

 APPLICATIONS OF VALUE-CENTRIC REGRESSION

TESTING FOR SOFTWARE APPLICATIONS

FARRUKH SHAHZAD AHMED

01-281162-001

A thesis submitted in fulfillment of the

requirements for the award of the degree of

Doctor of Philosophy (Software Engineering)

Department of Software Engineering

BAHRIA UNIVERSITY ISLAMABAD

OCTOBER 2023

ii

APPROVAL FOR EXAMINATION

Scholar's Name: Farrukh Shahzad Ahmed Registration No.: 01-281162-001

Program of Study: Ph.D. (Software Engineering)

Thesis Title: Applications of Value-Centric Regression Testing for Software Applications

It is to certify that the above student's thesis has been completed to my satisfaction and,

to my belief, its standard is appropriate for submission for evaluation. I have also

conducted a plagiarism test of this thesis using HEC-prescribed software and found a

similarity index of 16% which is within the permissible limit set by the HEC for the

Ph.D. degree thesis. I have also found the thesis in a format recognized by the BU for

the Ph.D. thesis.

Principal Supervisor’s Signature: ___________________

Name: Dr. Tamim Ahmed Khan____________________

Date: ______________________

iii

AUTHOR’S DECLARATION

I, Farrukh Shahzad Ahmed hereby state that my Ph.D. thesis titled “Applications of

Value-Centric Regression Testing for Software Applications” is my work and has not

been submitted previously by me for taking any degree from this university Bahria

University Islamabad, or anywhere else in the country/world.

At any time if my statement is found to be incorrect even after my graduation, the

University has the right to withdraw/cancel my Ph.D. degree.

Name of the scholar: Farrukh Shahzad Ahmed

Date: ____________________

iv

PLAGIARISM UNDERTAKING

I, solemnly declare that the research work presented in the thesis titled “Applications of

Value-Centric Regression Testing for Software Applications” is solely my research work

with no significant contribution from any other person. Small contribution/help wherever

taken has been duly acknowledged and that complete thesis has been written by me.

I understand the zero-tolerance policy of the HEC and Bahria University towards

plagiarism. Therefore, I as an Author of the above-titled thesis declare that no portion of

my thesis has been plagiarized and any material used as reference is properly referred

to/cited.

I undertake that if I am found guilty of any formal plagiarism in the above-titled thesis

even after the award of my Ph.D. degree, the university reserves the right to

withdraw/revoke my Ph.D. degree and that HEC and the University have the right to

publish my name on the HEC / University website on which names of scholars are placed

who submitted plagiarized thesis.

Scholar / Author’s Sign: ____________________

Name of the Scholar: Farrukh Shahzad Ahmed

v

DEDICATION

To my beloved mother (Late)

vi

ACKNOWLEDGMENT

In the name of Allah, the compassionate, the most merciful and beneficent, who

made human being and their minds in such a way that they can create unbelievable ideas

and implement those ideas by the ability gifted by Him. I think without the help of the

Almighty, I would never have been able to complete this task.

Before I get into the details, I would like to add a few heartfelt words for the people

who were a part of this work in different ways. I would like to express my deep respect

and gratitude to my supervisor Dr. Tamim Ahmed Khan and co-supervisor, Dr. Awais

Majeed for all the support and encouragement they gave me during my research work,

and for their faith in this idea and the guidance; they provided me throughout the

completion of my Ph.D. research work. Without their constant feedback and guidance,

this Ph.D. would not have been achievable.

Furthermore, a very special note of thanks goes to my beloved father and my

mother (late), whose prayers, appreciation, motivation, encouragement, and support have

always been there for me and a great source of inspiration and devotion for this work.

Their prayers have always been with me throughout my life. I would also like to pay

cordial gratitude to my teachers, Dr. Shahid Nazir Bhatti, Dr. Muhammad Muzammil, Dr.

Arif Khan, Dr. Raja Muhammad Suleman, Dr. Amina Jamil, and Dr. Sumaira Kausar,

who have helped me in every aspect, encouraged and kept my morale up at the early stage

of my Ph.D. study.

Finally, a very special thanks to Dr. Zahoor Sarwar who helped me a lot during

my research proposal phase. In the end, I would like to thank all those who helped me in

my Ph.D. May ALLAH bless all of them. Ameen.

Farrukh Shahzad Ahmed

vii

ABSTRACT

In the current era, businesses are Information Technology (IT) reliant, but most

companies are deteriorating to maximize the value of their IT initiatives to their

businesses. IT professionals do not know the value of distinct software features to the

business. Likewise, they do not know the business value of diverse software quality

attributes to the business. Therefore, they prioritize their project tasks based on their

perceptions without considering formally measured business value. Ignoring value in

software processes, practices, and artifacts is a value-neutral approach. In regression

testing, software testers cannot re-execute all the test cases to find out the ripple effects

of the changes due to time and budget constraints. No company can afford exhaustive

regression testing in rapidly growing applications. Therefore, software testing

professionals need a way through which they can prioritize their test cases for regression

testing to uncover maximum bugs and side effects by utilizing minimum time and cost.

Test Case Prioritization (TCP) is one of the processes to address this challenge. TCP is a

smart way for regression testing to handle testing resource constraints. The main

advantage of TCP is to save time through the prioritization of critical tests earlier. Current

TCP techniques can be categorized as Value-Neutral (VN) and Value-Based (VB)

approaches. In a VB approach, the cost of test cases and severity of faults are considered

while, in a VN approach these are not considered. The VN approach is dominant over VB

approach, and it assumes that all test cases have identical cost and that all software faults

have same severity. But this notion seldom holds in practice. Therefore, VN TCP

techniques are likely to deliver unreliable results. To fill this gap, focus should be shifted

from VN to VB test prioritization. Presently, limited research work is done in a VB

approach. To address this issue, a Systematic Literature Review (SLR) of VB TCP

techniques is performed, and its results are presented in this thesis. Its purpose is to

combine the overall knowledge related to VB TCP techniques and to highlight some open

research issues in this domain. The literature review yields that value-orientation is vital

in the TCP process to achieve its targeted goals and this is potential area for further

research. Many TCP techniques are available, and their performance is usually measured

through a metric Average Percentage of Fault Detection (APFD). This metric is value-

neutral because it only works well when all test cases have the identical cost, and all faults

viii

have the equal severity. Using APFD for performance evaluation of test case orders where

test cases cost or faults severity varies is prone to produce false results. Therefore, using

the right metric for performance evaluation of TCP techniques is very important to get

reliable and correct results. To the best of the author’s knowledge, there is no formal

technique available to quantify business value based on which test cases can be

prioritized. To overcome this problem, a business value quantification model has been

proposed in this work to estimate faults severities and test cases cost. The proposed model

supports the business value measurement of software requirements. We use the term

software features as functional requirements and software quality attributes as non-

functional requirements. The business value calculation of software features and quality

attributes is based on three factors client priority, feature complexity, and feature usage.

To compute the value of client priority, the proposed model utilizes five business success

factors including profitability, productivity, operational efficiency, customer satisfaction,

and time to market. Software fault severity and test case cost are estimated through the

business value of requirements because different test cases and faults are directly

associated with some requirements. Business value has been incorporated into the TCP

process through the proposed model. The model is validated through two working

examples. Based on the proposed model, two value-based TCP techniques have been

introduced in this thesis using Genetic Algorithms (GA). These techniques are Value-

Cognizant Fault Detection-Based TCP (VCFDB-TCP) and Value-Cognizant

Requirements Coverage-Based TCP (VCRCB-TCP). Two novel value-based

performance evaluation metrics are also introduced for value-based TCP including the

APFDv and Average Percentage of Requirements Coverage per value (APRCv). Two case

studies are performed to validate proposed techniques and performance evaluation

metrics quantitatively. A statistical analysis of the results is performed by a statistical test.

