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ABSTRACT 

The exponential growth of Internet of Things (IoT) services and ecosystems is recently 

emerged with a novel type of communication network known as Low Power Wide Area 

Network (LPWAN). This standard enables the low power long range communication 

at low data rate. Besides, Long Range Wide Area Network (LoRaWAN), is a recent 

standard of LPWAN that incorporates LoRa Wireless into a networked infrastructure. 

Consequently, Quality of Service (QoS) efficient service provisioning is a major 

challenge due to highly dense network environment, limited battery lifetime of LoRa 

based End Devices (EDs), spectrum coverage and data collisions. Intelligent and 

efficient service provisioning is a dire need of network to streamline and address these 

problems. This study proposes a novel and Intelligent Learning (IL) based framework 

for efficient service provisioning without placing any extra burden on the network and 

its resource constraint LoRaWAN EDs. The proposed framework intelligently learns 

from varied underlying potential parameters such as real-time Packet Error Rate, data 

throughput, data delay, data collisions and energy consumption to improve the overall 

network performance. The proposed framework is extensively simulated and evaluated 

with current state of the art benchmark algorithms using standard and extended 

evaluation metrics. Slotted Aloha with Markov chain model mitigate collision and 

enhanced performance of LoRaWAN by 38% in terms of data throughput. Results of 

Slotted Aloha with Markov chain model is compared with Pure Aloha used by 

conventional LoRaWAN. Adaptive Scheduling Algorithm (ASA) with Gaussian 

Mixture Model (GMM) is extensively compared with conventional LoRaWAN and 

Dynamic PST (Priority Scheduling Technique). ASA with GMM enhanced 

performance in terms of delay by 5% in LoRaWAN environment. Dynamic 

Reinforcement Learning Resource Allocation significantly reduced energy 

consumption of EDs by 20% measured in Jouls. Results of Dynamic Reinforcement 

Learning Resource Allocation is compared with conventional LoRaWAN and Adaptive 

Priority-aware Resource Allocation (APRA). The proposed work is properly cross-

validated to utterly show unbiased results. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1   Overview 

  This chapter presents the introduction of Low Power Wide Area Network (LPWAN) and 

its usage in IoT networks. Chapter also covers the applications, problem background, problem 

statement, research questions, research objectives and study scope regourously. Chapter 

concludes with thesis organization and contents detail.  

1.2   Internet of Things 

The Internet of Things (IoT) is an interconnected network of smart devices, vehicles, 

buildings, and other items embedded with sensors and other technologies. These smart devices 

retrieve or collect and share data with other smart devices and the cloud, allowing them to 

perform a variety of functions and also provide a various services. The IoT has changed the way 

we interact with our surroundings by permitting smart nodes or users to remotely monitor and 

operate gadgets in our homes, businesses, and cities. Smart thermostats, security cameras, 

wearable fitness trackers, and even self-driving automobiles are examples of IoT gadgets. The 

massive amounts of data generated by these smart devices can be analyzed to take decision in 

industries as diverse as healthcare, transportation, and agriculture. While IoT has the potential 

to provide several benefits, such as enhanced efficiency and safety, it also poses privacy and 

security concerns. As the number of IoT devices grows rapidly, it is critical to address these 

concerns and ensure that they are developed and executed in a way that secures users data while 

also maintaining their faith in the technology. 

      Objects of daily life are connected with for data communication called Internet of Things 

(IoT). Requirements of next generation communication systems are high speed networks by 

using 5G and 6G data communication standards [1]. One of the major requirements of 5G 

network is End Devices (EDs) long lasting battery life and should be seamlessly integrated with 
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IoT services. Some other key challenges like scalability, cost effectiveness, battery life, 

processing power, indoor coverage, throughput, and persistent connection should be addressed 

[2]. The term IoT is generally used to specify diverse technologies and research disciplines that 

are somehow intended to enable the Internet to access the real world physical objects.  

      Several wireless technologies are used for diverse Machine-to-Machine (M2M) 

communications to achieve long range, low power and low data rate connectivity [3]. According 

to the survey conducted by Ericsson’s [4], by 2020 two billion terminals used for M2M 

communication are expected to use cellular infrastructure. The authors in [4], discuss all the 

issues like collision, throughput and delay. Different LPWAN standards are discussed and 

compared in terms of attributes like modulation scheme, MAC scheme, data rate, receiver 

sensitivity levels and in addictiveness. Several potential directions are also deeply observed and 

elaborated for future researchers. In another survey, approximately 28 % of Machine Type 

Communication (MTC) [5] is handled by LPWAN and 78 % of the market is captured by 3GPP. 

Several attributes are required to enable M2M communication such as long or short range, low 

bandwidth and ability to connect higher number of devices [6]. Comparison of different wireless 

technologies in terms of bandwidth and range are provided in Figure 1.1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.1 Comparison of Wireless Technologies in terms of Range and Bandwidth [7] 
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Wi-Fi is a popular wireless technology for Internet of Things smart devices [8]. It 

features high-speed connectivity and a wide area of coverage, making it perfect for smart home 

devices and other high-bandwidth applications. Bluetooth is a wireless technology with a 

limited range that is commonly utilized in IoT devices such as wearables, sensors, and smart 

home devices. It is simple to use and consumes little power, making it suitable for battery-

powered devices [8]. Zigbee is a low-power wireless technology designed for low-cost, low-

power Internet of Things (IoT) applications such as smart lighting, home automation, and 

industrial automation. It has a greater range than Bluetooth and requires less power, making it 

perfect for devices that run on batteries. Z-Wave is a wireless technology that was created 

primarily for home automation applications including smart thermostats, door locks, and 

security systems. It has a greater range than Zigbee and requires less power, making it perfect 

for devices that run on batteries.  

Some of the most popular IoT technologies used for several IoT applications are Radio 

Frequency Identifiers (RFID) [8], short-range Wireless Communication Technologies (NFC, 

Bluetooth, ZigBee), Wireless Sensor Networks (WSNs), Cellular Technology (2G, 3G, 4G) and 

Wireless Body Area Networks (WBANs) [9].  WBANs often send data from smart wearable 

devices to a central relaying hub or network server using low-power wireless technologies such 

as Bluetooth, Zigbee, or Wi-Fi. The data generated from the sensors can be used for a variety 

of applications, including medical monitoring, fitness tracking, and sports performance analysis. 

All these technologies have attributes of short range and low-power communication capabilities, 

which limit the coverage area within the buildings or inside an area. Some of the promising 

LPWAN standards are Sigfox, Weightless [10], Narrow Band Internet of Things (NB-IoT) [11] 

and LoRaWAN, which will be used in future to meet the requirements of different IoT 

applications. LoRaWAN is considered to be competitive LPWAN technology for different IoT 

use cases. Moreover, LoRaWAN gateway is able to extract the data from millions of IoT 

devices from a considerable range in kilometers. Due to short range of LPWAN, multi-hop 

communication is necessary to complete a desired task [12]. Cellular networks also suffered 

with the ubiquitous and transparent coverage, and to achieve this, IoT enabled devices need to 

be placed on desired location [13]. Massive connectivity of IoT devices with a Base Station 

(BS) may adversely affect the signal strength and control messages. These important concerns 

make current cellular network technologies unsuitable to fully support the envisioned IoT 

scenarios. Due to rapid increase in number of connected devices, another technology known as 
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LPWAN, has been introduced, which is best suited for massive connectivity scenarios. Similar 

to cellular networks, LPWAN technologies are characterized by long range, i.e., in kilometers. 

These networks are based on star topologies where EDs are connected directly to the gateway, 

which relays packets towards a network server. Several applications are are using LPWAN 

technologies such as in smart city applications, personal IoT applications, smart grid, consumer 

applications, smart metering, logistics, industrial monitoring and agriculture monitoring 

applications. Approximately 25 billion devices [14] are connected in 2020 with Internet where 

networks suffered from data analysis, data processing for intelligent decisions. The US National 

Intelligence Council (NIC) has embarked IoT as one of the six ‘‘Disruptive Civil Technologies” 

(National Intelligence Council, 2008) [15]. Figure 1.2 shows IoT applications.  

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1.2 Applications of LPWAN Technologies Across different Sectors 

1.3   IoT applications 

      The IoT smart devices will be approximately more than 200 billion by the end of 2025 

[16]. In [16], McKinsey Global Institute reported that the number of devices has grown 300% 

over the last 5 years. The area of smart homes is more dominant among all other area of IoT 

networks. IoT applications for smart city make life much easier with smart devices for water 
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distribution management, environment monitoring, and traffic control. The concept of smart 

health is another area that has enormous potential for the betterment of people and their health. 

IoT industry is also working for smart supply chain solutions. This includes smart devices for 

tracking goods at the time of transportation and also used for exchanging inventory information 

among suppliers. The market covered by IoT applications in various sectors by 2020 [17] are 

presented in Figure 1.3. 

 

 

 

Figure 1.3 Market share of dominant IoT applications 
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1. IoT technology can be utilized to build a smart home environment in which End Devices 

(EDs) such as smart thermostats, lighting systems, and security cameras can be managed and 
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3. IoT sensors and EDs can be used to monitor equipment performance, track inventory 

levels, and optimize production processes in manufacturing and other industrial contexts. IoT 

EDs such as wearable fitness trackers and medical sensors can collect and communicate patient 

health data.  

4. Smart Cities IoT technology can be used to regulate traffic flow, optimize energy use, 

and monitor environmental aspects in cities. EDs or smart nodes or sensors can be used to 

observe soil moisture levels, measure crop growth, and regulate irrigation systems, assisting 

farmers in increasing crop yields while reducing waste. By monitoring usage patterns and 

automatically altering lighting and temperature settings, IoT technology can be utilized to 

optimize energy consumption in buildings. EDs or smart sensors can be used to monitor air and 

water quality, weather, and other environmental issues. This data can be utilized to create more 

effective conservation plans.  

5. IoT EDs can be used in retailers to watch customer behavior and analyses purchasing 

trends in order to improve store layouts, optimize product presentations, and increase sales.  

6. IoT EDs can be used to track shipments, check inventory levels, and optimize 

distribution networks, boosting overall efficiency and lowering costs.  

7. IoT smart sensors may be used to monitor animal health, track fertilizer and pesticide 

usage, and optimize irrigation and crop management strategies in smart farming. 

8. IoT technology can be used to automate building services such as lighting, temperature 

control, and security systems, increasing energy efficiency and lowering maintenance costs. 

9. Internet of Things (IoT) technology is important for the development of self-driving 

cars, which rely on real-time data from sensors, cameras, and other devices to navigate 

roadways and make choices. 

10. IoT devices such as smart watches and fitness trackers can gather and analyses data on 

users activity levels, heart rate, and other health measurements. 

11. Internet of Things EDs or smart sensors can be used to monitor and regulate power grid 

systems, increasing energy efficiency and lowering costs. 
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12.  Using data analytics to deliver customized recommendations and promotions, IoT 

technology may be leveraged to create personalized shopping experiences for customers. 

13. IoT sensors and devices can be used to monitor equipment performance and predict 

when maintenance is required, saving downtime and repair costs.  

14. Internet of Things devices can be used to remotely monitor assets such as pipelines, oil 

rigs, and other equipment in hazardous or difficult-to-reach areas. 

1.4   IoT challenges 

  Some of the most prominent challenges in IoT are Scalability, Smart Health System, 

energy efficiency, Education and data storage and its processing. All these are briefly discussed 

in below section. 

A. Scalability  

        One of the biggest issues with IoT implementations is scalability. The number of 

connected devices in IoT systems is continuously expanding, and as more devices are added to 

the network, managing and scaling the system becomes increasingly complicated. With the 

amount of sensor nodes required simultaneous connectivity it becomes difficult to scale the 

network. Mostly two types of scalability are performed like vertical scalability and horizontal 

scalability. Despite of all these efforts by researchers, various challenges still exist in terms of 

scalability [18].  

  Here are some of the scalability issues that IoT deployments face: Network bandwidth 

is the mostly discussed challenge in IoT applications, as more EDs are added to the network, 

the amount of data transferred and received grows exponentially, necessitating greater 

bandwidth. As a result, network congestion, delays, and dropped connections may occur. With 

so many gadgets producing so much data, storing and analyzing this data becomes a huge 

difficulty. Traditional databases may be incapable of dealing with the volume, velocity, and 

variety of data created by IoT devices. Scaling an IoT deployment can be costly, as extra 

hardware, infrastructure, and staff may be required. When planning for scalability, cost factors 

must be taken into account.  

  To address these scalability issues, IoT EDs implementations must be planned with 

scalability. To ensure that the system can handle the exponential growth of EDs and data 

quantities, efficient planning, architecture design, and implementation of the appropriate tools 
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and technologies are required. Some of the technologies that can aid in the development of 

scalable IoT systems include cloud-based IoT platforms, edge computing, and machine learning 

techniques. 

B. Smart health system  

  By enabling the creation of smart health systems, the Internet of Things (IoT) has the 

potential to revolutionize healthcare. However, certain hurdles must be overcome in order to 

fully realize the potential of IoT in healthcare. Here are a few of the major challenges:  

IoT devices collect sensitive data, such as patient health information, which must be protected 

from unauthorized access or cyber assaults. IoT devices frequently employ distinct 

communication protocols and data formats, making integration into existing healthcare systems 

difficult. The vast amount and variety of data provided by IoT devices might be overwhelming 

for healthcare practitioners. Healthcare organizations must devise strategies for properly 

integrating and managing this data. In order to function properly, IoT EDs must be both 

dependable and accurate. Healthcare practitioners must follow a variety of rules pertaining to 

the usage of IoT EDs, including those pertaining to data privacy, safety, and efficacy. The usage 

of IoT EDs poses ethical and legal concerns around patient permission, data ownership, and 

liability. Healthcare providers must ensure that proper procedures are in place to handle these 

challenges. Implementing and maintaining IoT EDs can be costly. Healthcare organizations 

must carefully weigh the costs and benefits of incorporating IoT EDs into their operations.  

Smart Health System nearly takes over our traditional health care system, but still have 

to cater a lot of challenges. Several standards are discussed in literature like SmartBAN or IEEE 

802.15.6 but these devices are still not available in market. Privacy of data is another main 

challenge that health monitoring applications had to address. In general, overcoming these 

issues is critical to ensuring the safe and effective use of IoT in healthcare. 

C. Energy efficiency 

        The Internet of Things (IoT) has the potential to revolutionize many industries, but it also 

poses a number of energy-efficiency challenges. Here are some of the major issues in this area:  

  In order to function, IoT EDs require a continual source of power, and many of them 

are designed to be always on. This can result in excessive power usage and limited battery life. 

Improving IoT smart device energy efficiency can assist increase battery life and eliminate the 
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need for frequent recharging. IoT devices link to the internet through wireless communication 

technologies such as Wi-Fi, Bluetooth, and cellular networks. These technologies can consume 

a lot of electricity, especially when transmitting big volumes of data. To minimizing the 

consumption of power is one of the big challenge. Many IoT smart devices perform 

sophisticated computations on the data they retrieve, which can consume huge amount of 

computing power. This can result in undue power consumption, especially for smart devices 

with low computational capacity. Improving IoT processor energy efficiency can assist 

minimize power usage and improve battery life. IoT smart devices generate massive amount of 

data, which must be processed, analyzed, and saved. This can necessitate a significant amount 

of energy, especially for systems that create big amounts of data at high frequencies. Improving 

data processing and storage energy efficiency can help reduce the overall energy consumption 

of IoT devices. The manufacture and disposal of IoT smart devices have the potential to have a 

substantial environmental impact. Reducing IoT device energy usage can assist minimize their 

carbon footprint and increase environmental sustainability. 

  Energy efficiency is another key challenge that is inherent in smart IoT devices. 

Researchers are working to design IoT smart devices that are efficient in as far as energy is 

concerned. Several algorithms are developed that targets optimization of medium, to lower 

computation on node side and other adaptive approaches to increase the energy efficiency of 

end node. Overall, improving the energy efficiency of IoT smart EDs is critical for lowering 

environmental impact and enabling widespread adoption. To address these issues, a 

combination of technology innovation, regulatory measures, and consumer education will be 

required. 

 
D. Education 

The Internet of Things (IoT) is a complicated and quickly expanding field that provides 

a variety of educational challenges. Here are a few of the major challenges: 

IoT smart systems incorporate a diverse set of technologies and disciplines, such as 

sensors, networks and software development. Educating others on these complicated topics can 

be difficult, especially for those who don’t have a technical background. The Internet of Things 

industry is continually evolving, with new technology and applications emerging at an alarming 

rate. To guarantee that their students are equipped for the difficulties of IoT development, 

educators must stay current on the newest advances in the industry. Hands-on experience with 
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hardware and several software tools is frequently required for IoT systems development. Giving 

children access to these technologies can be costly and difficult, especially in schools with 

limited resources. The Internet of Things area, like many others must try to address this issue 

by fostering a friendly and comprehensive learning environment that raises involvement from 

people of various backgrounds.  

In the field of education IoT plays critical role. Researchers use IoT sensor nodes for 

collection of data from remote areas like agriculture and factories etc. To understand the 

patterns and behavior of these datasets are extremely vital. However we have certain challenges 

like wireless coverage, cost of nodes, life time of devices and absence of privacy standard. 

Overall, resolving these difficulties is critical for establishing a trained workforce capable of 

designing, implementing, and managing IoT systems. This will necessitate a combination of 

creative educational approaches and industry-academia collaboration. 

E. Storage of data and its processing  

The Internet of Things (IoT) creates massive amounts of data, which offers a number of 

storage and processing issues. Here are a few of the major challenges: 

IoT smart devices generate large volumes of data, traditional data storage systems can 

quickly become overwhelmed. Storing and analyzing this data necessitates substantial 

computational resources, which can be costly and time-consuming. IoT data is created in real-

time, necessitating quick processing and storage. Slow data processing and storage might result 

in data loss or incorrect data interpretation, reducing the usefulness of IoT devices. IoT data is 

available in a variety of formats, including text, audio, video, and sensor data. Processing and 

analyzing this data necessitates the use of specialized tools and techniques that might be difficult 

to adopt and integrate with current systems. IoT data can be noisy and incomplete, lowering the 

accuracy and utility of data analysis. To ensure data quality, complex data cleaning and 

preprocessing techniques are required. Multiple parties, including device manufacturers, 

service providers, and end users, frequently acquire IoT data. Defining and enforcing data 

ownership and access rights can be difficult, and clear legal and regulatory frameworks are 

required. 

  Storage of data and its processing is another challenge for IoT as large number of 

devices is generating data on daily basis. As most of IoT devices are battery driven, that keeps 

researchers away to process this on smart node side. Storage of data is also not possible because 
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of the energy reservations. Overall, overcoming these obstacles is critical for successfully 

storing and analyzing IoT data. This will necessitate a combination of technological 

advancements, data management tactics, and legislative frameworks to secure the privacy and 

security of IoT data. 

The term IoT describes a huge network that connects numerous objects and intelligent 

gadgets. Sensing, processing and data transmission are the three crucial elements of the IoT. 

Security is becoming increasingly important for IoT systems due to the exchange of critical data 

produced by EDs. Additionally, IoT need simple encryption methods. Table 1.1 presents some 

of the fundamental challenges that IoT systems must offer like, authorization, authentication, 

confidentiality, availability and integrity. 

 

Table 1.1 IoT Challenges and Key Issues 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.5      Problem background 

         This thesis focuses on aspects of LoRaWAN, based on star topology [5], where all EDs 

directly communicate with a gateway. The single hop LoRaWAN simplifies the network design 

and also provides a centralized control over all type of resources. However, in such networks, 

EDs have important requirements of transmission power, antenna gain, and data rate to 

accomplish the communication with gateway. Further, if the gateway is located far from EDs, 

high power levels are required to transmit frames, which may lead to rapid energy consumption. 

The summary of key contributions in this thesis is discussed below: 

Services Perception IoT layers Networking Application 

Authentication    

Authorization    

Confidentiality    

Availability    

Integrity    
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1.5.1 Degradation in performance of LoRa network by Pure Aloha 

The LoRa protocol has a patented modulation mechanism that allows it to achieve great 

sensitivity and long-range communication while consuming little power. Pure Aloha, on the 

other hand, is a simple channel access protocol that allows several users to share a single 

communication channel. In Pure Aloha, each smart ED sends data packets at random times, 

with no collaboration with other smart EDs. This might cause packet collisions, resulting in 

decreased network speed and poorer throughput. When used to a LoRa network, Pure Aloha 

can cause a comparable performance decrease. Because LoRa networks are designed to operate 

in unlicensed frequency bands, many LoRa devices can send data on the same channel at the 

same time. Collisions can occur if certain smart EDs use Pure Aloha to send their data, resulting 

in a loss in network performance. Issues like collision, Packet Error Rate (PER), throughput 

and latency of EDs are observed depending on the size of the payload and the number of EDs 

[19]. The probability of collision exponentially increasing in LoRa network, as LoRa network 

don’t have the ability to sense the channel before transmitting packets towards gateway [20]. 

Another factor of increased number of collisions observed in LoRaWAN is the increase in time 

for transmitting packet with the increase in Spreading Factor (SF). For application like smart 

health (Smart Blood Pressure, Smart Proximity Sensor, Smart Heart Rate), where huge amount 

of packets are generated by smart EDs towards gateway, these issues severely affect network 

capacity and reliability of LoRa network [21].  

1.5.2 QoS-aware efficient service provisioning to optimize transmission delay 

 LoRaWAN, transmission latency might have a substantial impact on performance. The 

time it takes for a message to be transferred from an ED to a gateway in a LoRaWAN network 

is referred to as transmission delay. This delay can be caused by a number of variables, 

including distance, signal quality, network congestion, and interference from other devices. The 

longer the transmission delay, the more influence on network performance there is, including: 

Longer transmission delays cause end devices to take much more time to send and receive data 

readings (packets), potentially reducing network capacity. Longer transmission delays might 

affect the response from IoT applications and services by increasing total network latency. 

Longer transmission delays can enhance the risk of packet loss, lowering the networks overall 

reliability. 

  QoS efficient service provisioning is a major challenge due to highly dense wireless 

environment, limited battery lifetime of LoRa EDs, spectrum coverage, interference and 
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collisions [22].  All these QoS-aware potential parameters drastically affect the performance of 

LoRa network in terms of delay. By using current LoRa framework for applications like smart 

health, where huge amount of data being transmitted, will ultimately contribute towards real-

time PER, low throughput, high number of collisions, re-transmissions. Inter-packet arrival is 

another issue that affects LoRa network performance, as same packets from ED are received 

from multiple gateways by Network Server [23]. All these issues contribute hugely towards 

transmission delay. Intelligent QoS-aware efficient service provisioning is a dire need of the 

day to better streamline this problem that directly impacts the QoS of such networks [24].  

Several strategies can be employed to mitigate the effect of transmission delay on 

LoRaWAN performance, including: Network operators can shorten transmission lengths and 

increase network performance by strategically installing gateways. Adaptive Data Rate (ADR) 

is a LoRaWAN feature that adjusts the transmission rate adaptively based on signal quality and 

network congestion, reducing transmission latency and energy usage. Network congestion can 

be minimized by regulating the number of end devices on a network and optimizing data 

scheduling, which can enhance overall network performance. 

1.5.3 Dynamic Reinforcement Learning to optimize energy consumption 

Efficient resource allocation is critical for improving the performance of LoRaWAN 

networks in terms of energy consumption, which are commonly utilized for low-power, wide-

area IoT applications. LoRaWAN uses an unlicensed spectrum and a star-of-stars network 

topology, with gateways connecting smart end devices to the network server. Efficient 

LoRaWAN resource allocation can have a substantial impact on several elements of network 

performance, including: Efficient resource allocation can aid in the efficient use of available 

network resources such as bandwidth and airtime, hence increasing overall network capacity. 

This allows for more smart devices to be connected to the network and bigger traffic levels to 

be supported. Most LoRaWAN smart end devices are battery-powered and intended for long-

term use. Efficient resource allocation can help to mitigate device energy consumption by 

minimizing the amount of airtime necessary for communication, which can increase device 

battery life. By minimizing the time necessary for smart end devices to transmit and receive 

data readings, efficient resource allocation can help to reduce latency in LoRaWAN networks. 

This has the potential to improve the responsiveness of IoT applications and services. Efficient 
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resource allocation can help to improve LoRaWAN network dependability by reducing the 

packet loss and collision factor.  

Various strategies can be utilized to accomplish efficient resource allocation in 

LoRaWAN. By optimizing gateway location, regulating the number of smart end devices on 

the network, and optimizing data readings scheduling, careful network planning and 

optimization can help to deploy network resources more efficiently. QoS management can help 

in the prioritization of critical data traffic and the allocation of network resources like data rate, 

spreading factor, transmit power and bandwidth etc, to support the most critical IoT 

applications. 

  In smart health monitoring scenario, where extremely sensitive data readings of patients 

(Pulse Oximeter, Blood Pressure, Heart Rate), had to be reached on time to take further 

necessary action. With more than 1000 EDs or smart nodes using Pure Aloha, this lead towards 

challenges like resource allocation and channel congestion in smart health monitoring scenario, 

ultimately affect the network performance in terms of consumption and capacity [25]. With 

static nature of smart EDs in LoRa network, EDs that are far from gateways need high value of 

transmit power. Further individual handling of EDs by ADR algorithm in LoRaWAN is another 

issue that needs to cater. Figure 1.4 shows the taxonomic view of LoRaWAN issues.  
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Figure 1.4 Taxonomic View of LoRaWAN Issues 

 
      Under massive traffic scenarios in single hop communication, massive number of EDs are 

aggravate the overhead, thereby affecting the performance of LoRaWAN. Further to multi-hop 

solutions, a number of other challenges including: ADR, multiple access, and propagation 

considerations is an open issues, which plays vital roles in the performance of LoRaWAN [26].  

Thus, how to enable multi-hop communication architecture with revisited ADR and multiple 

access schemes is an open issue. 

1.6 Problem statement 

Pure Aloha performance in LoRaWAN is hampered by an increase in ED density and 

different throughput demands. With the ease and simplicity we get with Pure Aloha, it also 

brings issues related to network capacity and reliability on table. These limitations are 

LPWAN

LoRaWAN

LoRa Phy LoRa MAC

Pure Aloha

PER

Collisions

Throughput

LoRa QoS

Re-
Transmissions

Inter-frame 
arrival

Delay

Network 
capacity & 
Reliability

Congestion 
control

Energy 
consumption

Sigfox NB-IoT Weightless



 

 

 

16 

 

increase in number of collisions, degrade performance in terms of throughput, PER, and 

latency [27]. With smart health monitoring scenario where some of the patients are extremely 

critical, we need a reliable network that can forward reading of different smart wearable EDs 

on time. For this it’s really vital to address all the above mentioned issues. QoS efficient 

service provisioning is a major challenge due to highly dense wireless environment, limited 

battery lifetime of LoRa EDs, spectrum coverage, interference, collisions, and delay [28]. 

With thousands of smart EDs deployed in a specific geographical area, addressing the issue 

of delay has become critical. Packet delays are also a source of inter-frame interference, which 

contributes to packet losses. These losses increase number of re-transmissions from EDs 

which contributes heavily towards transmission delay. In a smart health monitoring scenario, 

where we have extremely sensitive patient data readings (Pulse Oximeter, Blood Pressure, 

Heart Rate), we had to be reached on time to take additional essential action. With more than 

2500 to 3000 EDs or smart nodes using Pure Aloha and with the mechanism of allocating 

resources through conventional ADR, this leads towards channel congestion, which 

ultimately affect the network performance and capacity in terms of energy consumption [29]. 

With channel congestion, resource allocation is another issue that plays a vital role in the 

enhancement of performance in LoRaWAN.  

