 114 features 35

4. 3 Dataset Structure 36

4. 4 Description of Dataset 37

4. 5 Dataset without Null Values 37

4. 6 Dropped Features 38

4. 7 Feature Scaling of Dataset 38

4. 8 Outlier Handling of Dataset 39

4. 9 Label Encoding of Malware Categories 40

4. 10 Tran Test Split 40

4. 11 DNN Model Evaluation 42

4. 12 Confusion matrix of the DNN Model 45

4. 13 ROC-AUC Analysis of DNN 46

4. 14 Bias and Variance Trade-off 47

xiii

LIST OF ABBREVIATIONS

CIC - Canadian Institute of Cybersecurity

ML - Machine Learning

DL - Deep Learning

DNN - Deep Neural Network

LSTM - Long Short-Term Memory

OS - Operating System

AI - Artificial Intelligence

APK - Android Package Kit

AUC-ROC - Area under ROC Curve

NB - Naive Bayes

DT - Decision Tree

RF - Random Forest

SL - Simple Logistic

TPR - True Positive Rate

FPR - False Positive Rate

FNR - False Negative Rate

xiv

PCA - Principal Component Analysis

API - Application Programming Interface

CNN - Convolutional Neural Network

RNN - Recurrent Neural Network

P Value - Probability Value

SMOTE - Synthetic Minority Oversampling Technique

ReLU - Rectified Linear Unit

Tan h - Hyperbolic Tangent

CHAPTER 1

INTRODUCTION

 In this modern age, society is aware of computer security threats. Rapid technological

advancements have also made enhancements in the mobile phone industry. With the

increase in mobile phones, the market share value of the mobile industry has increased

by 8% in 2023 as compared to 2022 [1]. According to Global Stats, Android has become

the widely used OS for being an open-source architecture [2].

However, it is pertinent to highlight that a survey conducted and presented in [3]. that

there is a malware present on every 1 out of 20 devices running Android Operating

System (O/S). Malware developers are constantly developing complex malware that is

undetectable. These developers used multi-platform development tools that make it

difficult to determine the level of maliciousness therefore this is a significant challenge

to detect potential threats. The increase in Android malware threats in the 2022 year is

presented in Fig 1.1.

Figure 1. 1 Adopted from [3]

2

To overcome this challenge, Android malware detection techniques are developed to

protect Android devices from malware. Android malware analysis consists of three

approaches, static analysis, dynamic analysis, and hybrid analysis. The static analysis [4],

consists of signature, permission, and component-based investigation. It analyzes

applications to detect malicious behavior without executing it in real real-time

environment. The dynamic analysis [5], consists of behavioral analysis of the application

by executing the application in an android emulator or real-time environment.

Researchers have developed several machine learning techniques to detect malicious

applications, these techniques are used to identify hidden patterns of previously

encountered malicious apps. Machine learning (ML) uses a set of features with a

corresponding class to train the model which classifies between benign and malicious

apps. This classification is utilized to identify malware and classify it into corresponding

malware families. , deep learning (DL) is a subset of machine learning and appeared as a

mechanism that shows remarkable results in traditional artificial intelligence (AI) tasks

related to computer vision, natural language processing (NLP), and speech processing

fields. It is also emerging as an active area of research [6].

1.1 Motivation

The motivation of this thesis is to improve the Android malware analysis mechanism

using dynamic-based features. The primary focus of the study is to perform a multi-class

classification of Android malware by developing a deep learning-based algorithm to

improve the Android malware analysis mechanism. We use newly developed CIC-

AndMal-2020 dataset and we select the significant set of features by performing a

statistical analysis on features. To enhance the Android malware detection mechanism

machine learning (ML) and deep learning (DL) techniques are implemented but most of

them perform binary classification or consider fewer number of malware classes. The

dataset mattered a lot in the detection mechanism of Android malware. The CIC-AndMal-

2020 dataset is a newly generated dataset that consists of 14 malware categories and 141

features. Most of the research consider fewer number of malware classes to detect

Android malware.

1.2 Research Gap

3

Android is the in-demand operating system and with an increase in its users, the security

of Android smartphones is important to keep out malware attacks from acquiring sensitive

information. To alleviate this threat several initiatives have been undertaken to analyze

malware. There are three types of android malware analysis techniques which are static

analysis, dynamic analysis and hybrid analysis [7]. Static analysis extracts detailed

information from APK without executing it and utilizes requested permission to identify

threats in applications but detecting malware exclusively with permission may not

guarantee a high detection rate [8]. The dynamic analysis performs behavioral modeling

of the APK on run time by executing the code on an Android emulator or device. The

advantage of dynamic analysis over static analysis is in code obfuscation and real-time

monitoring, [9][10][11]. The hybrid analysis combines both static features and dynamic

features to detect android malware but majority of the studies has consider few number

of malware classes (Adware, Ransomware, Scareware, and Trojan-SMS malware

categories) to perform multiclass classifications [7] [12][13][14]. Malware is anticipated

to get more complex in the future and malware developers employ novel encryption

methods that can make the detection of malware difficult [15]. Malware developers use

various strategies to avoid static analysis (encryption, code obfuscation, etc.) but dynamic

analysis is tolerant to such strategies and provides more insight into malware which can

improve detection capabilities [16][17]. Researchers have developed several machine

learning (ML) and deep learning (DL) based algorithms focusing dynamic analysis to

identify malware categories but earlier studies were focused on binary classification

[18][19][20][21][22][23][24][25]. With the rapid advancement in technology, malware

also become more sophisticated to detect, due to this data scientists developed datasets

that contain samples of malware categories and malware families [26][27]. Researchers

analyze newly generated datasets using machine learning (ML) and deep learning (DL)

based techniques but the majority among them considered fewer number of features

(mostly API and memory features) as compared to features present in newly developed

datasets or less number of malware classes to detect malicious activities [28][29][30]

[31][32]. Deep learning algorithms are more effective than machine learning algorithms

in the scenario that data is large and high dimensional [33] [34]. There is a need for deep

learning (DL) based models that can efficiently classify a variety of dynamic features and

malware categories with a multi-class classification.

4

1.3 Problem Statement

Malware analysis datasets are large in size due to several features and available examples.

Deep learning-based models generally outperform machine learning techniques when

datasets of larger size are available. The majority of existing studies consider a limited

number of features and malware categories using static analysis-based datasets. Android

malware analysis using datasets based on feature extraction from dynamic analysis is

more robust as compared to static analysis resulting in datasets. We need to analyze how

we can consider a broader range of malware categories, use dynamic analysis resulting

datasets, and consider deep-learning models with optimal configuration to improve

results.

1.4 Research Questions

RQ 1: How can we consider more dynamic features for multiclass classification?

RQ 2: How can we use deep learning models for multiclass classification to improve the

accuracy and performance of Android malware detection considering dynamic features

analysis?

1.5 Research Objectives

1. To consider the dynamic features to detect Android malware and perform multiclass

classification.

2. To develop a deep learning model that can improve accuracy (performance) by

considering 13 malware categories for multi-classification.

1.6 Contribution of the study

This section of the thesis describes the contributions resulting from the proposed study

 The CIC-AndMal-2020 is a newly developed dataset to perform multi-class

classification.

 We perform statistical analysis on the dataset by performing p-value analysis and

identifying the correlation of features of the dataset.

5

 This study performs multi-class classification using a deep learning algorithm by

considering all features and malware categories of the dataset.

 This study also performs statistical analysis of the model by identifying the bias

and variance by experimenting with different hyper parameters, hidden layers,

and activation functions.

 We evaluate the performance of the proposed algorithms by identifying accuracy,

precision, AUC-ROC analysis, recall, and F1-score.

 We compare the results of the best-performing model with existing studies.

1.7 Thesis Outline

The arrangement of this thesis is described below.

 Chapter 2 addresses the literature review related to Android malware concerning

dynamic analysis based on deep learning and machine learning algorithms.

 Chapter 3 addresses the research methodology, implementation, and research

processes regarding the proposed study.

 Chapter 4 addresses the details of implementation and results. We also performed

a comparative analysis with existing studies.

 Chapter 5 addresses the conclusion and future work.

6

CHAPTER 2

LITERATURE REVIEW

This chapter presented the literature review on Android malware detection using dynamic

analysis techniques. This research primarily concentrates on the multiclass classification

of dynamic feature analysis based on deep learning. The algorithms, validation methods,

and performance evaluation metrics used in dynamic analysis based on ML and DL were

discussed. Lastly, we presented existing datasets. This chapter concludes with an open

research gap.

2.1 Android Malware Detection Techniques

Android malware detection analysis consists of three approaches i.e., static, dynamic, and

hybrid analysis. The static analysis analyzes code to detect malicious behavior without

executing the APKs in an Android virtual device or real-time device. It extracts detailed

information (signatures) from APK (Android Application kit). The execution of code in

an Android virtual device or real-time device is considered by Dynamic Analysis. It

analyzes the behavior of the APK file on run time. The advantages of dynamic analysis

include dynamic code loading detection and record of run time application behavior [5].

2.2 Android Malware Detection w.r.t Dynamic Analysis

This section discusses the existing studies concerning Android malware detection using

dynamic analysis.

2.2.1 Android Malware Detection Based on Machine Learning

There are several approaches suggested to discover Android malware analysis based on

ML. These approaches are further distinguished into multi-class and binary classification.

7

2.2.1.1 Binary Classification

Authors develop a dataset and apply a set of ML classification techniques which are NB,

Decision Tree (J48), RF, SL, and k-star [35]. The dataset consists of 11000 Android

applications out of which 6971 are malware samples and the rest are benign samples the

study extracted 123 dynamic permissions from the dataset and performed binary

classification on it. The experimental results achieved an accuracy of 99.7% with the SL

machine-learning technique. This study developed the largest dataset till then and gives

the highest accuracy of previously proposed approaches but lacks discussion about multi-

class classification.

Authors develop a dynamic syscall-capture system that extracts system call traces from

the application during their interaction with a phone on runtime [23]. Due to this, 50

malicious and 50 benign applications are collected by them from the Android malware

genome project and Google Play Store respectively to process them into aggregate

datasets. The experimental results showed that Decision Tree Algorithms gave 85% and

Random Forest gave 88% of accuracy.