The statistical results reveal that the proposed approaches provide significantly better

results than traditional value-neutral TCP techniques.

ix

TABLE OF CONTENTS

CHAPTERs TITLE PAGE

APPROVAL FOR EXAMINATION ii

AUTHOR’S DECLARATION iii

PLAGIARISM UNDERTAKING iv

DEDICATION v

ACKNOWLEDGMENT vi

ABSTRACT vii

LIST OF TABLES xii

LIST OF FIGURES xv

ABBREVIATIONS AND ACRONYMS xvii

LIST OF APPENDICES xviii

1. INTRODUCTION 1

1.1. Background 1

1.2. Overview 4

1.3 Research Motivation 7

1.4 Research Gaps 9

1.5 Problem Statement 9

1.6 Research Questions 10

1.7 Research Objectives 11

1.8 Contribution of the Study 11

1.9 Thesis Organization 12

2. LITERATURE REVIEW / THEORETICAL FRAMEWORK 15

2.1. Introduction 15

2.2. Software Testing 15

2.3. Software Regression Testing 16

2.4. Test Case Prioritization 17

2.4.1. Value-Neutral TCP 17

2.4.2. Value-Based TCP 24

x

2.6. Summary 48

3. RESEARCH METHODOLOGY 50

3.1. Introduction 50

3.2. Research design 51

3.3. An enhanced taxonomy of TCP techniques 52

3.4. Proposed Business Value Estimation Model for TCP 54

3.4.1. Business Value Factors 56

3.4.1.1 Feature Client Priority (FCP) 57

3.4.1.2. Feature Complexity (FC) 59

3.4.1.3. Feature Usage (FU) 59

3.4.2. Business Value Computation 60

3.4.3. Business Value Management 62

3.4.4. Estimating Fault Severities 62

3.4.5. Estimating Test Cases Cost 63

3.5. Incorporating Value in TCP Process 64

3.5.1. Incorporating Value in Fault-Based TCP Process 64

3.5.2. Incorporating Value in Requirements Coverage-Based TCP) 66

3.5.3. Proposed Value-Based TCP and Evaluation Metrics 68

3.5.3.1. Value-Cognizant Fault Detection-Based TCP (VCFDB-TCP) 68

3.5.3.2. Value-Cognizant Requirements Coverage-Based TCP (VCRCB-

TCP) 79

4. DATA ANALYSIS / RESULTS / FINDINGS 83

4.1. Introduction 83

4.2. APFDc vs APFDv 83

4.3. Validation Of Proposed Business Value Quantification Model For

VB-TCP 86

4.3.1. Working Example 1 86

4.3.1.1. Unit of Analysis and Method 86

4.3.1.2. Test Data 1: Test Cases VS Faults Coverage Matrix 87

4.3.1.3. Adequacy Criteria for Test Prioritization 88

4.3.1.4. Prioritization Algorithm 88

4.3.1.5. Evaluation Metric 88

4.3.1.6. Comparison Techniques 88

xi

4.3.1.7. Results 89

4.3.1.8. Discussion of Cost Consumption VS Severity Detection 90

4.3.2. Working Example 2 91

4.3.2.1. Unit of Analysis and Method 91

4.3.2.2. Test data 2: Test Cases VS Requirements Coverage Matrix 92

4.3.2.3. Adequacy Criteria for Test Prioritization 93

4.3.2.4. Prioritization Algorithm 93

4.3.2.5. Evaluation Metric 94

4.3.2.6. Comparison Techniques 94

4.3.2.7. Results 94

4.3.2.8. Discussion of Cost Consumption VS Business Value Coverage 95

4.4. Validation of Proposed VB-TCP Techniques and Performance

Metrics 96

4.4.1. Case Study 1 96

4.4.1.1. Context of Study 96

4.4.1.2. Testing Criteria, Evaluation Algorithm, and Evaluation Metric 98

4.4.1.3. Results of the Study 98

4.4.1.4. Cost Consumption VS Severity Detection 105

4.4.1.5. Statistical Analysis 107

4.4.2. Case Study 2 109

4.4.2.1. Context of Study 109

4.4.2.2. Testing Criteria, Evaluation Algorithm, and Evaluation Metric 110

4.4.2.3. Results of the Study 111

4.4.2.4. Cost Consumption VS Business Value Coverage 118

4.4.2.5. Statistical Analysis 119

5. DISCUSSION AND CONCLUSION 122

5.1 Discussion 122

5.2 Implications of the Study 123

5.3 Research Contribution 124

5.4 Threats to Validitys 125

5.5 Future Work 126

BIBLIOGRAPHY 127

APPENDICES 141

xii

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Summary of TCP techniques 21

 2.2 Research Questions 28

 2.3 Inclusion and Exclusion Criteria 31

2.4 QAS Checklist 32

2.5 Data Extraction Form 33

 2.6 Data Extraction Results 33

 2.7 Summary of studies on value-based TCP 35

 2.8 Data extraction results 37

 2.9 Research Trends of Value-based cost cognizant TCP techniques 39

 3.1 Classification of value-based cost-cognizant TCP techniques 53

 3.2 Features list with their business value 61

 3.3 Quality attributes list with business value 61

3.4 Fault severity detection of test cases 65

 3.5 Test cases with business value 65

 3.6 Business value coverage of test cases 67

 3.7 Test cases with business value 67

 3.8 Test cases with cost VS faults with severity 70

 3.9 Test cases fault severity detection score 70

 3.10 Performance in terms of APFDv 70

 3.11 Test cases with cost and fault with severity 72

 3.12 Same severity and same cost 73

xiii

 3.13 Varying severity and same cost 73

 3.14 Varying costs and the same severity 73

 3.15 varying severity and varying cost 73

 3.16 Test cases vs requirements 80

 3.17 Test cases business value coverage 81

 3.18 Performance of test orders in terms of APRCv 81

 4.1 Test cases with cost vs faults with severity 84

 4.2 Results comparison of APFDc and APFDv 84

 4.3 Test cases with cost vs faults with severity 85

 4.4 Results comparison of APFDc and APFDv 85

 4.5 Test data 1-test cases vs faults 87

 4.6 Performance comparison of proposed vs existing approaches in terms of

APFDv 89

 4.7 Test data 2-test cases vs requirements 93

 4.8 Performance comparison of proposed vs existing approaches in terms of

APRCv 94

 4.9 Test data for Product A and Product B 97

 4.10 APFDv of products A releases 99

 4.11 APFDv of the three releases for two products B 100

 4.12 APFDv of value-based TCP using GA against different numbers of

iterations for releases of products A 101

 4.13 APFDv of Value-based TCP using GA against different numbers of

iterations for releases of products B 102

 4.14 Execution time of value-based TCP using GA for different numbers of

iterations for releases of products A 103

 4.15 Execution time of value-based TCP using GA for different numbers of

xiv

iterations for releases of products B 104

 4.16 Statistical Analysis of Original Order and Value-Based GA 108

 4.17 Statistical Analysis of Reverse Order and Value-Based GA 108

 4.18 Statistical Analysis of Random Order and Value-Based GA 109

 4.19 Statistical Analysis of Greedy Order and Value-Based GA 109

 4.20 Dataset for Application A and Application B 110

 4.21 APRCv of application A releases 111

 4.22 APRCv of the three releases for Application B 112

 4.23 APRCv of value-based TCP using GA for different numbers of iterations

for releases of applications A 113

 4.24 APRCv of value-based TCP using GA for different number of iterations for

releases of applications B 114

 4.25 Execution time of value-based TCP using GA for different numbers of

iterations for releases of applications A 116

 4.26 Execution time of value-based TCP using GA against different numbers of

iterations for releases of applications B 117

 4.27 Statistical Analysis of Original Order and Value-Based GA 121

 4.28 Statistical Analysis of Reverse Order and Value-Based GA 121

 4.29 Statistical Analysis of Random Order and Value-Based GA 121

 4.30 Statistical Analysis of Greedy Order and Value-Based GA 121

xv

LIST OF FIGURES

FIGURE NO. TITLE PAGE

 1.1 Regression testing approaches 3

 2.1 Review Protocol Phases 26

 2.2 PRISMA flow diagram for the search process and selection procedure 30

 2.3 Distribution of studies according to the algorithm used. 40

 2.4 Distribution of studies according to results validation method used. 41

 2.5 Common Test Case Prioritization process 42

 2.6 The objectives of Test Case Prioritization 43

 3.1 Overview of research methodology. 52

 3.2 Enhanced Taxonomy of Test Case Prioritization 54

 3.3 Proposed business value quantification model for value-based TCP 56

 3.4 Business value management in TFS 62

 3.5 Overview of value-based TCP 69

 3.6 Cost vs Severity 72

 3.7 Crossover and mutation process 78

 3.8 Flowchart of value-based TCP using GA 79

 3.9 Value-cognizant requirements coverage-based TCP 80

 4.1 APFDv of proposed vs existing TCP Approaches 90

 4.2 Test cases cost consumption vs severity detection trend 91

 4.3 APRCv Comparison of proposed vs existing TCP approaches 95

 4.4 Test cases cost consumption vs severity detection trend 95

 4.5 Performance results of product A releases in terms of APFDv 99

 4.6 Performance results of product B release in terms of APFDv 100

xvi

 4.7 APFDv trend per number of iterations for product A 102

 4.8 APFDv trend per number of iterations for product B 103

 4.9 Execution time trend per number of iterations for product A 104

 4.10 Execution time trend per number of iterations for product B 105

 4.11 Product A, release 1 106

 4.12 Product A, release 2 106

 4.13 Product A, release 3 106

 4.14 Product B, release 1 106

 4.15 Product B, release 2 106

 4.16 Product B, release 3 106

 4.17 Performance results of application A releases in terms of APRCv 112

 4.18 Performance results of application B releases in terms of APRCv 113

 4.19 APRCv trend per number of iterations for application A 114

 4.20 APRCv trend per number of iterations for application B 115

 4.21 Execution time trend per number of iterations for application A 116

 4.22 Execution time trend per number of iterations for application B 117

 4.23 Application A – R1 118

 4.24 Application A – R2 118

 4.25 Application A – R3 118

 4.26 Application B – R1 118

 4.27 Application B- R2 119

 4.28 Application B- R3 119

xvii

ABBREVIATIONS AND ACRONYMS

TCP: Test Case Prioritization

APFD: Average Percentage of Fault Detection

APFDc: Average Percentage of Fault Detection per cost

APFDv: Average Percentage of Fault Detection per value

IT: Information Technology

SE: Software Engineering

ROI: Return on Investment

VBSE: Value-based Software Engineering

APRC: Average Percentage of Requirement Coverage

APFC: Average Percentage of Function Coverage

APLC: Average Percentage of Loop Coverage

APCC: Average Percentage of Condition Coverage

APSC: Average Percentage of Statement Coverage

ACO: Accountable Care Organization

GA: Genetic Algorithm

APBIE: Average Percentage of Business Importance Earned

SLR: Systematic Literature Review

VCFDB-TCP Value Cognizant Fault Detection-Based Test Case Prioritization

VCRCB-TCP Value Cognizant Requirement Coverage-Based Test Case

Prioritization

APRCv: Average Percentage of Requirement Coverage per value

APFCv: Average Percentage of Function Coverage per value

APLCv: Average Percentage of Loop Coverage per value

APCCv: Average Percentage of Condition Coverage per value

APSCv: Average Percentage of Statement Coverage per value

NSGA-II Non-dominated Sorting Genetic Algorithm II

xviii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Source Code Snippets 141