1.7 Research Questions 

i) How to enhance performance of LoRa network, with number of EDs transmit 

simultaneously in terms of collision, PER and throughput? 

ii) How to mitigate delay without placing any extra burden on the underlying resource 

constraint smart EDs and to make it QoS-aware efficient service provisioning network? 

iii) How to optimize energy consumption of smart EDs in LoRa network by analyzing 

channel condition, network capacity and its reliability? 

1.8 Research Objectives 

i) To examine the behavior of Pure Aloha in LoRa network and enhance performance in 

terms of collision, PER and throughput. 
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ii) To achieve the least possible transmission delay by resource optimization in QoS-

aware efficient service provisioning network. 

iii) To optimize energy consumption by efficiently allocating resources in LoRa network.  

1.9 Research Scope 

  The exponential growth of IoT devices and ecosystems is recently emerged with a novel 

type of communication network known as LoRaWAN. LoRaWAN enables low power long 

range communication at low data rate and cost. To improve performance of LoRaWAN, in 

terms of collision, PER and throughput, we design an approach Slotted Aloha with Markov 

Chain model. Consequently, QoS efficient service provisioning is a major challenge due to 

densely populated LoRa environment, limited battery lifetime of LoRa EDs, interference and 

collisions. LPWAN technologies especially LoRaWAN have certain challenges such as 

massive connectivity, reliability, retransmissions, duty cycling and limited downlink [30]. To 

mitigate delay without placing any extra burden on the underlying resource constraint smart 

EDs, a novel un-supervised Learning algorithm ASA with GMM is developed. Efficient 

resource allocation mechanisms are designed to optimize energy consumption of smart EDs in 

LoRaWAN by analyzing channel condition, network capacity and its reliability. A dynamic 

Reinforcement Learning algorithm is used to intelligently learn from varied underlying 

potential parameters such as real-time PER, throughput, delay, collisions and energy 

consumption to improve the overall network performance. The proposed research framework 

is extensively simulated, rigorously evaluated with current state of the art benchmark algorithms 

using standard and extended evaluation metrics. 

1.10 Thesis Organization 

        Preliminary work in chapter 1 provides basic knowledge to domain and state of the art 

literature regarding LoRaWAN solutions. Chapter 2 gives basic idea about IoT applications and 

LPWAN standards. Furthermore, a comparative analysis of major LPWAN technologies is also 

performed. Chapter 3 provides detail discussion on research methodology followed in this 

thesis. Chapter 4 presents proposed methodology or framework that includes, analytical 

modeling of BackLogged (BL) and Non-BackLogged (NBL) nodes with addition to extensive 

simulations of Slotted Aloha in LoRaWAN environment, introduces an intelligent learning 

algorithm with Adaptive Scheduling Algorithm (ASA) to prioritize traffic from different 
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profiles and dynamic RL resource allocation on the basis of channel congestion and other 

defined parameters. Chapter 5 explains the conclusion and future endeavors of thesis. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

2.1 Overview 

  This chapter discusses Internet of Things (IoT) networks, its applications, various 

existing technologies and standards. The detail literature review also highlights the existing 

issues and challenges in LPWAN technologies. The Quality of Service (QoS) issues are also 

elaborated in detail. Summary of different existing studies and their limitations are provided. 

Further this chapter also highlights the main challenges regarding of QoS, delay and energy 

consumption existing solutions [31]. Chapter concludes with main literature findings to design 

an efficient LoRaWAN for better data throughput, less delay and efficient energy consumption. 

2.2       IoT in perspective of LPWAN 

          Requirements of next generation communication systems are generally under 

consideration by several researchers [32]. One of the major requirements of 5G networks is 

battery life of End Devices (EDs) and integration with IoT services. Some key challenges like 

scalability, device cost, battery life, processing power, indoor coverage, data throughput, and 

persistent connection should be addressed [33]. The term IoT is broadly used to indicate 

different technologies that are somehow intended to enable Internet. Several attributes are 

required to enable IoT devices to communicate by using long or short range standards, low 

bandwidth utilization and ability to connect with other devices. However, it’s understandable 

that LPWAN is one of the best suitable wireless technologies adopted for IoT applications. 

Among the most popular technologies associated with IoT are, Radio Frequency Identifiers 

(RFID), short-range Wireless Communication Technologies (NFC, Bluetooth, ZigBee), 

Wireless Sensor Networks (WSNs), Cellular Technology (2G, 3G, 4G) and Wireless Body Area 

Networks (WBANs) [34].  All these technologies have attributes of short range and low-power 

communication capabilities, which limit the coverage area within the buildings. 
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2.2.1 Components of IoT in perspective of LPWAN 

  The Internet of Things (IoT) is a network of interconnected smart devices that share or 

exchange data and interact with one another to complete a task or achieve a common objective. 

The term LPWAN (Low Power Wide Area Network) refers to a wireless communication 

technology that enables long-distance, low-power data transfer between IoT smart devices and 

the internet. In terms of LPWAN, the components of IoT can be split into three categories: The 

physical devices that are linked to the internet and communicate with one another via LPWAN 

technology. Sensors, actuators, and controllers are examples of IoT smart devices. These 

devices are often battery-powered and are designed to require extremely little electricity. 

LPWAN network is another component that consists of network infrastructure that allows IoT 

smart devices to communicate with the outside world through internet. LPWAN networks are 

intended to give IoT devices with long-range coverage, low-power consumption, and low-cost 

connectivity. LoRaWAN, Sigfox, and NB-IoT are examples of LPWAN networks. Last 

component is the software platform responsible for managing and analyzing the data generated 

by IoT smart devices. IoT platforms offer a variety of services, including data storage, 

processing, and visualization. They also allow developers to create and deploy IoT applications 

capable of automating jobs, optimizing operations, and increasing efficiency. 

  The prominent components of IoT in perspective of LPWAN are rigorously discussed 

in this section. Building blocks of LPWAN help us for better understand actual insight 

functionality [35]. Certain components are required to deliver the required functionality in 

LPWAN. Figure 2.1 shows components that are required to deliver the desired functionality. 

2.2.1.1 Identification 

Identification is a critical component of IoT systems because it provides the safe and 

reliable authentication of network devices, users and services. To create trust, prevent 

unauthorized access and assure data privacy and integrity, IoT end devices must be individually 

identifiable. In IoT systems, numerous types of identification are routinely employed, 

including: MAC address, IP address, RFID tags, QR codes and Bio-metric authentication.    

Identification is critical for any smart devices in LPWAN to provide services according to their 

demands. Different methods are available for identification of smart devices in LPWAN such 

as Electronic Product Codes (EPC) and Ubiquitous Codes (uCode). Furthermore, it’s important 

to distinguish smart object IDs and smart object addresses. For example, smart object ID means 
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name of smart sensor such as “STemp” to measure the temperature and smart object address for 

the smart objects in LoRaWAN. Since we are more interested in identification of smart objects 

in LoRaWAN, it needs following information: a Device Address (DevAddr) and an Application 

Identifier (AppEUI) [36]. 

 

 

Figure 2.1 Components of IoT to deliver functionality 

2.2.1.2 Sensing 

Sensing is an important component of IoT systems because it allows smart devices 

to collect data from their environment and create insights that can be utilized to automate 

processes, optimize operations, and make better decisions. Sensing in IoT systems is 

accomplished by the use of various sensors and devices capable of detecting physical 

phenomena such as temperature, humidity, pressure, light, sound, motion, and location. Some 

commonly used sensors are: Temperature sensor, humidity sensor, pressure, light sensor and 

GPS sensor. Sensing means collection of data from relevant smart objects inside the 

communication network and forwards it to a data warehouse or cloud to take further action. 

After data is collected by sensing, it is analyzed to take further actions based on required 

services. The IoT sensors can be smart sensors or wearable sensing devices. For example, 

different companies like Wemo, Revolv and SmartThings provide mobile applications that help 

people to control millions of smart devices and appliances inside buildings using their 

smartphones [37]. In summary, sensing in IoT systems requires the employment of various 
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sensors and smart devices capable of detecting physical events and extracting data that can be 

utilized to optimize operations, automate processes, and improve decision-making. IoT systems 

can build a more efficient and smarter environment by utilizing sensor technologies, resulting 

in considerable benefits for both individuals and organizations. 

2.2.1.3 Communication 

Communication is an essential component of IoT systems because it allows objects 

to communicate data with one another and with the internet, allowing them to perform a variety 

of functions. In IoT systems, communication entails the use of various communication 

technologies and protocols that allow devices to connect to one another and to the internet. 

Some of the most prevalent communication methods and protocols used in IoT systems are: 

WiFi, Bluetooth, Zigbee, LoRaWAN etc. 

       To provide smart services several objects are connected by IoT communication 

technologies. Various protocols are used in IoT technologies are WiFi, IEEE 802.15.4 [38], Z-

wave and Bluetooth.  All these technologies have their own limitations in terms of transmit 

power, communication range and interference. Specifically, in LoRaWAN communication 

between smart nodes are performed with ultra-low power in noisy environment. The modulation 

scheme used by LoRaWAN provides immunity in terms of noise and interference [39]. The 

sensitivity level at receiver is better than other IoT technologies. To summarize, communication 

is an important part of IoT systems, and numerous communication technologies and protocols, 

can be used to allow smart devices to share data with one another and with the internet. IoT 

systems can build a more connected and smarter environment by utilizing communication 

technologies, resulting in considerable benefits for both individuals and organizations. 

2.2.1.4 Computation 

        Computation is a critical component of IoT systems because it allows smart end 

devices to process data, make assessments, and take certain actions on the basis of information 

they have extracted or recieved. In IoT systems, computation entails the use of different 

technologies and architectures that allow smart end devices to conduct computation efficiently. 

The following are some of the most often utilized compute technologies and architectures in 

IoT systems like Microcontrollers, edge computing devices, cloud computing, quantam 

computing etc. Several processing units (e.g., Microcontrollers, Microprocessors, SOCs, 

FPGAs) and applications are available to perform computation for smart objects. Various 
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hardware platforms are provided to run different applications such as Arduino, FriendlyARM, 

Intel Galileo, Raspberry PI, Gadgeteer, WiSense, and T-Mote Sky [40]. Furthermore, software 

platforms are also available to provide desired functionalities like Operating Systems of a smart 

sensor that run for the whole activation time [41]. Overall, computation is an important 

component of IoT systems. IoT systems can build a more intelligent and automated environment 

by utilizing computation technologies, resulting in considerable benefits for both individuals 

and organizations. 

2.2.1.5 Services 

       Services are an important component of IoT systems because they allow smart end 

devices to bring value to consumers and organizations by performing specified duties and 

providing data insights. The employment of diverse technologies and architectures in IoT 

systems enables devices to deliver specialized functions and data insights to end-users . Services 

that are often used in IoT systems include: device management, data management, predictive 

maintenance, asset tracking etc. There are several services used in IoT devices like smart 

shipping services, information aggregation, smart home services, smart city services, 

agriculture services and environmental services [42]. The services related to smart health and 

smart grid falls into the information aggregation category and smart home, smart buildings and 

Intelligent Transportation Systems (ITS) lie in collaborative-aware category [43]. Examples of 

collaborative-aware category are how to monitor and control appliances like air conditioner, 

heating systems and energy consumption meters etc. remotely. The IoT services related to smart 

home make life of people much easier by monitoring and operating all the appliances remotely. 

     In conclusion, services are an important aspect of IoT systems, and various service 

technologies and architectures. IoT systems can create value for organizations and end-users by 

utilizing services, resulting in huge benefits for all stakeholders. 

2.3      Applications and standards 

      LPWAN network or Low-Power Network (LPN) are the wireless technologies designed 

to allow long range, ultra-low power and low bit rate among things, such as sensors or EDs 

operated on a battery [44]. These features distinguish LPWAN from other wireless 

WAN technologies that are designed to establish sessions among users or businesses, and carry 

huge amount of data, using high power [45]. 

https://en.wikipedia.org/wiki/Wireless_telecommunication
https://en.wikipedia.org/wiki/Bit_rate
https://en.wikipedia.org/wiki/Internet_of_things
https://en.wikipedia.org/wiki/Battery_(electricity)
https://en.wikipedia.org/wiki/Wireless_WAN
https://en.wikipedia.org/wiki/Wireless_WAN
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2.3.1 Low Power Wide Area Network 

  LPWAN intends to extend range, to operate on low power, and to achieve scalability. 

LPWAN has become a “big thing” in the IoT over the last few years [46]. This is a terminology 

that is used for a variety of technologies to provide connectivity among EDs (sensor nodes) and 

controllers (gateways) to the server at cloud without any traditional WiFi or cellular. Several 

applications are monitored for decades, but the title LPWAN is used to describe a portion of the 

IoT and Machine-to-Machine (M2M) market [47]. Some of the emerging LPWAN technologies 

are extensively compared and highlighted in Table 2.1.  

Table 2.1 LPWAN Technologies 
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GMSK, Offset-

QPSK 

Data Rate 100 bps(UL), 
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0.3-37.5 

kbps 

(LoRa), 

50 kbps 

(FSK) 

200 Kbps 1 kbps to 

10 Mbps 
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MAC unslotted 
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/TDMA 
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5 
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/ orthogonal 
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L) and 
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kHz in 
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OFDM 

and 3.75/ 
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in UL 

using 

SC-

FDMA 

Topology Star star of 

stars 
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Mobility 

Support 
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better 
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NB-IoT 

No 

connecte
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mobility 
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n) / 

stationar

y nodes 
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Deployment 
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and Asian 

markets 
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(Ref- 

LPWAN 

survey) 

 

low, 

which is 

under $5 
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module 
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module 

Status In 

deployment 

Specific
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released 

June 

2015, in 

deploym

ent 

In 

deploym

ent 

In deployment 

awaiting spectrum 

availability 

In deployment 

awaiting spectrum 

availability 

Link Budget 

( decibles) 

155 dB 154 dB 150 dB 153 dB 140-160 dB 
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2.3.2 Sigfox  

  Modulation scheme is used in EDs to connect with BS is Binary Phase Shift Keying 

(BPSK) [48]. Sigfox network efficiently utilizes bandwidth, and keeps low noise level due to 

its ultra-narrow band. It aims to achieve a throughput of 100 bps. A downlink message is only 

generated after successful uplink transmission. Sigfox uses different data rates for both uplink 

and downlink transmissions, i.e., 100 bps for uplink, and 600 bps for downlink. Regional 

regulation decides number and size of messages transmitted in this network, where the number 

and size of uplink messages is limited to 140 messages each of 12 bytes in a day. Channel access 

in Sigfox is asymmetric, means 4 messages of 8 bytes per day over the downlink from the BS 

to the EDs. It means acknowledgment of each uplink message is not supported. 

2.3.3 NB-IoT  

Narrowband IoT (NB-IoT) is a Low Power Wide Area Network (LPWAN) technology 

designed to enable long-range communication between IoT devices using cellular networks. It 

operates on licensed spectrum and offers low power consumption, extended coverage, and low 

data rates, making it ideal for IoT applications that require long battery life, low data transfer 

speeds, and remote communication. 

NB-IoT uses narrowband technology, which allows it to transmit data over a narrow 

frequency range, using less power and reducing the risk of interference with other wireless 

signals. This makes it well-suited for applications that require communication over long 

distances and in hard-to-reach areas. NB-IoT offers several advantages over other LPWAN 

technologies, such as Sigfox and LoRa. First, it operates on licensed spectrum, which means 

that it offers more reliable and secure connectivity than unlicensed LPWANs. Second, it is 

compatible with existing cellular infrastructure, which means that it can be easily deployed by 

mobile network operators without requiring significant investment in new infrastructure. In 

addition, NB-IoT offers strong support for mobility, making it well-suited for applications that 

require tracking of moving objects, such as logistics and transportation. It also supports two-

way communication, which enables real-time control and monitoring of IoT devices. NB-IoT 

has been widely adopted by mobile network operators around the world and is expected to 

become one of the dominant LPWAN technologies for IoT applications in the coming years. 

Its low power consumption, extended coverage, and low data rates make it well-suited for a 

wide range of applications, including smart cities, smart homes, industrial automation, and 

agriculture. 
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  This technology is specifically designed for IoT, and based on international standard 

called 3GPP. Its major attributes including low data rate, longer coverage area, and longer 

battery life [49].  NB-IoT devices have very low power consumption, therefore may extend 

their battery life up to 10 years. Latency experienced by NB-IoT networks for uplink 

transmission is less than 10 seconds. Cost of one Narrow Band Internet of Things (NB-IoT) 

module is under $5, which is extremely low as compared to other IoT devices. NB-IoT uses a 

frequency spectrum which ranges between 700MHz to 900MHz, with transmission power 

varying between +20 dBm or +23 dBm. As data rate requirements of IoT devices are low, 

therefore, NB-IoT devices have data rate support up to 200 kbps.  

2.3.4 Weightless-W  

Weightless-W is a Low Power Wide Area Network (LPWAN) technology that is 

intended for Internet of Things (IoT) applications that require long-range communication, low 

power consumption, and low data rates. It uses unlicensed sub-gigahertz spectrum and 

narrowband technology to transmit data over a narrow frequency range while using less power 

and reducing the risk of interference with other wireless signals. The Weightless Special Interest 

Group (SIG), a group of companies and organizations dedicated to developing and promoting 

open standards for LPWANs, created Weightless-W. The technology is based on the Time 

Division Duplex (TDD) protocol, which allows for bi-directional communication and real-time 

control and monitoring of IoT devices. 

One of the most important characteristics of Weightless-W is its ability to support both 

low-power and high-power sources. It has multiple modes, allowing it to support a wide range 

of IoT devices, from battery-powered sensors to power-hungry devices like gateways and 

routers. It also supports data rates ranging from 100 bits per second (bps) to 100 kilobits per 

second (kbps), making it suitable for a wide variety of applications. Weightless-W also supports 

mobility, making it ideal for tracking moving objects in applications such as logistics and 

transportation. Furthermore, it provides robust security features such as encryption and 

authentication to ensure the privacy and security of data transmitted over the network. 

Weightless-W has been used in a variety of Internet of Things (IoT) applications, including 

smart cities, agriculture, and industrial automation. It is distinguished by its low power 

consumption, extended range, and support for bi-directional communication. Well-suited for a 
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wide range of applications, particularly those that require long battery life and reliable 

connectivity in hard-to-reach areas. 

Overall, Weightless-W is an exciting LPWAN technology that has several advantages 

over competing LPWAN technologies. Because of its open standard approach and support for 

both low-power and high-power modes, it is versatile and adaptable to a wide range of IoT 

applications. One of the cheapest technology in IoT is Weightless-W and operated on an 

unlicensed environment, where interference caused by others cannot be predicted. Therefore it 

must be avoided. The modulation scheme used by weightless-W is differential BPSK, or QPSK, 

or DBPSK. The data rates used by EDs in Weightless-W, range from 1 kbps to 10 mbps, with 

a coverage of approximately 5 km, in an urban environment. The multiple access schemes used 

by Weightless-W are FDMA/TDMA with 16 or 24 channels for uplink (UL). 

2.3.5 LoRaWAN 

The LoRaWAN is an open standard as its specification is easily available. The 

modulation scheme used by LoRaWAN is Chirp Spread Spectrum (CSS). CSS spreads the 

narrow band signal over a wide band. To achieve orthogonal transmission, an end device in 

LoRaWAN, uses SF from 7 to 12, where SF tradeoffs between data rate and range. Higher the 

SF, higher is the transmission range with low data rates. LoRaWAN also relies on Forward 

Error Correction (FEC) for reliable transmission of frames. Data rates for LoRaWAN ranges 

from 300 bps to 37.5 kbps, and depends on bandwidth and SF [50]. In case of Frequency Shift 

Keying (FSK) modulation scheme, maximum data rate is upto 50 kbps. Table 2.2 shows the 

technical specification of LPWAN. 

Table 2.2 Technical specification of LPWAN [28] 
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  Coverage area achieved by LoRaWAN in urban areas is approximately 5 km, and in 

rural areas it is up to 15 km. Link budget is another factor that plays important part in the success 

of any wireless technology. The Link budget for LoRaWAN is much less as compared to other 

LPWAN technologies. LoRaWAN EDs rely on ADR to assign data rates to all EDs 

individually. The main purpose of using ADR is to optimize the performance of network and 

provide scalability. LoRaWAN also provides reliability with Forward Error Correction (FEC) 

that is a signal processing technique used to increase the consistency and reliability of data by 

adding redundant bits. A study evaluated LoRaWAN by performing real life experiments to 

measure the coverage of LoRa technology. The measurements show that on ground up to 5 km, 

the amount of successfully delivered packets exceeds 80%. On sea level, almost 30 km 

communication range was reached and about 70% of the packets are successfully delivered at 

a distance below 15 km. 

  The LoRa Alliance is an open, non-profit association formed to nurture an environment 

for certain LPWAN technology. It has about 400 member companies throughout North America, 

Europe, Africa, and Asia, and its founding members include IBM, MicroChip, Cisco, Semtech, 

Bouygues Telecom, Singtel, KPN, Swisscom, Fastnet, and Belgacom. LoRaWAN is an open-

standard governed by the LoRa Alliance. However, it is not truly open since the underlying 

chip, to implement a full LoRaWAN stack is only available via Semtech. Basically, LoRa is the 

physical layer: the chip. LoRaWAN is the MAC layer: software that is embedded in the chip to 

enable networking. The working of LoRaWAN is almost similar to SigFox, as it is primarily 

used for uplink-only applications (data from EDs to a gateway). LoRaWAN focuses on spread 

spectrum techniques, instead of using narrowband transmission. These transmissions are less 

likely to collide and interfere with one another thereby increasing the capacity of the gateway. 
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2.4 LoRaWAN system architecture 

  LoRaWAN is a Low-Power Wide-Area Network (LPWAN) technology designed for 

long-range communication for low-power EDs, such as sensors nodes and relaying devices. 

LoRaWAN has grown in popularity as a low-power, long-range connectivity option for Internet 

of Things (IoT) applications. End devices, gateways, and a network server are the three main 

components of the LoRaWAN system architecture.           

LoRaWAN is based on star-of-stars topology, where all EDs are connected to one or more 

gateways. EDs communicate with the LoRa gateways by using single-hop communication. 

LoRa concentrator or gateway relays messages of EDs to a network server, where gateway is 

connected to the network server via standard internet technologies. After receiving a message 

from the EDs via LoRa gateway, the network server responds by selecting one of the gateways. 

LoRaWAN System architecture is shown in Figure 2.2.  

A brief description of three main components of LoRaWAN technology is as follows. 

 
2.4.1 LoRa End Devices 

End devices are battery-powered sensors or other devices that use the air interface to 

communicate with gateways. They typically consume little power and transmit small amounts 

of data over long distances. LoRa modulation is used by end devices to send signals to gateways. 

LoRa EDs are mainly categorized in three bidirectional classes: A, B, and C. Different 

applications are supported by these three classes in order to fulfill requirements and 

optimization of applications. The descriptions of all these EDs classes are as follow: 

 

2.4.1.1 Class A 

        By default, all EDs operate in class A. Bi-directional communication is followed by 

class A EDs. Each uplink transmission by class A ED is followed by two receive windows, 

denoted as Rx1 and Rx2. Whenever, an end device wants to transmit, it accesses the medium 

based on Aloha. Class A end device opens first receive window Rx1, at the end of its last bit of 

uplink transmission. However, duration of these receive windows should be long enough, to 

receive response from the network server via a gateway. If an end device receives response 

from the network server within the duration of Rx1, then it does not open Rx2.  
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Figure 2.2 LoRaWAN system architecture 

2.4.1.2 Class B 

            Additional slots are used for class B EDs to get synchronized with the network server. 

Class B EDs open this extra receive window slots after receiving a beacon from the gateway. 

This helps the network server to know about the status of ED. 

 
2.4.1.3 Class C 

        Class C EDs constantly keeps their receive windows open, and only close them while 

transmitting towards a gateway. Class C EDs requires more power to operate, however, they 

offer lowest latency for network server among all the classes. All the differences and attributes 

of class A, class B, and class C EDs are summarized in Table 2.3. 

Table 2.3 Comparison of class A, class B, class C in LoRaWAN [39] 

 
Class A Class B Class C 

High Latency High Latency Low Latency 

Bidirectional communications Bidirectional with scheduled 

receive slots 

Bidirectional communications 

Unicast messages Unicast and Multicast messages Unicast and Multicast messages 
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High density of nodes  
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User Equipment 
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Small size of payloads, long 

intervals 

Small size of payloads, long 

intervals, Periodic beacon from 

gateway 

Small payloads 

End-device initiates 

communication (UL) 

Extra receive window (ping slot) Server can initiate transmission at 

any time 

Server respond to end-device (DL) 

during response windows 

Server initiate transmission at 

specific intervals 

 

End-device is continuously 

listening  

 

2.4.1.4 LoRa Gateway 

       Gateways receive signals from EDs and transmit them to network servers via wired 

or wireless connections. They typically cover a few Km’s in cities and up to tens of Km’s in 

rural areas. Gateways are in charge of managing the communication of thousands of EDs. The 

main responsibility of LoRa gateway is to relay message from EDs towards a network server. 

Gateways aim to receive data, process it, and forward it to some appropriate network server. 

Different gateway models are available with varying number of channels. Some channels are 

dedicated for ADR communication, and some are used for FSK modulated packets. The packets 

forwarded by end device towards gateway are received by multiple gateways. However, 

multiple copies of same uplink packet are received by a network server. Further, a network 

server performs other functions including: authentication and decryption.  

2.4.1.5 LoRa Network Server  

The Network Server (NS) is in charge of coordinating communication between EDs 

and applications. It receives data from gateways, decrypts and verify it, and then forwards it to 

the concerned application server. It also manages the LoRaWAN network, which includes 

device registration, network security, and bandwidth allocation. All the decisions and complex 

operations are performed by a network server. Packets forwarded by EDs are received by 

multiple gateways, and all these gateways forward the packet towards a NS. Further, a network 

server filters redundant packets, decrypts payload, performs security checks, and sends 

acknowledgments through an optimal gateway. 

Overall, the LoRaWAN architecture enables efficient and low-power 

communication over long range distances between EDs and concerned applications, making it 

an overwhelming choice for a wide range of IoT applications. 
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2.5   Uncoordinated channel access schemes 

  In wireless communication systems, uncoordinated channel access schemes allow 

multiple EDs to transmit data over a shared channel without centralized coordination. These 

schemes are also known as random access schemes because EDs access the channel in a 

probabilistic manner with no set schedule. Uncoordinated channel access schemes include the 

following:   

  Pure Aloha is a widely used and simple channel access scheme for wireless 

communication. EDs transmit packets whenever they have data reaings to send under this 

scheme. If at any time collision occurs, the EDs that collided will retransmit after a random 

amount of time according to some algorithm. Several wireless LAN and satellite 

communication systems used this scheme. Pure Aloha is one of the simplest multiple 

access protocol for medium access, where a node transmits data without any coordination. 

When two or more nodes transmit data simultaneously, it causes a collision. After transmitting 

data, the node waits for an acknowledgment [51]. If the node does not receive any 

acknowledgement for a specific amount of time, it assumes that the packet is lost. After a 

collision, node waits for a random amount of time and retransmits data again. Figure 2.3 shows 

the design of Pure Aloha. 

 

 
 
 
 
 
 
 

 

 

Figure 2.3 Design of Pure Aloha 

  Let station 1 transmits a frame (Frame 1.1). After some time, station 3 also transmits 

data as Frame 3.1. In the meanwhile, stations 1 and 2, have frames to transmit [52]. The 

overlapping region in Figure 2.3 shows the collision as multiple stations transmit the frames at 

Station 1 

Station 2 

Station 3 

Station 4 

Frame 1.1 Frame 1.2 

Frame 2.1 Frame 2.2 

Frame 3.1 

Frame 4.1 Frame 4.2 

http://ecomputernotes.com/computernetworkingnotes/computer-network/protocol
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same time. Table 2.4 presents several channel access schemes in different IoT-Enabled wireless 

technologies. 