A comparative analysis was performed by authors on emulator-based vs device-based

Android malware detection [36]. The study shows 23.8% more efficient analysis of

Android applications and extraction of features from mobile devices as compared to

emulated environments. The dataset consists of 2444 Android applications, out of which

1222 malware samples were collected from the Genome project and benign samples were

collected from Intel Security. The study performed information gain to extract the top

100 features which consist of API calls from the dataset. The author applied machine

learning algorithms that as RF, NB, Multilayer Perceptron, SL, J48 decision tree, PART,

and SVM (linear) for binary classification. The experimental results gave 0.926 F-

Measure for phone-based analysis, 93.1% TPR, and 92% FPR with the RF classifier.

Authors proposed host host-based detection system called ServiceMonitor, which

dynamically detects malware on mobile phones [37]. The ServiceMonitor used the

Markov chain model to analyze how applications request services from mobile phones

and transform them into feature vectors. The proposed study developed a dataset

composed of 8034 malware samples obtained from Androzo, Drebin, and Genome

Project. The benign samples which were of 10024 in size were collected from Google

Play. This study performed Principal Component Analysis (PCA) to extract 200 features

8

from a dataset having maximum variance. The RF classifier is used for binary

classification. 96.7% accuracy was achieved in the experimental results.

The authors proposed the selection of relevant attributes for improving locally extracted

features using classical feature selectors (SAILS), which is a feature selection technique

[38]. The proposed study used a dataset composed of 4949 samples, 2475 were benign

and 2474 were malware applications from Drebin. The features consist of system calls

extracted during the executions of applications. The experimental results show reformed

values for evaluation metrics as compared to conventional feature selection methods for

ML classifiers that is LR, CART, RF, XGBoost, and DNN with a recall rate of 24.79 %to

92.2%, and a true positive rate is reported from 95.2 and 99.79%.

A dynamic analysis technique in Android malware detection known as SelFDroid was

proposed by the authors in [39]. The suggested approach consists of the collection of data,

extraction, and selection of features, and classification process. The study collected 200

Android applications to develop a dataset, 100 were malware samples collected from

Androzo datasets and 100 were benign applications collected from APKPure. The system

calls, Network Packets, CPU Usage, and Battery Usage features were extracted from

applications in an emulated environment. This study used a Sequential Minimal

Optimization (SMO) classifier to evaluate results and achieved 91.7% accuracy, 93.1%

precision, 90.0 recall, and 8.3 error rate.

The authors proposed a dynamic analysis approach called DATDroid [40]. In this

methodology, the authors collected 200 dataset samples from which 100 samples were

benign, collected from the APKPure market and 100 were malicious which were collected

from Genome Project. The five features were extracted which included system call, errors

and time of system call process, CPU usage, memory, and network packets. The

experimental results gave an accuracy of 91.7%, a precision of 93.1%, and a recall rate

of 90.0% by using the Random Forest algorithm.

The authors proposed a two-stage mixed detection model which consists of RF and

Markov models. The RF model is to detect ransomware [41]. The study extracted 30967

features out of a total of 6393 by dynamic analysis from 7 categories that is Windows

API call stats, Registry keys operations, file system operations, Strings, File extensions,

Directory operations, and Dropped file extensions. The machine learning algorithm i.e.

RF is used to achieve an accuracy of 97.3% with 4.8% FPR and 1.5% FNR.

9

A detailed analysis is being done to analyze all categories of dynamic analysis and their

features by using different filter and wrapper methods [18]. The CIC-AndMal-2020

dataset is being used. This paper is focused on the dynamic analysis part of the dataset.

The Information Gain and Backward elimination methods are used to find the categories

of features with the highest significance which are Memory and API. Constant feature

and Genetic Algorithm techniques are used to identify a feature of high significance from

the API and Memory category and hence 35 features are extracted (11 from Memory and

24 from the API category). Random Forest is applied for classification and the number of

trees is set to 5. The F1 score of the system is increased to 0.82 after the removal of

irrelevant features.

The author presented entropy-based dynamic behavior analysis for Android malware

detection is being done on six classes of features extracted from the CIC-AndMal-2020

dataset [11]. The study extracted 141 dynamic features i.e. 105 API features, 2 battery

features, 4 network features, 1 process feature, and 6 logcast features after executing APK

files in the sandbox environment. The Shannon entropy is computed for every malware

sample before and after rebooting to understand behavior changes. The RF classifier is

used to classify malware categories with 0.984 precision and 0.983 recall values.

The author proposed web based framework, which detects malware from Android devices

MLDroid [21]. The study collected 56,871 samples from AndroMalShare and 1200

Android Malware Genome projects and developed a dataset consisting of 50,000 unique

samples. The study extracts 1532 permissions and 310 API calls from the dataset. The

features are then divided into 30 unique feature sets. The feature selection approaches are

Gain-ratio, Chi-Squared test, Information gain, OneR, PCA, and Logistic Regression

applied to the feature. The study also applied feature subset selection approaches which

are Correlation-based, Rough set, Consistency subset evaluation approach, and Filtered

subset evaluation on distinct feature sets. The study implemented 21 different ML

algorithms which are SVM, NB, RF, MLP, LR, BN, AB, decision tree (DT), KNN, deep

neural network (DNN), self-organizing map (SOM), Kmean, farthest first clustering (FF),

filtered clustering (FC), density-based clustering (DB), J48? YATSI (Y-J48), SMO

YATSI (Y-SMO), MLP YATSI (Y-MLP), best training ensemble approach (BTE),

majority voting ensemble approach (MVE), and nonlinear ensemble decision tree forest

approach (NDTF) to find the suitable model to detect android malware. The experimental

results show that models developed by considering features selected by the feature

10

selection approach as an input can detect malware more effectively rather than models

developed by using all extracted feature sets and gave the highest accuracy of 98.8%.

The author proposed an Android malware detection model based on APIs and permission

features [19]. Two datasets are used, The first one is the Malgenome dataset, which

consists of 3800 Android applications (1260 malware apps, 2539 benign apps, and 3800

applications with permissions and API calls) and the second one is the Maldroid dataset

which consists of 11599 samples categorized as benign, adware, banking malware, and

mobile riskware. A detailed analysis is being done on existing ML classification models

from which KNN, SVM, NB, and DT are selected to perform classification. The result

shows an accuracy of 86% on the Maldroid dataset and a precision of 99% on the

Malgenome dataset with SVM.

Authors have proposed a dynamic analysis framework, called Android, which can detect

malware and classify malware families based on multiple types of dynamic features [42].

The 2 datasets are used, the first one consists of the Drebin dataset, which consists of

5560 malicious applications and 8806 benign applications gathered from different sources

i.e. Google Play and Androzo called M1, and the second one consists of 5000 benign and

5000 malicious applications gathered from Androzo called M2. EnDroid extracts 58709

total features from the dataset and chi-square feature selection method is used to select

5000 features from it. Multiple ML models are applied for classification and Stacking

outperforms others giving the F-Measure of 0.9521 for M1 and 0.9642 for M2.

2.2.1.2 Multi-Class Classification

The systematic and functional approach is being use identify malware classes and families

on dynamic layers [43]. The CIC-AndMal-2020 dataset is being used. The paper focused

on the dynamic analysis (before rebooting) part of the dataset. 141 features are being

extracted from 6 characteristics (Memory, API, Network, Battery, Logcat, and Process)

for dynamic analysis. The comparison between machine learning techniques (Decision

tree (J48), NB, SVM, AB, LR, KNN, RF, and Multilayer Perceptron (MLP)) is being

done to evaluate the effectiveness of the proposed model. RF shows an accuracy of

96.86% and becomes the most effective classifier than others in the malware

categorization phase while in malware family classification RF shows an accuracy of

99.65%. After comparison, the proposed model (Random Forest) shows better accuracy

11

than existing models by accurately classifying 180 malware families and 14 malware

categories.

The study developed an ensemble-based machine-learning model for multiclass

classification to detect Android malware [31]. The study used the CCCS-CIC-AndMal-

2020 dataset. The dataset consists of 14 malware classes and 141 features. The study only

considers 12 malware classes and 45 features out of 141 for multi-class classification.

The study used an ensemble ML model composed of RF, KNN, MLP, Decision Trees,

SVM, and LR classifiers. The model used a voting mechanism to identify malware

classes. The experimental results show an accuracy of 95% of accuracy.

The study developed a framework for dynamic analysis called EnDroid [44]. EnDroid

framework is composed of an ensemble-based machine learning algorithm. The study

considered a dataset to show the effectiveness of the proposed framework. Dataset 1

consists of 8806 benign applications and 5213 malicious applications gathered from

Androzoo and applications collected from AndroZoo. The framework extracts 58709

dynamic behavior from dataset 1 but after applying chi-square only 5000 remain as

features. The features consist of system calls. The experimental results show that the M1

dataset has achieved 0.9735 F-measure, and 0.9682 AUC, whereas on the M2 dataset,

0.9830 F-measure and 0.9702 AUC are achieved.

Table 2. 1 Selected Studies of ML

Ref Dates Machine

Learning

Features Dataset Performance

Metrics

Limitations

Islam et al.

2023 [31]

2023 Ensemble Model API, Memory,

and Network

CIC-AndMal-

2020

Acc 95% Only consider

45 features out

of 141 and

performed ML

HashSem et

al. [43]

2022 Random forest CIC-AndMal-

2020

Acc 96.86% Performed ML

[18] 2022 Random forest APIs and

Memory

CIC-AndMal-

2020

F1 0.82 Performed

binary

classification

with ML

12

Amer et al.

[19]

2022 KNN, SVM,

NB, and

decision tree

APIs and

permission

Malgenome

(1260 malware

apps, 2539

benign apps)

and

Maldroid(1159

samples)

Acc 86% on

the Maldroid

dataset and

precision of

99% on the

Malgenome

dataset.

Performed

binary

classification

[20] 2021 Random forest Memory, API,

Network,

Battery, logcat,

and Process.