B 1. Example 1: ACO Healthcare Solution for Validation of Business Value

Estimation Model- Fault-Based TCP 145

2. Example 2: ACO Healthcare Solution for Validation of Business Value

Quantification Model- Requirements Based TCP 146

C 1. Test Data 1: Test Cases Vs Faults Traceability Matrix 147

2. Test Data 2: Test Cases Vs Faults Traceability Matrix 148

3. Test Data 3: Test Cases Vs Faults Traceability Matrix 149

4. Test Data 4: Test Cases vs Requirements Traceability Matrix 150

5. Test Data 5: Test Cases Vs Requirements Traceability Matrix 151

6. Test Data 6: Test Cases Vs Requirements Traceability Matrix 152

D 1. Test Data 1: Test Cases Vs Faults Traceability Matrix 153

2. Test Data 2: Test Cases Vs Faults Traceability Matrix 154

3. Test Data 3: Test Cases Vs Faults Traceability Matrix 155

4. Test Data 4: Test Cases Vs Requirements Traceability Matrix 156

5. Test Data 5: Test Cases Vs Requirements Traceability Matrix 157

6. Test Data 6: Test Cases Vs Requirements Traceability Matrix 158

E 1. Case Study 1 Statistical Analysis Results 159

2. Case Study 2 Statistical Analysis Results 162

1

CHAPTER 1

INTRODUCTION

1.1. Background

Making great decisions in Software Engineering (SE) requires a thorough understanding of

the business consequences of those decisions [1]. SE research is primarily based on VN

settings in which all software artifacts have equal importance and there are many limitations

of this fashion [2]. Value-based SE (VBSE) has catered to these limitations by considering

value in software development principles and practices [2]. According to Barry Boehm, the

definition of VBSE is “the explicit concern with value concerns in the application of science

and mathematics by which the properties of computer software are made useful to people”

[3]. The early research in the currently popular approach of agile software development

was focused on extreme programming. Now, there is a transition in this trend and the focus

is on the value of developed features and continuous value delivery [4]. Current trends are

focused on value delivery and good coordination between business teams and technical

teams [4]. According to [5] there is a value-based view of software product quality.

Software customers usually take the value-based view, and they are concerned about the

value added by software products to their organization. They perform a cost-benefit

analysis. This requires a good definition of customer expectations regarding software

quality in terms of some value. To meet customers’ software quality expectations in terms

of value, software testing becomes more critical. Software testing consumes 40 to 50%

budget of any software project [6]. Software testing is critical due to its complexity [7].

Software testing research is also based on a VN approach like other software activities [8].

In VN software testing, resources are allocated to the activities that are inefficient in the

context of Return on Investment (ROI). VN testing is not directly linked to the business

2

objectives of the product and is considered agnostic to value considerations [9]. To address

these challenges, VB testing was introduced [8].

VB testing involves testing software systems that can better align testing resources to

meet the value objectives of the project [8]. The major thing in value-based testing is to

integrate internal testing objectives with the client’s business objectives and expectations

[8]. The focus is on value delivery instead of verifying code against a set of requirements.

According to [2], the VN testing generated a higher ROI of 1.22 with 100% test execution,

and the value-based testing produced a higher ROI of 1.74 with the execution of about

40% of the most important cases. This indicates that testing resources should be utilized

in such a way that they can prevent losses due to non-functional software. The test cases

should be aligned with the written requirements as well as with the client’s expectations.

Therefore, testing activities should adopt a business value-based perspective. The value-

based verification and validation are also included in the agenda of VBSE [10].

According to Boehm software cost is estimated at $1 trillion per year and testing activities

cost half of this total cost investment [3]. Regression testing consumes a large amount of

time as well as effort and mostly accounts for around half of the software maintenance

costs [11]. Regression testing is normally associated with re-testing of the system after

any code change, it can be performed at the system level, integration level, or unit level

[11]. Complete test coverage is normally not possible during regression testing due to

limited time and resources.

Then the question arises: how much regression testing is enough, which is always a

challenge for the testing teams? There are four approaches of regression testing for test

case coverage including retest all, test case reduction, test case selection, and TCP [13].

Figure 1.1 illustrates the different types of regression testing approaches.

3

Figure 1.1: Regression testing approaches

The test selection approach is widely applied in the industry, but it is not risk-free because

it is based on selection. Similarly, the test case reduction cannot guarantee that only

unrelated test cases are eliminated from the test case pool. Whereas, TCP does not remove

or reduce test cases from the test suite. That is why it is more secure, reliable, and popular

in practice and a lot of research work is being done in this field.

TCP is an approach to optimize regression testing [14]. According to Rothermel et al. the

TCP problem is defined as follows [15]. Suppose T is a test suite, PT is a set of possible

permutations of T, and f is a function from PT to real numbers, f: PTR.

Prioritization Goal: To search a 𝑇𝐼∈ PT that maximizes the value of f.

The TCP techniques consider number of defects detected, time, repetitiveness and size of

test cases [16]. Various TCP techniques have been proposed and the primary purpose is

to to increase the APFD rate, and save cost and time by prioritizing the test cases. There

are two different fashions in which TCP techniques have been proposed. These fashions

include value-based and value-neutral [17]. In a VB approach, test cases cost and bugs

severity are considered while prioritizing test cases for regression testing [17]. Whereas

the VN approach considers that all faults have same severity, and all test cases have

identical cost. But in practice, this assumption seldom holds [18]. VN approach is

dominant over VB approach.

 The existing TCP techniques and their performance evaluation metrics are dominantly

following a VN approach and are prone to produce unrealistic results [19]. Therefore, a

paradigm shift is required from a VN to a VB approach. This thesis is focused on value-

based cost cognizant TCP for regression testing.

4

1.2. Overview

In today’s technological world, people are utilizing IT solutions in different domains like

health care, education, sports, agriculture, and business [20]. Most businesses have been

transformed into digitized forms. They are utilizing software applications to run their

operations to deal with different products and services. Due to this tight reliance, the

quality of systems has become more imperative. To attain the quality of software

products, companies are spending a lot of money. Even then businesses go on stack due

to software errors. There is a huge impact of software errors on the operations of any

business. IT professionals seldom know what economic value their software application

is going to add to the business. Now business owners and business units are focusing on

the business value of the projects more than earlier [21]. The literature says that business

value is taken from the client’s perspective but in agile software development

organizations, management defines it from the perspective of the portfolio of each project

as a software supplier [22]. There would be a direct relationship between software project

efforts and the associated business value delivered to the clients by that project [23]. Now

in many organizations, the focus is being shifted from a cost-centric view to a value-

centric view [22]. Predicting the business value of software is a challenging job [4]. There

are two fashions of software engineering research one is value-neutral, and the other is

value-based.

The objectives of coverage-based TCP are to increase requirements coverage, functions

coverage, loop coverage, conditions coverage, or statements coverage. The traditional

metrics Average APFD, APRC, Average Percentage of Function Coverage (APFC),

Average Percentage of Loop Coverage (APLC), the APCC, or Average Percentage of

Statement Coverage (APSC) are value-neutral metrics because they do not consider cost

or execution time of test cases and value of items covered by the test cases.

The VB TCP techniques considers severity value and test case cost value. A cost-

cognizant metric APFDc is available for fault-severity detection-based TCP [19].

However, there is no cost-cognizant metric available for coverage-based TCP techniques

considering the value of requirements, functions, loops, conditions, statements, etc. The

performance of a VB TCP technique depends on the cost of test cases as well as the value

of covered items but there is no formal technique available to quantify the business value

of requirements and to estimate fault severity and test case cost. TCP techniques are liable

5

to produce less satisfactory results due to these gaps. Another limitation of existing TCP

techniques is that they only consider functional aspects of the application. Non-functional

aspects of quality attributes are ignored in the prioritization process.

To fill the above-specified research gaps, four different dimensions pave the way to

perform this research concurrently. The first goal of study is to analyze the research work

done in value-based TCP. The second goal is to propose a mechanism for the estimation

of fault severities and test case costs based on the business value of requirements for

value-based TCP. The third goal is to propose VB TCP techniques for regression testing.