Table 2.4 Channel access schemes in different IoT-Enabled Wireless Technologies [53] 

Multiple Access Schemes Technologies 

Pure Aloha SigFox, LoRa 

Slotted Aloha RFID, NB-IOT, Weightless 

Non-Slotted CSMA/CA ZigBee, WiFi 

Slotted CSMA/CA ZigBee 

   

  Another well-known uncoordinated channel access scheme is Carrier Sense Multiple 

Access (CSMA). EDs in this scheme listen to the channel to know about other EDs 

transmissions. If the channel is not in use by any other ED, the concerned ED will send its data. 

If the channel is busy and in use by other ED, the ED will retry after a random amount of time. 

Many wireless LAN systems employ CSMA, but this ultimately increase the factor of delay. 

The Code Division Multiple Access (CDMA) scheme allows multiple EDs to share the same 

frequency channel. In this scheme, each ED is assigned with a separate code. Although all EDs 

transmit at the same time, the receiver can only decode the signal intended for it. Some cellular 

communication systems employ CDMA. 

  Most of the research in this field deals with different MAC layer protocols based on 

Aloha. The performance of these protocols is satisfactory when limited number of devices is 

transmitting simultaneously. However, if the number of devices increases exponentially, they 

suffered with severe congestion.  Some researchers also adopted random access methods to 

share the communication channel [54]. Most of the existing methods are based on variations of 

Aloha with carrier sensing, i.e., Carrier Sense Multiple Access (CSMA). All these influential 

approaches are summarized in Table 2.4. LoRaWAN is based on Aloha with small number of 

acknowledgments and Packet Error Rate (PER) of 50%. With 50 % of PER, Aloha is not 

suitable for industrial applications where 0 % PER is a requirement. Whenever class A EDs 

have any data to transmit, they use Pure Aloha with listen before talk. This kind of approach is 

suitable for applications, which wait for downlink response immediately after sending the 

uplink data. Another drawback of Pure Aloha is energy consumption of EDs incurred due to 

PER. With over 50 % PER, most of the packets must be retransmitted by EDs, which affect 

LoRaWAN capacity [55].  
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  These channel access schemes are simple to implement and do not require any 

centralized coordination or control, making them suitable for large-scale systems with many 

devices. These schemes, however, may suffer from low channel utilization and high collision 

rates, resulting in poor system performance. As a result, to improve performance, some systems 

may employ coordinated channel access schemes such as TDMA (Time Division Multiple 

Access) or FDMA (Frequency Division Multiple Access). 

2.6     LoRa physical layer 

        LoRaWAN employs a patented physical layer modulation scheme known as LoRa (Long 

Range). LoRa modulation offers low rate, long-range, and low power consumption, making it 

suitable for several Internet of Things (IoT) applications. The LoRa modulation spreads the 

signal over a wide frequency band, typically between 125 kHz and 500 kHz, using chirp spread 

spectrum technology. This provides excellent immunity to interference and noise, which is 

critical for long-distance communication. The spread spectrum technique also prevents 

multipath fading, which is a common issue in wireless communication. LoRa modulation 

modulates the signal using different Spreading Factors (SF), which determines the bandwidth 

and data rate of transmission. SF range from SF7 to SF12, with SF7 having the most bandwidth 

and the highest data rate and SF12 having the least bandwidth and the lowest data rate. The 

LoRa physical layer also includes a several features, which are implemented to improve the 

performance of the link. These features include Adaptive Data Rate (ADR), which adjusts the 

spreading factor and data rate based on signal quality, and frequency hopping, which changes 

the frequency band to reduce the effects of interference and improve the robustness of the 

communication link.         

  LoRa uses CSS as a modulation technique [56].  To achieve synchronization and 

accuracy, special symbols are used in the physical layer packet header. The LoRa modulation 

consists of three major components: bandwidth, spreading factor, and coding rate. The length 

of a symbol is computed by using the following formula: 

Ts = 2SFTc                          2.1 

Tc =
1

BW
                              2.2 

Where BW denotes the bandwidth, Ts represents the symbol length, and Tc  is the number of bits 

required to represent a symbol [57]. The third component of LoRa called coding rate determines 
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the error rate. The term coding rate is used to analyze the amount of Forward Error Correction 

(FEC). FEC is a signal processing technique used to increase the consistency of data. By using 

FEC technique some redundant data is added to the actual payload to enhance the reliability of 

frames to be transmitted. The bit rate of the desired payload is computed as follows. 

 Overall, the LoRaWAN physical layer provides a dependable and efficient method of 

transmitting data over long distances while consuming little power, making it an overwhelming 

choice for various sectors that require durable and long battery life and long-range 

communication. 

2.7      Adaptive Data Rate 

         LoRaWAN is a protocol used in IoT networks. ADR stands for Adaptive Data Rate. 

ADR LoRaWAN is a protocol feature that allows the LoRa network to adaptively adjust the 

data rate and transmit power based on the attributes of radio link quality between the EDs and 

the relaying device i.e gateway. The main objective of ADR is to improve or enhance network 

performance and ED battery life time. When the radio link quality or performance is best, the 

ED can transmit at a higher data rate with less power, which results in much faster transmission 

and longer battery life time. When the radio link quality is not up to the mark, the ED will 

reduce its rate by decreasing data rate and in that case more power is required to ensure best 

possible communication. 

  LoRaWAN EDs rely on ADR to assign data rates to all EDs individually. The main 

purpose of using ADR is to optimize the performance of network and provide scalability [58]. 

EDs that are placed near to the gateway uses high data rates, as compared to the EDs that are 

far away. By assigning high data rates to EDs that are near to the gateway, LoRaWAN network 

avoids collisions between frames and transmitted with same data rates. Initially, an end device 

transmits data with an initial static configured data rate; however, static data rate causes massive 

congestion on the Access Point (AP), or coordinator adversely affecting the LoRaWAN 

capacity.  An increase in the number of dropped packets increases the number of re-

transmissions, which directly affects energy efficiency. MAC commands that are used for 

successful implementation of ADR in LoRaWAN are given below in Table 2.5. 

The data rates can be configured by both EDs and network. ADR bit is configured for this 

purpose. If the ADR bit is enabled, or set in the frame control field, the network manages the 

data rate for EDs by exchanging certain MAC commands. If ADR bit is not set, then network 
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is not responsible to control the data rate of an end device. However, to extend the life time of 

EDs and network capacity, the ADR scheme should be enabled. If an end-device whose data 

rate is optimized by the network to use a data rate higher than its default data rate, it periodically 

needs to validate that the network still receives the uplink frames. An EDs increments the 

counter ADR_ACK_CNT each time, it sends an uplink frames. If the value of 

ADR_ACK_CNT counter exceeds ADR_ACK_LIMIT without any downlink response from 

network server, the end device sets ADRACKReq bit. Afterwards, network responds to the 

ADRACKReq within a time frame allowed by ADR_ACK_DELAY. The value of 

ADR_ACK_CNT counter is reset after receiving any of the downlink response. If no response 

is received within allowed time frame, i.e., ADR_ACK_DELAY, then the end device retry to 

connect by moving to small data rates to achieve longer range.  

Table 2.5 List of MAC commands to adjust ADR [47] 

Serial No MAC Commands Descriptions 

0 ADR Possess value 1 or 0. 

1 ADR_ACK_CNT Maintain at end device for uplink 

frames. 

2 ADR_ACK_LIMIT Limit defined for uplink frames without 

any downlink response. 

3 ADR_ACK_CNT >= ADR_ACK_LIMIT Condition to set ADRACKReq bit. 

4 ADRACKReq Possess value 1 or 0. 

5 ADR_ACK_DELAY Duration after which end device switch 

towards lower data rates and regain 

connectivity. 

6 LinkADRReq 4 bytes long MAC command 

transmitted by network to request node 

to change its transmit parameters. 

 

  The control messages exchanged and extra computation required on EDs, they affect 

the battery life time of EDs. If ADR bit is enabled, it requires acknowledgments from the 

network towards EDs which may incur extra overhead. In case of loss acknowledgments, the 

ED configures lower data rates and regains connectivity. The energy consumption due to extra 

computation at EDs and network capacity are two main issues that degrade the performance of 

LoRa network in a long run. The data rate and size of frames depends on the distance between 

nearest gateway and the type of data being transmitted.  
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  LoRaWAN networks can achieve better network scalability and longer battery life for 

EDs while maintaining a high level of reliability by utilizing ADR. This makes it an 

overwhelming choice for smart applications in which EDs must operate for large or extended 

time without requiring any maintenance or change of battery. 

2.8    Existing Challenges 

       While LoRaWAN is one of the auspicious technology for smart IoT networks, but still 

there are some issues that need to be sort out. Some of the generic current challenges for 

LoRaWAN are: 

LoRaWAN operates on unlicensed bands, there might be possibility of huge congestion in 

environment where we have more number of users or congested environment. This ultimately 

results in mitigated capacity and increased in terms of delay. Another major concern is 

regarding security, with any wireless communication technology. LoRaWAN networks can be 

exposed to several attacks which includes spoofing, eavesdropping, and Denial-of-Service 

(DoS). Interference is another issue that may degrade performance of LoRa network, as it 

operates in unlicensed bands, it is more inclined to interference from other smart wireless EDs 

and networks, which ultimately mitigate the performance and its reliabilit1y. Battery life of EDs 

are designed to support or run on low power, with this battery life can still be an issue, especially 

for EDs that need to transmit data on regular basis. LoRaWAN EDs and gateways can be 

expensive, especially for applications that require a large number of EDs or huge coverage. 

Overall, we have several advantages, but in some scenarios it is critical to sort these challenges 

in order for it to provide reliable, secure, and cost-effective IoT networks. 

  Several challenges are discussed in the preceding section, but because we are dealing 

with a smart health monitoring scenario based on LoRaWAN, we will focus on the challenges 

listed below. Key challenges are scalability, network capacity, collision, PER and QoS 

parameters. Smart Health System are nearly take over the traditional health care system, but 

still have to cater a lot of challenges. However cellular network has other issues mainly factor 

of cost. LPWAN suffered from other QoS issues like energy consumption, delay and latency. 

Data Privacy is another main challenge that health monitoring applications had to address. 

Keeping in mind smart health monitoring system where bulk of data is transmitted from smart 

nodes towards gateway several times a day, LoRaWAN may suffer from collision, collision, 

throughput, delay and energy consumption. All these issues are discussed in detail below:   



 

 

 

39 

 

2.8.1 QoS provisioning 

  In LoRaWAN, Quality of Service (QoS) provisioning is critical to ensuring that EDs 

transmit data reliably and efficiently over the LoRa network. Typically, QoS is defined by three 

most important parameters: reliability, latency, and throughput. This network provide high 

level of of reliability, because of its use of Adaptive Data Rate (ADR) and Forward Error 

Correction (FEC). ADR ensures that EDs transmit data at the optimized rate based on the 

attributes of link, whereas FEC allows EDs to detect and correct those errors in received data. 

Another target parameter that improve or enhance performance of LoRa network is latency. 

LoRaWAN is intended to support low-latency applications, as actual latency can vary on the 

basis of network configuration and the rate at which ED transmit data readings. To optimize 

data transmission time, LoRaWAN networks can be configured to to best possible configurable 

parameters. With the narrow bandwidth of LoRaWAN networks, it can be some time very 

difficult to support high-bandwidth smart applications. LoRaWAN, on the other hand, can 

support a large number of EDs at once, making it a best choice for smart applications requiring 

a huge number of low-bandwidth connections. Network operators or vendors can configure 

several parameters such as data rate, transmit power, and Time on Air (ToA) to enhance the 

network's performance for wide variety of smart applications when provisioning QoS in 

LoRaWAN. Another important factor is to place LoRaWAN gateways intelligently to 

minimize the effect of interference, improving overall network reliability and performance. 

  With millions of EDs transmitting simultaneously, issues like PER, throughput, delay, 

and energy consumptions drastically affect the performance of LoRa network. LoRa is a long-

range, low power, single-hop wireless technology designed for IoT applications with battery-

powered nodes. However, the performance of Pure Aloha in LoRaWAN is hampered by the 

growth in ED numbers and the wide range of throughput requirements. Various kind of 

collision may occur in LoRa network like in terms of SF, frequency, power and time.  

  Researchers in [59] propose an unsupervised learning approach to prioritize packets at 

different levels. On an average of 1000 smart nodes send data towards gateway. K-Means is 

used as an unsupervised technique to extract different clusters on the basis of reading received 

from smart applications like humidity and weather temperature. Different weights are 

calculated on the basis of reading received from smart nodes on gateway. These weights 

contribute towards placing smart nodes in different clusters. Overall this approach works well 
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to enhance performance in terms of delay and energy. Priority Scheduling Algorithms (PST) 

is used to mitigate the delay and energy consumption considerably. While the dynamic PST 

enables the gateway to set the node's transmission intervals in accordance with the respective 

clusters' transmission priority. Different simulations are performed to show the behavior of 

throughput, error rate, delay and energy consumption.  

  The authors of [60] discussed a variety of factors that influence the number of collisions 

that cannot be resolved using traditional time series analysis algorithms. As a result, deep 

learning methods are used to predict collisions in an LPWAN system by analyzing these 

factors. Long Short-Term Memory Extended Kalman Filter (LSTMEKF) model is proposed in 

this paper for collision prediction in LPWAN in terms of temporal correlation, which can 

improve LSTM performance. Expected growth of smart IoT devices is 32% annually with a 

claim by most of the well reputed research papers that over 21 billion EDs are used to 

transmit and receive the data. Various studies in the literature have evaluated the transmission 

capacity and outage probability of Slotted Aloha by modelling the transmitters under the 

Poisson distribution. Another study in [61], analyze the behavior of Slotted Aloha under 

different transmission configurations and found that it performed nearly twice as compared to 

CSMA. In another work [62], authors analyze the collision probability  of Aloha  by  using  

stochastic  geometry approach. Further, they also have analyzed the maximum load capacity 

under various packet loss rate. A u t h o r s  i n  [63], investigated the performance of carrier 

frequency under Slotted Aloha. In another recent work [64], authors analyze the throughput 

of Slotted Aloha in cognitive radio networks with constant power under Rayleigh fading. 

2.8.2 Transmission delay in LoRaWAN 

The time it takes for an ED to transmit data readings towards gateway and receive a 

feedback response in LoRaWAN is referred to as transmission delay. There are several factors 

that influence this delay, including the distance between the ED and the gateway, the data rate 

used, and the amount of data to be transmitted. The transmission delay in LoRaWAN is 

primarily determined by the data readings Time on Air (ToA). ToA is the time it takes to send 

a data packet from a smart ED towards a gateway, and it is affected by parameters like data rate, 

spreading factor, and bandwidth. The transmission delay can also be influenced by the total 

number of EDs in the network and more specifically the number of EDs competing for gateway 

access. To avoid and ED collisions, LoRaWAN employs a random access mechanism; however, 
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in a congested network, the delay can increase as devices wait for an available time slot. Several 

techniques, such as; improving the quality of signal by and mitigating interference and by 

allocation of optimized parameters to EDs. By increasing number of gateways in LoRa 

environment, we can improve range and also optimize the distance between EDs and gateways. 

We can reduce ToA by using higher data rates, which ultimately shorten the size of payload. 

Adaptive data rate (ADR) can also be used to optimize data rate based on signal quality of 

respective ED. Prioritizing low-latency applications and reducing data transmission volume to 

reduce transmission delay. Overall, minimizing transmission latency is critical to ensure, that 

LoRaWAN networks can provide reliable and efficient communication for IoT applications, 

especially those with strict latency requirements. 

  Having thousands of smart EDs deployed in a defined geographical area it becomes 

really important to tackle the issue of transmission delay. There is a high likelihood that 

numerous collisions will take place, wasting precious wireless resources which further enhances 

delay. The amount of collisions is affected by a variety of factors, many of which cannot be 

resolved by conventional time series analysis tools. Authors in [65], present a long short-term 

memory extended Kalman filter (LSTMEKF) model for collision prediction in the LPWAN 

based on the temporal correlation that can enhance LSTM performance. In this study, a 

LoRaSim simulated dataset is provided to show the effectiveness of model. Delay of packets 

also becomes the reason of inter-frame interference that ultimately contributes in losses of 

packets. These losses increase number of re-transmissions from EDs [66]. The most distant 

smart EDs in LoRa networks typically influence network longevity because single-hop 

communication is still popular. Although LoRa networks allow up to eight retransmissions and 

packet retransmission helps recover lost packets, network lifetime can decrease dramatically 

when nodes are forced to transmit additional packets. It would be crucial to anticipate the effects 

of each retransmission in a network in order to know the effect on network lifetime and the 

quantity of packet retransmissions. Smart health monitoring scenarios where we have critical 

data reading from patients in severe condition are not in a position to tolerate these delays. 

  Researchers in [67] proposed an unsupervised learning approach to prioritize packets at 

different levels. On an average of 1000 smart nodes send data towards gateway. K-Means is 

used as an unsupervised technique to extract different clusters on the basis of reading received 

from smart applications like humidity and weather temperature. Different weights are calculated 

on the basis of reading received from smart nodes on gateway. These weights contribute 
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towards placing smart nodes in different clusters. Overall this approach works well to enhance 

performance in terms of delay and energy. Priority Scheduling Algorithms PST are used and 

result shows that it reduces the delay and consumption considerably. Different simulations are 

performed to show the behavior of throughput, error rate, delay and energy consumption.  

  In [68], authors used resource scheduling algorithms to mitigate the delay in wireless 

communication. Authors used banker’s algorithms to manage resources efficiently in this study. 

The execution time of this algorithm is also taking in to account for fair allocation of resources. 

As we know that LoRaWAN performance is highly dependent on resource allocation, so 

Adaptive Data Rate (ADR) plays an important role specifically in allocation of data rate and 

transmit power. Further Cuomo et al. [69], proposed two different SF allocation schemes, 

EXPLoRa-SF and EXPLoRa-TA. These schemes provide low interference in cluster based 

environment with enhanced Time on Air (ToA). Also EXPLoRa-SF algorithm, assign same SF 

and performs successful transmission without any collision. The simulation suggests that high 

value of SF provide long coverage but sometimes they contribute in high number of collisions. 

Delobel et al. [70], simulated the LoRaWAN environment where the gateway is not able to send 

ACK back towards EDs. By doing this authors achieve less delay as compared to confirmed 

network.  Another limitation is the conflict between class A and class B EDs. Due to the random 

transmission nature of class A EDs, class B EDs suffers low throughput as they are dependent 

on beacon from gateway. To cater this limitation, Markov Chain model is introduced to enhance 

the performance in terms of data rate. 

2.8.3 Optimization of energy consumption in LoRaWAN 

LoRaWAN is a low-power, long-distance wireless communication protocol specifically 

used for smart Internet of Things (IoT) applications. The following strategies can be used to 

optimize energy consumption in LoRaWAN: 

  The transmission power used by EDs is one of the biggest energy consumers in a 

LoRaWAN network. Energy consumption can be significantly reduced by lowering 

transmission power. However, this must be balanced against the application's range 

requirements. Duty cycle is another parameter that need to be smartly adjusted for efficient 

energy consumption of EDs. The duty cycle is the percentage of time that an ED is permitted 

to transmit within a given time frame. Increased duty cycle allows the ED to transmit more 
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frequently, improving network reliability. This, however, increases energy consumption, which 

must be balanced with transmission power. ADR plays important role in mitigating the energy 

consumption of LoRa enabled EDs. The network can maintain a reliable link while consuming 

less energy by employing ADR. 

  Energy efficiency is another key challenge that is inherent in smart IoT devices. 

Researchers have been working to design IoT smart devices that are efficient in as far as energy 

is concerned. Authors in [71], creates prediction models of various IoT application performance 

metrics in a single-gateway LoRa IoT network based on a variety of heterogeneous device 

configurations for factors like distance from gateway, data rate, and packet generation rate, 

which are more important inputs for network provisioning. First, simulation experiments are 

used to gather performance data on packet loss, average packet delay, and high-percentile 

delays. The data is then fitted to binomial regression, linear regression, and neural network 

models. According to our findings, neural network regression, a widely used technique, can 

provide excellent prediction accuracy with prediction errors ranging from 1.5 to 5.3% on the 

test dataset, depending on the application performance criteria. The proposed algorithms 

significantly outperform the conventional ADR in an environment where large number of 

devices is deployed. Several algorithms are developed that targets optimization of mediums, to 

lower computation on node side and other adaptive approaches to increase the energy efficiency 

of end nodes' [72]. 

  In smart health monitoring scenario, where we have extremely sensitive data readings 

of patients (Pulse Oximeter, Blood Pressure, Heart Rate), had to be reached on time to take 

further necessary action. With more than 2500 to 3000 EDs or smart nodes using Pure Aloha, 

this leads towards channel congestion in smart health monitoring scenario, ultimately affect the 

network performance and capacity in terms of energy consumption. With channel congestion, 

resource allocation is another issue that plays a vital role in the enhancement of performance in 

LoRaWAN. The focus is on resource allocation like (Channel frequency, SF, Data Rate and 

Transmit Power) on the basis of Reinforcement Learning and channel utilization. Research in 

[73] targeted the concept of network slicing in LoRaWAN using different slicing techniques. A 

slicing resource allocation algorithm is developed on the basis of estimation to prioritize traffic 

from different slices. Intra slicing technique is also elaborated in this paper for allocation of 

resources to enhance QoS requirements. Extensive simulation is performed by authors to 
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evaluate the results of resource allocation. The problem addressed in [74] is the unfairness of 

data rates assigning to nodes. This is because traditional LoRa network perform capture effect 

of a signal which is strong enough and then allocate data rate to that node. The technique of 

fairly allocation of data rates to smart EDs in LoRa network is proposed. Before assigning data 

rate to EDs the probability of collision is also calculated to allocate suitable data rate to smart 

EDs among various data rates. Another achievement of this research is to design a power control 

algorithm that balanced the power of received signal irrespective of the distance from gateway. 

The result shows promising change as compared to traditional LoRaWAN.  

  The ADR scheme is used by LoRaWAN allocates data rate and transmit power to EDs 

on the basis of several parameters. In case of ADR last 20 logged messages send by concerned 

ED is retrievd by network server [75]. From these 20 messages in formation like No. of GW’s, 

signal to noise (SNR), Frame Count (Fcnt). After the information of retrieved from network 

server, the ADR algorithm perform certain calculation to calculate updated SF and transmit 

power. However, this algorithm works well in the context of energy saving and packet delivery 

rate, but to analyze the channel condition we introduce another scheme called dynamic priority 

aware resource allocation that works with ADR to further enhance performance in terms of 

network capacity and reliability. Sometimes it results in interference as ADR looks for same 

SNR and SF in all frames. The study in [76], examines the effectiveness of the random access 

back-off algorithm in the Long Term Evolution (LTE) system while accounting for physical 

loss. For system performance parameters including throughput, drop probability, and medium 

access delay, analytical results are provided. These analytical findings have all been validated 

through simulation. For instance, the ideal back-off window size should be set to 1 and the 

attempt limit should be set to 2 or 3 under a physical loss chance of 1%. 

  The Energy-Aware Adaptive Kernel Density Estimation algorithm (EAKDE) is 

proposed in [77], which is a new uneven clustering approach presented, strives to balance the 

energy dissipation among the cluster heads. EAKDE uses fuzzy logic to assess the relative 

importance of the nodes vying for cluster head. The proper uneven cluster radius is assigned to 

sensor nodes using the adaptive kernel density estimation algorithm in order to accommodate 

the dynamic change of node conditions. In various scenarios, EAKDE outperforms other well-

known algorithms in terms of session stability and energy efficiency according to simulation 
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results. In [78], a Slotted Aloha is in cooperated in LoRaWAN to mitigate number of collisions 

and ultimately enhance throughput. 

  To optimize the effect of delay in smart health monitoring scenario, Adaptive 

Scheduling Algorithm (ASA) with Un-Supervised Learning approach GMM with K Means is 

developed [79]. The proposed technique in [80], makes SF allocation flexible by allowing for 

various user distributions over SFs. These distributions depends heavily on the nature of 

application. The simulation results show how the distance from the gateway and EDs in each 

SF affect transmission reliability by taking into account various network scenarios and realistic 

parameters. The average coverage probability of the network is increased by our SF allocation 

strategy by up to 5 % points when compared to the baseline model, according to simulation 

results. Furthermore, our findings point to a more equitable network operation where the 

performance gap between the best and worst-case nodes is noticeably smaller. Table 2.6 

presents the research studies regarding QoS, optimization of delay and resource allocation to 

optimize the energy consumption. 

Table 2.6 Studies regarding QoS, delay and energy optimization in LoRaWAN 

 

Studies provide analysis of QoS parameters in LoRaWAN 

S No Techniques Simulatio

n Tools 

Findings Limitations 

1 

LoRa Single-Hop System 

Architecture 

Pure Aloha with ADR  [4] 
PYTHON 

Different aspects of LoRa 

network are elaborated. 

Issues like collision and 

interference are discussed. 

Issues like throughput and 

delay are analyzed. 

Duty Cycle 

limitation are not 

implemented 

2 

LoRa CSS,  

Pure Aloha with ADR [5] MATLAB 

Comparison of LPWAN 

standards is provided. 

 

Duty Cycle 

limitation are not 

implemented 

3 

LoRa Single-Hop System 

Architecture,  

LoRa CSS, Pure Aloha 

with ADR. [22] 

PYTHON 

Our network is composed 

of one network server, one 

gateway and one ED. 

Received signal quality is 

measured from different 

locations, in order to cover 

an entire building.  

The signal quality is not 

degraded by walls 

between the rooms and the 

lab.  

Gateways deployed 

in basement 

experienced 

degradations. 

 

4 

LoRa Single-Hop System 

Architecture with 

Unsupervised Learning on 

GW Unsupervised 

PYTHON 

To mitigate collision 

resource allocation is 

performed, Mitigate 

number of collisions 

With duty cycle 

limitation and 

having 1 GW 
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learning approach K 

Means with Pure Aloha 

[59] 

further decrease 

throughput.  

5 

LoRa Single-Hop 

Architecture with 

LSTMEKF  

Long Short-Term 

Memory Extended 

Kalman Filter 

(LSTMEKF) [65] 

PYTHON 

Deep learning methods 

are applied by authors to 

predict collisions in an 

LPWAN system. 

LSTMEKF model is 

proposed to predict 

collisions in LPWAN 

using temporal 

correlation, which can 

improve LSTM 

performance. 

Not enough 

mathematical or 

probabilistic 

approaches are 

provided. 

Research studies focuses on delay 

1 

LoRa CSS, Pure Aloha 

with decoding algorithm. 

[27] 

 

PYTHON 

Simulation demonstrates 

that at the time of 

collision, throughput is 

reduced due to packet loss 

and retransmissions 

occur. A decoding 

algorithm is proposed to 

mitigate packet loss due to 

collision. 

Lack of 

Mathematical 

expressions. 

2 

LoRa CSS, Pure Aloha 

with ADR [45] 

MATLAB 

- Examine the expected 

delay and energy required 

to join the network 

(OTAA).  

-Expected delay and 

energy consumption 

depends on:  

-Inactivated nodes (0%, 

50%, 100%), No. of 

channels per sub-band, 

No. of sub-bands, 

Gateway configuration. 

 

Targets delay and 

energy consumption 

only at the time of 

joining the LoRa 

Network.  