CIC-AndMal-

2020

Precision

0.984 and

0.983 recall

values

Permorfed

binary

classification

Thangaveloo

et al. [39]

2021 Sequential

Minimal

Optimization

(SMO)

System calls,

CPU usage,

memory usage,

and network

packets.

Genome

Project by

Zhou and

Jiang

Accuracy

91.7,

Precision

93.1, Recall

90.0, Error

Rate 8.3

binary

classification is

performed with

ML

Ananya et

al.[38]

2020 LR, CART, RF,

XGBoost, and

DNN

System calls A total of

4949 samples

comprising

2475 benign

and 2474

Drebin

applications

Recall rate of

24.79 %to

92.2% and a

true positive

rate is

reported from

95.2 and

99.79%.

binary

classification is

performed with

ML

Hwang et al.

[41]

2020 Random Forest API Calls Sample size of

2,507 from

ransomware

and 3,886

from the

normalware

group.

Acc 97.3%,

4.8% FPR

and 1.5%

FNR

binary

classification is

performed with

ML

Thangaveloo

et al. [40]

2020 RF System calls,

CPU usage,

memory usage,

and network

packets.

Genome

Project by

Zhou and

Jiang

accuracy of

96.67% binary

classification is

performed with

ML

Salehi et al.

[37]

2019 Random forest 200 features 9560 samples,

from 194

different

families,

obtained from

AndroZoo,

Drebin, and

96.7%

Accuracy
binary

classification is

performed with

ML

13

Malware

Genome

datasets

Mahindru et

al. [35]

2017 Simple Logistic 123 unique

permissions

(Default

permissions,

Development

tools, Hardware

control, Network

communications,

Phone Calls,

Services that

cost money,

storage, System

tools, accounts,

messages, and

Personal

information)

11,000

samples (out

of which 6,971

are malware

samples and

the rest were

benign)

Accuracy

99.7%

Performed

binary

classification

Alzaylaee et

al. [36]

2017 Random Forest API Calls Android

malware

genome

project and

Intel Security

(McAfee

Labs).

0.926 F-

measure

93.1% TPR

92% FPR

Binary

Classification

Performed

Bhatia et al.

[23]

2017 Random Forest System calls 50 malicious

samples from

Genome

Project and 50

benign

samples from

the Google

Play Store

88%

Accuracy

Performed

Binary

classification

2.2.2 Android Malware Detection Based on Deep Learning

Numerous deep learning-based methodologies have been suggested to identify Android

malware. These approaches are further divided into binary classification and multi-class

classification.

14

2.2.2.1 Binary Classification

Authors have proposed a dynamic analysis method named the Component Traversal

method, which can automatically execute the entire Android application code [45]. The

study has extracted Linux kernel system calls from executing applications with the help

of dynamic analysis. The DL architecture-based model Stacked AutoEncoder (SAEs) is

used to learn and identify Android malware patterns. For the experimental study, the

dataset collected from Comodo Cloud Security Center consists of 1500 benign apps and

1500 Android malware. A comparison between traditional ML models and the DL model

is performed. The DL model outperforms the ML model giving an accuracy of 93.68%.

Authors proposed a DL-Droid, a deep learning-based model that can detect Android

malware through dynamic analysis [46]. The dataset consists of 31,125 Android

applications that have been used out of which 11505 were malware samples and the rest

19620 were benign. The dataset is obtained from Intel Security (McAfee Labs).

Information Gain is used to determine the ranking of features i.e. API calls, Intents, and

Permissions. A comparative study is performed between the proposed model and 7 ML

models i.e. SVM Linear, SVM RBF, NB, SL, PART, RF, and J48 Decision Tree. DL-

Droid outperforms other classifiers by giving an accuracy of 97.76% with dynamic

features.

The study developed a DL-based NLP model to identify Android malware [47]. The study

developed an internet-based real-world dataset from Drebin and Google Play Store, which

is composed of 3567 malicious applications and 3536 benign samples. The study extracts

semantic information from system calls as features. The study used an LSTM classifier

and developed an NLP model for binary classification. The experimental results of the

model achieved 96.6%, 91.3%, 93.7%, and 9.3% of recall, precision, accuracy, and low

FPR respectively.

The study performed CNN-based android malware detection [48]. The study also

developed a technique of transformation that converts a series of event logs into flattened

data with two-dimensional features as CNN works best with flattened data. The study

collected non-malignant applications from Google Play and malware application samples

were collected from a private company consisting of 423 different kinds of malware

categories to develop their dataset. The dataset consists of 17,000 benign and 17,000

15

malicious applications. The features consist of API Calls. The experimental results show

93.012% accuracy and 12.9% FNR.

The study developed a DL-based CNN model [49]. The dataset consists of 5560

applications, 3536 trusted, and 3564 malware belonging to 179 different families. The

system calls were used as features. The experimental results give an accuracy ranging

between 0.85 and 0.95.

The study developed a DL-based hybrid model composed of CNN and RNN for malware

classification [50]. The authors developed a dataset by running malware samples on a

cuckoo sandbox. The API calls are considered features and used as behavior modeling.

The study used a numeric label against each malware sample from the VirusTotal web

service. The VirusTotal consists of different antivirus and each antivirus signature has its

methodology to label the malware sample. The experimental results show 85.6%

precision and 89.4% recall which gives better results than ML models.

The study proposed a tool called VizMal, which can picture the implementation steps of

Android applications and emphasize the traces of potentially malicious behavior [51].

The dataset consists of non-malignant apps from the Google Play Store and malware apps

from Drebin. It consists of 500 Android applications, which consist of 250 non-malware

applications and 250 of the remaining applications are malware. The features consist of

system calls. The study performed a questionnaire to validate the tool. The experimental

results show that VizMal basing LSTM gave better results than other ML classifiers by

giving 0.098 FPR and 0.551 FNR.

The study proposed a maxNet framework that consists of RNN architecture [52]. The

proposed algorithm can detect malware as soon as it occurs. The study developed a dataset

that consisted of 361,265 samples. The experimental results show the 0.96 F1-Score and

96.2% TPr at 1.6% FPr.

2.2.2.2 Multi-Class Classification

The study proposed a DL-based framework to identify Android malware [24]. The study

considered network features of the dataset CICAndMal2017 for Android malware

analysis. The dataset consists of Adware, Ransomware, Scareware, and SMS Malware

categories. The study developed a hybrid model based on CNN and LSTM. The

16

experimental results give the accuracy of 99.79%, 98.90%, and 97.29% on binary,

category, and family classification respectively.

The study performed a semi-supervised learning technique for DNN called pseudo-label

on the set of labeled and unlabeled observations [32]. The study developed their dataset

called CICMalDroid2020, which consists of 17341 samples of five malware categories

that are Adware, Banking, SMS, Riskware, and Benign. The experimental results show

97.84% F1-Score and 2.76% FPR.

The study proposed a Two-level Filtering learner Algorithm (TLFL) algorithm to

effectively identify mislabeled samples and remove them to enhance the malware

detection mechanism [30]. The study used the CCCS-CICandMal-2020 dataset but only

considered 4 categories that are Adware, Riskware, Trojan, and Zero-Day. The study only

considers 2465 out of 9504 features using ExtraTreesClassifier. The study conducted two

experiments, the first experiment only considered Adware, Riskware, and Trojan

categories by comparing CNN with the TLFL algorithm which gave an accuracy of 93.4

and 96.7% respectively. The second experiment considered Adware, Riskware, Trojan,

and Zero-Day categories by comparing CNN with the TLFL algorithm which gave an

accuracy of 83% and 90.61% respectively.

The study proposed the method BIR-CNN to identify Android malware [28]. The

proposed system consists of a CNN with batch normalization and inception residual. The

study only considered network features from the CICAndMal2017. The dataset is

composed of 429 malware samples and 5065 benign. The experiment result shows an

accuracy of 99.73% in binary classification, an accuracy of 99.53% in multi-class

classification by considering Adware, Ransomware, Scareware, and SMSmalware

categories, and an accuracy of 94.38% with 35 malicious families’ classifier 94.38%.

The study proposed a hybrid model that is a Deep Learning classifier called DL Dense

Classifier with LSTM [29]. The study used the CIC-AndMal-2020 dataset by considering

12 malware categories that are Adware, Backdoor, File Infector, PUA, Ransomware,

Riskware, Scareware, Trojan, Trojan-Banker, Trojan-Dropper, Trojan-SMS, Trojan-Spy,

and 141 features. The results from the experiment give an accuracy of 91%.

17

Table 2. 2 Selected Studies of DL

Ref Dates Deep

Learning

Features Dataset Performance

Metrics

Limitations

Gulbarga et

al. [29]

2023 DL+LSTM API,

Memory,

Network,

Battery and

logcat

CIC-AndMal-

2020

Acc 91%

Recall 90%

Precision

92%

F-Score 91%

Didn’t consider

Zero Day

Category

Liu et al. [28] 2022 BIR-CNN Network CIC-AndMal-

2020

Acc 99.73%

(binary)

Acc 99.53%

(multi class)

Acc 94.38%

(35 families)

Only consider

Adware,

Ransomware,

Scareware, and

SMSmalware

categories

Allogmani et

al. [30]

2022 Ensemble

Algorithm

2456

features

CICandMal-2020 Acc 96.7%

(Adware,

Riskware and

Trojan)

Acc 90.61%

(Adware,

Riskware,

Trojan, and

Zero-Day)

Only consider

Adware,

Riskware, Trojan,

and Zero-Day

categories

Gohari et al.

[24]

2021 CNN+LSTM Network CICAndMal2017 Acc of

99.79%,

98.90%, and

97.29% on

binary,

category, and

family

classification

respectively.

Only consider

Adware,

Ransomware,

Scareware, and

SMS Malware

Mahdavifar et

al. [32]

2020 DNN 17341

features

CICMalDroid2020 97.84% F1-

Score and

2.76% FPR.

Only consider
Adware, Banking,

SMS, Riskware

and Benign

18

Lorenzo et al.