The fourth goal is to propose novel performance evaluation metrics for value-based TCP

techniques.

To achieve the first goal of the study, an SLR is performed on value-based TCP techniques

to analyze the current state of work done in this area. To achieve the second goal, a

business value quantification model is proposed in this thesis. The basic purpose of this

model is to provide a way to determine the business value of software requirements and

to provide a method to estimate faults severities and test case costs. to quantify the

business value of software requirements. The purpose is to facilitate the value-based TCP

process. The proposed model is applied in value-based TCP and empirically evaluated.

The results demonstrate that value-based TCP produces more reliable and satisfactory

results than value-neutral TCP techniques. Each item of software is associated with some

requirement so its business value can be estimated through the business value of its

respective requirement. There are two types of software requirements, one is functional,

and the other is non-functional. We explicitly considered non-functional requirements as

the quality attributes in the prioritization process because most of the time businesses

suffer from non-functional aspects of the application like performance, security, privacy,

etc. In the proposed model, the business value of software features and quality attributes

is based on three factors client priority, complexity, and usage. The client priority is based

on five business success factors including profitability, productivity, operational

efficiency, client satisfaction, and time-to-market. The accumulative business value of a

software feature is calculated through client priority, complexity, and usage of that

feature. Similarly, the accumulative business value of a software quality attribute is

estimated through the client priority of that quality attribute.

The severity of a bug is dependent on the business value of a feature with which it is

associated. If a feature has a higher business value, all its associated bugs will have higher

6

severity accordingly. Similarly, test cases cost depends upon the business value of the

requirements it covers in the case of coverage-based TCP. The cost of a test case depends

upon the severity of faults it detects in fault-based TCP. The proposed model can help

estimate the business value of functions, loops, conditions, statements, etc. from the

business value of software requirements.

The core objectives of TCP include early fault detection, quick product maturity, efficient

utilization of testing resources, and an increased APFD rate. There are several TCP

techniques available to achieve these objectives. Some of the categories of TCP

techniques include risk-based [24], history-based, coverage-based, fault-based, search-

based, and requirements-based [25]. Most of the existing TCP techniques are designed in

a value-neutral fashion. In VN TCP, all test cases have the same execution time, and all

bugs have the same severity. The performance evaluation of these techniques is also done

in a VN approach.

The existing TCP techniques are mostly coverage based. 100% coverage does not

guarantee 100% bug detection [26]. All requirements and code statements are not of

identical worth because they have their unique values. Therefore, the traditional coverage

metrics are not the best adequacy criterion for TCP. Similarly, there is a notion that all

faults are of equal severity [27]. The traditional APFD metric is completely based on this

notion. The existing TCP approaches have been dominantly validated through APFD

without considering the severity and criticality of the faults. The APFD rate is not an

appropriate criterion for the performance evaluation of TCP techniques where test cases

vary in terms of cost and faults vary in terms of severity. A cost-cognizant metric APFDc

is available for fault-severity detection based on TCP [19]. But to the best of the author's

knowledge, there is no value-cognizant metric available for coverage-based TCP

techniques considering the value of requirements, functions, loops, conditions, or

statements. Due to these limitations, TCP techniques and their performance evaluation

metrics are likely to produce unsatisfactory and unreliable results. Therefore, a

mechanism is required to overcome these limitations by taking value considerations into

account.

To achieve the third goal, two value-cognizant TCP approaches are proposed in this thesis

including Value-Cognizant Faults Detection-Based TCP (VCFDB-TCP) and Value-

Cognizant Requirements Coverage-Based Test Case Prioritization (VCRCB-TCP). To

achieve the fourth goal, two value-cognizant metrics are proposed in this thesis including

7

the APFDv and the APRCv. The purpose of these metrics is to gage the performance of

proposed value-cognizant TCP techniques.

The proposed techniques have been implemented using Genetic Algorithms (GA). GA is

a search-based evolutionary algorithm. It is used to find approximate or true solutions for

search-based problems. In this study, we consider the APFDv metric as a appropriate

fitness function to guide VB TCP. We used GA for the proposed technique because it is

widely used to solve optimization problems. Value-based regression test prioritization is

also an optimization problem. GA works on a search space and begins with a random

population of permutations. It is based on natural genetics and provides the best results.

It is highly parallelizable as compared to other search-based algorithms [28]. The

proposed techniques have been evaluated through two case studies on multiple versions

of different health care applications developed using .Net technologies. These are

developed by a US-based software company to support care management of Accountable

Care Organization (ACO)-based population. The proposed techniques are evaluated by

using the proposed metrics APFDv and APRCv. The results are compared with the state-

of-the-art TCP techniques. The proposed techniques produced better results than other

techniques.

The main contribution of this research includes (i) An SLR on value-based TCP ii) A

business value quantification model iii) Two value-based TCP techniques proposed. iv)

Two novel value-cognizant performance evaluation metrics for value-based TCP are

proposed.

1.3 Research Motivation

In the current era, software quality is a major concern for clients. Poor-quality software

applications are costing US organizations over two trillion dollars annually [29]. Client

businesses are highly dependent on software applications. A single error or a glitch in the

software can stop the business operations of the client. Software errors damage the

business in many ways like data loss, downtime, and loss of transactions. There can be

many other virtual effects like losing credibility, damage to reputation, losing market, loss

of customers’ trust, agreement termination, or even closure of the whole business. The

list of the few biggest software disasters reported in [30] is given below to realize the

business value of software errors.

8

I. The Mariner 1 Spacecraft, 1962: It was a space mission, and failed due to the

omission of a hyphen in the code statement. This error caused an incorrect signal

sent to the spacecraft. The overall cost of this error was more than $18 million.

II. Bitcoin Hack, Mt. Gox, 2011: There was a software glitch in the exchange creating

transactions that were not fully redeemed. It was costing up to $ 1.5 million in lost

bitcoins.

III. Heathrow Terminal 5 Opening, 2008: Thousands of items of passengers were not

received at the destination due to the malfunctioning baggage handling system.

Over 10 days, 42000 bags were lost, and more than 500 flights were canceled

costing over £16 million.

To address the business sensitivity of software applications, different testing techniques

come into play. It is very interesting to know that software testing is taking more than

40% of the overall software project cost. According to the National Institute of Standards

and Technology (NIST), software errors cost around $59.5 billion to the US economy and

this figure can be reduced by $22.2 billion with improvements in software testing [8].

Similarly, one minor privacy breach issue can lead to business closure. A severe

performance issue can decrease the productivity of the resources and result in increased

costs.

Due to software bugs, business operations are halted, and businesses largely suffer from

financial losses. Businesses go on stack due to software errors. There is a huge impact of

software errors on the return on investment (ROI) of any business. The continuous

changes in software applications, make it riskier for the business as every new change in

the system requires additional testing to check its ripple effects. However, due to limited

time and budget for regression testing, this is not always possible to test every

functionality of the system whenever a new change is incorporated into it. The existing

techniques didn’t address the business success factors. There is no TCP technique

available to support critical business workflows. If a problem occurs in the system, the

client’s business operations stop. Consequently, they bear the financial loss in terms of

cost, time, and reduced productivity.

This is the motivation behind this work how we can protect clients’ businesses from losses

through better software testing techniques. The intention here is to incorporate business

value in the test case prioritization process. We want to propose a business value based

9

TCP technique for software regression testing for functional/non-functional aspects of the

application to protect the core business functionalities of the applications.

1.4 Research Gaps

VN TCP techniques are likely to provide less satisfactory results [31]. To address this

research issue, a paradigm shift is required from VN to VB TCP techniques. Currently,

limited research work is available in VB approach, and no comprehensive review of VB

cost-cognizant TCP techniques is available in the existing literature.

In the current era, businesses are IT-reliant, but most companies are deteriorating to

maximize the value of their IT initiatives to their businesses. IT vendors do not know the

value of distinct software features to the business. Likewise, they do not know the

business value of diverse software quality attributes to the business. Therefore, they

prioritize their project tasks based on their perceptions without considering formally

measured business value. Ignoring value in software processes, practices, and artifacts is

a value-neutral approach. The software Test Case Prioritization (TCP) process has the

same problem. Most of the existing TCP techniques are developed in a value-neutral

fashion and assume that all faults have the same severity and that all test cases have the

same cost. But this assumption rarely holds. Therefore, existing techniques are prone to

produce unreliable results. Value orientation in the TCP process is missing.

The focus is on the number of faults detected instead of their impact on the client’s

business. Ignoring value in the TCP process is prone to produce unsatisfactory results.

Another problem with this fashion is that the use of value-neutral metrics for the

performance evaluation of TCP techniques will produce unreliable results. To address

these problems, value-based cost-cognizant TCP techniques have been introduced.

1.5 Problem Statement

Existing TCP techniques are dominantly based on the frequency of elements detected or

covered by test cases assuming that all elements are equally important, and all test cases

have equal costs. The value-neutral approaches are prone to produce less reliable results

10

because of the base assumptions paving the way for the value-oriented TCP process, and

it is important to evaluate its viability, impact, and usefulness.