3 

LoRa CSS,  

Pure Aloha Scheme [46] 

PYTHON 

Investigates the feasibility 

of using the LPWAN 

protocol LoRaWAN with 

an event-triggered control 

scheme. LoRaWAN is 

capable of meeting the 

maximum delay and 

message loss 

requirements of an event-

triggered controller for 

certain classes of 

applications. 

Path Loss and 

propagation delay 

are not addressed. 

4 

LoRa CSS, LoRa Single-

Hop System Architecture 

[71][68] 

LoRa CSS, Pure Aloha 

Scheme Used 

PYTHON 

Resource scheduling 

algorithms are proposed 

to mitigate delay in 

wireless communication. 

Lack of 

Mathematical 

expressions. 

Resource Allocation studies to optimize energy consumption 
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1 

LoRa CSS, Pure Aloha 

with Novel ADR 

PYTHON 

Novel ADR scheme is 

developed. 

Two reasons due to which 

the data rate is adaptively 

increased or decreased. 

Wireless link failure. 

Network congestion.(not 

a network connectivity 

problem) 

Congestion classiifier and 

modified data rate 

controller is introduced. 

Back-off timer is used to 

avoid congestion. 

Novel ADR need 

some Mathematical 

details that is not 

provided. 

2 

LoRa CSS, Pure Aloha, 

LoRa Single-Hop System 

Architecture [70] 

  

PYTHON 

LoRaWAN resource 

allocation with adaptive 

priority awareness for 

Internet of Things 

applications. APRA 

improves results in terms 

of energy consumption by 

95% and increases the 

EDs battery discharge 

time by up to 5 years 

while yielding high packet 

delivery. 

 

3 

LoRa CSS, Pure 

Aloha,Adaptive Dynamic 

Inter Slicing Resource 

Reservation Algorithm 

PYTHON 

Enhance QoS, Allocate 

resources like SF, BW to 

optimize energy. 

Comparison with 

LoRaWAN ADR is 

not provided. 

4 

LoRa CSS, Pure Aloha 

Scheme, Algorithm to 

allocate Transmit Power 

and Data Rate 

PYTHON 

Analyze unfairness of 

LoRaWAN in terms of 

allocation.  Allocation is 

performed on the basis of 

SF, BW. 

 

5 

LoRa CSS, Pure Aloha 

Scheme, EXPLoRa-SF 

PYTHON 

Mitigate number of 

collisions, Simulation 

results show that 

EXPLoRa-AT outperform 

the basic ADR strategy. 

Lack of probabilistic 

expressions. 

 

 

2.9 Summary 

  This chapter discussed the overall overview of LPWAN. All the LPWAN standards are 

rigorously analyzed and discussed in different sections. Detailed analysis of Sigfox, NB-IoT, 

Weightless-w and LoRaWAN are presented. Various attributes of LPWAN standards are 

elaborated. Overview of applications for various LPWAN standards is provided. LoRaWAN 

system architecture is based on star topology, where all EDs are connected to one or more 

gateways. EDs communicate with the LoRa gateways by using single-hop communication. 

LoRa concentrator or gateway relays messages of EDs to a network server, where gateway is 
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connected to the network server via standard internet technologies. After receiving a message 

from the EDs via LoRa gateway, the network server responds by selecting one of the gateways. 

A brief description of three main components of LoRaWAN technology (class A,B,C; LoRa 

Physical Layer; LoRa ADR) is also discussed. Some of the existing challenges like collision, 

PER, data throughput, data delay and energy consumptions are provided with tabular details. 
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CHAPTER 3 

 

3 RESEARCH METHODOLOGY 

3.1 Overview 

         The research approach used to accomplish the major goals of this study is 

presented in this chapter. The research methodology is divided in to three main modules 

including research investigation, design & development, performance and evaluation. 

This chapter also discusses the simulation setup to test the proposed architecture and 

performance parameters. 

3.2 Research Methodology Framework 

For the research methodology, this research proposed a three-module based strategy 

where the three main modules are involved to design and develop the proposed research 

methodology framework. In the first module, the problem investigation discusses the problem 

which is extracted from literature after analyzing the existing work in the domain. The last 

module discusses the performance evaluation of proposed work where all the performance 

parameters, its inclusion, and exclusion criteria's and results generation process are discussing. 

The complete research framework shows in Figure 3.1. 

 
3.2.1 Research investigation phase 

 In this module, the problem background is discussed which is extracted from the 

literature review after studying several research papers collected from different platforms like  

journals, thesis, conferences, and books. This chapter focuses on QoS issues that drastically 

degrade the performance of Long Range Wide Area Network (LoRaWAN), based on star 

topology, where all End Devices (EDs) directly communicate with a gateway. However, in such 

networks, EDs have important requirements of transmission power, antenna gain, and data rate 

etc. to accomplish the communication with gateway. Further, if the gateway is located far from 

EDs, high power levels are required to transmit frames, which may lead to rapid energy 

consumption. Due to random increase in number of EDs and varying throughput requirements, 
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drastically affect Pure Aloha performance in LoRaWAN. To successfully monitor the 

performance of LoRaWAN, it is also necessary to do an analytical examination of backlogged 

and non-backlogged traffic in a Slotted Aloha LoRaWAN environment. Quality of Service 

(QoS) efficient service provisioning is a major challenge due to highly densed wireless 

environment, limited battery lifetime of LoRa EDs, spectrum coverage, interference, collisions, 

and energy consumption.   

 
Research Investigation Phase 

 

Review Relevant 

Research Papers 
 

Exclude Irrelevant 

Research Papers  

Technical 

Comparison & 

Limitation of 

Existing Research 

 Extract the Problem 

Background 

 
 
 

Research Design and Development Phase 

 
Analyze the 

basic Design 
Factors for Pure 

Aloha, 
Throughput, 

PER, Delay & 

Energy 
Consumption 

 

Design & 

Develop all 

Phases of Slotted 

Aloha, ASA & 
DRLRA 

 
Convert Concept 

in to Process 

Model 

 

Setup the Process 

of Slotted Aloha, 

ASA & DRLRA 

Solution for 
Implementation 

 
 
 

Research Performance and Evaluation Phase 

 

Simulation Setup 

with Static Model 
 

Set the 
Performance 

Parameters for 

Testing 

 

Run the 

Simulation with 

varying No. of 
ED’s and PL 

Size 

 
Collect the 

Results and 
Generate Graph 

 

Figure 3.1 Research Methodology Framework 

  Intelligent QoS-aware efficient service provisioning is a dire need of the day to better 

streamline this problem that directly impacts the QoS of such networks. In smart health 

monitoring scenario, where we have extremely sensitive data readings of patients (Pulse 

Oximeter, Blood Pressure, Heart Rate), had to be reached on time to take further necessary action. 

With more than 1000 EDs or smart nodes using Pure Aloha, this leads towards channel congestion 

in smart health monitoring scenario, ultimately affect the network performance and capacity. 

With channel congestion, resource allocation is another issue that plays a vital role in the 
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enhancement of performance in LoRaWAN ultimately effect the energy consumption of ED. 

Further a path loss model is also need to be evaluated to cater all the attributes of channel.  

3.2.2 Research design and development phase 

  For design and development phase different techniques and approaches are followed to 

optimize QoS issues in LoRaWAN. Considering the limitations of LoRaWAN in terms of 

collision, PER and throughput, delay and energy consumption we design algorithms to 

mitigate the effect QoS parameters. Firstly, Slotted Aloha is in cooperated in LoRaWAN to 

mitigate number of collisions and ultimately enhance throughput. In smart health monitoring 

scenario EDs like Smart Blood Pressure (SBP), Smart Proximity (SP) and Smart Heart 

Monitoring (SHM) generate huge amount of frames in small size. To cater the effect of 

collision, PER and throughput Slotted Aloha approach is followed. Markov Chain model is 

used to observe the Backlogged BL and Non-Backlogged NBL EDs.  

  To optimize the effect of delay in smart health monitoring scenario, Adaptive 

Scheduling Algorithm (ASA) with Un-Supervised Learning approach GMM with K Means is 

developed [79]. To prioritize traffic of EDs, first of all we have to design profiles (HPP, MPP, 

LPP). After designing profiles, EDs are assigned to these profiles on the basis of readings 

received. EDs with critical readings are assigned to HPP and have high priority to transmit 

frames. EDs with semi critical readings are assigned to MPP which can transmit its frames after 

the EDs in HPP. The proposed framework is extensively simulated, rigorously evaluated with 

current state of the art benchmark algorithms using standard and extended evaluation metrics. 

In smart health monitoring scenario, where extremely sensitive data readings of patients (Pulse 

Oximeter, Blood Pressure, Heart Rate), had to be reached on time to take further necessary 

action. With more than 1000 EDs or smart nodes using Pure Aloha, this leads towards 

challenges like resource allocation and channel congestion in smart health monitoring scenario, 

ultimately affect the network performance and capacity [80]. Dynamic Reinforcement Learning 

Resource Allocation (DRLRA) algorithm is designed to enhance performance in terms of 

energy consumption. Certain parameters are dynamically allocated to EDs like (Channel 

frequency, Data Rate and Transmit Power) on the basis of current information of ED, action 

taken by relevant Reinforcement Learning Agent (RLA) [81] and calculating reward. An 

intelligent learning probabilistic algorithm Gaussian Mixture Model (GMM) is followed to 

design profiles and then all these profiles is analyzed for channel congestion and inter arrival 
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of frames. Further a path loss model is also be used to cater all the attributes of channel. 

Extensive simulations are performed to extract the results in LoRaWAN environment. 

3.2.3 Research performance and evaluation phase  

In research performane and evaluation phase a simulation environment with static model 

is developed. Python is used to simulate the whole network environment. The simulation is 

performed by using well known libraries of python used to create wireless network 

environment. The idea behind using Python libraries to create network environment is its 

flexibility to control and manage all network related functions. Different objects are assembled 

and configured as well as scheduled certain discrete events. Some of th Python libraries used 

in simulation setup are: For martrix calculation numpy library is used. For normalization and 

Probability Density Function computation scipy library is used in our simulation environment. 

Simpy library is used to implement multi-agent systems with both simulated and real 

communication. Processes in SimPy are simple Python generator functions and are used to 

model active components like nodes, Servers, customers, vehicles or agents. Python library 

matplotlib.pyplot is used for plotting graphs. Table 3.1 provides all the details about 

parameters used during simulation.  

Table 3.1 Simulation Environment 

Parameters Values 

Application Scenario Smart Health Monitoring 

Scenario   (SBP, SPO, SHR) 

Area 5-6 Km2 

Spreading Factor 7, 8, 9, 10, 11, 12 

Bandwidth 125 Khz, 250 Khz 

Channels (8) 868 MHz EU Standard 

End devices  2500-3000 

Tx Power (SX1272/73) 2dBm-20dBm 

ADR Enabled 

No. of gateways 2 

CR 4/5 

Packet Size 20 bytes 

Optimal Profiles Profk =3 

Req. Voltage  (SX1272/73) 3.3 V 

I_idle (SX1272/73) I_idle=1.5 μA 

I_Rx   (SX1272/73) I_Rx=10.5 mA 

Simulation Time 1 Hour 

 

Python libraries provide several services to user by creating a flexible environment with 

the help of which user can easily perform research tasks. Python is used for both simulator and 
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connectivity generating library. The performance parameter presented in this research is No. of 

collision, PER, PSR, throughput, payload size, delay and energy consumption. LoRa network 

is extensively simulated and analyzed for all these parameters. Unsupervised machine learning 

algorithms are used to enhance the performance in terms of QoS service provisioning, delay, 

resource allocation and energy consumption. 

  Packet Success Ratio (PSR) is an effective approach to explore and analyze the EDs 

deployment in LoRa network. GWs deployed will be in a better position to analyze PSR of 

different HPP. Mathematical equation for PSR is as follow: 

PSR =
N_PCKT_R 

N_PCKT_S
                                      3.1 

  The PER is another factor that needs to be explore to know about the number of 

erroneous packets received at the GW. CRC algorithm is used to add some redundant bits with 

original payload on the basis of generated polynomial. This information is also shared with GW, 

so that GW also runs its own CRC algorithm to know about the packets validity. If the contents 

received are same as transmitted by EDs then it is successfully forward towards NS but if there 

are erroneous bits received by GW as per CRC algorithm, the PER counter is incremented. 

Mathematical equation for Received Signal Strength (𝑅𝑆𝑆𝑖,𝑗) (RSS of node i at GW j) becomes 

[83]: 

RSSi,j =  (Tp + Gant + PL)                            3.2 

Where  𝑇𝑝 is the transmit power, 𝐺𝑎𝑛𝑡 is the antenna gain and 𝑃𝐿 is the path loss factor [84]. 

Time on Air (ToA) is another metric that need to be evaluated carefully to understand the 

performance of network [85][86]. ToA depends on several parameters like SF, CR and packet 

size. ToA increases with the increase in SF and decrease in DR. For ToA we have to calculate 

preamble duration (PREAd) and (PAYL d), where NPS is the number of payload symbols. 

Formulae’s are given below [87]: 

PREAd = (Npreamble + 4.25) ∗ DuraSym           3.3 

DuraSym = 2SF /BW                                            3.4 
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PAYLd = (NPS ∗ DuraSym)                                  3.5 

 

NPS = 8 + max (Ceil (
(8PL−4SF+28+16−20H)∗(CR+4)

4(SF−2DE)
) , 0)         3.6 

 
Where PL is payload size, H and DE are Boolean values. These are control variables used to 

optimize the performance of network [88]. So mathematical equation for ToA becomes: 

𝑻𝒐𝑨 = (𝑷𝑹𝑬𝑨𝒅 + 𝑷𝑨𝒀𝑳𝑫)                                    3.7 

  Transmission delay is one of the important factors to rectify for QoS enhancement in 

LoRaWAN. Transmission delay (TD) is directly proportional to frame bits transmitted or bitrate. 

TD in LoRaWAN environment depends on number of bits in frame transmitted and bit rate 

[89]: 

TD =
No.of bits inside frame

bit rate
                                 3.8 

The bit rate in above equation is given as [50]: 
 

 

bit rate =
SF x BW

2SF    
4

4+CR
                                   3.9 

 SF is the spreading factor and it is adjusted by LoRa ADR algorithm according to network 

performance. BW is the bandwidth and it is configured as 125Khz [90]. Coding Rate (CR) is 

the ratio of actual and redundant bits. LoRa ADR will be responsible to configure those 

parameters for EDs, which best suited according to the network environment on run time. 

Further details about SF, BW and CR are in. As thousands of EDs are transmitting towards 

gateway in LoRa network, so possibility of collision is also exponentially increased [91]. This 

section exhibits the behavior of collision in LoRa network when multiple LoRa transmissions 

are received at gateway. Some of the transmissions that are orthogonal to others are decoded 

successfully by the receiver, but transmissions that overlap in terms of SF, frequency, time or 

in power domain will result in collision. All these categories of collision are discussed in detail 

in this section.  

  Overlapping of LoRa transmissions at gateway is one of the serious concern for LoRa 

network [92]. Assume that interval at which packets are overlapped, starts from Pi and ends at 

Qi such that (Pi, Qi), whereas i is any packet. The gateway receives packet i during time Pi and 

Qi. According to these parameters we can easily define midpoint and distance of the said 
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interval. 𝑀𝑃𝑖 =
(𝑃𝑖+𝑄𝑖)

2
 ,   𝐷𝐼𝑆𝑇 =

(𝑄𝑖−𝑃𝑖)

2
 . Now overlapping condition fulfills when two packets x and 

y arrives at receiver during same reception interval. 

 

Overlap(x, y) = MPx − MPy < (DISTx + DISTy)         3.10 

  LoRa network used spreading factor to achieve long range, resilience against 

interference and to receive simultaneous transmission at the same time. However when we have 

multiple transmitters that transmit packets having same spreading factor, it lead towards 

collision [93]. The condition for collision in terms of spreading factor is 𝑆𝐹𝑥 = 𝑆𝐹𝑦, where 𝑆𝐹𝑥 

and 𝑆𝐹𝑦 are spreading factors for transmitters x and y. Transmissions with different frequencies 

are still orthogonal and can be easily decoded by receiver. However overlapping region in terms 

of frequency is defined as the difference of frequencies and offset. We have certain overlapping 

cases discussed below: 

1. For 125Khz bandwidth: IF (𝐹𝑟𝑒𝑞𝑝𝑐𝑘1 −  𝐹𝑟𝑒𝑞𝑝𝑐𝑘2 ) ≤ 30 𝐾ℎ𝑧 , pck1 and pck2 are packets 

from different transmitters. 

2. For 250Khz bandwidth: IF (𝐹𝑟𝑒𝑞𝑝𝑐𝑘1 −  𝐹𝑟𝑒𝑞𝑝𝑐𝑘2 ) ≤ 60 𝐾ℎ𝑧 , pck1 and pck2 are packets 

from different transmitters. 

3. For 500 Khz bandwidth: IF (𝐹𝑟𝑒𝑞𝑝𝑐𝑘1 −  𝐹𝑟𝑒𝑞𝑝𝑐𝑘2 ) ≤ 120 𝐾ℎ𝑧 , pck1 and pck2 are 

packets from different transmitters. 

  Energy consumption for all EDs are measured as the energy consumed during the ED is 

in active mode. ToA also effect the energy consumption of ED. In [94][95], the authors only 

consider the successfully demodulated packets to calculate energy consumption and battery 

discharge time. But the practical approach is to consider those packets as well that are not 

received successfully at GW due to any reason. We are also incorporating one extra condition 

on EDs, that only those current readings are forwarded towards GW that are different from 

previous readings. Mathematically energy consumption will be calculated as [58][96]: 

Econs = ∑ ∑ (V). (I). (ToApacketsi )            3.11 

Where V is Volts and is taken from spreadsheet used for LoRa chip SX1276. I is the current 

used for transmitting packets and other processing. 𝐸𝑐𝑜𝑛𝑠 is measured in Jouls (J). 
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3.3 Assumptions and limitations 

         One major assumption is the static nature of LoRa EDs and we also deploy these EDs 

statically. Due to its static nature EDs that are far from gateway, needs more transmit power to 

perform successful transmission. This leads towards high energy consumption of EDs. Another 

limitation is the absence of dedicated LoRa simulator available in market. Simulations are 

performed using Python. No such dedicated library or third party tools are available to provide 

help. This is the reason we perform all these extensive simulations in Python.  

  Multiple GWs are used in our Smart Health Application Scenario as we are dealing in 

critical data of patients that must reach GW on time. By configuring multiple GWs we have 

multiple HPP with critical patient’s data readings. Further multiple GWs increase throughput 

but it also contribute towards interference and cost factor. Interference is one of our limitations, 

as our first priority is to transmit critical data readings of patients successfully in such 

constrained LoRa network. In our case we are using GMM with K Means probabilistic approach 

to create profiles and ultimately minimize the number of EDs per profile. This definitely 

increases throughput as number of collision automatically decreased with the small number of 

EDs transmitting data at one time. To optimize energy consumption of EDs, an adaptive 

dynamic Reinforcement Learning approach is adapted, to assign optimized resources to EDs 

[97]. As we are simulating LoRa network in Python, so we have several limitations. The EDs 

randomly deployed in the mentioned area and transmit data according to Gaussian distribution. 

This method is somewhat according to real environment but not exactly the one.  

3.4 Summary 

Research method for this study is based on literature review research and extensive 

study. In this strategy we have to combine certain components to achieve the goal. In the first 

phase collection of information from different data source takes place. In the second phase brief 

analysis of collect information will be held. After that, the issues faced by LoRa networks are 

discussed and also briefly explain the components of our research. Like what are they and what 

challenges they facing. Now the solution related to our problem is identified and gathers all 

related solutions. To reach the problem solution, there is a need of extensive simulation 

environment for retrieval of data from LoRa EDs and gateways. Through this simulator we will 

make a simulation scenario in which smart static EDs transmit data towards gateway. After that 

it apply unsupervised probabilistic approach to mitigate delay and dynamic Reinforcement 
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Learning to enhance performance in terms of energy consumption [98]. After that it generates 

the results from simulation and rigorously analyze them.  
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CHAPTER 4 

 

4 PROPOSED FRAMEWORK 

4.1    Overview 

   This chapter presents the proposed framework for Slotted Aloha with Markov Chain 

Model in LoRaWAN. Backlogged (BL) and Non-Backlogged (NBL) EDs are also designed by 

using Markov Chain Model with the process and state diagrams to understand to effect of using 

Slotted Aloha with Markov Chain Model. Further it highlights the issues caused due to Quality 

of Service (QoS) parameters. To address this problem, an unsupervised probabilistic approach 

is used to perform profiling. After profiling a scheduling algorithm ASA is proposed to assign 

priorities to profiles. In another subsection, the proposed Dynamic Reinforcement Learning 

Resource Allocation (DRLRA) algorithm, its process and integeration in LoRa network is 

discussed. The main objective is to optimize energy consumption of End Devices (EDs) in 

LoRaWAN. Mathematical expressions and probabilistic relations are regourously provided to 

justify the simulation results. The chapter also provides the process and physical model to 

understand the communication between end device and gateway. 

4.1.1 Optimize performance of LoRaWAN in IoT 

  There are several key factors to consider when optimizing LoRaWAN performance 

specifically for IoT applications: The LoRaWAN network architecture can have a significant 

impact on overall performance. A well-designed network architecture can increase network 

capacity, improve coverage, and mitigate packet loss. Several factors like placement of gateway 

to mitigate the effect of interference, EDs density, and the use of Medium Access Control 

(MAC) protocols. Channel access scheme: The LoRaWAN channel access scheme, which 

combines random access schemes and scheduled access schemes, can have major impact on 

overall network performance. Selecting the best possible channel access scheme for the smart 

EDs can increase network efficiency and reliability. The LoRaWAN network's security is 

critical for preventing attacks and ensuring data privacy. By lowering the risk of data breaches 

and network downtime, appropriate security measures, such as encryption and authentication, 

can improve network performance. The application layer has a big influence on LoRaWAN 
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performance. Increasing network efficiency and lowering energy consumption can be 

accomplished by optimizing the application layer protocol and data payload size.  

  Transmission parameters, such as data rate, coding rate, and transmit power, can 

influence the range, reliability, and battery life of LoRaWAN nodes. These parameters can be 

optimised for the specific use case to improve network performance. 

  Throughput, latency, and energy consumption of smart EDs under various payload sizes 

and variable number of EDs are used as benchmarks to optimise Slotted Aloha performance in 

LoRaWAN using extensive simulations [98]. When compared to Pure Aloha, the simulation 

results overcomes the performance of PER and throughput. However, a delay increase was 

observed during the experimental evaluation. Overall we endorse Slotted Aloha LoRaWAN [99] 

for the Green IoT Environment. LoRaWAN is an LPWAN standard with a long range, low 

power, and a single hop that was specially designed for Internet of Things (IoT) applications 

that use battery-powered smart nodes. However, the performance of Pure Aloha in LoRaWAN 

is hampered by the growth in end device numbers and the wide range of throughput 

requirements [100]. We use in-depth simulations to assess the effectiveness of Slotted Aloha in 

LoRaWAN taking these restrictions into account. As a benchmark, we used the PER, 

throughput, latency, and energy consumption of devices with various payload sizes and numbers 

of EDs [101]. Additionally, in the Slotted Aloha LoRaWAN environment, an analytical 

examination of backlogged and non-backlogged traffic is also carried out. 

4.1.2 Existing research using Pure Aloha 

Pure Aloha is a simple random access protocol for sharing a channel among multiple 

smart devices, in which any user can send a packet towards Access Point (AP) at any time. 

LoRaWAN, on the other hand, is a more sophisticated protocol that manages communication in 

a huge covered area by combining random access and scheduled access approaches. 

  Recently, an advent to the Internet of Things (IoT) has demonstrated s i g n i f i c a n t  

applications in industry, healthcare, smart agriculture, smart cities, connected vehicles and 

environmental monitoring. LoRaWAN is considered as one of the popular low power wide area 

network technologies, which provides long range, low power, low cost, and secure bi-

directional communication [102]. A recent  advancement  in  virtualization and  cloud  

computing  has  motivated  the  telecommunication  industry  to  rethink  the  conventional  

proprietary approaches to networking. The primary infrastructure used by the 
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telecommunication industry lacks the capabilities which we wish should be enabled with the 

5G. The next era of IoT is expected to bring along a range of flexible and automated 

applications for the end users. In order to make 5G a reality, LoRaWAN due to its capability 

and feasibility in IoT can be considered as one of the strong  candidate enabler which can 

be integrated with the 5G [103]. A massive increase in the number of IoT devices in the decade 

to come is expected to impose huge capacity requirements on the backbone connectivity 

provided by the low power wide area network (LPWAN) technologies. LoRaWAN due to its 

low power, long range and low cost is expected to outstand other LPWAN technologies 

[104]. Figure 4.1 shows MAC issues in LoRaWAN. 

Expected growth of smart IoT devices is 32% annually with a claim by most of the well 

reputed research papers that over 21 billion smart nodes are there to transmit and receive data. It 

also discusses pros and cons of smart devices and its design aspects specifically in terms of smart 

applications used in urban areas [105]. Given the  future  uptake  of LoRaWAN for  innovative 

IoT applications, recently  a significant  research  has been dedicated  to  the  strengthen   the  

robustness  of  medium access  mechanisms  in  LoRaWAN. Although the performance of Slotted 

Aloha has been well studied in different literature for LTE, wireless networks, and cognitive 

radio networks. 

 

 

 

 

 

 

 

 

Figure 4.1 Taxonomic view of MAC Issues in LoRaWAN 

 However, to the best of our knowledge no work about performance  analysis of slotted  

Aloha for the BL and NBL nodes has been considered for  LoRaWAN [106]. An analytical 

model is proposed to study BL and NBL under Slotted Aloha LoRaWAN environment. In the 
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analysis, the main objective is to analyze the probability of collisions for both the BL and 

NBL nodes. We then perform simulations to analyze the performance of Slotted Aloha in 

terms of energy ef f iciency, throughput, and PER, and delay under varying packet load sizes 

and number of EDs. 

 
4.1.3 Challenges in LPWAN channel access schemes 

LPWAN (Low Power Wide Area Network) channel access schemes are intended to 

enable long-distance communication while using minimal power. However, several challenges 

must be overcome when implementing these channel access schemes. Among the major 

challenges are: LPWANs are designed to connect a large number of smart EDs covering huge 

geographical area. The scalability of the channel access scheme becomes critical as the number 

of EDs increases exponentially. Another factor is regarding interference, as LPWANs operate 

in unlicensed frequency bands, they are exposed to interference from other EDs operating in the 

same frequency band. This can result in huge number of collisions and losses, which can have 

a major impact on LoRa network performance. Latency: Low-power, low-data-rate LPWANs 

are typically designed for such applications. Some applications, however, may require low 

latency, which can be difficult for LPWANs due to their slow data transmission rates. 

  In literature, a significant analysis of contention-based MAC techniques has been 

performed. Several IoT applications as discussed in recent literature are based on Aloha. In, 

authors analyze the performance of Aloha in homogenous networks, where nodes generate 

traffic according to random distribution. Authors analyze the throughput performance of the 

work along with delay incurred due to path loss. However with  the  evolution of  IoT enablers,  

in  particularly  LoRaWAN, the  random packet  generation  models must  be revised  

according  to the  requirements  of  user  and  dynamics  of  system.  For example, large number 

of sensors is deployed to monitor vibration of infrastructure like buildings etc. These sensors 

generate packets on regular basis to provide feedback, which will lead to congestions. Smart 

metering is another example of  delay  tolerant  application [107], which  generates short  

messages  of  readings  from  water,  gas,  electricity at  regular  intervals [108]. Although, 

LoRaWAN is one of the emerging technologies used for IoT applications nowadays. However, 

there are number of challenges including massive number of collisions, re-transmissions, low 

throughput, energy consumption, Packet Error Rate (PER), and delay etc., that we should be 
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addressed, effectively. Table 4.1 shows the multiple access methods in different wireless 

technologies.  