[51]

2020 LSTM System

calls

250 non-malware

applications from

Google Play and

250 malware

applications from

Drebin

0.098 FPR

and 0.551

FNR

Binary

Classification

Performed

Alzaylaee et

al. [46]

2020 DL-Droid API calls,

Intents, and

Permissions

Intel Security

(McAfee Labs)

Accuracy

97.76% Binary

Classification

Xiao et al.

[47]

2019 LSTM System

calls

3567 malicious

applications from

Drebin and 3536

benign samples

from Google Play

Recall of

96.6% with

precision of

91.3%,

accuracy of

93.7% and

low FPR of

9.3%.

Binary

classification

Gronát et

al.[52]

2019 RNN 1383

features

dataset consisting

of 361,265

samples

0.96 F1-

Score and

96.2% TPr at

1.6% FPr.

Binary

classification

Hou et al.

[45]

2017 Stacked

AutoEncoder

(SAEs)

System

Calls

Comodo Cloud

Security Center

1500 benign apps

and 1500 Android

malware

Accuracy of

93.68%. Binary

Classification

Martinelli et

al. [49]

2017 CNN System

calls

3536 trusted and

3564 malware

belonging to 179

different families

accuracy

ranging

between 0.85

and 0.95

Binary

classification

Kolosnjaji et

al. [50]

2016 CNN + RNN API Calls 85.6% on

precision and

89.4% on

recall

Performed Binary

classification

Yeh et al. [48] 2016 CNN API Calls 17,000 benign and

17,000 malicious

applications

93.012%

accuracy and

12.9% FNR
Binary

classification

2.3 Android Malware Detection w.r.t Hybrid Analysis

This section discusses the existing studies concerning Android malware detection using

hybrid analysis.

19

2.3.1 Machine Learning

There are several approaches suggested to discover Android malware using hybrid

analysis based on ML.

2.3.1.1 Multiclass Classification

The author proposed Tree Augmented naïve Bayes which is TAN TAN-based hybrid

detection system [7]. The study considers 1650 malware Apps from Drebin, AMD,

Androozo, and GitHub repositories and 1650 benign Apps from Androozo and Google

Play. The study considers Trojan spy, Trojan SMS, Backdoor, Ransomware, and Adware.

The study considers API, permissions for static analysis, and system calls for dynamic

analysis. The study performed static analysis on samples using the APK tool and then

APKs were dynamically analyzed. The experimental study shows 99% accuracy.

The study proposed a novel framework for wrapping feature selection with the

combination of Random forest and greedy stepwise (RFGreedySW) [13]. The study used

the CIC-InvesAndMal2019 dataset. The static features are permissions and intents while

dynamic analysis are API calls and logs. The preprocessing of the feature is done with

the proposed framework and later ML models (RF, DT, and SVM RBF) are applied to

detect Android malware categories. The study considers Adware, PremuimSMS,

Ransomware, Scareware, and SMS malware. The experimental study shows that RF gives

an accuracy of 75% on dynamic layer and DT gives an accuracy of 91.8% on static

analysis.

2.3.2 Deep Learning

There are several approaches suggested to discover Android malware using hybrid

analysis based on DL. These approaches are further divided into binary and multiclass

classification.

2.3.2.1 Binary Classification

The author proposed a deep learning-based hybrid analysis malware detection algorithm

[25]. The hybrid DL model consists of DBN and GRU. The study used a benign dataset

which consist of 7000 samples from Google Play and APKpure. The malware dataset

consists of 6298 samples which is further divided into obfuscated malware gathered from

20

PRAGuard (collection of MalGenome and Contagio minidump datasets) and non-

obfuscated malware from VirusShare. The study extracted 351 features which are 303

static features (124 resource features and 179 semantic features) and 48 dynamic features

(API functions). The experimental results show an accuracy of 96.82 %.

2.3.2.2 Multiclass Classification

The author proposed a deep learning-based hybrid analysis malware detection model

which is DroidDetectMW [12]. The study considers the CICAndMal2017 dataset. The

dataset consists of Adware, Ransomware, Scareware, and SMS malware categories. The

static features include command strings, API calls, intents, and permissions and dynamic

features are system calls, cryptographic activities, dynamic approvals, and information

leakage. The study used feature selection techniques which are chi-square, fisher score,

and information gain to select relevant features from static and two-stage fuzzy

metaheuristic dynamic analysis. The comparative analysis is done with ML models which

are KNN, SMO, SVM, RF, DT, NB, and MLP, and the proposed model gives the best

result out of them of 95.4% accuracy in malware categories and 88% accuracy in malware

families.

The author proposed deep learning-based hybrid analysis to detect Android malware by

developing Res7LSTM [14]. The study used a hybrid model which consists of ResNet

(Residual Network) and LSTM. The study used the CICAndMal2017 dataset. The APKs

are first statically analyzed by binary classification and then resulting malware APKs

from it dynamically analyzed by performing multiclass classification. The study performs

binary classification with static analysis and multiclass classification with dynamic

analysis. The experimental study shows an accuracy of 94.04%.

Table 2. 3 Selected Studies of Hybrid Analysis

Ref Dates DL ML Features Dataset Performa

nce

Metrics

Limitations

Taher et

al. [12]

2023 EHHO-ANN command

strings, API

calls, intents

and

CIC-AndMal-

2017

Acc 95.4%

in malware

categories

Only consider

Adware,

Ransomware,

Scareware,

21

permissions

(static)

system calls,

cryptographi

c activities,

dynamic

approvals,

and

information

leakage

(dynamic)

and

SMSmalware

categories

Santosh

K. et al

[13]

2022 RF, DT, and

SVM RBF

permissions

and intents

(static) and

API calls

and logs

(dynamic)

CIC-

InvesAndMal2

019

accuracy

of 75% on

(dynamic)

DT acc of

91.8%

(static)

Only consider

Adware,

PremuimSMS,

Ransomware,

Scareware,

SMSmalware

Ding et

al. [14]

2021 ResNet +

LSTM

 CICAndMal20

17

Accuracy

94.04%.

Only consider

Adware,

Ransomware,

Scareware,

and

SMSmalware

categories

Surendra

n et al.

[7]

2020 Tree

Augmented

Naïve Bayes

API,

permissions

for static

analysis, and

system calls

for dynamic

analysis

1650 malware

and 1650

benign Apks

from Drebin,

AMD,

Androozo,

Github

repositories

99%

accuracy

Only consider

Trojan spy,

Trojan-SMS,

Backdoor,

Ransomware

and Adware

Lu et al.

[25]

2020 DBN + GRU 124 resource

features 179

semantic

features and

48 dynamic

features

(API

functions)

7000 samples

from Google

Play and

APKpure.

6298 samples

from

PRAGuard

Acc

96.82 %.

Binary

classification

performed

22

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Introduction

In this section, we concentrate on the preprocessing of the dataset. A suitable dataset is

relatively important for the detection of malware. The limitations of available studies are

discussed in chapter 2. To overcome the limitations, we develop a deep learning model

for multiclass classification.

This chapter explains the preprocessing steps of the dataset as well as the development of

a deep learning model. Additionally, the feature selection processes are also presented in

this chapter.

The preprocessing phase includes the cleaning of data, transformation, and normalization,

extracting, and selecting features. It is the prime phase and it needs a great amount of

effort and time. It not only augments the efficiency of the model system but also affects

the storage of the system [53].

3.2 Research Methodology

We performed applied research methodology which is presented in Figure 3.1. In this

applied research, the problems regarding CIC dataset cleaning, feature selection, and

multi-class classification of malware categories are discussed and solutions are

implemented.

23

 CIC-And-Mal-2020 Dataset Pre-Processing Test Train Split

Hyper-parameter Tuning Performance Measures Applying DL Model

 Results

Figure 3. 1 Proposed Methodology

24

3.3 Proposed Architecture

The proposed architecture is presented in Figure 3.2. Following are the research of

proposed research.

1. Analysis of existing proposed research of malware detection concerning ML and

DL is performed.

2. The problems are identified regarding the selection of features and multi-class

classification of malware android classes.

3. The Android malware detection system for multi-class classification using deep

learning has been developed.

4. Existing studies based on deep learning and machine learning are studied.

5. Pre-processing of the dataset is performed which consists of data cleaning.

6. Statistical analysis of the dataset is performed to obtain the features.

7. Features are passed as input to the DL algorithm. This study implemented a DNN.

8. Evaluation of the models is performed with different evaluation measures.

25

Figure 3. 2 Proposed Deep Neural Network Architecture

Datasets

Training

Data
(80%)

Test

Data
(20%)

Statistical

Analysis

Correlation

And

P-Value Analysis

DNN

Model

Dense (1024, RELU)

(L 2) = 0.001

Dropout (0.05)

Dense (512, RELU)

 (L 2) = 0.001

Dropout (0.05)

Dense (256, RELU)

 (L 2) = 0.001

Dropout (0.05)

Dense (128, RELU)

 (L 2) = 0.001

Dropout (0.05)

Dense (64, RELU)

 (L 2) = 0.001

Dropout (0.05)

Dense (13, SOFTMAX)

Predicted Malware

26

3.4 Dataset

We use CIC-And-Mal Dataset 2020, which is a publicly available dataset developed by

the Canadian Institute for Cybersecurity. The dataset consists of 200k benign and 200k

malware samples with 14 malware categories and 191 distinguished malware families.

We only consider the dynamic analysis part of the dataset which contains 141 features

that are further classified into logcat (6 features), API (105 features), Memory (23

features), battery (2 features), Network (4 features) and Process (1 feature). The dataset

consists of 53439 samples that are classified into 14 malware types including

No_Category, Riskware, Adware, Trojan, Zero_day, Ransomware, Trojan_Spy,

Trojan_SMS, Potentially Unwanted Apps (PUA), Scareware, File Infector,

Trojan_Banker, Trojan_Dropper. The division of malware categories labeled in the CIC

dataset is shown in Figure 3.3.

Figure 3. 3 Division of various malware categories in the dataset

Riskware

Adware

Trojan

Ransomware

Trojan_Spy

Trojan_SMS

Trojan_Dropper

PUA

Backdoor

Scareware

File Infector

Trojan Banker

Zero_Day

27

3.5 Preprocessing Phase

The pre-processing phase is an important part of data analysis and deep learning. It

includes normalization, data transformation, label encoding, and removal of outliers from

raw data.