1.6 Research Questions

This research is initiated to solve the problem of value-based cost-cognizant test case

prioritization. The primary research question is articulated as follows.

“How the value orientation can be introduced in TCP techniques and their evaluation

metrics?”

This primary research question is split into four secondary research questions. The

secondary questions are listed below.

RQ1: What are the existing VB-TCP techniques, their algorithms, validation methods,

performance evaluation metrics, and open research problems?

 What are existing TCP techniques and their performance metrics?

 What are the limitations and open research problems related to TCP techniques

and performance metrics?

RQ2: How severity of faults and cost of test cases can be estimated through the business

value of software requirements for VB-TCP?

 How the business value of requirements can be measured?

 How severity of faults and cost of test cases can be estimated through the business

value of software requirements for VB-TCP?

RQ3: How business value can be incorporated in VB cost-cognizant TCP?

 How test cases can be prioritized by incorporating VB fault severity and test case

cost using a Genetic Algorithm (GA)?

 How varying business value of requirements can be incorporated in value-

cognizant requirements coverage-based TCP?

RQ4: How performance of VB-TCP techniques can be measured using novel VB

performance evaluation metrics?

11

1.7 Research Objectives

This research is focused on value-based TCP for regression testing. The value orientation

is added to fill the gaps in a value-neutral fashion. The objectives of this research are as

follows:

1. To explore the current state of the research in VB-TCP for regression testing and

to highlight open research issues in this domain.

2. To propose a business-oriented quantification model to incorporate business value

in fault severities and test cases’ cost for VB- TCP.

3. To propose VB-TCP Techniques

 To propose a value-cognizant fault detection-based TCP technique for VB

regression testing.

 To propose a value cognizant requirement coverage-based TCP for VB

regression testing.

4. To propose a novel VB cost-cognizant metric for performance evaluation of

proposed VB-TCP techniques.

1.8 Contribution of the Study

This section describes the significant contribution of this research, and it includes the

following items:

i) An SLR on value-based TCP techniques

ii) Value orientation in the TCP Process through business value quantification

model

iii) Value-based TCP techniques using a genetic algorithm

iv) Novel value-cognizant performance evaluation metrics for value-based TCP

A literature review of VB TCP techniques is given in this thesis. The objective is to gether

the knowledge related to VB TCP techniques and to highlight open research issues in this

domain. This literature review was well needed because there is limited work done on

value-based TCP. Most of the existing work is dominantly following a value-neutral

fashion. This literature review yields that value-orientation is important in the TCP

12

process to achieve its goals and this potential area for further research.

There was no significant work on value orientation in the TCP process. To overcome this

problem, a business value quantification model has been proposed in this research to

estimate faults severity and the test cases cost. It provides support to measure the business

value of software requirements. To incorporate a value-oriented TCP process, fault

severity and test cases cost are estimated based on the business value of software

requirements. The software requirements includes both functional and non-functional.

The existing TCP work is dominantly focused on functional aspects of the application and

ignores non-functions aspects. In this research, both functional requirements (as features)

and non-functional requirements (as quality attributes) are considered. The proposed

model is applied in business value-based TCP and is empirically evaluated. The results

indicate that using the proposed model provides better TCP results than traditional VN

TCP techniques. It also supports the better alignment of IT units with business units to

maximize the value of software initiatives to the business. The value orientation in the

TCP process provides support to bridge gaps between IT units and business units.

Two value-based cost-cognizant TCP techniques have been proposed using a genetic

algorithm. One is Value-Value Cognizant Fault Detection Based TCP (VCFDB-TCP) and

the other is Value Cognizant Requirements Coverage Based TCP(VCRCB-TCP). Two

novel value-based performance evaluation metrics have been proposed. One is the APFDv,

and it is used for the performance evaluation of VCFDB-TCP. The other is the APRCv,

and it is used for the performance evaluation of VCRCB-TCP. Two case studies are

performed to evaluate the performance of proposed value-based TCP techniques using

the proposed performance evaluation metrics. The results demonstrated that the proposed

techniques are outperforming the existing state-of-the-art techniques.

1.9 Thesis Organization

The rest of the thesis is comprised of four chapters. The description of the chapters is

given below.

13

Chapter 2: This presents a literature review of the domain under study. It includes a

chapter introduction, VN vs VB software engineering, VN vs VB testing, regression

testing, and test case prioritization techniques. The focus of the study is on VB TCP

techniques, their research trends, and their performance evaluation metrics. This chapter

includes a description of algorithms and validation methods used in the TCP process.

Some common steps of the TCP process, common objectives, and taxonomy of TCP

techniques have been presented. Some open research problems and recommendations to

fill the research gaps have also been given in this chapter. The core objective of

performing a literature review is to gether knowledge related to VB TCP techniques and

their performance evaluation metrics. This chapter also presents software quality

attributes, business success factors from a client’s perspective, and the value of software

quality to the business. Existing techniques for software business value measurement and

value-based TCP have also been discussed. At the end of the chapter, gap analysis is done

with some open research questions and future research directions. Hence the chapter is

concluded.

Chapter 3: Research methodology describes all the details of the research methodology

adopted to solve the research problem. It includes the research process, and research

framework to carry out the research. All the steps followed to perform the research have

been included in this chapter. It includes an enhanced taxonomy of TCP techniques and

the proposed business value estimation model for estimating faults severities and test

cases cost. It describes VB TCP presenting how test cases can be prioritized based on

business value-based fault severity and test case cost.

A value-cognizant fault detection-based TCP technique and a novel metric APFDv for its

performance evaluation are presented. This chapter also presents the proposed value-

cognizant requirements coverage-based TCP and novel metric APRCv for its performance

evaluation. A description of a genetic algorithm to implement the proposed techniques is

given too.

Chapter 4: This chapter presents data analysis, results, and findings. Two case studies

have been presented. It includes the context of the study, testing criteria, evaluation

algorithm, evaluation metrics, and results and discussion of the study.

14

Chapter 5: This is the last chapter of the thesis that concludes the whole work done in

this study. It includes a summary of the work done, the implication of the study, research

contribution, threats to validity, and future research directions.

15

CHAPTER 2

LITERATURE REVIEW / THEORETICAL FRAMEWORK

2.1. Introduction

This chapter presents the literature review of the domain under study. It describes software

testing, regression testing, and its three types including test case selection, test case

reduction, and TCP. The focus of this work is on test case prioritization techniques. A

comprehensive literature review of existing TCP techniques for regression testing is given

in this chapter. It includes the difference between VN and VB TCP techniques. An

analysis of the literature on VB TCP is done. The algorithms and validation methods used

in VB TCP are described. VB cost-cognizant TCP process and its objectives are

described. The performance evaluation metrics used in cost-cognizant TCP are also

described. The open research problems and recommendations to fill the research gaps.

The chapter conclusion is given at the end.

2.2. Software Testing

Software testing is the process of evaluating a software system to ensure its quality,

functionality, and performance [32]. It involves checking the software to find bugs, errors,

or deviations from expected behavior. Two common approaches to software testing are

black-box and white-box. Both black-box and white-box testing are important for

ensuring the overall quality and reliability of a software system. The choice of the testing

approach depends on the specific requirements and objectives of the testing effort.

Black-Box Testing:

Black-box testing is a testing approach where the tester does not know the

implementation details of the system being tested[32]. Testers view the system as a "black

box" and focus on the inputs and outputs without considering the internal code or

structure. The goal is to evaluate the system's functionality, usability, and adherence to

16

specifications, without any knowledge of how the system achieves its results. Black-box

testing is typically performed from a user's perspective, simulating real-world usage

scenarios. Testers design test cases based on functional requirements, specifications, or

user stories. They verify if the system behaves as expected by providing various inputs

and observing the outputs or responses. The focus is on the external behavior and

functionality of the software without knowledge of the internal workings.

White-Box Testing:

White-box testing, also known as clear-box or structural testing, involves testing the

internal structure, code, and implementation details of the system being tested [32].

Testers have full knowledge and access to the system's internal workings, including the

source code, algorithms, and design. The tests are designed based on this knowledge to

verify the correctness of the internal logic, code coverage, and performance of the system.

White box testing techniques include unit testing, code review, code coverage analysis,

and debugging. Testers can create test cases that target specific code paths, branches, or

conditions. They evaluate the internal behavior of the software, validate the internal data

structures, and check if the code adheres to coding standards and best practices.

The choice between black-box testing and white-box testing depends on various factors,

such as the testing objectives, available resources, and the level of access to the system's

internals. Both approaches have their strengths and weaknesses, and often a combination

of both techniques is employed to achieve comprehensive test coverage. Black-box testing

is valuable for validating functional requirements, ensuring usability, and testing the

system as a whole. It can be conducted by individuals without programming knowledge

and provides an objective assessment of the system's behavior. White-box testing, on the

other hand, is effective in assessing the internal correctness of the software, checking code

quality, and ensuring adequate code coverage.