Table 4.1 Overview of multiple access methods in different Wireless Technologies [4] 

 Pure 

Aloha 

Slotted 

Aloha 

Slotted 

CSMA/

CA 

FDMA TDM

A 

CDM

A 

CSS FHSS DSSS 

LoRaWAN X      X   

Sigfox X         

NB-IoT  X  X  X    

Weightless  X  X X   X X 

Zigbee   X    X  X 

WiFi    X     X 

RFID  X        

 

  Most of LPWAN technologies used for IoT applications are based on Aloha type 

multiple access mechanism.  Although, Aloha appears an attractive choice for limited number 

of EDs. However, massive number of M2M devices may qualify it as an unwise channel 

access mechanism [110]. Therefore, need an access mechanism in LoRaWAN which can have 

go slightly wiser than Aloha, while still keeping transmit packets in f i rst attempt or do not 

have any packet to transmit. It means in case of NBL, no queues buildup. 

4.1.4 Markov chain model for Slotted Aloha 

  Assume that we have m users that are sharing a channel using Slotted Aloha (SA). To 

analyze the impact of BL and NBL nodes on SA, it is important to understand the terms BL and 

NBL. BL nodes are those who always have packet to transmit, as these users experience 

collisions or packet loss in their first attempt. NBL nodes are those who either successfully 

transmit packets in first attempt or do not have any packet to transmit. It means in case of NBL, 

no queues buildup. The preamble portion of packet consists of 5 bytes needs for synchronization 

of EDs with GW. PHY Header takes 5 bytes and consists of all configurable parameters like 

SF, DR, Tp, CR and packet length. MAC Header has two portions MType and Major bit. The 

packet format for slotted Aloha is depicted below in Figure 4.2: 

 
 

 

 

Figure 4.2 Packet format used in Slotted Aloha 
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MType tells us about MAC messages like Join Request, Join Accept, Confirmed Uplink, 

Confirmed Downlink, Un-Confirmed Uplink or Un-Confirmed Downlink. After this we have 

PAYLOAD followed by CRC. 

  Assume that out of these m users, n users are in BL state. So (m – n) remains in 

NBL state. Let a denotes the probability of NBL nodes to transmit packet in a particular slot. 

Value of a is usually very small because in wireless networks like LoRaWAN users are in BL 

state most of the time. Let b be the probability of BL nodes, which have packet to transmit. 

It is important to understand that probability b is not generation of new packets. It is similar 

to re-transmission of a packet. Network performance highly depends on the value of b. We 

can optimize the value of b for our system. However, we do not have any control on the 

value of a. Given values of m, n, a and b describes throughput of our system. Algorithm that 

elaborates all processing SA with Markov Chain Model. The algorithm for analytical modeling 

of SA with Markov Chain Model is discussed below. Algorithm 1 presents the step by step 

procedure of analytical modeling for Slotted Aloha with Markov Chain model. 

Algorithm 1: Analytical modeling of Slotted Aloha with Markov chain model 

Algorithm for Analytical Modeling of SA with Markov chain model. 

Data: Initial Configuration 

Distance between smart End Devices (EDs) and Gateway (GW) (D) = 500m. Payload Size (PL) = [20, 

25, 30, 35, 40]. 

Number of transmitters (N) = 500. Initial transmit power (Tp ) = 14dbm. Initial SF = 12. 

Data Channels=[CH0, CH1, CH2, CH3, CH4, CH5, CH6, CH7] 

ADR = Enabled. 

Results: Analysis of Collision and PER. 

1 begin       for all EDs do 

2                 Free space path loss model is used for channel modeling.  

3                 Randomly select from 8 data channel [CH0, CH1, CH2, CH3, CH4, CH5, CH6, CH7]  

4                 Slot Size will be according to SF:  [7, 8, 9, 10, 11, 12] 

5                 Packets = [p1,p2].  

6                        if ED[j] send JOIN REQ towards NS 

7                      NS Lookup in SA Table. 

8       Select data channel from [CH0, CH1, CH2, CH3, CH4, CH5, CH6, CH7] according    

to SF. 

9         for i=0 to 7      // i is for No of Channels. As we have 8 No of data channels. 

10             if CH[i] == FREE for respected SF 
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11                            CALCULATE Slot Size W.R.T SF (ToA is calculated based on: SF, CR, PL, BW) 

12                        Assign slot to ED[j]. 

13                           else if CH[i] != FREE for respected SF     // i indicates No of channels. 

14                                          INCREMENT i to check other channels Slots 

15                           Check all other channels for FREE slots. goto for loop  

16 To Check Collision: 

17                       if Req received for ED[j+1] for channel slot at same time   //j indicates No of EDs. 

18                                       NS Lookup in SA Table 

19                        if ED[j+1].SF.ReqTime == ED[j].CH[i].SF .ReqTime  

20                         //Channel Slot already in use, j are number of nodes and i indicates  channel. 

21                                                      Assign same slot to ED[j+1] as ED[j]. 

22                              Collision Occurs.  (Collision occurs and PER gets incremented.)          

23                        else if  ED[j].SF.RSSI ≤ Sensitivity[SF] AND back-off slots ≥8. 

24                                        Packet lost.  

25                        else 

26                                       goto Line No 9 to check for free slot W.R.T channel.            

27                        else 

28                                          Packet transmitted successfully. 

29                        end 

30                     end 

31           end 

32  end 

 

The flow diagram shown in Figure 4.3 depicts the overall processing of Slotted Aloha 

approach in LoRa network environment. First of all the EDs wil be statically deployed in an area 

of 5 Km2. These static EDs are manually configured with parameters like data rate, bandwidth, 

payload size, channel frequency and spreading factor. Now these EDs send Join Request message 

towards gateway. If this Join Request message is encoded and validated by respective gateway 

accordingly. Once the Join Request message is accepted, the gateway give response in form of 

Join Accept message. With this Join Accept response, the gateway also check for suitable slot (if 

available) for EDs. The slot duration should be according to the initial spreading factor used by 

ED. Higher spreading factor mean we have large ToA and lower spreading factor should have 

less ToA. Once the slot is assigned to an ED, now the ED is allowed to transmit packets in 

respective time slot. No other ED is allowed to use same time slot duration for their transmission. 

Certain conditions are applied to check number of collided packets, lost packets and successfully  
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Figure 4.3 Flow diagram of Slotted Aloha for LoRaWAN 

After 10 Sec + 

Jitter 

No 

ED Transmit Pckts Successfully 

Pckt Incremented 

START 

Initial Configuration of EDs:  

SF, BW, PL, Tp, ADR=0 

EDs Send JR towards GW 

IF JR Accepted 

& Session == 

ESTB 

COLLISION Occurs 

Increment COLLISION 

Counter 

IF Slots Available, 

Calculate Slot 

Duration and assign 

to ED 

IF ED[j].RSS< 

Sensi OR CRC 

for Error D. 

Packet Loss Occurs PER 

Incremented 

Packet Received Successfully 

Throughput Incremented 

After 10 

Sec + 

Jitter Yes 

Yes 

No 

Yes 

END 

IF ED[j].SF == 

ED[j+1].SF OR 

ED.CH == 

ED[j+1].CH 

Yes 

No 

No 



 

 

 

66 

 

received packets at gateway. In case the Join Request is not accepted by gateway or slot is not 

available, in that case the ED has to wait for 10 seconds plus Jitter. The Jitter is equal to 1 second 

plus (0-20)% time of that 1 second. This Jitter is included to lower the collision in terms of Join 

Request messages. If all Join Request is transmitted towards gateway at the same time, so chances 

of losses are on a higher side, that’s why we introduce the factor of Jitter. 

Assume, A(i,n) is the probability of exactly i NBL nodes, that can transmit  in a slot 

as given in Equation 4.1. 

𝐴(𝑖, 𝑛) = ∑
𝑚 − 𝑛

𝑖
𝑎𝑖𝑚−𝑛 

𝑖=0 (1 − 𝑎)𝑚−𝑛−𝑖       4.1 

Let B(i,n) is the  probability that  exactly i BL nodes re-transmit  in a slot as represented  

in Equation 4.2.

𝐵(𝑖, 𝑛) = ∑
𝑛
𝑖

 𝑏𝑖𝑛 
𝑖=0 (1 − 𝑏)𝑛−𝑖                      4.2 

Let n represents the process state. As it can be seen in Figure 4.4, in the start we have no 

BL nodes so our system states start from n = 0, which becomes our starting state and then 

we have one BL node and so on. 

 

 

 

 

 

 

 

 

Figure 4.4 State transition diagram for BL nodes 

  P(n,n) denotes  the  probability  that  node remains on the same state n after occurrence 

of any transaction, and P(n,n+1) is the probability that a node moves from state n to state 
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n+1. For Slotted Aloha P(n,n) indicates same number  of BL nodes in the beginning and 

end of timeslot as shown  in Equation 4.3. 

P(n, n) = [A(1, n) ∗ B(0, n)] + [A(0, n) ∗ (1 – B(1, n))]        4.3 

In Equation 4.3, A(1,n) denotes only one NBL node in transmit  state, and B(0,n) means none 

of the BL nodes is in transmit  state. A(0,n) represents  that  no NBL node has data to transmit, 

and 1-B(1,n) indicates an exactly one BL node in transmit  state. Similarly P(n,n+1) becomes, 

P(n, n + 1) = [A(1, n) ∗ (1 – B(0, n))]                   4.4  

In Equation 4.4, A(1,n) indicates that  only one NBL node can transmit  packet and 1 -

B(0,n) depicts at least one BL node that will try to send. We can also f ind the probability 

P(n,n-1) as, 

P(n, n – 1) = [A(0, n) ∗ B(1, n)]                    4.5 

According to the above equation exactly one BL user will transmit. 

We can also generalize the case when we have more than one NBL node who wants to 

transmit. Such a case is translated as follows: 

P(n, n + i) = [A(i, n)]                               4.6 

where, 2≤i≤m-n 

With every state n in Figure 4.4, we have a reward r that determines that either packet is 

successfully transmitted or not. The throughput of system highly depends on reward r. Let, 

rn indicates reward of state n, which determines probability of successful transmission at state 

n as given in Equation 4.7. 

rn = [A(0, n) ∗ B(1, n)] + [A(1, n) ∗ B(0, n))]             4.7 

The above expression rn indicates that for successful transmission either one BL node or NBL 

node can be in the transmit state. 
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4.1.5 Simulation results of Slotted Aloha in LoRaWAN 

  This section presents simulation results of S lotted Aloha for LoRaWAN. Each 

LoRaWAN gateway covers 100 to 1000 EDs, where each node has a fixed payload size. The 

distance between EDs and gateway varies from 3 Km to 5 Km. Several numbers of packets 

(in bytes) are transmitted by EDs per simulation, to know its impact on LoRa network. Each 

simulation is performed at least 100 times to get average values of all parameters. All the 

possible cases are taken in to considerations to analyze the performance of Slotted Aloha 

in LoRaWAN. LoRa technology def i nes 3 data channels for the European standard,  i.e., 

868.1, 868.3, 868.5 for E D s  transmit its data towards gateway with 6 SFs, i.e., 7,8,9,10,11,12. 

Some of the simulations results are taken over single SF like for SF=12 and so on. ADR 

must be disabled if we want to perform simulation with single SF. With 3 data channels 

and 6 SF, logically we have 18 virtual channels that can be used simultaneously without 

any interference. For the scenarios where we obtain results by using single SF, transmit 

power remains constant with a value 14 dbm for the time of simulation. In all other 

scenarios, we keep the ADR enabled. The simulations results  clearly shows for  all  the  

above  scenarios  that  slotted  Aloha  is  more suitable  for delay tolerant  applications.  PER 

is observed for dif f erent SFs for varying payload sizes. The curves for different SFs are 

plotted to get exact information from simulations. By keeping ADR enabled, we analyze 

the average throughput in bits per second for LoRaWAN using Slotted Aloha. Further, we 

also evaluate the Slotted Aloha in terms of slotted Average delay for dif f erent SFs under 

varying payload sizes. 

 
a. Limitations of 1% duty cycle in Slotted Aloha 

  As LoRaWAN is a constrained technology by respecting duty cycle of 1% imposed by 

regulations. Duty cycle indicates that each LoRa end device can use a channel or sub-channel 

(sub-band) for 1% of the time in 24 hours. This duty cycle limitation prevents LoRa network 

from collisions, and therefore PER. Due to duty cycle constraints, each node only transmits 

limited number of packets. In this article, all the simulations have been performed 1% duty 

cycle. 

  The simulation results in Figure 4.5 show PER (in percentage) in terms of dif f erent 

payload size (in bytes). We have used 3 data channels in this scenario and these channels 

are randomly assigned to EDs. Each end device is conf i gured with a bandwidth of 125 khz. 
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EDs and gateway are separated with distance of 5 Km. ADR is disabled for this simulation 

because we want to observe the performance of Slotted Aloha under different SFs. If we 

observe the curve of Slotted Aloha in LoRaWAN for SF=12 and SF=7 with payload size of 

20 bytes, we can observe that PER is almost 25% and 5%. For the same conf igurations in 

LoRaWAN using Aloha, almost 78% of PER is observed with SF=12 and 60% with SF=7. 

Simulation runs for one hour each time (almost 50 tests). In Figure 4.6, the effect of PER 

is observed with respect to payload size with ADR enabled. Performance of both Slotted 

Aloha and Pure Aloha is rigorously analyzed in LoRaWAN. Signif i cant amount of 

improvement is observed in case of Slotted Aloha, when compared with pure Aloha. Figures 

4.5 and 4.6 show the analysis of PER w.r.t payload size with varying SFs and payload size w.r.t 

PER in percentage with ADR enabled. 

 
 

 

 

 

 
 
 
 

 

            Figure 4.5 Analysis of PER W.R.T payload size with varying SFs 

 

               

 

 

 

 

 

Figure 4.6 PER W.R.T payload size in percentage with ADR enabled 
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  The performance of Slotted Aloha is ominously enhanced with ADR enabled. ADR 

is responsible for adjusting data rate and transmit power adaptively with the help of 

MAC commands.  Initially, each EDs are configured with SF=12 and transmit power 14 

dbm with 500 patients (approximately 1500 EDs), where distance between EDs and 

gateway is 5 km. It can be observed from the Figure that when packets size is 20 bytes, 

PER is more reduced to 22%. We can see from the f i gure that for packet size of 30 bytes, 

PER is further reduced to 27%. 

  Comparison of PER, for both Slotted Aloha and Pure Aloha is performed and 

presented in Table 4.2. From numerical results we clearly observe that for discussed 

configuration, results of Slotted Aloha are better than Pure Aloha with 1% duty cycle 

limitation. Algorithm below illustrates the steps which are involved in collisions and 

therefore in PER. There are three conditions that can cause collisions. These conditions 

include: If more than one nodes use same SF to transmit packet, or if more than one nodes 

access same slot at same time, or if they are using same channel. A packet loss occurs 

when received signal strength of a packet is below the sensitivity level at receiver or node 

takes at least 8 BEB. Otherwise signal is successfully transmitted and received. Algorithm 

below def i nes all the steps that are performed in simulations. Table 4.2 shows the numerical 

analysis of PER with varying parameters. 

Table 4.2 Numerical analysis of PER with varying parameters 

 
Spreading 

Factor 

(SF) 

BW ED 
PER (in 

%) 

Distance 

(Km) 
ADR 

Payload Size 

(in bytes) 

Duty 

Cycle 

12 125 Khz 500 25% 5 Km Disabled 20 1% 

11 125 Khz 500 13.5% 5 Km Disabled 20 1% 

10 125 Khz 500 12% 5 Km Disabled 20 1% 

9 125 Khz 500 8% 5 Km Disabled 20 1% 

8 125 Khz 500 5% 5 Km Disabled 20 1% 

7 125 Khz 500 5% 5 Km Disabled 20 1% 
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Figure 4.7 Average number of packets received W.R.T No. of EDs with ADR enabled (a) 

d=3 Km (b) d=5 Km 

  Figure 4.7 shows impact of successfully received packets by varying number of EDs. 

Data rate and transmit power of nodes are adaptively managed by LoRa network as ADR is 

enabled for this simulation.  Packet size used for below simulation is 20 bytes. With 3 data 

channels and ADR enabled, we have 18 virtual channels that are simultaneously used by E D s  

to transmit data packets.  Distance between end device and gateway are taken as 500m. Figure 

4.7 (a) is for d=3 Km and (b) is for d=5 Km. Distance has signif i cant effect on total number 

of average successfully received packets. Further to distance, the number of EDs also affect 

the number of received packets. If we increase the number of EDs from 500, the percentage of 

received packets are drastically decreased. Figure 4.8, shows the behavior of average received 

packets with varying number of EDs. Having ADR enabled, number of packets received in 

Slotted Aloha is greater than Pure Aloha LoRaWAN. For this simulation payload size remains 

constant. A packet of 20 bytes are transmitted by varying number of EDs. Results clearly 

demonstrate that with payload size of 20 bytes and 3 Km of distance between ED and 

gateway, Slotted Aloha out-performs Pure Aloha. With 300 EDs, number of received packets 

in Slotted Aloha are signif i cantly more than Pure Aloha. Further, when we have 500 EDs 

per gateway transmitting packets simultaneously, average packets received in Slotted Aloha 

are greater than Pure Aloha.  
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Table 4.3 E = Enabled; initial SF=12; initial Transmit Power=14DBM 

ADR BW ED 
SA PER 

(in %) 

Pure Aloha 

PER (in %) 

Distance 

(Km) 

Payload Size 

(in bytes) 

Duty 

Cycle 

E/SF12 125 Khz 500 25% 67% 5 Km 20 1% 

E 125 Khz 500 23% 66% 5 Km 20 1% 

E 125 Khz 500 34% 70% 5 Km 20 1% 

E 125 Khz 500 29% 68.3% 5 Km 20 1% 

E 125 Khz 500 32% 65.5% 5 Km 20 1% 

E 125 Khz 500 43.5% 69.4% 5 Km 20 1% 

 

Table 4.4 E = Enabled; initial SF=12; initial Transmit Power=14Dbm 

ADR BW ED 
Throughput 

(in %) 

Distance 

(Km) 

Payload Size (in 

bytes) 
Duty Cycle 

E/SF12 125 Khz 100 86% 3 Km 20 1% 

E 125 Khz 100 86% 3 Km 20 1% 

E 125 Khz 200 95% 3 Km 20 1% 

E 125 Khz 300 92% 3 Km 20 1% 

E 125 Khz 400 50% 3 Km 20 1% 

E 125 Khz 500 61% 5 Km 20 1% 

E 125 Khz 100 47.65% 5 Km 20 1% 

E 125 Khz 200 49.5% 5 Km 20 1% 

E 125 Khz 300 49.0% 5 Km 20 1% 

E 125 Khz 400 48.65% 5 Km 20 1% 

E 125 Khz 500 45% 5 Km 20 1% 

 

  The throughput of Slotted Aloha in LoRaWAN is presented in Figure 4.9. Initially, 

nodes conf i gure their SF as 12 with a transmit power of 14 dbm, accordingly. As ADR is 

enabled, so after f i rst transmission, the data rate and transmit power of a node is adaptively 

controlled. We perform simulations to analyze the throughput of Slotted Aloha in LoRaWAN 

environment by varying distance between EDs and gateway. 



 

 

 

73 

 

 

Figure 4.8 Average number of packets received W.R.T No. of EDs with ADR enabled 

  We have kept the packet size as 20 bytes for the simulations. We can observe from Figure 

4.9(a) that the throughput of Slotted Aloha is 40% better than Aloha. We can observe that for 

500 EDs having distance 5 Km between end device and gateway, transmitting a packet of 20 

bytes results in a 68% of throughput.  In case of Aloha in LoRaWAN environment, the 

throughput for same set of parameters is 28%. Further decrease in throughput is observed by 

increasing distance between end device and gateway from 3 Km to 5  Km in Figure 4.9(b). 

Figure 4.10 demonstrates the delay with respect to payload size. As LoRa nodes follow duty 

cycle limitation of 1%, the delay factor in LoRa network is really important to analyze 

rigorously. Before transmission of packets towards gateway, LoRa nodes have to select a 

random slot. This random slot duration is according to the SF used for transmission. This slot 

selection by LoRa nodes causes delay, which def initely increases the ToA for that packet. 

However, for the delay tolerant IoT applications, this increase in delay generated by Slotted 

Aloha is acceptable. We have kept the number of nodes for this scenario as 200. The delay 

showed in Figure 4.10 is in milliseconds. For SF 12, we have higher delay, which decreases 

signif i cantly with the lower SF. One of the major factors in higher delay is BEB mechanism 

used for back-off in Slotted Aloha. By default, LoRa EDs use Aloha for transmission of packets. 

Although, Pure Aloha seems simple choice to transmission, however it may lead to massive 

number of collisions affecting the LoRaWAN throughput. In this article, we have used Slotted 

Aloha for transmissions. In case of Slotted Aloha, EDs have to randomly select slot before 

transmission starts. However, unlike Aloha in Slotted Aloha end device can only transmit the data 

in the start of a time slot. Figure 4.9 shows the throughput percentage w.r.t no of nodes with ADR. 
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    Figure 4.9 Percentage throughput W.R.T No of nodes with ADR (a) d=3 Km (b) d=5 Km 

  Our results show that by using Slotted Aloha, energy consumption is on a higher side as 

compared to Aloha due to the time spent by EDs in listening mode for most of its time for slot 

selection. In Figure 4.10, it analyzes behavior of EDs that transmits different size of payload 

with different SFs. 

 

      

 

 

 

 

 

 

Figure 4.10 Delay W.R.T payload size for different SFs 

One interesting result in Figure 4.11 is for the payload size of 30 bytes. As t h e  

size of packet  is large  enough  and with  duty  cycle  limitation  of  1%,  it  is  not  possible  

to transmit  whole packet of size 30 byte in simulation time of 1 hour. This is the reason 

that energy consumption of LoRa ED with 30 bytes payload is on a lower side as 

compared to others. 
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Figure 4.11 Effect of No. of EDs on energy (in milliJouls) 
 

 
 

 

 

 

 

 

 

Figure 4.12 Effect of EDs on energy (in milliJouls) having ADR enabled 

 
Results in Figure 4.12 shows the impact of varying payload size on energy with the 

ADR enabled. Initially EDs statically conf i gures SF=12 and transmit power 14 dbm. After 

this both these parameters are adaptively controlled by LoRa network. By enabling ADR, 

energy of nodes is significantly optimized. 
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4.2       Unsupervised probabilistic approach with adaptive scheduling     

            This section highlights the issues caused due to delay in LoRaWAN. To address this 

problem, an unsupervised probabilistic approach is used to perform profiling. After profiling a 

scheduling algorithm ASA is proposed to assign priorities to profiles. Mathematical expressions 

and probabilistic relations are regourously provided to justify the simulation results. 

4.2.1 Unsupervised scheme to enhance QoS provisioning 

          The Low-Power Wide Area Networks (LPWAN) technologies have been increasingly 

researched and overwhelming choice because of the huge number of IoT devices. Several 

LPWAN technologies are used by various researchers to address specific issues, but LoRaWAN 

is the most appropriate and appealing in terms of cost and energy consumption. The issue with 

LoRaWAN is the high rate of packet drop due to collision. The main cause of this packet drop 

rate is the MAC channel access scheme Pure Aloha used by LoRaWAN for frame transmission. 

LoRa EDs initiate communication with Aloha, resulting in a large number of re-transmissions. 

These re-transmissions will further depreciate delay factor and consumption issues. In order to 

accomplish well-organized application of LoRaWAN, it’s important to define target 

application. This chapter focuses on heterogeneous IoT applications used mainly for smart 

health monitoring scenarios. An intelligent learning using unlabeled scheme is applied in this 

chapter because of the low power nature (battery driven EDs) of LoRa network. An optimal 

profiling algorithm is applies to by gateway to perform profiling of EDs. An efficient profiling 

algorithm selects as ultimate target is to optimize delay because of re-transmissions. K-Means 

intelligent learning algorithm is more suitable choice for making profiles of EDs on behalf of 

certain parameters as compared to other learning algorithms. Ultimate target is to group those 

EDs that exhibit same behavior at gateway level without involving nodes. By doing all this 

processing on gateway, the overhead of computation regarding EDs are mitigated.   

  On the basis of GMM probabilistic algorithm with K Means, profiling of EDs are 

performed by gateway. Further an Adaptive Scheduling Algorithm (ASA) is implemented on 

gateway to prioritize frames from different profiles. The gateway is solely responsible for 

transmission intervals defined for different profiles. Another important functionality of 

gateway, in addition to adaptive scheduling algorithm the inter-arrival frames from prioritized 

profile are deployed and examined to enhance the data throughput. This adaptive learning 

algorithm significantly enhances success ratio rate of frames from end device, hence re-
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transmissions on a lower side and delay is ultimately mitigated. The authors in [111], performed 

clustering where EDs workload is shifted towards another cluster but multi-hop scenario 

drastically enhance computation of EDs in LoRaWAN, hence also increase delay and energy 

consumption. The proposed work in [112], also performs K-Means learning for clustering. On 

the basis of these clusters scheduling algorithm is designed to prioritize packets. Authors use 

only spreading factor (SF) 7 for transmission of frames towards gateway. The reason behind 

using SF=7, as with this we can get minimum Time on Air (ToA). Only one gateway is used 

for simulation. The debatable issue is that, LoRaWAN adaptive data rate algorithm dynamically 

adjust Data Rate (DR) and transmit power of EDs. By using one single SF for whole simulation 

environment kills that adaptively provide by ADR. So in this chapter we discussed and address 

all these issues. This chapter details the basic intelligent learning solution in LoRaWAN 

environment by adaptively schedule traffic from different profiles of EDs and enhances 

performance in terms of delay.  

4.2.2 Intelligent learning in LoRaWAN 

  LoRaWAN is more suitable option for IoT applications like smart energy meter, smart 

gas meter and smart health monitoring. Overwhelming choice of LoRaWAN is because of its 

simplicity and less calculations on edge devices for transmission of data. For IoT applications, 

where low latency is not that critical, LoRaWAN is an ultimate requirement. But most of the 

time, major setback in LoRaWAN that researchers face is high number of collisions, low 

throughput, increased number of re-transmissions and high delay. All these issues question the 

reliability of LoRaWAN. Although several features that enhance reliability and flexibility of 

LoRaWAN are Spreading Factor (SF), Coding Rate (CR) and ADR. To provide flexibility and 

reliability intelligent learning algorithms and techniques are discussed and used in LoRaWAN. 

An enhanced scheme to predict collision of packets based on LSTM model is developed. Online 

training schemes are used to achieve high accuracy. Further this also motivates Cui and Joe to 

combine LSTM with State Space Model (SSM). All these schemes are integrated in LoRaWAN 

protocol suit that drastically increase the computation overhead. Having limited resource 

technologies like LoRaWAN, these computations further degrade performance in terms of 

delay, energy consumption and latency. In another study Cuomo et al, proposed K-Mean 

clustering and also provide acknowledgment for random transmissions. Similar transmission 
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characteristics are taken in to account to perform profiling of EDs. Decision Tree (DT) and 

LSTM models are used in this research to optimize allocation of resources.  

  Reinforcement Learning (RL) schemes are used to enhance throughput of EDs. 

Configuration parameters for EDs play vital role in the performance of LoRaWAN network. 