3.5.1 Missing Data Handling

The use of missing value imputation is important as a dataset with missing values cannot

present accurate results. Imputation techniques are applied to fill in missing values of the

dataset to make it more comprehensive for the results of model training. The objective is

to reduce the impact of data that is missing on the validity of dataset results. We divided

the dataset into 10 data frames, each data frame consisting of 10 columns or features to

find the missing values from the dataset. We have used the mean approach from

ScikitLearn Library [54]. We have applied the "isnull().sum()" method to identify the

mean of the data frames. The mean of all data frames is zero resulting in no missing values

present in the dataset.

3.5.2 Data Normalization

Normalization is the process of transforming different variables of the dataset into a

standardized scale so that each feature can contribute equally to the training of the model

[55]. We have performed both feature scaling and outlier removal at the dataset.

3.5.2.1 Feature Scaling

In this study, we applied MinMax Scaler from ScikitLearn Library. MinMax Scaler takes

the maximum value as 0 and the minimum value as 1 and linearly scales the rest of the

features in between them using the formula as shown below.

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑋 − min (𝑋)

max(𝑋) − min (𝑋)

28

3.5.2.2 Outlier Handling

The observation or finding that differs from the majority of the data present in the dataset

is called an outlier [56]. As we are working on a dynamic nature dataset which is CIC-

AndMal-2020, it is highly skewed in nature. We have applied the Z-score to detect

outliers and later removed them using the formula as shown below. The vast difference

can be seen in Table 3.1 after applying outlier handling.

𝑋𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =
𝑋 − mean (𝑋)

𝑠𝑡𝑑(𝑋)

 Table 3. 1 Outlier Handling of Dataset

3.5.3 Label Encoding

Label encoding uses the Keras library to transform categorical labels into numerical

values through one hot encoding process [57]. The CIC dataset has malware categories

Malware Category Number of Samples with

Outliers

Number of Samples

After Removing Outliers

Zero Day 2146 1344

Trojan _Spy 1039 642

Trojan 4025 1935

Scareware 424 179

Ransomware 1550 1017

PUA 625 284

File_Infector 119 95

Trojan_Banker 123 81

Trojan_Dropper 733 494

Adware 5142 2930

Backdoor 546 296

Riskware 6792 3946

29

as labels which are converted into numerical values so that the machine can understand it

for multi-class classification.

3.5.4 Random Oversampling

The CIC-And-Mal 2020 dataset is highly imbalanced. Riskware has the most frequency

in the dataset whereas Trojan-Banker has the least frequency. The 1:58 is the ratio present

between them. Such imbalance figures affect the training of the model which eventually

will affect the prediction results. The approach to tackle the class imbalance problem is

to resample the dataset randomly. We have applied the Synthetic Minority Oversampling

Technique which is also known as SMOTE to balance the dataset. It generates artificial

instances from the minority class of the dataset to balance the class division of the dataset

[58]. The division of Android malware samples is shown in Table 3.1 and Figure 3.5

shows the effect of applying SMOTE.

Figure 3. 4 Results of Applying SMOTE on the Dataset

3.6 Train and Test Splitting

The training and testing split for cross-validation is accepted as the gold standard in the

training of ML models [59]. For a fair comparison, the dataset in deep learning is divided

into two parts: training and testing data or it can be called validation data. We use

evaluation metrics to assess the model on testing data after training it on training data.

We divided the dataset into 80 20 percent ratio of training and testing data respectively.

3.7 Model Development Phase

30

3.7.1 Deep Learning Algorithm

In this phase, we applied a DL-based algorithm which is a Deep Neural Network (DNN)

on the CIC-And-Mal 2020 dataset. To evaluate the performance and find the best possible

results, we applied different numbers of layers, hyper parameters, and activation functions

to develop the model. We iterate these steps until we get satisfying results. We selected

DNN algorithm to find optimal model for multi classification of malware classes.

3.7.2 Model Parameters

Activation functions, the number of layers, and hyperparameter tuning constitute the

model parameter.

3.7.2.1 Hyperparameter Tuning

The hyper parameter tuning is the most important phase of deep learning model

development. There is no set standard to select the hyperparameter, it is mostly based on

the nature and volume of the training dataset. To select the suitable parameters the

constraints of tradeoffs and limitations of memory were to be also considered [60]. In this

research, we have executed several experiments to get satisfactory results, we analyze the

parameter's values before recording the findings. As the size of the dataset increased after

applying SMOTE, it took 1 to 2 days to train the single model.

The hyperparameter consists of the following.

1) Batch Size: The amount of training samples used in one iteration is defined by the

batch size. The training dataset is divided into multiple batches and based on the error

calculated on each batch the model is updated [61]. We apply different batch sizes

from 64 up to 330. We performed several experiments and concluded 320 batch size

as it gives the best possible results. Although the larger the batch size the more amount

of memory space and processing time it will need

2) Epochs: The epoch indicates one pass through which the model passes through the

entire training data and calculates the loss function. Each epoch consists of one

forward and backward propagation. After each epoch, the model updated its

parameters according to the loss function [62]. In our research, we used the

EarlyStopping function to determine suitable epoch numbers for the training of the

31

model and to prevent overfitting of the model [63]. The EarlyStopping consists of two

parts.

 Monitor Metric: It consists of a metric that we have to monitor which is in

our case loss function.

 Patience Level: It consists of a value that we set and based on which it

analyzes sequential epochs with no enhancement on monitored metrics. We

set the value of 10.

 Early Stopping Condition: When the condition is met according to the

patience parameter, the training of the model stops immediately.

3) Drop Out: It is used to avoid overfitting in neural networks [64]. We experiment with

different dropout values from 0.05 up to 0.2.

4) Optimizer Function: The Optimizer function is used to calculate the loss function in

backpropagation. In our research, we use Adam as an optimizer function.

3.7.2.2 Hidden Layers

The complexity of neural networks depends on the number of layers. In our study, we

have experimented with 2 layers up to 9 layers architecture and analyzed the performance

of models based on hidden layers.

3.7.2.3 Activation Function

The activation function is applied to each neuron of the neural network. It is a

mathematical operation that describes the output of neurons concerning the weight of

input features. The generally applied activation functions in Deep Neural Networks are

sigmoid, hyperbolic tangent (tanh), and Rectified Linear Unit (ReLU).

Sigmoid: It is usually used in the output layer of classification either binary or multiclass

classification. It transforms a vector of numbers into probability distribution to predict

results and its range encompasses (0, 1) [65]. It is defined as the following expression.

𝑆(𝑥) =
1

1 + 𝑒−1

Rectified Linear Unit (ReLU): ReLU improves DNN learning on multi-dimensional

input. The benefit of ReLU in its activation functions is that it doesn't require any costly

32

computations, it just performs multiplication and comparison [66]. We use ReLU on

hidden layers of DNN, it trains significantly deep networks as compared to Sigmoid and

Tanh. It is calculated by the following expression.

𝑅𝐸𝐿𝑈 (𝑥) = max (0, 𝑥)

Hyperbolic Tangent: It is defined as a ratio of hyperbolic cosine and sine tangent [67].

Tan h =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 − 𝑒−𝑥

3.8 Evaluation Measures

In this research, we are implementing multi-class classification of malware classes and

we evaluate the proposed model using standard evaluation metrics that are F1-Score,

recall, confusion matrix, accuracy, precision, and AUC-ROC analysis. Detailed

explanations and standard formulas to measure them are as follows.

3.8.1 Accuracy

Accuracy gives a ratio of how frequently the model classifies correct instances which

makes the overall performance of the model. It is measured by the below equation.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

3.8.2 Precision

Prediction emphasizes on ratio of accurately positive predictive instances to total positive

instances. It is measured by the following metric.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

33

3.8.3 Recall

Recall metric is the ratio of accurately classified positive occurrences divided by the total

occurrence of positively identified. It is crucial when false-negative instances are more

significant than false negatives. It is calculated by the following formula.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

3.8.4 F1- Score

The mean of precision and recall value is the F1-score metric. It has ranges of 0 to 1. 1

represents optimal precision and recall, and 0 represents a value of recall and precision

will be as low as possible. The mathematical expression of the F1-score is as follows.

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑅𝑒𝑐 ∗ 𝑃𝑟𝑒𝑐

𝑅𝑒𝑐 + 𝑃𝑟𝑒𝑐

3.8.5 AUC-ROC Analysis

The area Under the Reciever Operating Characteristic Curve is known as AUC-ROC. The

curve is a graphical representation of the classification algorithm. It is the ratio of the

True positive rate and the False Positive Rate[68].

3.8.6 Confusion Matrix

The Confusion matrix consists of a table that gives the synopsis of many actual and

expected values that the model of classification generates for multi-class classification

performance.

34

CHAPTER 4

RESULTS AND EVALUATION

This section describes the DL-based detection of malware models concerning dynamic

analysis. The model consists of a DNN algorithm. We considered the dynamic analysis

part of the CIC-AndMal-2020 dataset and performed featured selection on it. We

performed correlation-based feature selection. This chapter consists of implementation

details of model development and evaluation of that model.

4.1 Statistical Analysis of the Dataset

4.1.1 P-Value Analysis

We perform a p-value analysis on the dataset. P value stands for probability value and it

signifies whether there is any association between two variables or not. The association

depends on the p-value, if the value is more than 0.05 then there is the likelihood to be no

association and vice versa. Under statistics gold standard, states that a p-value lower than

0.05 is considered significant [69].

4.1.2 Correlation

The dataset that has features with similar programming can correlate. Correlation is the

method to identify the relationship between two variables. We have performed the

Spearman correlation (p) and Pearson correlation (r) to measure the strength and direction

of the linear relationship between features. It can range from -1 to 1.

Correlation coefficients that range from 0.7 to 0.9 are considered highly correlated. To

train the model the redundant values need to be removed beforehand as they can affect

the results later. The value of >= ± 0.75 indicates a high correlation and allows us to

remove redundancy [70].