2.3. Software Regression Testing

Software regression testing is a type of testing performed to ensure that changes to a

software product have not caused existing functionality to regress. Regression testing is

crucial to maintain the stability and reliability of the system as it evolves. Regression

testing is among the most expensive testing activities and is a big challenge in rapidly

growing and changing systems [11]. There are limited time and costs available for

17

regression testing. There is a chance to stop, or halt testing earlier due to these resource

constraints and leave it incomplete. Incomplete regression testing is always a threat to the

application, and it can harm business operations. The intelligent utilization of testing

resources and smart execution of test cases are key to testing success.

On the other hand, TCP is a process through which test cases are prioritized for the early

detection of bugs. The test cases detecting a higher number of bugs are prioritized first

for execution.

2.4. Test Case Prioritization

2.4.1. Value-Neutral TCP

The value-neutral TCP techniques consider that all faults have identical severity, and all

test cases have the same cost [31]. Similarly, the metrics used for performance evaluation

of TCP techniques like APSC, APFD, the Total Percentage of Fault Detection (TPFS),

the Average Percentage of Branch Coverage (APBC), the APFC, the Average Percentage

of Condition Coverage (APCC), and the Average Percentage of X elements Coverage

(APXC) are also proposed in a value-neutral fashion. All these metrics assume that all

faults have the same severity, all requirements have the same worth, and all code

statements have the same value but practically this is very rare. Different bugs have

different severity, and different requirements have different values. Similarly, the value

of different functions, statements, conditions, branches, and methods may differ from

other functions, statements, conditions, branches, and methods, respectively. Most of the

existing TCP techniques are coverage-based and are effective at unit-level testing, but are

time-consuming and consider that all bugs are equally severe and all test cases have equal

cost [5]. This assumption is not possible in practice [33].

In this section, the existing TCP techniques have been summarized. An algorithm is

proposed for the automatic prioritization of test cases based on output diversity as a

representation of fault revealing probability and test coverage information [34]. In this

technique, a dynamic prioritization based on the greedy algorithm is taken because test

coverage information was already there and the size of the test suite to be prioritized was

small containing around 500 test cases. A Firefly Algorithm based TCP technique is

18

proposed using a similarity distance model as fitness function [35]. This performance of

technique was better than Genetic Algorithm (GA), Local Beam Search (LBS), Particle

Swarm Optimization (PSO) and Greedy algorithm. A tool sOrTES is introduced to

evaluate the independence and ranking of test cases based requirements coverage and

execution time [36]. In [37], a GA based approach is proposed for ordering of JUnit test

cases using optimization heuristics, Other algorithms are also applied including ACO,

Multi-Objective Genetic Algorithm (MOGA) and Simulated Annealing (SA). ACO-based

techniques are used to solve coverage-based TCP problems and are better than Genetic

Algorithm based techniques [38].

A dissimilarity clustering-based TCP technique has been proposed using historical data

and is reported to be better than random and similarity-based techniques, therefore this

adequacy criterion for test prioritization can be risky [39]. A structural coverage-based

TCP technique has been proposed as an optimal process including branch coverage,

decision coverage, or statement coverage [40]. An epistasis-based Ant colony

optimization algorithm is proposed for TCP [41]. It provides better results than traditional

ACO-based techniques and Non-dominated Sorting Genetic Algorithm II (NSGA-II) in

terms of APSC, and execution time. A Gready Algorithm based tie-breaking prioritization

technique is proposed using lexicographical ordering [42]. Alessandro Marchetto et al.

have proposed a technique to detect both business faults and technical faults early [43].

This technique is implemented through NSGA-II and is a metric-based approach. It

improves execution time and fault detection. It considers code coverage, requirements

coverage, and execution time. A dissimilarity-based TCP technique has been proposed by

using historical failure data analysis [44]. It generates clusters of similar test cases and

prioritizes the test cases based on dissimilarity. The proposed technique has been

validated with random ordering, untreated ordering, and similarity order. It provided

better APFD values than other comparison techniques.

A TCP technique has been proposed for JUnit test cases without having coverage

information [45]. It is based on static call graphs to estimate the code coverage ability of

Junit test cases. The prioritization of test cases is then made based on estimated code

coverage instead of real code coverage information. The performance of this technique is

then evaluated and compared with untreated, random, and dynamic coverage-based

techniques. It is found that the proposed technique is better than random, and untreated

prioritization but almost near to dynamic TCP in terms of APFD. Time constraints can

19

play an important role in the cost-effectiveness of TCP techniques and prioritization can

be more effective if faults are greater in number [46]. The authors said that the techniques

employing feedback are more effective than the techniques that do not employ feedback.

Five algorithms for TCP have been described including Greedy, Genetic, Additional

Greedy, 2-Optimal, and Hill Climbing [47]. Their analysis indicates that the Greedy

Algorithm is worse than 2-Optimal, Additional Greedy, and Genetic algorithms. There is

no significant difference between 2-optimal algorithms and additional Greedy in terms of

their effectiveness. GA performs well in cases where it is essential to consider the entire

ordering. The use of Hill Climbing indicates that the fitness landscape is multimodal. The

performance of algorithms is not dependent on the coverage criterion in the TCP problem.

A prioritization approach (MR-TCP) has been proposed based on method-level risk

computation [24]. The risk value of test cases is calculated based on the risk values of

correlating methods within a system under test. Then test cases are prioritized based on

associated risk values. The reported empirical evaluation shows that MR-TCP produced

good results in terms of APFD in comparison with ANN approach (ANN-TCP), random

order (RO-TCP), original order (OO-TCP), reverse order (REO-TCP), and total method

coverage approach (TMC-TCP).

A prioritization technique has been proposed that is based on clustering the test cases that

are related to HTTP requests which are collected from the server-side database logs [12].

Faults are supposed to be seeded to verify this technique. There is a Puzzle-based

Automatic Testing (PAT) environment that breaks complex restriction-solving problems

and object mutations into various small puzzles for human beings to solve [48]. This

technique enhanced branch coverage. The most critical bug in the software is a crash. Test

cases designed to detect crashes in the application are the most important. The Crash

Locator is a method that is used to identify faulty functions by utilizing crash stack

information in crash reports [49]. Do and Gregg have applied mutation testing as a TCP

by measuring how rapidly a collection of test cases detects a mutant during testing and

test sequences are rescheduled based on the mutant killing rate [50]. According to the

author, mutation testing is also used to reduce the number of test cases without losing test

effectiveness and the fault-finding rate can be increased through the automated test

prioritization process.

A risk-based testing technique Rite DAP has been introduced which generates test cases

for system testing from the activity diagram and performs risk-based prioritization [51].

20

A clustering-based prioritization technique has been proposed that utilizes the execution

time of test cases and different metrics to reorder them [52]. It is claimed that this

approach is better than the existing clustering and coverage-based techniques. This

technique has only been applied to Java Programs. A module coupling-based technique

has been proposed that takes module coupling value to prioritize the critical modules

which in turn will identify high-priority test cases [53]. It is well known that using more

than one technique is always better and more effective than utilizing a single technique

because individual techniques detect a specific type of bug [3]. A hybrid TCP technique

is developed for a better fault detection rate [54]. An input-based adaptive TCP technique

is proposed is validated through experience [55]. It provided better APFD than the other

code coverage-based techniques including like GA, greedy and ART. This technique is

more efficient than greedy and genetic but less efficient than ART.

A FAST family of prioritization techniques has been described [56]. The FAST

techniques handle huge-size test suites by utilizing Big Data techniques to achieve

scalability in TCP to meet current industrial demands. The coverage-based technique

usually does not consider non-code-based software artifacts like configuration files [57].

An empirical study was performed, which is a clustering approach that combines fault

prediction for TCP [58]. This claims an improvement in the effectiveness of TCP. A Total

coverage-based TCP approach using a modified genetic algorithm has been proposed

[59]. This approach aims to improve condition coverage and execution time. A similarity-

based risk-driven TCP in combination with fault prediction has been proposed [60]. In

this approach, the risk of a test case increases if it is similar to a failing test case. It is

better than the conventional risk measure where the risk of a test case rises if it is the very

same test case, that failed in the past. A history-based TCP approach has been proposed

by using TITAN technology [61]. The objective of this approach was to maximize fault

detection and test coverage. A machine learning-based TCP technique has been proposed

for black-box testing [62]. This technique showed that the natural language description of

test cases plays a very important role in TCP. Due to this feature, APFD value can be

increased for all machine learning algorithms.

An optimized test prioritization technique has been proposed by using an ant colony

optimization (ACO) algorithm [63]. The objective of this technique is to increase the fault

detection rate and reduce regression testing costs and time. A bat-inspired algorithm

BITCP is proposed for TCP providing a good complexity percentage of fault detection

21

correlation [64]. The cost of individual test cases is considered for prioritizing the test

cases. A multi-perspective technique for TCP is proposed for a time constraint

environment. It considers the technical perspective, business perspective, and

performance perspective. The objective of this technique is faster fault detection with

maximum test case execution with higher failure frequency and cross-functional coverage

[65]. A quality-aware TCP (QTEP) technique is proposed considering the likely dispersal

of the faults in the code [66]. Test cases are prioritized based on the fault proneness of the

source code. The test cases covering fault-prone source code are awarded high priority.