The best possible parameters are analyzed by Reinforcement scheme and update the future 

configuration parameter accordingly. Similar study is proposed in [113], by using RL and 

Carrier-Sense Multiple Access with Collision Avoidance (CSMA/CA) to reduce number of 

collisions in LoRa network. Q-Learning scheme is used to assign best possible configuration 

parameters to EDs. Their analysis reveals that main cause of collision in LoRa network is 

simultaneous transmissions from EDs. In this research the LoRa gateway allows the EDs to 

forward the packets on channels using CSMA/CA. However, throughput and delay is still main 

concern for LoRaWAN that needs to be addressed. 

 

4.2.3 Methodical concerns with intelligent learning in LoRaWAN 

  The use of intelligent learning algorithm is inevitable as the severity of problems like 

collision, throughput, frame error rate, delay and energy consumption in LoRaWAN are 

exponentially grown when we have huge number of EDs. But the concerns of using intelligent 

learning in LoRaWAN are its computation that ends up with high energy consumption. These 

concerns make learning approaches more vulnerable especially for LoRaWAN. The study in 

[114], revealed that because of the resource limitation of IoT nodes machine learning algorithms 

are that efficient choice. As in these schemes EDs need certain level of coordination with access 

point. Keeping in mind all these facts, un-supervised learning techniques (K-Means) are used 

with scheduling algorithm to prioritize traffic of clusters. The main purpose of using K means 

is to make partitions of EDs on the basis of certain parameters. After this the access point assigns 

nodes to these clusters. So by doing this some of the computation burden is lift from EDs but 

still there are tradeoff between energy consumption and delay. Needing higher throughput 

which definitely compromise delay and consumption parameters.  
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4.2.4 System model of intelligent learning and formulation 

  The model developed in this chapter for intelligent learning, is considered as well 

populated smart health monitoring scenario. First of all, un-supervised probabilistic approach 

GMM with K-Means are used for profiling in a densely defined populated area. The GMM with 

K Means is performed by gateway in LoRaWAN environment. After the optimum profiles are 

defined by GMM algorithm, the EDs are assigned to each profile. On the basis of Adaptive 

Scheduling Algorithm (ASA), traffic from different profiles is prioritized in terms of Low 

Priority Profile (LPP), Middle Priority Profile (MPP) and High Priority Profile (HPP). 

4.2.4.1 System modeling 

        The system modeling depicts smart health monitoring scenario in residential area: 

such as smart pulse Oximeter, smart blood pressure and smart heart rate. The said scenario is 

implemented with the help of two Gateways (GWs) and all the nodes are randomly distributed 

over an area of 5 Km2. All the EDj are initially configured using LoRa model SX1272, where j 

are from 1 ≤ j  ≤ 3000. All the nodes EDj are static and for interaction with GW they are using 

class A LoRaWAN protocol. Class A EDs use two receiving windows (Rx1 and Rx2) for 

responses from gateway in case of confirmed communication. As we have to perform profiling 

for all of considered nodes in area span of 5 km2 , so for this we have to use some intelligent 

learning algorithm are used. As dealing with very time sensitive data, so the idea of taking two 

gateways in proposed network. Sometimes multiple GWs increase interference, but to deploy 

these GWs on points where interference between EDs which is negligible as possible. Another 

point about using multiple GWs is using Pure Aloha for transmission of packets from nodes so 

energy consumption is not an issue. Further with Chirp Spread Spectrum (CSS) method used 

by LoRa modulation which allows LoRa GWs to serve thousands of EDs in a densely populated 

area. With this huge number of EDs transmitting towards GWs, the main challenge is to keep 

packet acceptance rate high. Achieving high throughput, mean low number of re-transmissions 

that drastically mitigate transmission delay of transmitting EDs. Figure 4.13 present the smart 

health monitoring scenario for LoRaWAN network. 
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  The target is Smart health monitoring applications, so for this the set of random values 

(P), (Q) and (R) that are assigned to EDj by using Gaussian distribution. These values are 

transmitted by smart nodes EDj towards GWs, on which profiling is designed. On the account 

of these values, GWs assign smart nodes EDj to different profiles. The main objective of this is 

to prioritize traffic from profiles that have critical readings of pulse rate (P), blood pressure (Q) 

and heart rate (R) in the prescribed area. Most of the time, distance between GW and smart 

nodes EDj_d has a very prodigious impact on throughput. In environment where we have high 

rise buildings, smart nodes EDj  that are deployed at 500m (do) away from GW such that (EDj_d  

≥  (do)) suffers from bad channel condition and having Packet Delivery Rate (PDR) between 

50% to 90%. In addition to all these the EDjs transmits packets towards the GWs using different 

Spreading Factor (SF). LoRaWAN provides six SF (7, 8, 9, 10, 11, 12) and four different 

Coding Rates (CR). LoRaWAN uses ADR algorithm to adjust DR of (EDj) accordingly. Further 

the system model designed in this thesis is in densely populated area within a range of 5 km2. 

Figure 4.13 Smart Health Monitoring Scenario for LoRaWAN network 
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The sole objective of this research is to enhance the performance of LoRaWAN network in 

terms of transmission delay by using intelligent learning schemes that mitigate the collision 

hence re-transmissions. Packets transmitted by smart nodes collided in LoRaWAN, if they have 

same SF, channel frequency and at same time. LoRaWAN is single hop wireless technology 

that espouses Pure Aloha for transmission of frames from EDs towards gateways. To formulate 

this behavior of LoRa we use poisson distribution, where P is the probability of frame collision 

and is given as, 

p = e−2R                 4.8 

Where R is the transmission rate of frames per end device. Further with the increase in the 

number of ED, this probability is exponentially increasing which leads towards QoS issues in 

LoRa network.  As we already discussed that LoRaWAN uses Pure Aloha for transmission of 

frames towards GW. With the application scenario already discussed above and random 

transmission from EDs, our main objective is split smart nodes in different profiles. So end 

device profiling play important role in minimizing the random traffic towards GWs. Gaussian 

Mixture Model (GMM) with K Means are applied on GWj to construct optimum number of 

profiles for the EDs on the basis of values transmitted from EDs. After the GWj completes its 

profiling, now the GWj implements Adaptive Scheduling Algorithm (ASA) to prioritize traffic 

from different profiles. In all this processing the EDs limited resources is key for us to keep in 

mind. Since the main objective is to mitigate the transmissions delay, so that we can check the 

effect of ED profiling by using intelligent un-supervised learning algorithm GMM. 

Mathematical formulation of transmission delay, GMM, Inter-arrival-frames from individual 

profiles and ASA is performed in next section. 

4.2.5 Transmission delay formulation 

  Transmission delay is one of the important factors to rectify for QoS enhancement in 

LoRaWAN. Transmission Delay (TD) is directly proportional to frame bits transmitted or bitrate 

[115]. TD in LoRaWAN environment depends on number of bits in frame transmitted and bit 

rate as shows on Equation: 

𝑇𝐷 =
No.of bits inside frame

𝑏𝑖𝑡 𝑟𝑎𝑡𝑒
                 4.9 

 

The bit rate in above equation is given as: 
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𝑏𝑖𝑡 𝑟𝑎𝑡𝑒 =
SF x BW

2𝑆𝐹
   

4

4+𝐶𝑅
             4.10 

 

 SF is the spreading factor and it is adjusted by LoRa ADR algorithm according to network 

performance. BW is the bandwidth and it is adjusted to 125Khz. CR is the ratio of actual and 

redundant bits. LoRa ADR is responsible to configure those parameters for ED, that best suited 

according to the network environment on run time. Further details about SF, BW and CR are in 

[115].  

  In proposed Adaptive Scheduling Algorithm (ASA), GW adaptively assigns priority 

(Pr) to different profiles (Prof) on the basis of values P, Q and R received from EDj. Number of 

profiles are denoted by Profk where k: (1, 2, 3, ….., k). LoRa nodes EDj belongs to LPP waits 

until the transmission from node EDj belongs to HPP  profile (Prof) completed successfully. So 

nodes belong to lower priority profile waits for certain amount of time and that delay is 

described below:  

𝑇𝐷(𝑃𝑟𝑜𝑓) = ∑ (𝐷𝑝𝑟𝑜𝑓1, 𝐷𝑝𝑟𝑜𝑓2,𝑘
𝑗=1 … … , 𝐷𝑝𝑟𝑜𝑓𝑘)             4.11 

Where k is the number of profiles in LoRa network, 𝐷𝑝𝑟𝑜𝑓𝑘 is the total transmission delay of 

ED in a profile of Profk and given in equation below. Further (ED). Profk  is the total number 

of all EDj in the corresponding ProfK ; and Z(j) = D (Dinit  + DRc + DRch); Dinit is initial 

transmission delay  of each node EDj; DRc is the delay of the retransmission caused by EDj 

collided packet; DRch is the delay of the retransmission caused by EDj lost packet  because of 

bad channel condition. The GW must have knowledge about the terminologies like initial 

transmission, collision and bad channel condition. Transmission from EDj that are in a LPP 

ProfLPP in a state of back-off until the transmission from EDj that are in HPP ProfHPP is 

completed. The delay expression of LPP becomes𝐷𝑃𝑟𝑜𝑓𝐿𝑃𝑃
.  

𝐷𝑃𝑟𝑜𝑓𝐿𝑃𝑃
= 𝐷𝑃𝑟𝑜𝑓𝐻𝑃𝑃

+ 𝑍(𝑖)                                     4.12 

Where i is the summation starts from 1 and goes to EDJ 𝐷𝑃𝑟𝑜𝑓𝐿𝑃𝑃
 and 𝐷𝑃𝑟𝑜𝑓𝐻𝑃𝑃

is the delay of 

high priority profile. 
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4.2.6 Unsupervised Gaussian mixture profiling algorithm 

  With the number of IoT devices increasing day by day it’s really important to make the 

networks more and more intelligent. To make the LoRa network more robust, intelligent 

learning unsupervised technique Gaussian Mixture Model (GMM) Profiling is used to mitigate 

the probability of collision. To do this, GMM algorithm is adopted to make optimum number 

of profiles and further assign EDj to those profiles. K-Means is one of the mostly used non-

probabilistic approaches for profiling. The problem with K-Means approach is, that most of the 

time it converges to local minimum. To get the global minimum we have to run simulation 

several times with different configuration parameters. Another drawback of K-Means approach 

is that; it performs hard profiling. Hard profiling means that each object is assigned only to one 

profile. There are no probabilities assigned to nodes or objects during simulations. Given the 

EDi’s in large geographical are of 5 Km2, where i ∈ 1, 2, 3, ……. ,3000. So X= x1, x2, x3, ….. xn 

∈ R3. As we are starting with K-Means profiling so the intuition is to find the local minima or 

initial center point Cp = C1, C2, C3, where p ∈ 1, 2, 3 for each profile prof that is near to the EDi 

in that profile in terms of readings. As already discussed that three number of prof (HPP, MPP, 

LPP). One measure to know about the center Cp of each prof is the sum of its distances from 

Cp. Mahematically L becomes, 

𝐿 =       ∑ ∑   || 𝑥𝑖 − 𝐶𝑝 ||𝑛
𝑖: 𝑥𝑖  

𝑖𝑠 
𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 

𝑡𝑜 𝑝

3
𝑝=1

2
                     4.13 

 We can also write the above equation as, 

𝐿 =       ∑ ∑   𝑎𝑖𝑝  || 𝑥𝑖 − 𝐶𝑝 ||𝑛
𝑖=1

3
𝑝=1

2
                      4.14 

Where,  aip is a coefficient having values 1 or 0: 

𝑎𝑖𝑝 = {
1 𝑥𝑖𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑝
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Further K-Means trying to minimize L w.r.t a and C by following steps. 

i. Choose optimal a for fixed C. 

ii. Choose optimal C for fixed a. 
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iii. Repeat (i) and (ii) until convergence. 

This is essentially a special case of EM algorithm; in which we are trying to find estimated 

parameters. Now the above step (i) is mathematically expressed as, 

𝑎𝑖𝑝 = {
1        𝑖𝑓 𝑝 =

arg 𝑚𝑖𝑛
𝑙

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
|| 𝑥𝑖 − 𝐶𝑝 ||2         4.15 

We know that minimizing the Euclidean distance is same as minimizing its square.  

  Researchers round the globe are moving towards another solution for profiling known 

as GMM profiling approach. The Expectation Maximization (EM) model is used for 

convergence by GMM algorithm. Another benefit of using GMM is its shape of decision 

boundaries. With its covariance matrix the decision boundaries are more elliptical as compared 

to the circular boundaries in K-Means. However, an interesting fact about GMM is its assigning 

probabilities to each object. By assigning the probabilities to each object, we can easily see how 

strong our belief that a given object belongs to a specific profile. If we compare both algorithms, 

the GMM seems to be more robust. However, GMM usually tend to be slower than K-Means 

because it takes more iterations of the EM algorithm to reach the convergence. They can also 

quickly converge to a local minimum that is not a very optimal solution. The problem with 

GMM is that they have converged quickly to a local minimum that is not very optimal for said 

object. To avoid this issue, GMM are usually initialized with K-Means. This usually works 

quite well and it improves profiles (clusters) generated with K-Means. We can create GMM 

with K-Means initializer by changing one parameter in the GMM approach. Mathematical 

formulation of GMM and EM probabilistic algorithm is as follow: 

  Given the EDi in large geographical are of 5 Km2, where i ∈ {1, 2, 3, ……. ,3000}. So 

X={ x1, x2, x3, ….. xn } ∈ R3. The main aim of GMM is to define optimum number of profiles 

with global minima. The derivation of K-Means profiling is already presented in previous 

section. Now for GMM profiling the initial center point Cp = {C1, C2, C3}, where p ∈ {1, 2, 3} 

for each profile prof that is near to the EDi in that profile in terms of readings. Generic Gaussian 

distribution is presented in the form of Probability Distribution Function (PDF) as, 

𝑃𝑥(𝑥) =
1

√2𝜋𝜎2
 𝑒

−
(𝑥−𝜇)2

2𝜎2                          4.16 
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𝑃𝑥(𝑥) is the probability density function representing patients lying in different regions depends 

on readings. 𝜇, 𝜎 and 𝜎2 are variable terminologies depicts average (mean), standard deviation 

and variance of bell shape curve. 

Mathematically, for 3-dimensions Gaussian distribution of EDs or a vector representation of 

these EDs becomes, X= {x1, x2, x3,.. xn} ∈ R3. To know about profile k of xi.  zi│W  is nearly equal 

to categorical(w), which means, 

𝑃(𝑍𝑖 = 𝑘|𝑤) = 𝑊𝑘                               4.17 

𝑃(𝑍𝑖 = 𝑘|𝑤) means that EDi belongs to profile k. 𝑊𝑘 is a mixture weight of k which is equal 

to 1, if the value of mixture is between 0 and 1. 

∑ 𝑊𝑘𝑘 = 1,    if        0 ≤ 𝑊𝑘 ≤ 1            4.18 

As each profile has its own center and co-variance so generate Xi from profile distribution as 

below, 

𝑋𝑖 |𝑍𝑖 = 𝑘 ~ 𝑁(µ𝑘, ∑𝑘)                             4.19 

µ𝑘 is considered as profile center and ∑𝑘 is the co-variance of profile. 

Given the profile center and its co-variance, we can compute probability P for specific value 

of Xi.  

𝑃(𝑋𝑖 =  𝑥𝑖  |  µ𝑘 , ∑𝑘)                                   4.20 

𝑃(𝑥 𝑐⁄ ) =
1

√2𝜋.|∑𝑐|
. 𝑒−

1

2
 (𝑥𝑖−µ𝑐)𝑇 ∑ (𝑥𝑖−µ𝑐)−1

𝑐  
               4.21 

𝑃(𝑥 𝑐⁄ ) is probability density function of ith node with respect to center point of profiles c. After 

this in exponential component we are subtracting mean component from the ith instance of EDs 

(𝑥𝑖 − µ𝑐)𝑇 and in the middle we are multiplying it by inverse of co-variance ∑ (𝑥𝑖 − µ𝑐)−1
𝑐 . The 

co-variance component describes the shape of Gaussian distribution. 
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4.2.7 Proposed Adaptive Scheduling Algorithm (ASA) 

  This section covers all the aspects of proposed Adaptive Scheduling Algorithm (ASA), 

where the GW is responsible for scheduling the transmission of EDj on the basis of different 

priorities (priorities are set according to the reading received from sensors). Firstly the GW 

received different values G.EDj from EDj and after processing assigns it to different profiles 

prof. After the profiles are formed, now the GW assigns EDj to these profiles on the basis of 

certain parameters (reading/data received from end nodes). Assume that G. Profk becomes the 

average value of all G.Edj with in the same profile. Further on the basis of G. Profk the GW 

implements ASA to schedule and assign pr to different prof. Since the optimum number of 

profiles k selected in this research 3, so pr assign are LPP, MPP and HPP respectively. Once the 

GMM with K-Means probabilistically design optimum number of profiles, now the EDi is 

assigned to these profiles according to the readings/data. Further, the EDi from HPP is allowed 

to transmit data for 15 minutes at maximum. The reason behind this is that, having 20 bytes of 

complete packet with SF 12, BW 125 Khz and CR 4/5, it takes 1318.912 milliseconds to reach 

GWj. Having 15 minutes for EDi in HPP, we have 900 seconds and 900000 milliseconds for all 

the EDi in HPP. If we allow EDi’s to transmit second packet only if current reading is 5% to 

10% different from previous reading. By doing this the EDi’s in HPP is capable to transmit 

multiple times towards GWj’s.   

4.2.8 Transmission scheduling 

As we already discussed that scheduling algorithm ASA is implemented on GW. The 

GW assigns highest Pr to EDj that have maximum value of G EDj. Just to remind that G is the 

difference of value P, Q and R, where P denotes smart pulse oximeter, Q denotes smart blood 

pressure monitoring and R is for smart heart rate. Various normalization techniques [116][117], 

are used in literature to calculate normalized values. Each LoRa node generates these 3 values 

and these values differ from one another in terms of its unit. The maximum Pr is considered as 

Max(Pr) and its equal to Max(G Profk). Where G(EDj) denotes the average value of G in the 

corresponding profile ProfK .  

  The Pr of Profk is directly proportional to average value of profile G(Profk). It means 

higher the value of G(Profk), the higher Pr of that profile. Based on priority of Profk, the GW 

schedules the transmission of node EDj from that Profk. The nodes traffic from Low priority 

profile (EDj)ProfHLP is blocked until the transmission from nodes in high priority profile 
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(EDj)ProfLLP block is completed. The above statement to block the traffic from Low priority 

profile  (EDj)ProfLPP is some time degraded the performance of network, because of 

unnecessary traffic from high priority profile (EDj)ProfHPP. In order to prioritize the traffic from 

profiles Adaptive Scheduling Algorithm (ASA) is designed. This algorithm is implemented on 

GW. According to the assumptions, GW had to schedule the transmission from each EDj of 

corresponding profile. As GW take decision on the value G(EDj) received from earlier 

transmissions. After every successful transmission value of G(EDj) is updated. Each EDj 

correspond from Prof transmits one packet after every 5 minutes. If there is any collision due 

to bad channel condition, only one re-transmission is allowed by ASA. 

  Figure 4.14 elaborates technical flow of Adaptive Scheduling Algorithm with 

unsupervised learning approach GMM. The flow diagram shown in Figure 4.14 depicts the 

overall processing of ASA with unsupervised learning approach GMM in LoRa network 

environment. First of all the EDs are statically deployed in an area of 5 Km2. These static EDs are 

manually configured with parameters like data rate, bandwidth, payload size, channel frequency 

and spreading factor. Now these EDs send Join Request message towards gateway. Join Request 

message is encoded and validated by respective gateway accordingly. Once the Join Request 

message is accepted, the gateway give response in form of Join Accept message. The MAC 

scheme used in this algorithm is Pure Aloha with Extended Aloha. Initially EDs transmit packets 

towards gateway using Pure Aloha, after this the ED follow all the steps of Extended Aloha which 

states that if current reading deviates from previous reading by 5%, then EDs are allowed to 

transmit again. 

Upon receiving first packet from EDs, the gateway used unsupervised learning algorithm 

called GMM. GMM assigns probabilities to all EDs with the help of probability density function. 

On the basis of these probabilities EDs are assigned to certain profiles like HPP, MPP or LPP. 

Critical data readings are assigned to HPP, semi-critical readings are assigned to MPP and normal 

data readings are assigned to LPP. Now EDs in HPP are allowed to transmit for 15 minutes as we 

have critical patients in this profile. After 15 minutes EDs in MPP are allowed to transmit packets 

towards gateway for 5 minutes. EDs pat of LPP are not allowed to transmit, as we have normal 

patients in this profile.  
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Figure 4.14 Technical flow of Adaptive Scheduling Algorithm 
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To estimate best possible parameters for these profiles or to design a best Gaussian class or profile, 

GMM use Expectation Maximization (EM) algorithm. Certain conditions are applied to check 

number of collided packets, lost packets and successfully received packets at gateway. In case the 

Join Request is not accepted by gateway or slot is not available, in that case the ED has to wait 

for 10 seconds plus Jitter. The Jitter is equal to 1 second plus (0-20)% time of that 1 second. This 

Jitter is included to lower the collision in terms of Join Request messages. If all Join Request is 

transmitted towards gateway at the same time, so chances of losses are on a higher side, that’s 

why we introduce the factor of Jitter. 

Algorithm 2 presents the step by step procedure of Adaptive Scheduling Algorithm with 

unsupervised learning approach GMM to prioritize traffic in LoRaWAN. 

Algorithm 2: Adaptive Scheduling Algorithm to prioritize traffic in LoRaWAN 

 

Adaptive Scheduling Algorithm to prioritize traffic 

Declare variables: TD, EDj, G(EDj), (EDj)Pr, Pr  BELONGS TO [LPP, MPP, HPP] 

To mitigate TD: 

START LOOP for EDj do 

1.       if ED[j] send JOIN REQ towards NS 

2.                 NS Respond with Channel CH[i] 

3.        If Session == ESTB Then 

4.                   ED[j] Transmits data readings towards GW 

5.                   CALCULATE N(x|μ, Σ) through EM Model, P(Xi ∈  Profk) for ED[j]  

6.                   Mathematical Optimization θ∗ = arg  maxθ  P(X|θ)                      

                       to best fit data with selected parameters like μj,  SD and Variance. 

7.                   On the basis of PDF, ED[j] is assigned to Profiles [HPP, MPP, LPP] 

9.            if EDj BELONGS TO HPP 

10.          EDj  := (EDj )HPP  AND (EDj )HPP    is allowed to transmit for 15 Min 

11.          else if   EDj  BELONGS TO MPP AND (EDj )HPP  = 0  

12.                   EDj  := (EDj )MPP  AND (EDj )MPP  is allowed to transmit for 5 Min. 

14.          if     New_Reading deviate by 5% Than Current_Reading    

15.                                                              OR 

16.          if     Last_Ack Not Received 

17.                     EDs in MPP is allowed to transmit multiple times during this 5 Min. 
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18.          else if EDj  BELONGS TO LPP AND [(EDj )HPP , (EDj )MPP ] = 0 THEN                   

19.                     EDj  := (EDj )LPP  AND (EDj )LPP  AND ignore transmission. 

20.          else 

21.                    (EDj)Pr   = 0 

22.          end if 

23. END LOOP 

24. PERFORM GMM with Adaptive Scheduling AND goto START LOOP.         

 
 

4.2.9 Collision behavior of EDs inside profiles 

  As thousands of EDs are transmitting towards gateway in LoRa network, so possibility 

of collision is also exponentially increased. This section exhibits the behavior of collision in 

LoRa network when multiple LoRa transmissions are received at gateway. Some of the 

transmissions that are orthogonal to others are decoded successfully by the receiver, but 

transmissions that overlap in terms of SF, frequency, time or in power domain leads to collision. 

All these categories of collision discussed in detail in this section.  

4.2.9.1 Collision in terms of overlapping region 

        Overlapping of LoRa transmissions at gateway is one of the serious concern for 

LoRa network. Assume that interval at which packet overlaps starts from Pi and ends at Qi such 

that (Pi, Qi), whereas i is any packet. The gateway receives packet i during time Pi and Qi. 

According to these parameters we can easily define midpoint and distance of the said interval. 

𝑀𝑃𝑖 =
(𝑃𝑖+𝑄𝑖)

2
 ,   𝐷𝐼𝑆𝑇 =

(𝑄𝑖−𝑃𝑖)

2
 . Now overlapping condition fulfills when two packets x and y arrives 

at receiver during same reception interval.  

𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑥, 𝑦) = 𝑀𝑃𝑥 − 𝑀𝑃𝑦 < (𝐷𝐼𝑆𝑇𝑥 + 𝐷𝐼𝑆𝑇𝑦)              4.22 

 

4.2.9.2 Collision in terms of spreading factor 

        LoRa network used spreading factor to achieve long range, resilience against 

interference and to receive simultaneous transmission at the same time. However, when we 

have multiple transmitters that transmit packets having same spreading factor, it leads towards 

collision. The condition for collision in terms of spreading factor is 𝑆𝐹𝑥 = 𝑆𝐹𝑦, where 𝑆𝐹𝑥 and 

𝑆𝐹𝑦 are spreading factors for transmitters x and y. 
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4.2.9.3 Collision in terms of carrier frequency 

 
        Transmissions with different frequencies are still orthogonal and can be easily 

decoded by receiver. However, overlapping region in terms of frequency is defined as the 

difference of frequencies and offset. We have certain overlapping cases discussed below: 

1. For 125Khz bandwidth: IF (𝐹𝑟𝑒𝑞𝑝𝑐𝑘1 −  𝐹𝑟𝑒𝑞𝑝𝑐𝑘2 ) ≤ 30 Khz  , pck1 and pck2 are 

packets from different transmitters. 

2. For 250Khz bandwidth: IF (𝐹𝑟𝑒𝑞𝑝𝑐𝑘1 −  𝐹𝑟𝑒𝑞𝑝𝑐𝑘2 ) ≤ 60 Khz  , pck1 and pck2 are 

packets from different transmitters. 

4.        For 500 Khz bandwidth: IF (𝐹𝑟𝑒𝑞𝑝𝑐𝑘1 −  𝐹𝑟𝑒𝑞𝑝𝑐𝑘2 ) ≤ 120 Khz , pck1 and pck2    

       are packets from different transmitters. 

  As GWj assigned three different priorities Pr (HPP, MPP, LPP) to prof, so different 

simulations are performed to know the behavior of EDi in terms of Packet Success Ratio (PSR), 

PER and collisions. The normalized values of PSR, PER and collisions is calculated for all prof. 

The simulation carried out two GWj in the scenario that built, so at one time EDs from two HPP 

transmits there frames. The reason to choose HPP for each GWj individually is that we may 

have critical readings from other EDi as well. To keep in mind, the severity of patients in smart 

health monitoring scenario we want that maximum number of EDi can send data at one time 

but keeping in mind the QoS as well. 

  GWj’s deployment is another important factor in the mentioned geographical area. As 

used two number of GWj’s so to keep interference as low as possible the distance between GWj’s 

is intelligently decided. 

Let X= {x1, x2, x3,….. xn} be the EDi’s ∈ R2 and GWj’s G= {g1, g2} ∈ R2. So to optimize the 

distance d between two GWj’s  g1 and g2, || g1 – g2 || > Threshold: where the minimum value of 

Theshold is 1 Km. 

𝑚𝑖𝑛 ∑ ∑   || 𝑔𝑗 − 𝑥𝑖  ||𝑛
𝑖=1

2
𝑗=1                        4.23 

After both the GWj select there HPP and MPP profiles, now the EDi in HPP is allowed to 

transmit packets. The behavior of PSR with varying number of nodes are rigorously analyzed. 
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As the packet size for our simulation environment is 20 bytes. The structure of complete packet 

used in simulation is presented in Table 4.5. 