We find most of the features correlated except for a few. The python gives a warning that

is shown in Figure 4.1. According to the error message input array of the columns is

35

constant which means that 27 of the features out of 141 have constant values for samples.

So according to correlation and probability value, we dropped them out of the dataset and

performed experiments on the rest of the 114 features which is presented in Figure 4.2.

Figure 4. 1 Correlation of dropped features

Figure 4. 2 Correlation of 114 features

36

4.2 Experimental Setup

We utilize Jupyter Notebook for the execution of experiments of the proposed algorithm.

Python is commonly used with ML and DL as Python provides numerous built-in libraries

for visualization, classification, and analysis of data. Sklearn is a machine learning library

that is used to perform machine learning calculations. The NumPy library deals with

multi-dimensional arrays which is important for ML numerical operations and it also

stores data at run time. Panda library helps in data manipulation by providing data as data

frames. Tensor flow library is developed by Google which we used to develop the deep

neural network. It is a deep-learning library that is utilized to develop neural networks.

We also used Keras in the development of model development. Keras is an API for neural

networks developed to act as an interface in developing neural networks for several

frameworks of deep learning.

4.2.1 Pre-Processing Phase

This phase consists of data cleaning by removing outliers and data normalization.

4.2.1.1 Dataset

We consider dynamic analysis part of the CIC-AndMal-2020 dataset. Which consists of

141 features and 13 malware categories that are Backdoor, Trojan, PUA, Scareware,

Trojan-Dropper, Trojan-Spy, Zero-day, Ransomware, Trojan-SMS, Scareware,

Riskware, File Infector, and Adware. Figures 4.3 and 4.4 explain the structure and

description of a dataset.

Figure 4. 3 Dataset Structure

37

Figure 4. 4 Description of Dataset

4.2.1.2 Missing Data Handling

We first performed missing data handling by identifying null values present in the dataset.

We did not find any null values in the dataset as presented in Figure 4.5.

Figure 4. 5 Dataset without Null Values

4.2.1.3 Dropped Features

According to correlation we dropped 27 features out of 141 performed experiments and

trained the proposed model on the remaining 114 features as presented in Figure 4.6.

38

Figure 4. 6 Dropped Features

4.2.1.4 Data Normalization

The dataset is in the form of an alphanumeric state so we performed normalization on it

to transform it into a standard scale.

4.2.1.4.1 Feature Scaling

We applied the MinMax scaler to transform features between 0 and 1 as presented in

Figure 4.7.

Figure 4. 7 Feature Scaling of Dataset

4.2.1.4.2 Outlier Handling

The CIC-AndMal-2020 is highly skewed in nature so we performed outlier handling to

tackle this problem as presented in Figure 4.8.

39

Figure 4. 8 Outlier Handling of Dataset

4.2.1.4.3 Label Encoding

We performed Label encoding to transform categorical data into numerical data as

presented in Figure 4.9.

40

Figure 4. 9 Label Encoding of Malware Categories

4.3 Model Development

The model development phase consists of the following steps.

4.3.1 Train Test Split

The dataset is split into 80:20 ratios for train data and test data respectively.

Figure 4. 10 Tran Test Split

4.3.2 Algorithm for Deep Neural Network

The DNN model that is proposed, is composed of 114 features as input to input layer. It

consists of 5 hidden layers. The first hidden layer has 1024 neurons and 5 hidden layers

consist of 64 neurons. The value of the output layer is 13 as we are performing multi-

class classification.

41

4.3.2.1 DNN Algorithm

4.4 Results

The implementation of DNN is done by Python 3.10 version and Keras framework.

Furthermore, TensorFlow, Numpy, Sklearn, and Keras Turner were implemented. Jupyter

Notebook from Anaconda is used as an environment to develop the proposed algorithm

while Matplot library is used for visualization. We execute over 100 experiments with a

combination of various hidden layers (neurons), and hyper-parameters. The observations

are as follows.

𝑰𝒏𝒑𝒖𝒕: (𝐹𝑆)𝑛 𝑎𝑠 𝑎 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑎𝑛𝑑 𝑙𝑎𝑏𝑒𝑙𝑠𝑶𝒖𝒕𝒑𝒖𝒕: 𝑀𝑢𝑙𝑡𝑖-class

classification of malware categories

DNN Model: Create a deep neural network with hidden layers represented as L1…Ln

L1 : inp Dense (1024, ‘relu’, ‘l2(0.0001)’) Dropout (0.05)

L2 : Dense (512, ‘relu’, ‘l2(0.0001)’) Dropout (0.05)

L3 : Dense (256, ‘relu’, ‘l2(0.0001)’) Dropout (0.05)

L4 : Dense (128, ‘relu’, ‘l2(0.0001)’) Dropout (0.05)

L5 : Dense (64, ‘relu’, ‘l2(0.0001)’) Dropout (0.05)

Output Layer

Dense (13, ‘softmax’)

Training:

 model.compile(optimizer=’adam’,’loss=categorical_crossentropy’,

 metrics=[‘accuracy’])

 Early stopping: monitor ‘loss’,patience =10

 Train(NN, X_train, y_train, ‘epochs’,’batch_size=320’,callbacks=[earlystop])

Evaluate(Model, X_test,Y_test)

Return Multi-class classification of malware categories based on performance

metrics

42

4.4.1 DNN Results

To examine the impact of epochs, batch size, dropout, optimizer, layer count, and

activation functions. Different results have been acquired using the DNN algorithm.

Figure 4. 11 DNN Model Evaluation

Epochs: We have used the early stopping function to find out the best possible

combination of epochs to give the combination of the best possible results. We have given

the maximum number of values 1000 to the epochs so that the early stopping function

will train the model as much as possible and stop at when its conditions are met. Table

4.1 explains the results.

Table 4. 1 Effect of Epochs on Dataset

Batch Size: We experimented with different batch sizes to evaluate the impact of batch

size. The minimum batch size we consider is 64 and 320 batch size gives the best results.

Table 4.2 explains the results.

Layers Epochs DNN

 Accuracy Precision Recall F1-Score

5 203/1000 93.9 % 94 % 94 % 94 %

43

Table 4. 2 Effect of Batch Size on Dataset

Layers Batch

Size

DNN

 Accuracy

(%)

Precision

(%)

Recall

(%)

F1-S

(%)

5 64 92 93 93 93

5 128 91.2 92 92 92

5 256 92.84 93 93 93

5 320 93.9 94 94 94

 Drop Out: We examine the effect of dropout with different dropout rates. We

experimented with distinct dropouts presented in Table 4.3.

Table 4. 3 Effect of Drop Out on Dataset

Layers: The effect of several layers on the model has been examined. The results of

experiments with different numbers of layers are presented in Table 4.4

Layers Drop

Out

DNN

 Accuracy

(%)

Precision

(%)

Recall

(%)

F1-S

(%)

5 0.05 93.9 94 94 94

5 0.1 93.8 93 93 93

5 0.2 92.38 92 92 92

5 0.3 90.1 90 90 90

44

Table 4. 4 Effect of Layers on Dataset

Layers Training

Accuracy

DNN

 Accuracy

(%)

Precision

(%)

Recall

(%)

F1-S

(%)

3 92.9 92.4 93 93 93

4 96.16 93.3 93 93 93

5 96.3 93.9 94 94 94

6 94.8 91.5 92 92 92

7 94.8 92 93 93 93

4.4.2 Discussion

We analyze the effect of parameters of the DNN algorithm by performing several

experiments that give significant predictions to elaborate the results.

4.4.2.1 Deep Neural Network

The proposed DNN algorithm has obtained effective findings by modifying the

parameters of the model based on experimental results.

Number of Layers Effect on Model: The number of hidden layers has significantly

impacted the training accuracy of the model. When we increase the number of hidden

layers, the value of accuracy, precision, recall, and F1-Score also increases or decreases

accordingly. We use a geometric sequence with a ratio of 2 in adjusting the value of

neurons in models. The minimum number of neurons we use is 64 and the maximum is

4096. We selected 5 5-layer models out of all the experiments we conducted as it give

better results of evaluation metrics than others. The 5-layer model has a training accuracy

of 96.3 as compared to 3 layers which have a training accuracy of 92 and on 6 layers

model the training accuracy started to decrease from 96 to 94 as well as accuracy,

precision, recall and F1-score value also decreased as presented in Table 4.4. We achieve

a high accuracy of 93.9 at 5 layers which consist of neurons that are 1024, 512, 256, 128,

and 64 respectively.

Hyper Parameter Effect: The earlystopping function is used to identify the number of

epochs for each experiment. When we gave the standard value of epochs it did not give a

45

satisfactory result. By setting a patience value of 10 on the early stopping function and a

maximum value of 1000 we determine the number of epochs for each experimental

model.

The model has significantly affected by batch size. The accuracy of the model increases

with the increase in batch size before it surpasses threshold size. Later on, the accuracy

of the model starts dropping. In this research, we utilize 320 as a batch size that provides

significantly improved results than others. We utilize a geometric sequence with a ratio

of 2 in adjusting batch size values in experiments. The minimum count of batch size we

experimented with is 64 up to 512. We select the batch size of 320 which gives recall,

precision, and F1-Score of 94% and accuracy of 93.9% respectively as shown in Table

4.2. We use rate of dropout rate of 0.5,0.1,0.2 and 0.3. We obtained better results on 0.05

dropout that is 93.9, 94,94,94 of accuracy, recall, precision, and F1-Measure which are

presented in Table 4.3 respectively. The sigmoid function is used in the output layer and

in the hidden layers we use relu.

4.4.3 Confusion Matrix

The proposed model correctly classifies malware categories in their respective classes.

Figure 4.12 shows that the proposed approach performs distinguished for multi-class

classification. The proposed model can classify multi-class malware categories efficiently

while maintaining overall distinguished performance.

Figure 4. 12 Confusion matrix of the DNN Model

46

4.4.4 AUC-ROC Analysis

The ratio of the True Positive Rate and False Positive Rate is defined as the ROC

Curve. The ROC curve shows that the proposed algorithms accurately classify between

TPR and FPR. The AUC value is 1 of the proposed algorithm which means it is a

perfect classifier. Figure 4.13 presents the results.