QTEP can improve coverage-based techniques by leveraging a static bug finder, and a

fault prediction model. A technique is proposed for the prioritization of the combinatorial

tests set by using data flow techniques [67]. It provides a higher fault detection rate than

unordered test cases. The similarity and length of test cases, and number of tuples covered,

are considered for combinatorial testing.

A VB PSO based TCP algorithm is proposed for efficient random prioritization [68]. A

reinforcement learning-based TCP approach has been presented for regression testing in

a continuous integration context [69]. A comparative study is conducted on the

performance evaluation of TCP techniques using real faults and mutants [70]. To

prioritize the test cases an approach is proposed using the Firefly algorithm with a

similarity distance model and evident to produce good results in terms of APFD [35]. A

summary of the existing value-neutral TCP techniques along with their core objectives is

presented in Table 2.1. The category of each technique is taken from the source paper.

Table 2.1: Summary of TCP techniques

Year Author TCP objectives Category Ref.

2008 Heiko et al. Test case generation from the activity

diagram and do risk-based prioritization.

Risk-based
[51]

2010 Askarunisa et

al.

Prioritizes tests by using sequences of

XML messages. Effective for fault

detection for composite web services.

History-based

[71]

2011 Wang et al. Risk-based regression testing detects most

potential bugs with the minimum test

cases. Saves computational resources and

time using the Genetic Algorithm (GA).

Risk-based

[72]

2012 H. Mei et al. A static TCP approach is proposed for the

prioritization of the unit test case.

Coverage-

based
[45]

2013 Ning et al. A puzzle-based technique that improves

branch coverage by decomposing object

Coverage-

based
[48]

22

mutation and constraints solving problems

into small puzzles.

2013 Ti et al. History-based technique for better fault

detection through version awareness.

History-based
[73]

2014 Rongxin et al. Crash locating-based TCP method to

uncover crash scenarios in the application

through crash reports.

History-based

[49]

2015 Geetanjali et

al.

Clustering-based novel TCP technique for

better coverage with enhanced APFD

considering the execution time of test

cases.

Coverage-

based
[52]

2015 Harish et al. Coupling effect-based TCP technique that

considers the module coupling effect

while prioritizing tests to achieve higher

APFD.

Other

[53]

2015 Dusica et al. Multi-perspective regression TCP for

time-constraint environments for faster

fault detection with maximum test case

execution with higher failure frequency

and cross-functional coverage.

Other

[74]

2015 Jiang et al. Input-based adaptive randomized cost-

efficient TCP techniques provide a higher

APFD value than ART and GA.

Search-based

[55]

2015 Konsaard et

al.

Total coverage-based TCP using a

modified GA that improves condition

coverage and execution time.

Coverage-

based [59]

2015 Noor et al. Similarity-based risk-driven TCP

enhances the risk of a test case even if it is

not the same as a failed test case but is like

a failing test case.

History-Based

[75]

2016 Busjaeger et

al.

A framework integrates existing TCP

techniques through machine learning.

History-based
[76]

2016 Eghbali et al. A TCP approach to increase entity

coverage by using the Greedy Algorithm.

Coverage-

based
[42]

2016 Marchetto et

al.

A requirements coverage, source code

coverage, and execution time-based TCP

technique utilizing non-dominated sorting

genetic algorithm II (NSGA-II).

Coverage-

based
[43]

2016 Ansari et al. A TCP approach uses ACO Algorithm to

increase the fault detection rate and reduce

cost and time.

Other

[63]

2017 Chen et al. Adoptive random sequence-based TCP

provides early fault detection and more

effectiveness than random TCP

techniques.

Other

[55]

2017 Xiao et al. The clustering approach combines fault

prediction to enhance the effectiveness of

Other
[77]

23

TCP.

2017 Wang et al. QTEP, is a quality-aware TCP that

considers fault proneness of code and

improves existing coverage-based

techniques by utilizing static defect

prediction, and static bug-finder.

Coverage-

based

[66]

2017 Aggarwal et

al.

Combinatorial test data set prioritization

by using data flow techniques. It provides

better fault detection than unordered t-way

test cases.

Coverage-

based
[67]

2017 Marijan et al. TITAN prioritization is based on a higher

fault detection rate, failures with a high

impact on users, higher requirement

coverage, and test case execution time.

Coverage-

based
[61]

2017 Bian et al. Coverage and execution time-based TCP

technique using the ACO algorithm.

Coverage-

based
[41]

2017 Hasan et al. A dissimilarity clustering-based TCP

technique using historical data.

History-based
[44]

2018 Miranda et al. Scalable similarity-based TCP in both

black box and white box fashion.

Similarity-

based
[56]

2018 Ozturk et al. A bat-inspired algorithm-based that

considers the cost of individual test cases

and gives the best complexity percentage

of fault detection correlation.

Fault-based

[64]

2018 Abdur et al. Test cases are prioritized based on

dissimilarity among test cases.

History-based
[39]

2019 Matinnejad et

al.

A TCP technique using test coverage of

test suit, their output diversity as a

representation of fault revealing

probability implemented through Greedy

Algorithm.

Coverage-

based

[34]

2019 Khatibsyarbini

et al.

A TCP method using similarity/

dissimilarity weights and uniqueness of

test cases, test cases distance implemented

through the Firefly Algorithm.

Similarity-

based
[35]

2019 Tahvili et al. sOrTES supportive tool as TCP approach

using requirements coverage, execution

time, and the functional dependency

between test cases.

Requirements-

based
[36]

2019 Mukherjee et

al.

A technique using modified lines covered

by a test case, execution time, and the

maximum amount of time required for the

execution of a prioritized test case. GA,

ACO, Simulated Annealing, and

Knapsack Problem are used.

Coverage-

based

[37]

2019 Lu et al. An ACO-based TCP method to increase

code coverage.

Coverage-

based
[38]

24

2020 Jahan et al. A TCP technique based on system method

risk values.

Risk-based
[24]

2020 Lima et al. A Multi-Armed Bandit TCP approach for

a continuous integration environment is

proposed.

History-based

[78]

2020 Zhou et al. A distance-based TCP approach to beat

random test prioritization.

Other
[79]

2020 Mohd- et al. A model-based TCP technique to boost

fault detection.

Model-based
[80]

2020 Venugopal et

al.

A modification-aware TCP technique is

proposed.

Modification-

based
[81]

2020 WANG et al. A new TCP method for service-oriented

web applications using modification

information.

Modification-

based [82]

2021 Iqbal et al. A TCP approach for regression testing of

model transformations.

Model-based
[83]

2021 Cheng et al. A TCP approach for configuration testing. Coverage-

based
[84]

2021 Bagherzadeh

et al.

Re-enforcement learning-based TCP is

proposed for continuous integration.

Other
[69]

2022 F. S. Ahmed

et al.

VB cost-cognizant TCP for regression testing. Other
[31]

A mapping study is performed on TCP techniques in the context of continuous integration

[33]. An SLR is performed on value-based cost-cognizant TCP for regression testing [31].

2.4.2. Value-Based TCP

The VB TCP techniques deal with the severityand cost in the prioritization process [85].

The VB TCP takes the challenge of integrating value consideration into the prioritization

process. The value orientation in TCP ensures that prioritization satisfies its value

objectives. In practice, 80% of the value exists in a 20% portion of the software [3], [8].

This fact supports the need for value orientation in software testing. However, a limited

number of VB TCP techniques are available in the literature.

In this study, comprehensive literature is performed on VB TCP techniques to know the

current state of research in this domain. An enhanced taxonomy of TCP techniques has

been proposed so that value considerations can be considered in the TCP process. A

generic cost-cognizant TCP [89–91] process with its objectives and an analysis of the

25

proportional differences between value-neutral and value-based TCP techniques are also

given. This study emphasized the need for value orientation in TCP and highlighted that

a paradigm shift is required from a VN to VB TCP process. The subsequent sections of

this chapter represent the protocol and findings of the SLR. The study results yield that

there is very little work done in value-based TCP as compared to value-neutral TCP. The

study also highlighted a few open research problems and concluded that there is great

potential for further research in value-based TCP.

2.5. SLR Protocol on Value-Based TCP

This study has been undertaken as an SLR following the standard guidelines proposed by

Kitchenham and Carter [89], [90]. An SLR is a great means to know the status of research

related to a specific phenomenon or a particular domain. Hence, the goal of this SLR is,

to sum up the knowledge related to VB TCP techniques. The review protocol for this

study contains four phases, each with two steps. In the first phase, research motivation

and research questions have been described. The second phase is related to the selection

of search repositories and the search process. The third phase describes two study

selection criteria, including inclusion/exclusion criteria and quality assessment criteria.

The last phase is related to data synthesis and data extraction. An external reviewer

performed an evaluation and validation of the review protocol and provided feedback. All

the feedback suggestions are incorporated to refine and improve the overall quality of the

protocol. The review protocol is shown in Figure 2.1.