Table 4.5 Packet Structure 

 

 

Node ID Preamble Physical Header MAC Header 

Payload 

CRC SBP SPO SHR 

4.2.10 Simulations to optimize delay using probabilistic approach 

  As GWj assigned three different priorities Pr (HPP, MPP, LPP) to prof, so different 

simulations are performed to know the behavior of EDi in terms of PSR, PER and collisions. 

The normalized values of PSR, PER and collisions are calculated for all prof. The simulation 

carried out two GWj in the scenario that we built, so at one time we have two HPP. The reason 

to choose HPP for each GWj individually is that we may have critical readings from other EDi 

as well. To keep in mind, the severity of patients in smart health monitoring scenario where 

there is a need maximum number of EDi can send data at one time but keeping in mind the QoS 

as well. GWjs deployment is another important factor in the mentioned geographical area. As 

two number of GWjs, so to keep interference as low as possible the distance between GWj’s will 

be intelligently decided. 

Let X= {x1, x2, x3,….. xn} be the EDi’s ∈ R2 and GWj’s G= {g1, g2} ∈ R2. 

So to optimize the distance d between two GWj’s  g1 and g2, || g1 – g2 || > Threshold: where the 

minimum value of Theshold is 1 Km. 

𝑚𝑖𝑛 ∑ ∑   || 𝑔𝑗 − 𝑥𝑖  ||𝑛
𝑖=1

2
𝑗=1                         4.24 

After both the GWj select there HPP and MPP profiles, now the EDi in HPP will be allowed to 

transmit packets. The behavior of PSR with varying number of nodes will be rigorously 

analyzed. The packet size for our simulation environment is 20 bytes. As in simulation 

environment, there are total 1000 patients, but each of these patient is equipped with 3 different 

smart LoRa enabled wearable’s like (Smart blood pressure monitoring, Smart Pulse Oximeter, 
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Smart Heart rate monitoring). Figure 4.15, shows the behavior of Packet Collision Rate (PCR) 

in percentage (%) with varying number of nodes. In this simulation total number 1000 patients 

with 3 smart wearables transmit data towards GWj. Initially EDi transmit data with SF 12, BW 

125 Khz and Tp 14 dBm. ADR is enabled after the first uplink for all the EDi in said geographical 

area. As in smart health monitoring system the EDi generates small amount of data, so payload 

size is limited to 20 bytes. The behavior for conventional LoRaWAN is presented in Figure 

4.15, that shows severe increase in PCR with the increase of EDi. So in health monitoring 

scenario, where we have some critical patients conventional LoRaWAN strongly failed.  

 

 
 

Figure 4.15 PCR analysis in LoRaWAN for 3000 EDs 

  As shown in Figure 4.15, EDi follow Pure Aloha to transmit data towards GWj. It is 

clearly seen that if all EDj transmit data at one time so PCR is almost 85%. So the reason to 

perform profiling and adaptive scheduling on GWj, is that most of the readings are successfully 

received by GWj. After sending first uplink packet by an EDi, the second packet is forwarded 

towards GWj if and only if, there is significant difference between previous and current readings. 

By doing this, unnecessary traffic has been blocked and also manages the network capacity 

efficiently. Figure 4.16 presented results of PCR for HPP. GMM with K-Means are used to 

perform profiling on the basis of probabilities assigned to EDi. After running the simulation, 

the GMM with K-Means distributes EDi in to three profiles (HPP, MPP, LPP). In first attempt, 

the 300 EDi are included in HPP by GMM with K-Means algorithm. In total of 3000 EDi, 

approximately 300 EDi are of those with critical readings. The GWj assign priorities to profiles 
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on the basis of Adaptive Scheduling Algorithm (ASA). After assigning priorities, now all EDi 

in HPP is allowed to transmit data towards designated GWj. Figure 4.16 shows the PCR 

behavior with varying number of EDi. By limiting the number of EDi, which can easily send 

critical data of patients towards GWj.  

 

Figure 4.16 ASA based PCR analysis in LoRaWAN for HPP through GW1 

 

Figure 4.17 ASA Based PCR analysis in LoRaWAN for HPP through GW2 

  As we have 2 GWs deployed for smart health monitoring scenario. Further both the GWs 

will select his own HPP. With this approach we cater more EDs having critical readings. Figure 

4.17 presents the results of second gateway GW2 serve 425 EDs (GMM with K Means approach 

running on GW2 select 425 EDs in HPP on the basis of readings). Now these 425 EDs are on a 

priority to transmit there frames towards GW2. With the increase in number of EDs in this HPP 
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serve by GW2, the PCR ratio is little bit on a higher side as compared to HPP served by GW1 

specifically after more than 300 smart nodes transmitting. Gaussian or normal distribution is 

followed to generate data of all these patients in simulation. The reason behind Gaussian 

distribution is that, in real environment critical patients with severe readings of blood pressure 

or pulse Oximeter or heart rate are on a lower side. As in Gaussian distribution the Probability 

Density Function (PDF) of peak belongs to normal patients. The patient with critical values is 

on a right or left side and these patients are less in number.  Figure 4.18, gives us idea about 

Gaussian distribution for patients of blood pressure with systolic (first reading) and diastolic 

(second reading) terminologies. 

Px(x) =
1

√2πσ2
 e

−
(x−μ)2

2σ2                        4.25 

𝑃𝑥(𝑥) is the probability patients lying in different regions depends on readings. 𝜇, 𝜎 and 𝜎2 are 

variable terminologies depicts average (mean), standard deviation and variance of bell shape 

curve. 𝜇 is the average number of patients that have normal blood pressure readings in Figure 

4.18. Where 𝜎 and 𝜎2 tells us about the patients with critical readings that are low in number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.18 Gaussian distribution of Smart Blood Pressure wearable in terms of Systolic & 

Diastolic 

  Figure 4.19, presented the result of PSR in both conventional LoRaWAN, Dynamic PST 

and by using Adaptive Scheduling Algorithm (ASA) w.r.t varying number of nodes. As ASA 

approach prioritize profiles in different categories. Ultimately the number of critical EDs in 

HPP, forward packets towards GWj. This eventually enhances the performance in terms PSR. 

The increase in PSR, definitely affect the performance of LoRa network in terms of delay. 
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Another important factor that, this simulation scenario consists of two GWjs. ASA approach is 

followed by both these gateways GWjs, deployed on a certain position assuming that there is 

not any interference between the GWjs. By installing two GWj’s the data extraction rate is 

increased, because of EDi from two HPP (may have semi-critical readings from EDj that need 

attention), transmitting data towards GWjs. Further performance of ASA clearly outperforms 

conventional LoRaWAN by 39% and Dynamic PST by 5% in terms of PSR.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.19 Comparison of conventional LoRaWAN with ASA in terms of PSR 

  With the introduction of multi gateways GWj, issues like interference may arise as the 

EDi from multiple HPP transmitting data towards GWj,s. In previous section, certain equations 

for placement of GWjs at suitable locations are derived. Further, if distance between GWjs 

increases, the PSR of a deployed EDi’s in LoRa network increases as expected. As the distance 

between multiple GWjs increases, PSR also increases. Another simulation is carried out that 

shows the behavior of PSR with both single and multiple GWjs. To achieve the maximum PSR, 

GWjs has to be deployed intelligently. Figure 4.20 shows the effect of delay with varying 

number of nodes in LoRa network. ASA achieves promising results in terms of delay as 

compared to conventional LoRaWAN and Dynamic PST. Conventional LoRa network, 

Dynamic PST and ASA results are simulated by using two GWj’s. Re-transmission only 

happens when the collision or packet loss occur. ASA intelligently mitigating the traffic by 

reducing the number of EDi’s to transmit simultaneously. This approach significantly reduces 

the collision probability and hence re-transmission of packets. Once achieves this factor, the 
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transmission delay is ultimately reduced as presented in below graph. ASA outperforms both 

LoRa network and Dynamic PST in terms of delay by 91% and 79%.  

 
 

 

 

 

 

 

 

 

Figure 4.20 Enhancement of performance in terms of delay through ASA 

 

4.3 Priority-Aware Dynamic Resource Allocation in LoRaWAN 

This section presents the proposed Dynamic Reinforcement Learning Resource 

Allocation (DRLRA) algorithm, its process and integeration in LoRa network. The main 

objective is to optimize energy consumption of EDs in LoRaWAN. Mathematical expressions 

and probabilistic relations are regourously provided to justify the simulation results. The 

section also provides the process and physical model to understand the communication 

between EDs and gateway. 

4.3.1 Priority-aware RL Resource Allocation 

  A long-range wide area network (LoRaWAN), have the ability to cater massive number 

of IoT devices because of its ability to refuge huge coverage area and robustness. In smart health 

monitoring scenario, where extremely sensitive data readings of patients (Pulse Oximeter, 

Blood Pressure, Heart Rate), had to be reached on time to take further necessary action. With 

more than 1000 EDs or smart nodes using Pure Aloha, this leads towards the channel congestion 

in smart health monitoring scenario, ultimately affect the network performance and capacity. 

With channel congestion, resource allocation is another issue that plays a vital role in the 

enhancement of performance in LoRaWAN. This chapter focuses on resource allocation like 
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(Channel frequency, Data Rate, bandwidth and Transmit Power) on the basis of Dynamic 

Reinforcement Learning Resource Allocation (DRLRA) profiling algorithm and to analyze 

congestion in channels. An intelligent learning probabilistic algorithm Gaussian Mixture Model 

(GMM) is followed to design profiles and then all these profiles are analyzed for channel 

congestion and inter arrival of frames. Further a path loss model is also used to cater all the 

attributes of channel. Extensive simulations are performed to extract the results in LoRaWAN 

environment.  

  LoRaWAN is wireless technology with low power and long coverage. Because of its 

attributes like low cost, low power and long coverage, LoRaWAN is widely deployed over the 

countries. LoRa is a MAC layer communication technology using Pure Aloha for transmission 

of frames. Industry and academia researchers are doing its best to analyze different aspect of 

LoRaWAN because of its lucrative features. Having Pure Aloha for layer two communications, 

LoRaWAN uses Chirp Spread Spectrum (CSS) scheme at physical layer to achieve long range 

and efficient energy consumption. With the number of EDs increases exponentially, a lot of 

issues are encountered by researchers like network delay, packet error rate, throughput, 

collision, retransmission and depletion in energy. LoRaWAN introduces three different classes 

for EDs to cater with different issues discussed above (class A, class B and class C). Class A 

EDs support both bi-directional and uni-directional communication with concerned gateway 

(GW). Two different receiving windows are kept open by class A ED after completion of every 

uplink transmission. Both these receiving windows Rx1 and Rx2 are open for 1 second each. If 

response is not received during first Rx1, second Rx2 are open for 1 second. Six Spreading 

Factors (SF’s) are used by LoRaWAN specially to address orthogonal transmission. With 

thousands of IoT EDs transmission using Pure Aloha, it becomes difficult to cater QoS [52]. SF 

also tells us about the Data Rate (DR) at any given time. High SF mean low DR and low SF 

mean High DR. SF also effects the Time on Air parameter (ToA) of transmission. The channel 

was assigned to these EDs randomly by network server for uplink transmission. For every 

uplink transmission network server had to assign different data channel. This technique further 

increases the probability of data extraction rate. Sometimes failure of re-transmissions also 

occurs because of bad channel condition. This problem of re-transmissions can be solved by 

switching the ED towards high SF, but it also come up with enhancing ToA. To overcome the 

effect, we come across with the idea of adaptive channel assignment after analyzing the 

congestion. To mitigate the effect of SF interference in LoRaWAN, authors in allocates SF to 
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ED on the basis of distance between EDs and GW. This technique is based on fixed ring 

approach used in. Some other researchers GW sensitivity and Signal to Noise Ratio (SNR) 

based technique to allocated SF to nodes. However, in networks where nodes are transmitting 

simultaneously in high number, bi-directional communication leads towards more packet loss 

and congestion. So the proposed adaptive resource allocation is different from SF allocation, as 

in this we have to analyze the channel parameters and on the basis of this channel is allocated 

to EDs.   

  LoRaWAN supports various IoT applications to be deployed in its network space. 

Because of this heterogeneity LoRa technology faced a lot of issues such as delay and reliability. 

These issues also arise certain questions for researchers relevant to resource allocation. 

Resource allocation in terms of channels are addressed in this chapter, as this is only way to 

efficiently utilize channels. This chapter introduces a novel priority aware dynamic resource 

allocation scheme. The main aim of dynamic resource allocation is to enhance QoS in terms of 

scalability. First of all a machine learning approach, Gaussian Mixture Model (GMM) with K 

Means is implemented on GW to make optimum number of profiles. After this the optimized 

resources like (channel, Spreading factor, transmit power) is assigned to EDs to enhance 

performance in terms of reliability and scalability. 

  Research conducted in recent years on resource allocation in LoRa network are 

summarized in Table 4.6. After thoroughly study all mentioned papers and extract the main 

objective of authors regarding resource allocation. It is concluded that only a few works 

provided energy efficiency through transmission power TP fine-tuning or SF allocation. 

Application requirements are not addressed in. None of the author addressed SF, TP and BW’s 

as a parameter to enhance performance in terms of scalability and reliability. To the best of our 

knowledge, only the priority aware dynamic resource allocation with adaptive congestion 

control at profile level gives optimum results in terms of network capacity and reliability. 
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Table 4.6 Resource Allocation schemes for a heterogeneous scenario 

Research 

Papers 

Publicati

on Year 
Objective Energy 

Applica

tion 

Requir

ements 

Spreadi

ng 

Factor 

(SF) 

Bandwi

dth 

(BW) 

Trans

mit 

Power 

(TP) 

ADR 2016 Increase transmission range Yes No Yes Yes Yes 

[29] 2020 

Increase utilization of 

channel and mitigate 

collision 

Yes No Yes No No 

[58] 2020 Improve the noise resilience Yes No Yes Yes No 

[59] 2019 
Mitigate number of 

collisions 
No Yes No No No 

[69] 2017 
Mitigate number of 

collisions 
Yes No Yes No No 

[73] 2019 Enhance QoS Yes Yes Yes Yes No 

[74] 2018 

Analyze unfairness of 

LoRaWAN in terms of 

Allocation 

Yes No Yes Yes No 

 

4.3.2 Dynamic Reinforcement Learning procedure 

Reinforcement Learning (RL) method is used in wireless network to dynamically extract 

parameters from the environment according to requirement. RL agents extract desired 

information from the network deployed, take appropriate action and then update the reward 

accordingly. Through reward, that action taken by RL agent was appropriate or not. Generically 

RLA’s are designed using Markov Decision Process (MDP) model. The main objective of RLA 

is to continuously refine the policy to get enhance the reward for future. Mathematical 

expression for future reward becomes. 

𝑃𝑡 = ∑ 𝑅𝑧+1
𝑇
𝑧=𝑡                                 4.26 

𝑅𝑧+1 is the reward at time z. 
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There are various RL algorithms that define certain states S. In this chapter, our dynamic RL 

algorithm first define the initial state ST at time T, take certain action on the basis of collected 

information AT at time T and achieve the reward RT+1. So this information is really important to 

gather throughout the learning process. The function that is involved in learning process 

depends on Q values. The Q function depends on current state information and action taken. 

𝑄(𝑠, 𝑎) = 𝐸𝜋[𝑃𝑡| 𝑆𝑇 = 𝑆, 𝐴𝑇 = 𝐴]                       4.27 

 

4.3.3 Impetus of proposed Dynamic Reinforcement Learning 

          To achieve best performance from LoRa nodes it becomes really important that suitable 

transmit power, bandwidth and SF are selected for EDs. Another factor that plays important 

role is the distance between ED and GW. With the increase in distance between EDs and 

gateway, the mechanism of transmit power need to be addressed. LoRaWAN solve these 

problems through ADR, but to keep the complexity as low as possible LoRa ADR allocates 

resources in network environment where we have limited number of smart nodes. The total 

number of received packets is increased by conventional ADR for class A ED but ultimately 

this enhances energy consumption as well. So to mitigate the energy consumption we propose 

to integrate a dynamic Reinforcement Learning in LoRa network. As we know that all attributes 

of EDs transmitting packets towards gateways are received by central terminal called Network 

Server (NS). So NS runs dynamic Reinforcement Learning algorithm to update the parameters 

like transmit power, SF, BW and channel for ED. The main contribution of our proposed 

technique is:  

i) After adjusting profiles by GMM with K Means we address not only PSR, PER and 

delay but also optimize energy consumption of ED. 

ii) After assigning EDs to various profiles like HPP or MPP, the dynamic 

Reinforcement Learning take distance and its RSS between ED and GW in to 

account on NS. 

iii) After dynamic Reinforcement Learning the NS allocates parameters accordingly. 
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4.3.4 Dynamic Reinforcement Learning Resource Allocation based on GMM Profiling 

  This section highlights the novel approach of dynamic Reinforcement Learning 

Resource Allocation based on Gaussian Mixture Model (GMM) profiling (DRLRA). Almost 

the impact of all LoRa parameters is discussed. This scheme is mainly used to enhance the 

network scalability and efficiency in terms of energy. 

4.3.4.1 Proposed methodology 

        Total of 1000 patients are considered in our smart health scenario, so it means that 

we have to deal with 3000 ED at one time. After performing profiling with GMM we assign 

ED to HPP, MPP or LPP. Now we have to implement Reinforcement Learning Agents (RLA) 

on NS for each terminal part of LoRa network.  The reason behind using different RLA’s for 

every ED in selected profile is, because each ED is involved in different actions at various times. 

Further to keep state of all the information regarding that particular ED and to allocate resources 

after learning will be responsibility of that particular RLA. One RLA is not enough because 

with the increase in number of EDs it becomes difficult for one RLA to collect information and 

allocate resources. On the basis of collected information from EDs, the reward r to each ED is 

responded by concerned RLA. The model presented in this chapter dynamically creates RLA 

for each ED joining the LoRa Network on NS. The explanation of DRLRAP model, that how it 

is applied in LoRaWAN environment is provided below. 

4.3.4.2 Network and system model   

        A smart health monitoring scenario composed of n number of (EDi) where i ∈ {1, 2, 

3, ……..n} deployed in a densely populated area. A Gateway (GW) is deployed based on certain 

criteria. All the EDi and GW are randomly deployed on certain location and we can identify 

these devices based on its geographical coordinates. Moreover, the location of EDi are 

represented as (xi, yi, zi) and GWj will be represented by (xj, yj, zj). As LoRaWAN is a single hop 

network between Edi and GW. The communication between Edi and GW is accomplished with 

the help of several channels and these channels are dynamically assigned to EDi on the basis of 

traffic.  
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  A dense smart health scenario is considered of EDi from 1000 to 1500. First of all, GW 

is responsible for making profiles by using a probabilistic approach. A probabilistic approach 

known as GMM already discussed in earlier section, it is used to design optimum number of 

profiles prof. After the number of prof are decided, the GW is assigned different priorities Pr to 

prof.  The mechanism of priorities Pr assigned by GW to prof are already discussed in previous 

sections (HPP, MPP, LPP). The scheduling algorithm discussed in previous section adaptively 

assign these priorities. As addressing smart health monitoring scenario, extremely sensitive data 

of patients to be delivered to medical center or to any individual on time. Sometimes it’s also 

possible, to get some critical readings from EDi of prof belongs to medium priority. To address 

this issue, GW is deployed which covered geographical area. After establishing the priorities 

for each prof, to manage the traffic intelligently from multiple profiles, only critical readings 

are forwarded by EDi towards GW. By doing this, intelligently handling the network capacity 

and also enhance performance in terms of energy consumption. As we are taking smart pulse 

monitoring EDi, smart blood pressure monitoring EDi and smart heart rate monitoring EDi. 

Generally, each EDi generates all three readings. But in this section, EDi is more intelligent by 

forwarding only those readings that are critical.  

  Resource allocation is one of the overwhelming areas for researchers in LoRaWAN 

[119]. A lot of researchers are working on resource allocation mentioned in Table 4.5. In this 

particular chapter, we consider distance (d), Current ToA (extracted from current SF), current 

SF, current Tp, Received Signal Strength (RSS) at GW and current channel usage by concerned 

EDj in percentage (%). All this information is collected and given to DRLRA algorithm for 

further processing. The resources like transmit power and SF are allocated by ADR in 

conventional LoRa network. In our model of dynamic Reinforcement Learning, the GW 

performs extra functionality of RLA. Sometimes it is also possible that we have single RLA for 

more than one EDs. This decision will be purely on the basis of distance of that EDs from GW. 

More RLAs mean more computation from GW and NS hence more delay is observed. As we are 

already designing profiles (HPP, MPP, LPP), so proposed algorithm dynamically check the 

parameter distance of all these EDs in any particular profile. As in our smart health scenario, 

EDs from HPP are transmitting packets towards GW after for 15 minutes at maximum. After 

15 minutes EDs from MPP is allowed to transmit readings towards GW for 5 minute. The RLA 

is designed for each ED on GW, which automatically update the allocation parameters for ED 
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according to requirement. The main objective of this research is to observe LoRa network 

performance in terms of energy consumption under DRLRA. Certain parameters are maintained 

by Reinforcement Learning algorithms. ED information is provided by I_EDt at time t, the 

network parameters is presented by N_EDt at time t, reward is denoted as R_EDt and A_EDt is 

denoted as action. The main agents used in our dynamic Reinforcement Learning model are 

extracted from. 

4.3.5 End Device state 

  Now the dynamic Reinforcement Learning can only allocate best parameters to ED, if 

and only if more information is provided to agents for learning about network environment. The 

action A_EDt can be taken by agent according to the initial state or information of that particular 

ED. Attributes like ED ID, ED P_Num, ED_PS packet size generated, ED initial SF, ED initial 

TP, ED BW, ED SNR, ED RSS, ED CH and EDe energy consumption are learned by RLA’s. 

EDe is the energy consumed by ED to transmit packet. EDe is calculates by following the 

approach in. All this information are helpful for agent to take best action and provide reward 

accordingly. Algorithm 3 present the step by step procedure of DRLRA based on GMM. 

Algorithm 3: Dynamic Reinforcement Learning Resource Allocation based on GMM 

Profiling (DRLRA) 

DRLRA based on GMM Profiling. 

Declare variables: Edi, distance (d), Initial SF, Initial DR, Initial Tp, BW, ToA, Channel Usage (CH_US), 

(EDj)Pr, Pr  

To mitigate Energy Consumption, Delay: 

START LOOP for EDi do 

1. if EDi BELONGS TO HPP OR EDi with Maximum value (Pr) in HPP  

2.                       Initially EDi transmit packets at Maximum value of SF i.e SF12 & TP 20 dBm. 

3.                       Dynamic RL define Groups inside HPP on the basis of d and RSS. 

4.                            Design RLA for each Group inside HPP. 

5.                            RLA checks EDi State, takes Action & calculate Reward.  

6.                            RLA use Q Function to calculate future Reward. 

7. At GATEWAY 

8. if     RSS of EDi  <  SENSIEDi, SFi   AND CH_US EDi > 70%           

9.               Then Perform 

10.                             if SFEDi is 12, Keep it same,  
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11.                             else DECREASE SFEDi by 1. 

12.                             UPDATE EDi with new SFi, BW and DRi. 

10.         At GWj, REPEAT 

11.         if     RSS of EDi  >=  SENSIEDi, SFi   AND CH_US EDi > 50%                                                                    

12.         Then Perform 

12.                                      if SFEDi is 12, DECREASE SFEDi by 1. (INCREASE DR) 

13.                                      UPDATE EDi with new SFi, BW, DRi  and Adjust TPEDi 

14.         Set RSSThresh and TPV (TP Inc/Dec value) 

15.      REPEAT 

16.         if SENSISF EDi   >    RSSThresh    

17.         TP= TP - TPV 

18.      UPDATE EDi with new SFi, BW, DRi and Adjust TPEDi 

 

 

4.3.6 End Device Action 

  The most prominent parameters affecting the performance of LoRaWAN network are 

SF, TP, BW and Channel attributes. So the dynamic RLA must be well equipped in terms of 

learning before allocating resources to EDs. The data channels used by LoRa network are 868 

Mhz and 6 SF from 7 to 12 are used. TP used in our model are from 2 dbm to 14 dbm  with 

spacing of 3 dbm. With 6 SFs, 5 different combinations of TP, 2 BW options (125 & 250 Khz) 

and 8 data channels, total of 480 different possible actions can be performed by RLAs.  

4.3.7 End Device Reward 

 

  On the basis of collected parameters in previous section, dynamic RLA responded with 

a reward in terms of updated configuration. The reward according to corresponding actions is 

calculated as: 

𝐸𝐷𝑟 = 𝑐 
∑ 𝐹𝑖

𝑁
𝑖=0

∑ 𝐸𝑖
𝑁
𝑖=0

                           4.28 

As, N is the number of EDs and F is total number of frames received at gateway for specific 

duration and E is the total energy consumed during the active duration of ED. The reward for 

concerned EDr increases with the increase in total number of frames. With the increase in 

consumption of energy the reward for EDr decreases. The reward r is automatically varies with 



 

 

 

106 

 

the change occur in state of ED. To optimize the reward we have to give priority to the success 

rate of frames by multiplying it with term c. 

4.3.8 Reinforcement Learning methodology 

  This section describes the Reinforcement learning methodology in LoRa network. After 

the EDs is distributed in different profiles now the Reinforcement Learning procedure will be 

applied on NS. First of all, different groups are formed on the basis of distance d and Received 

Signal Strength RSS of EDs inside HPP or MPP profiles. Once the groups are decided, then the 

algorithm has to generate RLA for each group.  The main purpose of designing groups is to 

make the process as simple as we can. In smart health monitoring scenario, 2500 to 3000 EDs, 

so it becomes difficult for system that we have RLA for each ED separately. Design RLA for 

each group is much better option when thousands of EDs are transmitting at one time. Another 

benefit of designing groups inside profiles is to make resource allocation easier. When the frame 

from EDs inside any group is received by NS, the corresponding RLA is invoked to collect 

current state information from header. After collecting all information now the RLA has to take 

certain action. Last step is to calculate reward for that particular ED and on the basis of reward; 

updated resources to EDs or group of EDs are allocated. The same methodology will be applied 

up to maximum simulation time.  

  DRLRA make use of Reinforcement Learning to extract nodes current state S. There are 

agents that take action A according to policy π. Reward R is denoted by function F which 

depends on State S and Action A it takes: 

Reward:  F: S * A → R 

As a result of Action A, there is also a change in state S. Now there are two types of changes. 

One is deterministic change, in which all actions are pre-defined and the other is probabilistic 

change, in which changes takes place on the basis of probabilistic approach. Mathematically it 

can be expressed as: Deterministic Change:  T: S * A → S’ and Probabilistic Change:  P(S’ | 

S,A),   where S’ is new state. Agent also has certain policies. This policy is going to dictate its 

behavior. It is denoted by function π: Policy: π: S → A. Mean once we are in State S, we have 

to choose these Actions according to policy π. With the passage of time the agent also have to 

learn the optimal policy. Optimal policy is denoted by Vπ. Value of Optimal Policy is: Vπ : S → 

R. By following policy π in State S, we are getting value of Reward R. Vπ is the optimal value 
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of policy depends on the cumulative Reward R. The way to think about this cumulative Reward 

is to find an expected value. 

Vπ(St) = E[ Rt+1  +    ∂    Rt+2  + 𝜕2    Rt+3  + …….], 0 ≤ ∂ < 1        4.29 

where ∂ is weighted value or discount rate. Practically we are more interested in immediate 

Reward, that’s why we need ∂=0, to reduce the effect of other Rewards.  

 

Vπ(St)=𝐸(∑ 𝜕𝑖−1𝑅𝑡+𝑖
∞
𝑖=1 )                      4.30 

 

Optimal Policy becomes: π* : 𝑉 ∗ (𝑆𝑡) = 𝑀𝐴𝑋(𝜋) 𝑉𝜋(𝑆𝑡)       for all 𝑆𝑡 

Q*(St,At) is the commulative reward we get if we are in state 𝑆𝑡 and take action 𝐴.   