Figure 4. 13 ROC-AUC Analysis of DNN

4.5 Statistical Analysis of Model

This division discusses the statistical analysis of the proposed DNN algorithm. The

experiments have been performed with several combinations of hyper parameters and

layers to find the best possible model which neither has overfitting nor under fitting.

4.5.1 Bias and Variance

To identify the best possible model we performed k-fold cross-validation on models

where the value of k =10. Through cross-validation, we find bias and variance of all

experimented models and plot it to get the model that is neither over fitted nor under

fitted. According to the bias and variance graph, the intersection point is close to point 5

so we select the 5-layer model which is presented in Figure 4.14

47

Figure 4. 14 Trade-off of Variance and Bias

4.6 Comparing Results with Existing Approaches

This division discusses the comparison of the proposed model with the existing studies.

Few studies applied the multi-class classification to detect Android malware concerning

dynamic analysis. One new malware category from the CIC-AndMal-2020 dataset which

is not detected before is detected in the proposed model. We perform a comparison

analysis of the proposed DNN model with existing models. The majority of existing

studies considered few malware classes or features. The proposed study surpasses

existing studies by performing statistics analysis of the dataset and model with a

proficient deep learning algorithm as presented in Table 4.5.

48

Table 4. 5 Comparison with Existing Approaches

Study Features Algorithm Malware

Categories

Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

Proposed API, Memory,

Network,

Battery and

Logcat

DNN 13 93.9 94 94 94

[29] API, Memory,

Network,

Battery and

Logcat

DL+

LSTM

12 91 92 90 91

[31] API, Memory,

Network

ML-

Ensemble

12 91 92 91 91

[28] Network BIR-CNN 4 99.53 - - -

[30] Network TLFL

Algo

4 90.61 - - -

49

CHAPTER 5

CONCLUSION

This section consists of future work and the conclusion of the thesis.

5.1 Conclusion

The Android is most demanding operating system. With its popularity, it also faces threats

against Android malware. Researchers used detection approaches to identify malicious

activities in APKs. It consists of two types of detection approaches which are dynamic

analysis and static analysis. This study is focused on the dynamic analysis of Android

malware. Researchers have proposed many ML and DL-based algorithms to identify

malware but the majority of the research is focused on binary classification but with

technology advancements, there is a need to identify malware categories with diverse

features.

This study proposed a deep learning-based deep neural network algorithm that can detect

13 malware classes (Backdoor, Trojan, PUA, Scareware, Trojan-Dropper, Trojan-Spy,

Zero-day, Ransomware, Trojan-SMS, Scareware, Riskware, File Infector, and Adware).

We train this model on CIC-AndMal-2020 which is a newly developed dataset via CIC.

It consists of 141 features and 13 malware categories. We performed statistical analysis

of the dataset by performing p-value analysis and correlation. Based on it we dropped 27

features out of 141 features and trained the model on the remaining 114 features

(Memory, API, Logcat, Battery, and Process). We compare our research with existing

studies which outperform them by giving an accuracy of 93.9% of accuracy, 94% of

accuracy, 94% of accuracy, and 94% of f1 score.

5.2 Future Work

In this research, we performed multi-class classification with a deep learning-based

algorithm on the newly developed dataset by the Canadian Institute of Cybersecurity i.e.

CIC-And-Mal-2020. Later on, we will develop our dataset by analyzing APKs in an

50

emulated environment and performing dynamic analysis. We can also identify zero-day

attacks with different deep learning algorithms as there is a need to identify newly

generated malware.

51

REFERENCES

[1] Stat Counter Global Stats, “Desktop vs Mobile vs Tablet Market Share

Worldwide Sept 2022 - Sept 2023.” [Online]. Available:

https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet

[2] Stat Counter Global Stats., “Mobile Operating System Market Share

Worldwide.” [Online]. Available: https://gs.statcounter.com/os-market-

share/mobile/worldwide

[3] “2023 Global Mobile Threat Report.”

[4] Y. Pan, X. Ge, C. Fang, and Y. Fan, “A Systematic Literature Review of Android

Malware Detection Using Static Analysis,” IEEE Access, vol. 8, pp. 116363–

116379, 2020, doi: 10.1109/ACCESS.2020.3002842.

[5] A. Kapratwar, “Static and Dynamic Analysis for Android Malware Detection,”

San Jose State University, San Jose, CA, USA, 2016. doi: 10.31979/etd.za5p-

mqce.

[6] R. Vinayakumar, K. P. Soman, P. Poornachandran, and S. Sachin Kumar,

“Detecting Android malware using Long Short-term Memory (LSTM),” in

Journal of Intelligent and Fuzzy Systems, IOS Press, 2018, pp. 1277–1288. doi:

10.3233/JIFS-169424.

[7] R. Surendran, T. Thomas, and S. Emmanuel, “A TAN based hybrid model for

android malware detection,” Journal of Information Security and Applications,

vol. 54, Oct. 2020, doi: 10.1016/j.jisa.2020.102483.

[8] H. Kang, J. W. Jang, A. Mohaisen, and H. K. Kim, “Detecting and classifying

android malware using static analysis along with creator information,” Int J

Distrib Sens Netw, vol. 2015, 2015, doi: 10.1155/2015/479174.

[9] K. McLaughlin and IEEE Computer Society., 2018 16th Annual Conference on

Privacy, Security and Trust (PST) : August 28-30, 2018, Belfast, Northern

Ireland, United Kingdom.

[10] A. Kapratwar, F. Di Troia, and M. Stamp, “Static and dynamic analysis of

android malware,” in ICISSP 2017 - Proceedings of the 3rd International

Conference on Information Systems Security and Privacy, SciTePress, 2017, pp.

653–662. doi: 10.5220/0006256706530662.

52

[11] I. T. Ahmed, N. Jamil, M. M. Din, and B. T. Hammad, “Binary and Multi-Class

Malware Threads Classification,” Applied Sciences (Switzerland), vol. 12, no. 24,

Dec. 2022, doi: 10.3390/app122412528.

[12] F. Taher, O. AlFandi, M. Al-kfairy, H. Al Hamadi, and S. Alrabaee,

“DroidDetectMW: A Hybrid Intelligent Model for Android Malware Detection,”

Applied Sciences (Switzerland), vol. 13, no. 13, Jul. 2023, doi:

10.3390/app13137720.

[13] G. P. G. & S. K. Santosh K. Smmarwar, “A Hybrid Feature Selection Approach-

Based Android Malware Detection Framework Using Machine Learning

Techniques,” in Cyber Security, Privacy and Networking, May 2022.

[14] C. Ding, N. Luktarhan, B. Lu, and W. Zhang, “A hybrid analysis-based approach

to android malware family classification,” Entropy, vol. 23, no. 8, Aug. 2021,

doi: 10.3390/e23081009.

[15] R. Sihwail, K. Omar, and K. A. Z. Ariffin, “A Survey on Malware Analysis

Techniques: Static, Dynamic, Hybrid and Memory Analysis,” vol. 8, pp. 4–6,

2018.

[16] O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach, “Dynamic malware analysis

in the modern era—A state of the art survey,” ACM Comput Surv, vol. 52, no. 5,

Sep. 2019, doi: 10.1145/3329786.

[17] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for malware

detection,” in Proceedings - Annual Computer Security Applications Conference,

ACSAC, 2007, pp. 421–430. doi: 10.1109/ACSAC.2007.21.

[18] S. Khalid and F. B. Hussain, “Evaluating Dynamic Analysis Features for Android

Malware Categorization,” in 2022 International Wireless Communications and

Mobile Computing, IWCMC 2022, Institute of Electrical and Electronics

Engineers Inc., 2022, pp. 401–406. doi: 10.1109/IWCMC55113.2022.9824225.

[19] E. Amer et al., “Using Machine Learning to Identify Android Malware Relying

on API calling sequences and Permissions,” 2022.

[20] D. S. Keyes, B. Li, G. Kaur, A. H. Lashkari, F. Gagnon, and F. Massicotte,

“EntropLyzer: Android Malware Classification and Characterization Using

Entropy Analysis of Dynamic Characteristics,” in 2021 Reconciling Data

Analytics, Automation, Privacy, and Security: A Big Data Challenge, RDAAPS

53

2021, Institute of Electrical and Electronics Engineers Inc., May 2021. doi:

10.1109/RDAAPS48126.2021.9452002.

[21] A. Mahindru and A. L. Sangal, “MLDroid—framework for Android malware

detection using machine learning techniques,” Neural Comput Appl, vol. 33, no.

10, pp. 5183–5240, May 2021, doi: 10.1007/s00521-020-05309-4.

[22] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “Emulator vs real phone: Android

malware detection using machine learning,” in IWSPA 2017 - Proceedings of the

3rd ACM International Workshop on Security and Privacy Analytics, co-located

with CODASPY 2017, Association for Computing Machinery, Inc, Mar. 2017,

pp. 65–72. doi: 10.1145/3041008.3041010.

[23] T. Bhatia and R. Kaushal, “Malware Detection in Android based on Dynamic

Analysis.” [Online]. Available: https://www.idc.com/prodserv/smartphone-os-

market-share.jsp

[24] M. Gohari, S. Hashemi, and L. Abdi, “Android Malware Detection and

Classification Based on Network Traffic Using Deep Learning,” in 2021 7th

International Conference on Web Research, ICWR 2021, Institute of Electrical

and Electronics Engineers Inc., May 2021, pp. 71–77. doi:

10.1109/ICWR51868.2021.9443025.

[25] T. Lu, Y. Du, L. Ouyang, Q. Chen, and X. Wang, “Android malware detection

based on a hybrid deep learning model,” Security and Communication Networks,

vol. 2020, 2020, doi: 10.1155/2020/8863617.

[26] Canadian Institute for Cybersecurity, “Android Malware Dataset (CIC-

AndMal2017).” Accessed: Dec. 30, 2023. [Online]. Available:

https://www.unb.ca/cic/datasets/andmal2017.html

[27] Canadian Institute for Cybersecurity (CIC), “CCCS-CIC-AndMal-2020.”

Accessed: Dec. 30, 2023. [Online]. Available:

https://www.unb.ca/cic/datasets/andmal2020.html

[28] T. Y. Liu, H. Q. Zhang, H. X. Long, J. Shi, and Y. H. Yao, “Convolution neural

network with batch normalization and inception-residual modules for Android

malware classification,” Sci Rep, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-

022-18402-6.

[29] M. I. Gulbarga, S. Cankurt, N. Shaidullaev, and A. L. Khan, “Deep Learning

(DL) Dense Classifier with Long Short-Term Memory Encoder Detection and

54

Classification against Network Attacks,” in Proceedings - 2023 17th

International Conference on Electronics Computer and Computation, ICECCO

2023, Institute of Electrical and Electronics Engineers Inc., 2023. doi:

10.1109/ICECCO58239.2023.10146604.

[30] E. Allogmani and D. P. Josyula, “Two-level Filtering Learner Applied to a Noisy

Malware Dataset,” in Proceedings - 2022 6th International Conference on

Intelligent Computing and Control Systems, ICICCS 2022, Institute of Electrical

and Electronics Engineers Inc., 2022, pp. 171–178. doi:

10.1109/ICICCS53718.2022.9788176.

[31] R. Islam, M. I. Sayed, S. Saha, M. J. Hossain, and M. A. Masud, “Android

malware classification using optimum feature selection and ensemble machine

learning,” Internet of Things and Cyber-Physical Systems, vol. 3, pp. 100–111,

Jan. 2023, doi: 10.1016/j.iotcps.2023.03.001.

[32] S. Mahdavifar, A. F. Abdul Kadir, R. Fatemi, D. Alhadidi, and A. A. Ghorbani,

“Dynamic Android Malware Category Classification using Semi-Supervised

Deep Learning,” in 2020 IEEE Intl Conf on Dependable, Autonomic and Secure

Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on

Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology

Congress (DASC/PiCom/CBDCom/CyberSciTech), IEEE, Aug. 2020, pp. 515–

522. doi: 10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00094.

[33] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.

7553. Nature Publishing Group, pp. 436–444, May 27, 2015. doi:

10.1038/nature14539.

[34] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning”,

doi: 10.1007/s12525-021-00475-2/Published.

[35] A. Mahindru and P. Singh, “Dynamic permissions based android malware

detection using machine learning techniques,” in ACM International Conference

Proceeding Series, Association for Computing Machinery, Feb. 2017, pp. 202–

210. doi: 10.1145/3021460.3021485.

[36] M. K. Alzaylaee, S. Y. Yerima syerima, and qubacuk Sakir Sezer, “EMULATOR

vs REAL PHONE: Android Malware Detection Using Machine Learning.”

[37] M. Salehi, M. Amini, and B. Crispo, “Detecting malicious applications using

system services request behavior,” in ACM International Conference Proceeding

55

Series, Association for Computing Machinery, Nov. 2019, pp. 200–209. doi:

10.1145/3360774.3360805.

[38] A. Ananya, A. Aswathy, T. R. Amal, P. G. Swathy, P. Vinod, and S.

Mohammad, “SysDroid: a dynamic ML-based android malware analyzer using

system call traces,” Cluster Comput, vol. 23, no. 4, pp. 2789–2808, Dec. 2020,

doi: 10.1007/s10586-019-03045-6.

[39] “SelFDroid: Selected Features in Dynamic Analysis Techniques for Android

malware Detection,” 2021. [Online]. Available:

https://www.researchgate.net/publication/356208018

[40] R. Thangaveloo, W. W. Jing, C. K. Leng, and J. Abdullah, “DATDroid: Dynamic

analysis technique in android malware detection,” Int J Adv Sci Eng Inf Technol,

vol. 10, no. 2, pp. 536–541, 2020, doi: 10.18517/ijaseit.10.2.10238.

[41] J. Hwang, J. Kim, S. Lee, and K. Kim, “Two-Stage Ransomware Detection

Using Dynamic Analysis and Machine Learning Techniques,” Wirel Pers

Commun, vol. 112, no. 4, pp. 2597–2609, Jun. 2020, doi: 10.1007/s11277-020-

07166-9.

[42] P. Feng, J. Ma, C. Sun, X. Xu, and Y. Ma, “A novel dynamic android malware

detection system with ensemble learning,” IEEE Access, vol. 6, pp. 30996–

31011, 2018, doi: 10.1109/ACCESS.2018.2844349.

[43] A. Hashem, E. Fiky, M. A. Madkour, and A. El Shenawy, “Android Malware

Category and Family Identification Using Parallel Machine Learning”, doi:

10.22059/jitm.2022.88133.

[44] P. Feng, J. Ma, C. Sun, X. Xu, and Y. Ma, “A novel dynamic android malware

detection system with ensemble learning,” IEEE Access, vol. 6, pp. 30996–

31011, 2018, doi: 10.1109/ACCESS.2018.2844349.

[45] S. Hou, A. Saas, L. Chen, and Y. Ye, “Deep4MalDroid: A deep learning

framework for android malware detection based on Linux kernel system call

graphs,” in Proceedings - 2016 IEEE/WIC/ACM International Conference on

Web Intelligence Workshops, WIW 2016, Institute of Electrical and Electronics

Engineers Inc., Jan. 2017, pp. 104–111. doi: 10.1109/WIW.2016.15.

[46] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “DL-Droid: Deep learning based

android malware detection using real devices,” Comput Secur, vol. 89, Feb. 2020,

doi: 10.1016/j.cose.2019.101663.

56

[47] X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah, “Android malware

detection based on system call sequences and LSTM,” Multimed Tools Appl, vol.

78, no. 4, pp. 3979–3999, Feb. 2019, doi: 10.1007/s11042-017-5104-0.

[48] C. W. Yeh, W. T. Yeh, S. H. Hung, and C. T. Lin, “Flattened data in

convolutional neural networks: Using malware detection as case study,” in

Proceedings of the 2016 Research in Adaptive and Convergent Systems, RACS

2016, Association for Computing Machinery, Inc, Oct. 2016, pp. 130–135. doi:

10.1145/2987386.2987406.

[49] F. Martinelli, F. Marulli, and F. Mercaldo, “Evaluating Convolutional Neural

Network for Effective Mobile Malware Detection,” in Procedia Computer

Science, Elsevier B.V., 2017, pp. 2372–2381. doi: 10.1016/j.procs.2017.08.216.

[50] B. H. Kang and Q. Bai, Eds., AI 2016: Advances in Artificial Intelligence, vol.

9992. in Lecture Notes in Computer Science, vol. 9992. Cham: Springer

International Publishing, 2016. doi: 10.1007/978-3-319-50127-7.

[51] A. De Lorenzo, F. Martinelli, E. Medvet, F. Mercaldo, and A. Santone,

“Visualizing the outcome of dynamic analysis of Android malware with

VizMal,” Journal of Information Security and Applications, vol. 50, Feb. 2020,

doi: 10.1016/j.jisa.2019.102423.

[52] P. Gronát, J. Aldana-Iuit, and M. Bálek, “MaxNet: Neural network architecture

for continuous detection of malicious activity.”

[53] J. J. Davis and A. J. Clark, “Data preprocessing for anomaly based network

intrusion detection: A review,” Computers and Security, vol. 30, no. 6–7. pp.

353–375, Sep. 2011. doi: 10.1016/j.cose.2011.05.008.

[54] 2016 4th International Symposium on Digital Forensic and Security (ISDFS).

IEEE, 2016.

[55] D. Singh and B. Singh, “Investigating the impact of data normalization on

classification performance,” Appl Soft Comput, vol. 97, Dec. 2020, doi:

10.1016/j.asoc.2019.105524.

[56] Harika Bonthu, “Detecting and Treating Outliers | Treating the odd one out.”

Accessed: Dec. 18, 2023. [Online]. Available:

https://www.analyticsvidhya.com/blog/2021/05/detecting-and-treating-outliers-

treating-the-odd-one-out/

57

[57] et al F. Chollet, “Keras.” Accessed: Dec. 18, 2023. [Online]. Available:

https://keras.io/

[58] A. Fernández, S. García, F. Herrera, and N. V Chawla, “SMOTE for Learning

from Imbalanced Data: Progress and Challenges, Marking the 15-year

Anniversary,” 2018.

[59] J. Tan, J. Yang, S. Wu, G. Chen, and J. Zhao, “A critical look at the current

train/test split in machine learning,” Jun. 2021, [Online]. Available:

http://arxiv.org/abs/2106.04525

[60] R. Bardenet, M. Brendel, B. Kégl, M. Sebag, and S. Fr, “Collaborative

hyperparameter tuning,” 2013.

[61] S. L. Smith, P.-J. Kindermans, C. Ying, and Q. V. Le, “Don’t Decay the Learning

Rate, Increase the Batch Size,” Nov. 2017, [Online]. Available:

http://arxiv.org/abs/1711.00489

[62] D. Thomas, C. Maraston, R. Bender, and C. Mendes De Oliveira, “THE

EPOCHS OF EARLY-TYPE GALAXY FORMATION AS A FUNCTION OF

ENVIRONMENT.”

[63] et al F. Chollet, “EarlyStopping.” Accessed: Dec. 25, 2023. [Online]. Available:

https://keras.io/api/callbacks/early_stopping/

[64] N. Srivastava, G. Hinton, A. Krizhevsky, and R. Salakhutdinov, “Dropout: A

Simple Way to Prevent Neural Networks from Overfitting,” 2014.

[65] J. Han and C. Moraga, “The Influence of the Sigmoid Function Parameters on the

Speed of Backpropagation Learning.”

[66] F. Farhadi, Learning activation functions in deep neural networks. Ecole

Polytechnique, 2017.

[67] B. Karlik and A. V. Olgac, “Volume (1): Issue (4).”

[68] “AUC”.

[69] R. A. Fisher, Statistical methods for research workers. Oliver and Boyd:

Edinburgh, 1925.

[70] J. Han, J. Pei, and H. Tong, Data mining: Concepts and techniques. Morgan

kaufmann., 2022.

58

APPENDIX

Table 1 P Value of 141 Features of Dataset

59

60

61