  Dynamic RL Resource Allocation based on GMM Profiling (DRLRA), is implemented 

on Network Server. Firstly, to initialize some variables that is used in this process of resource 

allocation. These variables are Edi, distance (d), Initial SF, Initial DR, Initial Tp, BW, ToA, 

Channel Usage (CH_US), (EDj)Pr, Pr . The main purpose of resource allocation or assigning 

optimized parameters to EDi is to efficiently utilize network capacity and address energy 

efficiency matters. First of all, by GMM probabilistic approach certain priorities are assigned 

to profiles prof. After assigning pr to prof, we would in co-operate some intelligence on EDi 

side also. The application that we are addressing is: smart pulse Oximeter, smart blood pressure 

monitoring and smart heart rate monitoring. In proposed scenario, the Edi have to check the 

readings generated and only those values from particular application are forwarded to GWj that 

are critical. Further only those EDi can transmit data towards GWj that belongs to HPP. Initially 

the EDi transmit data with maximum value of SF 12. Maximum value of SFi means low DRi. 

DRLRA profiling algorithm performs certain steps like it checks that the Received Signal 

Strength (RSS) of EDi meets the receiver sensitivity SENSI EDi SFi requirement or not. We 

rigorously monitor channel utilization for allocation of optimized resources to EDi. The 

RSSThresh value depends on SF, BWi and transmits power value TPV (TP Inc/Dec value) depends 

on path loss factor and distance d between EDi and GWj. Figure 4.21 shows the flow of DRLRA 

with RLA procedure.  
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Figure 4.21 RLA procedure in DRLRA 
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  The flow diagram shown in Figure 4.21 depicts the overall processing of DRLRA 

algorithm. Statically deployed EDs are manually configured with parameters like data rate, 

bandwidth, payload size, channel frequency and spreading factor. Now these EDs send Join 

Request message towards gateway. Join Request message is encoded and validated by respective 

gateway accordingly. Once the Join Request message is accepted, the gateway give response in 

form of Join Accept message.  

  Resource Learning agents are also introduced to allocate efficient resources towards EDs. 

ASA with GMM approach is used to design profiles. Q Learning is Reinforcement Learning 

approach used in DRLRA algorithm. Q Learning generalize the LoRa environment through 

Markov Decision process (MDP). MDP consist of certain components that describe the 

environment like states of EDs, events, set of actions and rewards. The reward is in the form of 

efficient parameters like data rate, spreading factor, transmit power and channel frequency. The 

MAC scheme used in this algorithm is Pure Aloha with Extended Aloha. Initially EDs transmit 

packets towards gateway using Pure Aloha, after this the ED follow all the steps of Extended 

Aloha which states that if current reading deviates from previous reading by 5%, then EDs are 

allowed to transmit again. 

  Certain conditions are applied to check number of collided packets, lost packets and 

successfully received packets at gateway. In case the Join Request is not accepted by gateway or 

slot is not available, in that case the ED has to wait for 10 seconds plus Jitter. The Jitter is equal 

to 1 second plus (0-20)% time of that 1 second. This Jitter is included to lower the collision in 

terms of Join Request messages. If all Join Request is transmitted towards gateway at the same 

time, so chances of losses are on a higher side, that’s why we introduce the factor of Jitter. 

Table 4.7 shows the sensitivity according to DR, SF and BW for SX1272 LoRa module. 

Table 4.7 Sensitivity according to DR, SF and BW for SX1272 LoRa module 

Data Rate 

(DR) 

SF with Bandwidth 

(BW) 

Sensitivity of 

ED w.r.t SF 

Bit Rate of 

concerned 

ED 

DR5 SF 7 AND BW 125 Khz -123 dBm 5470 
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DR4 SF 8 AND BW 125 Khz -126 dBm 3125 

DR3 SF 9 AND BW 125 Khz -129 dBm 1760 

DR2 
SF 10 AND BW 125 

Khz 
-132 dBm 

980 

DR1 
SF 11 AND BW 125 

Khz 
-134 dBm 

440 

DR0 
SF 12 AND BW 125 

Khz 
-137 dBm 

250 

 

4.3.9 Performance metrics 

  This particular section elaborates the environment in which simulation is performed. 

However metrics used to enhance performance in densely populated area are rigorously 

evaluated. The simulator used to implement LoRaWAN environment for resource allocation on 

the basis of DRLRA is Python. All the EDs are randomly deployed in an area of 5 km2 with two 

numbers of GWs. Maximum of 3000 EDs are deployed and expected to use LoRa network. A 

smart health monitoring scenario is considered with different set of applications like (smart 

pulse Oximeter, smart blood pressure, smart heart rate) having different set of readings. All 

these IoT applications have various QoS requirements [120]. Time on Air (ToA) is one of the 

important parameter that can affect the performance of network in terms of energy consumption. 

The ToA of those EDs that belong to HPP will be on a lower side, as we assign low SF to those 

EDs. Allocation of lower SF to EDs of HPP also depends on its distance from GWs. ToA also 

affects the energy consumption of EDs. After setting up profiles prof and assign priorities Pr, 

now in our scenario each EDs have to generate 3 types of readings. With huge number of IoT 

EDs and applications that we consider LoRa network will end up with large number of losses. 

To cater this, EDs must be little bit intelligent. The EDs has to forward those reading (data) that 

are critical most. By adapting this approach we can efficiently utilize the network capacity and 

energy consumption will also be on a lower side. The EDs forward packets after every 5 

minutes, only if non-congested channel is allocated. To allocate optimize resources, standards 

of LoRa network to be followed as maximum as we can. Several research papers target on SF 
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7 that gives us lower ToA to optimize energy. But by doing this we are not following the factor 

of adaptiveness as it gives us much flexibility. The proposed algorithm DRLRA allocates 

optimized SF, Tp, BW and channels CHs on the basis several parameters extracted from the 

initial transmission from EDs. The parameters that are used by DRLRA algorithm for resource 

allocation include: SF, BW, Tp, RSS, d, CH_US (congestion level in %) and ToA. On the basis 

of these parameters DRLRA algorithm allocates optimized parameters to EDs for future 

transmission. Approximately 1500 EDs are deployed in a geographic area of 5 km2, and each 

dot represent an ED at location (x,y). The blue dots represent the GWs in the mentioned area. 

Understanding of these metrics are really important, to know about current state, actions, 

rewards, Packet Success Ratio (PSR), Packet Error Rate (PER) and energy consumption. 

  The PSR is an effective approach to explore and analyze the EDs deployment in LoRa 

network. GWs deployed will be in a better position to analyze PSR of different HPP. PSR is 

effectively calculated with the help of total number of packets transmitted towards GW from 

EDs in a HPP and total number of packets that are successfully received. 

PSR =
N_PCKT_R 

N_PCKT_S
                                              4.31 

  The PER is another factor that needs to be explore to know about the number of 

erroneous packets received at the GW. CRC algorithm is used to add some redundant bits with 

original payload on the basis of generated polynomial. This information is also shared with GW, 

so that GW also runs its own CRC algorithm to know about the packets validity. If the contents 

received are same as transmitted by EDs then it is successfully forward towards NS but if there 

are erroneous bits received by GW as per CRC algorithm, the PER counter is incremented.  

  Table 6.3 shows receiver sensitivity for each SF. Received Signal Strength (RSS) of EDi 

indicates the strength of signal at the time of reception at GWj. The EDi transmitted payload 

towards GWj which must have sufficient 𝑅𝑆𝑆𝑖,𝑗 , so that demodulation process performed 

successfully [121]. Mathematical equation for 𝑅𝑆𝑆𝑖,𝑗 (RSS of node i at GW j) becomes: 

RSSi,j =  (Tp + Gant + PL)                              4.32 

Where  𝑇𝑝 is the transmit power, 𝐺𝑎𝑛𝑡 is the antenna gain and 𝑃𝐿 is the path loss factor. 
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  ToA is another metric that need to be evaluated carefully to understand the performance 

of network [122]. ToA depends on several parameters like SF, CR and packet size. ToA 

increases with the increase in SF and decrease in DR. That’s why it’s vital to assign optimal SF 

to EDs. ToA is measured in milliseconds. For ToA, it calculates preamble duration (PREAd) and 

(PAYL d), where NPS is the number of payload symbols. Formulae’s are given below: 

PREAd = (Npreamble + 4.25) ∗ DuraSym                             4.33 

DuraSym = 2SF /BW                                                             4.34 

 

PAYLd = (NPS ∗ DuraSym)                                                  4.35 

 

NPS = 8 + max (Ceil (
(8PL−4SF+28+16−20H)∗(CR+4)

4(SF−2DE)
) , 0)      4.36 

 

Where PL is payload size, H and DE are Boolean values. These are control variables used to 

optimize the performance of network. So we can get the expression for ToA by adding duration 

of preamble with duration of payload. 

 
ToA = (PREAd + PAYLD)                                                    4.37 

  Energy consumption for all EDs are measured as the energy consumed during the ED is 

in active mode. In active mode the ED may be in Tx State or in Rx state. We have different 

consumptions for Tx State, Rx State and idle states. According to the SX1272/73, the voltage 

required for EDs to fully functional is 3.3 Volts, and the current consumptions at idle, transmit 

(at 20 dBm), and receive states are: Iidle=1.5 μA, ITx=125 mA, and IRx=10.5 mA, respectively 

[123]. The energy consumption is calculated by multiplying the voltage Vp by the current and 

the time duration of the corresponding sate. 

  ToA also effect the energy consumption of ED [123]. In this research, the authors only 

considered successfully demodulated packets to calculate energy consumption and battery 

discharge time. But the practical approach is to consider those packets as well that are not 

received successfully at GW due to any reason. We are also incorporating one extra condition 
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on EDs that only those current readings are forwarded towards GWs that are different from 

previous readings by 5 to 10%. On this way considerable amount of energy efficiency enhanced 

for LoRa EDs as limited number of packets are forwarded towards GW. Mathematically energy 

consumption is calculated as [58]: 

Econs = ∑ ∑ (V). (I). (ToApacketsi )                   4.38 

Where V is volts and is taken from spreadsheet used for LoRa chip SX1276. I is the current 

used for transmitting packets and other processing. 𝐸𝑐𝑜𝑛𝑠 is measured in Jouls (J). 

LoRaWAN is one of the long range technologies and this claim of covering large 

geographical area is because of its CSS modulation scheme. In our smart health monitoring 

scenario, once we have 1000 patients so it means that we have 3000 EDs or nodes generating 

data (each patient have 3 wearable sensors). The ADR prevents connection problems when 

allocating the SF by extracting the last 20 EDs packets. ADR sets EDs close to the gateway to 

the lowest SFs and EDs far away to the gateway to the highest SF. APRA in [73], considers 

only RSSI value for resource allocation. APRA sets priorities according to application 

requirements. It set SF 7 to SF 8 for high priority applications and SF 11 to SF 12 for low 

priority applications. Dynamic RL Resource Allocation mechanism allocates parameters like 

SF, BW, Tp and data channel. As we have 8 data channels and 6 SF, so logically we have 48 

data channels that give us liberty to transmit simultaneously. However, assigning a non-

congested data channel to EDs in HPP, MPP and LPP further enhances the performance in terms 

of QoS and network capacity. 

4.3.10 Simulation results to optimize energy consumption by DRLRA to profiles 

  LoRaWAN is one of the long range technology and this claim of covering large 

geographical area is because of its CSS modulation scheme. Figure below shows the SF, Tp and 

Channel allocation after deploying 1500 EDs with 2 GWs. In proposed smart health monitoring 

scenario, once reaches to the 1000 patients so it means that 3000 EDs or nodes generating the 

data (each patient have 3 wearable sensors). The ADR prevents connection problems when 

allocating the SF by extracting the last 20 EDs packets. ADR sets EDs close to the gateway to 

the lowest SFs and EDs far away to the gateway to the highest SF. APRA in, considers only 
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RSSI value for resource allocation. APRA sets priorities according to application requirements. 

It set SF 7 to SF 8 for high priority applications and SF 11 to SF 12 for low priority applications.  

  Dynamic resource allocation mechanism allocates parameters like SF, BW, Tp and data 

channel. With these entire parameters DRLRA profiling algorithm takes help from channel 

utilization classifier. As the 8 data channels and 6 SF, so logically there are 48 data channels 

that give us liberty to transmit simultaneously. However, assigning a non-congested data 

channel to EDs in HPP, MPP and LPP are further enhances the performance in terms of QoS 

and network capacity.     

 

 

 

 

 

 

 

 

 

Figure 4.22 PSR W.R.T DRLRA for HPP and comparison with ADR and APRA 

  Dynamic Resource Allocation is performed on the basis of profiling with the help of 

extensive simulation to show packet success ratio PSR for HPP. First of all, profiling is 

performed on the basis of GMM with K-Means. Gaussian distribution is used to generate values 

from EDi and on the basis of critical readings from EDi HPP is formed. DRLRA allocates 

resources like SF, BW, Channel and Tp on the basis network environment. For HPP BW of 250 

Khz is assigned to EDi, so that data reached its destination smoothly. Figure 4.22 demonstrates 

DRLRA algorithm in terms of PSR for HPP. These results are associated with GW1. The 

desired results of DRLRA is extensively compared with state of the art algorithms APRA and 

ADR. Results of DRLRA outperforms ADR and APRA by 2.2% and 0.975% in terms of PSR.  

PSR of about 97 % is achieved with the help of profiling and DRLRA algorithm.  
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Figure 4.23 PSR W.R.T DRLRA for HPP and comparison with ADR and APRA 

  Results in Figure 4.23, shows performance of DRLRA algorithm by dynamically 

allocating resources in HPP through GW2. For this simulation, GMM with K Means assigns 

425 EDs to HPP on the basis of critical readings received. GMM with K Means assign 

probabilities with the help of probability density function. Inside HPP we have several groups 

of EDs decided on the basis of distance d and RSS. RLA is responsible to assign resources to 

EDs inside the group on the basis of Reward. Overall the performance of DRLRA algorithm is 

enhanced in terms of PSR, when compared to conventional ADR and APRA. In numerical terms 

the performance of DRLRA is optimized by 2.1% and 0.5% as compared to ADR and APRA. 

Figure 4.24 shows the behavior of PSR for MPP through GW1. Approximately 900 smart EDs 

are assigned to MPP depending on the data readings and probabilities assigned to these EDs 

through probability density function. The results of PSR after allocating resources by DRLRA 

outperform the conventional ADR and APRA by 1.6% and 0.5%. 
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Figure 4.24 PSR W.R.T DRLRA for MPP and comparison with ADR and APRA 

  Figure 4.25 depicts the performance of LoRa network in terms of PER w.r.t 

number of EDs. Gaussian Mixture Model assigns 300 EDs to HPP as discussed earlier. The 

behavior of these 300 EDs are observed in terms of PSR. Overall DRLRA profiling 

algorithm outperforms conventional ADR by increasing PSR and mitigating the effect of 

PER. The results of DRLRA algorithm also outperform APRA in terms of PER. With the 

increase in throughput PER drastically decreased. 

 

 

 

 

 

 

 

 

 

Figure 4.25 PER W.R.T DRLRA for HPP and comparison with ADR and APRA 
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  Figure 4.26 presents results of PER for EDs in MPP through GW1. All these data 

readings are from semi-critical patients. GMM with EM algorithm is used to assign these EDs 

to MPP. With the increase in number of EDs inside MPP, PER is little bit on a higher side but 

still DRLRA profiling outperforms both ADR and APRA by achieving mitigated PER. 

Mitigated PER is also because of Extended Aloha used for second transmission from EDs. 

Extended Aloha states that only those EDs will send packets towards gateway, whose data 

readings are deviated by 5% from previous transmission. 

 

Figure 4.26 PER W.R.T DRLRA for MPP and comparison with ADR and APRA 

 Figure 4.27 depicts the simulation of energy consumption for dynamic reinforcement learning 

resource allocation algorithm, adaptive data rate and adaptive priority-aware resource allocation 

in HPP through GW1. The energy consumption is calculated on the basis of voltage consumed 

by EDs, current consumption at the time of transmission, current consumption at idle state of 

EDs and more specifically ToA. Overall DRLRA algorithm outperform the results of 

conventional ADR and APRA by mitigating the energy consumption of EDs. This is due to the 

efficient resource allocation towards EDs. 
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Figure 4.27 Energy consumption after allocating resources in HPP through GW1 

To compute energy consumption, it considers several parameters like current drainage, voltage, 

processing of packets and ToA of packets transmitted according to SF. Figure 4.28 presents the 

results of energy consumption for DRLRA, ADR and APRA in HPP through GW2. To compute 

energy consumption, it considers several parameters like current drainage, voltage, processing 

of frames and ToA of frames transmitted according to SF adaptively.  

 

 

 

 

 

 

 

 

 

Figure 4.28 Energy consumption after allocating resources in HPP through GW2 
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With unsupervised learning approach GMM used for profiling and efficient resource allocation 

through dynamic reinforcement leaning resource allocation algorithm, we optimize overall 

performance of LoRaWAN in terms of energy consumption and network capacity. 

4.4      Summary 

  Recently, IoT preferably use LPWAN as the most promising and prevalent technology 

for a wide range of applications such as smart homes, agriculture, and smart metering. Extant 

literature mostly focuses on the use of LoRaWAN under Pure Aloha that may not be suitable 

for certain delay tolerant applications. We thoroughly assess Slotted Aloha's performance in 

LoRaWAN for delay-tolerant applications. Results of Slotted Aloha outperforms in terms of 

PER, collision, and throughput. Further, increase in delay has been observed; however, that is 

affordable by delay tolerant applications. The advancement of the Green IoT can be 

significantly aided by out-performance in terms of PER, throughput, collision, and lower energy 

usage. Last but not least, it supported Slotted Aloha LoRaWAN for IoT. The proposal also 

recommends using adaptive Reinforcement Learning algorithms to alter duty cycles and 

channel allocations for dynamic IoT scenarios. 

  The use of Intelligent Learning (IL) approaches can lead towards inefficient in delay 

when applied to low power networks with limited resources. This is because IL approaches 

usually require coordination between the EDs and the GWs. However, the use of unsupervised 

profiling probabilistic approach GMM with K-Means in LoRaWAN network has shown a great 

impact in mitigating the re-transmissions and ultimately delays. This is mainly due to 

partitioning the end nodes into different profiles, which in return reduces simultaneous 

transmissions as a result of using the ASA to configure the nodes with different transmission 

intervals based on the profile priority. Given the same network density, the adaptive ASA 

reduced delay by 20.9% from the typical LoRaWAN. Despite the slight improvement to delay 

the ASA significantly enhanced the PDR when compared to typical LoRaWAN. 

The massive use of IoT in smart spaces is transforming everything around the world and 

it is paving the way for the creation of smart cities. It is needed to improve the use of LoRaWAN 

with a better channel utilization schemes, SF, DR and Tp. This chapter presented DRLRA, 

which is an efficient priority-aware method for distributing configurable ratio parameters (such 

as SF, TP and channel) for LoRaWAN. Due to the optimal TP configuration, DRLRA 
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significantly reduces the total amount of network energy consumption compared to state-of-the 

art algorithms ADR and it also significantly increases the battery discharge time of the EDs. 

Moreover, the proposed resource allocation mechanism exhibited a robust gain in terms of ToA 

for high and medium priorities EDs, and better results in PDR for all priority groups compared 

to the other mechanisms. Hence, DRLRA shows promise as a reliable solution for meeting the 

QoS requirements of applications while significantly enhance performance of LoRaWAN’s 

energy consumption. In future DRLRA, it will be able to change the radio parameters of the 

EDs in case there is any change in the network. 
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CHAPTER 5 

 

5 CONCLUSION AND FUTURE ENDEAVORS 

5.1 Conclusion 

         LPWAN is the most promising and prevalent technology for a wide range of applications 

such as smart homes, agriculture, and smart metering etc. Extant literature mostly focus on  the  

use of LoRaWAN under  Pure Aloha that  may  not  be  suitable  for  certain delay tolerant 

applications. Slotted Aloha is a basic but efficient random access protocol that is utilized in 

wireless communication systems such as LoRaWAN. The slotted Aloha protocol is used in 

the LoRaWAN uplink direction, when EDs transmit messages to the gateway. One of the 

success of adopting slotted Aloha in LoRaWAN is its simplicity and efficiency in large-device 

Low Power Wide Area Networks (LPWANs). Slotted Aloha lets numerous smart EDs to send 

messages at his own designated slot duration, reducing data transmission time and increasing 

network capacity overall. However, slotted Aloha has several downsides, such as the 

possibility of collisions and the need for device synchronization. Furthermore, because it gives 

no guarantees, it may not be ideal for time-sensitive applications. Overall, slotted Aloha is a 

common protocol in LoRaWAN networks due to its ease of use and efficiency in dealing with 

a large number of devices at low data rates. It's a suitable option for applications that don't 

require real-time data transfer, like smart agriculture or asset tracking. We thoroughly assess 

Slotted Aloha's performance in LoRaWAN for delay-tolerant applications. Results of Slotted 

Aloha outperforms in terms of PER, collision, and throughput. Slotted Aloha with Markov 

chain model mitigate collision and enhanced performance of LoRaWAN by 38% in terms of 

data throughput.  

  Further, increase in delay has been observed due to re-transmissions and inter-packet 

arrival. H owever, to achieve optimum performance in LoRaWAN we must mitigate delay. To 

achieve optimum performance in terms of delay un-supervised probabilistic approach called 

GMM with K-Means is introduced. Further to prioritize traffic from profiles ASA is used. 

Results shows that in environment where thousands of EDs are transmitting ASA with un-

supervised probabilistic approach drastically mitigate the factor of delay for smart EDs. ASA 
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with GMM enhanced performance in terms of delay by 5% in LoRaWAN environment. The 

Adaptive Scheduling Algorithm with Gaussian Mixture Model is a potential solution for 

scheduling LoRaWAN broadcasts. The algorithm estimates the traffic load using a probabilistic 

model and adjusts the transmission rate accordingly. Finally, the probabilistic method 

outperforms existing scheduling algorithms in various ways, including best network 

performance, lower the number of retransmissions, increased the packet success ratio and 

optimized transmission delay. The algorithm is capable of adapting to changes in traffic patterns 

and network circumstances, making it appropriate for dynamic and diverse LoRaWAN 

environments. However, the algorithm's performance is determined by the accuracy of the 

traffic model and the quality of the channel estimation. Furthermore, the algorithm's 

implementation necessitates significant processing resources and may not be suited for low-

power devices. Overall, the ASA with GMM algorithm has significant potential for enhancing 

the performance and efficiency of LoRaWAN networks, but more research and development is 

needed to optimize the algorithm and overcome its limitations. 

  Another objective regarding energy consumption of EDs are rigorously analyzed and 

addressed in LoRa network. Dynamic Reinforcement Learning Resource Allocation is used to 

allocate resources to EDs in different profiles. Inside the profiles we define different groups on 

the basis of distance and RSS. This help RLA to allocate resources inside the group to EDs that 

are far from each other. Further, comparison with other benchmark resource allocation 

techniques is also provided. Results of algorithm for dynamic allocation of resources outperform 

conventional ADR in terms of energy consumption. Dynamic Reinforcement Learning 

Resource Allocation significantly reduced energy consumption of EDs by 20% measured in 

Jouls. The out-performance in terms of PER, throughput, collision, and reduced energy 

consumption can substantially lead towards Green IoT. The Dynamic Reinforcement Learning 

Resource Allocation (DRLRA) algorithm is a machine learning-based approach to resource 

allocation in LPWANs like LoRaWAN. The system use a deep reinforcement learning 

technique to learn the best resource allocation policy for the network. Various simulations and 

experiments have yielded encouraging results for the DRLRA algorithm. In terms of network 

capacity, energy efficiency, and fairness, it outperforms alternative resource distribution 

approaches. It also responds well to changes in traffic and topology on the network, making it 

suited for dynamic environments. The key advantage of the method is that it does not require 

prior knowledge of the network's features or traffic patterns. Instead, it learns from past mistakes 
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and adapts its policies accordingly. Finally, the DRLRA algorithm appears to be a promising 

solution for optimizing resource allocation in LoRaWAN and other LPWANs. More research 

and development are required to increase the algorithm's scalability and resilience, as well as to 

make it acceptable for real-world deployments. 

5.2     Future endeavours 

The LoRaWAN (Long Range Wide Area Network) technology has already demonstrated 

significant promise in smart health monitoring systems. LoRaWAN is well-suited for healthcare 

applications that require remote monitoring and tracking of patients' health problems due to its 

low power consumption, long-range connectivity, and capacity to support a large number of 

connected devices. LoRaWAN is projected to play an important role in smart health monitoring 

systems in the future. Here are a few possible applications for LoRaWAN: 

1.   LoRaWAN-based sensors could be used to monitor vital indicators in patients recovering 

from surgery or suffering from chronic illnesses, including as blood pressure, heart rate, and 

oxygen levels. The data obtained by these sensors might be wirelessly communicated to 

healthcare providers. 

2.   Medical equipment, such as hospital beds, infusion pumps, and wheelchairs, might be 

tracked using LoRaWAN technology. This would assist healthcare professionals in tracking 

the location and usage of equipment, enhancing efficiency and lowering the risk of loss or theft. 

3.   Monitoring of environmental conditions in hospitals and other healthcare facilities: 

LoRaWAN sensors could be used to monitor environmental conditions in hospitals and other 

healthcare facilities. Temperature and humidity monitoring, as well as air quality monitoring, 

could be used to detect hazardous contaminants and improve patient safety. 

4.   LoRaWAN could be used to remotely monitor patients taking part in clinical trials. 

Researchers would be able to collect data more efficiently and correctly, decreasing the need 

for in-person visits and increasing patient engagement. 

5.   Moreover, data aggregation and data compression schemes, when applied in multiple access 

environments can significantly reduce the collision rate, and also maximize network capacity 

in LoRaWAN.  

6.   LoRaWAN network aims to achieve longer distances, while EDs communicate to a 

gateway. Longer distances can contribute to propagation path delay, specifically in single-hop 

LoRaWAN scenarios. Another aim of our research is to analyze PPD under 3D scattering model 
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in LoRaWAN. This analysis may help to decide an optimal placement for gateways for the 

LoRaWAN scenarios, which may improve delay experienced by EDs and their energy 

efficiency. 

7.   Up to now all research is only for static EDs in LoRaWAN, because its existing ADR works 

well with static EDs only. We are also aiming to design an ADR algorithm for LoRa network 

that works well for mobile EDs as well. 

 

       Current LoRaWAN supports single hop communication between EDs and gateways. 

However, single hop communication is subject to several problems. In single hop 

communication, EDs transmit at maximum power level that directly affects their battery life. In 

LoRaWAN, gateway is the central point to relay all frames from ED to network server, and vice 

versa. A gateway also assigns channels and desired frequencies to all EDs with the help of MAC 

commands. Hence, all these tasks and processing, overburden the gateway, which ultimately 

affects LoRaWAN network performance. Another main aim of our research is to develop an 

ADR mechanism using deep learning approach in LoRaWAN, which can efficiently improve 

network capacity, and also reduces the overhead by offloading ADR computation from both 

EDs and network according to traffic requirements. Our proposed Dynamic Resource 

Allocation scheme aims to improve network throughput and network lifetime, while reducing 

the complexity of gateways, specifically in scenarios, where millions of EDs may transmit 

frames towards gateways. Overall, the future of LoRaWAN in smart health monitoring systems 

appears to be quite promising, with more novel applications of this technology expected in the 

next years. 

5.3 Publications within thesis 
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