26

Figure 2.1: Review Protocol Phases

2.5.1. Motivation of SLR

Various SLRs are published on different dimensions of TCP. In [91], an SLR of TCP

approaches is performed by Khatibsyarbinni et al. Its purpose is to comprehend the

current research trends of TCP techniques. The taxonomic distribution of the TCP

approaches is presented. It covers the pros and cons of TCP approaches in terms of their

produced results. It covered the processes and artifacts involved in TCP and metrics used

for the evaluation of TCP techniques. In [92], a survey is conducted on TCP techniques

which contains a description of cost-cognizant TCP techniques. As per this study,

Malishevsky et al. have suggested the cost cognitive metric APFDc for the performance

evaluation of TCP techniques. APFDc considers varying test case costs and fault severity.

This new metric is proposed to address the limitations of the existing metric APFD. It

accounts for units of fault severity detected by units of test case cost. According to a study

[91], APFD) 51%, coverage effectiveness (CE) at 10%, APFDc at 9%, Execution Time

(ET) at 7%, and some other metrics are utilized at 23% for the performance measurement

of TCP approaches. A study presented different categories of TCP approached including

requirements-based, history-based, coverage-based, cost-aware-based, distribution-

based, model-based, human-based, probabilistic-based, and others [85].

According to a study [93], the utilization of difference performance evaluation metrics is

8% (APFDc), 8% (APSC), 6% (NAPFD), 58% (APFD), and others 2%. In [33], a

27

mapping study is performed in a continuous integration environment for test prioritization

approach. In [26], a review of GA-based TCP techniques is given. The review findings

include methodologies, algorithms, performance evaluation metrics, adequacy criteria,

dataset specifications, and validation criteria. According to this study, various metrics are

utilized including APFDc 18%, APFD 24%, Execution Time (ET) 48%, Fault Detection

33%, Expense 15%, and NAPFD 9%. According to nother the utilization of APFD is

highest, APFDc on second and then APSC is the least utilized performance metric [94].

The literature describes cost-aware/cost-cognizant as an explicit category of TCP

techniques, but there is no SLR available on it. The main used TCP evaluation metrics are

APFD and APFDc. For value-based cost-cognitive TCP techniques, the APFD metric is

not appropriate because it has two limitations a) all test cases have identical cost and b)

all faults have same severity [95]. The use of the APFD metric for performance evaluation

of value-based TCP techniques is likely to produce unreliable results. These research gaps

found in existing studies are the major motivation and inspiration that raised a need to

publish a technically informative document in the domain of VB TCP techniques. To fill

this research gap, an SLR of VB TCP techniques is performed in this study. Its purpose

is, to combine the knowledge related to VB TCP techniques and to highlight the open

research issues of this research domain.

To execute the SLR, a review protocol is developed to control the researcher's bias. It

comprises of research questions, selection of the literature sources, search process, study

selection procedure, quality assessment score, and data extraction and data synthesis. The

review is assessed and validated by an external reviewer. A few suggestions are received

and are incorporated to improve its quality. Each step of the review protocol is

comprehensively described below.

2.5.2. Research Questions

Six research questions have been articulated that are required to be answered through this

research. These questions are listed in Table 2.2. The motivation behind each research

question is also presented.

28

Table 2.2: Research Questions

RQ Question Motivation/Purpose

RQ1

Which algorithms are used in

value-based cost-cognizant TCP?

To know the state-of-the-art algorithms

used for the implementation of the value-

based TCP technique.

RQ2

Which methods (e.g., empirical

study, case study, industrial case

study, and experiment) are used

for results validation of VB TCP?

To know the common methods of results

validation for VB TCP techniques.

RQ3

What are the generic steps of the

VB TCP process and its

objectives?

To know the common procedure of VB

TCP techniques.

RQ4

What is the enhanced taxonomy of

TCP techniques considering

value?

To know the current value-based

categorization of TCP techniques in a

taxonomic form.

RQ5

Which metrics are utilized for the

performance evaluation of VB

TCP techniques?

To distinguish VB metrics from value-

neutral metrics.

RQ6

What are the open research

problems related to TCP and what

recommendations to fill the

research gaps?

To highlight the limitations of current

trends in TCP and to provide suggestions to

fill the current research gaps.

To define the goals of SLR and scope of shortlisted studies we utilized the Population,

Intervention, Comparison, Outcomes, and Context (PICOC) method [26] as mentioned

below. The purpose is to address the risk of biasedness.

Population: Literature on VB TCP.

29

Intervention: Taxonomic classification of TCP.

Comparison: Comparison among interventions to analyze current research of

different methods.

Outcomes: Recommendations for further research on value-based TCP for a

paradigm shift with evidence.

Context: An SLR combines the current body of knowledge.

2.5.3. Literature Sources Selection

The selection of the literature sources is an important step for any SLR. We choosed

prominant research databases that contains research publications related to TCP. Few

existing review also utilized the same research repositories [26], [33], [91]. Below is the

list of repositories that are utilized for this SLR.

 ACM Portal

 IEEE Explore

 Elsevier

 Springer

 Google Scholar

 Science Direct

 CiteseerX

 ISI Web of Knowledge

 IEEE Computer Society

2.5.4. Search Process

The search strings were formulated considering the research questions and study goals.

The search strings were composed of the terms “Test Case Prioritization”, “Value-Based

TCP”, “Cost-Cognizant TCP”, and “Evaluation Metrics for TCP”. The keywords used in

the search process are listed below.

• Test case prioritization

• Value-based test case prioritization

• Cost-aware test case prioritization

• Cost-cognizant test case prioritization

• Test case prioritization reviews

• Test case prioritization for regression testing

30

• Evaluation metrics for test case prioritization

According to our search strategy, the above search strings are applied to the selected

literature source databases. The literature is extracted from 2001 to August 2021. No

paper was found before 2001. A total of 365 papers were retrieved. ACM Portal returned

45 papers, IEEE Explore 52, Elsevier 55, Springer 20, Google Scholar 34, Science Direct

32, CiteseerX 32, ISI Web of Knowledge 30, and IEEE Computer Society returned 65

papers.

2.5.5. Study Selection Procedure

The study selection procedure consisted of a set of steps, presented in Figure 2.2 following

the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)

statement [96]. A proper study selection procedure is adopted to select relevant studies

and remove all irrelevant studies. Inclusion and exclusion criteria are defined to ensure

that only relevant studies are selected for the study. Inclusion and exclusion criteria are

presented in 2.3. The primary author selected primary studies. A test/retest approach has

opted to verify the selection process. The co-author (Ph. D. Research Supervisor)

performed a comparison of the results using random sampling.

Figure 2.2: PRISMA flow diagram for the search process and selection procedure

31

2.5.6. Quality Assessment Score

The appropriateness of inclusion and exclusion criteria is tested and verified as per the

guidelines of Brereton et al. [97]. The inclusion and exclusion criteria facilitate the

selection of studies to be considered for SLR and it is utilized by existing reviews of TCP

[26], [91]. The opted inclusion/exclusion criteria for this SLR are presented in Table 2.3.

 Table 2.3: Inclusion and Exclusion Criteria

Inclusion Criteria Exclusion Criteria

Papers on cost-aware/cost-cognizant TCP

techniques

Papers not related to cost-aware/ cost-

cognizant TCP techniques

Papers on value-based TCP techniques Papers with no value-orientation

Papers on evaluation metrics/measures for

cost-cognizant TCP

Papers without evaluation metrics and

empirical study

The papers that are written in the English

language only

Papers that are presented in a language

other than English

The latest revised version of the papers is

considered

Papers with duplicate revised versions

have been removed

The Quality Assessment Score (QAS) provides help to evaluate the relevance and

significance of the study [90]. A study is selected or rejected based on the QAS. For study

selection, we formulated a three-point QAS checklist following the guidelines of

Kitchenham et al. [90]. The checklist is given in Table 2.4.

32

Table 2.4: QAS Checklist

 S.

No.
QAS Question Feedback QAS

1.
Does the study propose a value-based

cost-cognizant TCP technique?

(Yes=2) (Partial=1)

(No=0)

2.
Does the study contain empirical

evaluation?

(Yes=2) (Partial=1)

(No=0)

3.
Does the study use cost-cognizant

evaluation metrics?

(Yes=2) (Partial=1)

(No=0)

Based on the defined search process, we retrieved 365 papers from the selected literature

sources. First, 170 duplicate papers were removed. On the remaining 195 papers, the title

and abstract review were performed, and 75 papers were screened out. Through a detailed

review of the full text and by applying inclusion and exclusion criteria, 14 more studies

were removed. Afterward, we performed a quality assessment and as a result, 14 more

studies were removed. Finally, 21 papers were selected for the study. The search process

and selection procedure are depicted in the PRISMA flow diagram in Figure 2.2.

2.5.7. Data Extraction and Data Synthesis

In any review protocol, the process of extracting, and synthesizing data from the selected

studies is a prominent reason that distinguishes an SLR from a traditional literature

review. In the extraction process, data is extracted from the selected studies relevant to

the SLR questions whereas the data synthesis process is the collective form of the results

derived from those studies [89]. In the data extraction process, we collected bibliographic

information (Unique ID, title, authors, year of publication, citations, paper type,

publisher), common steps in the TCP process, the algorithm used, evaluation metrics used,

the results validation method, the dataset availability, contribution, category of TCP

technique, and open research problems. To collect data from the primary studies, a data

extraction form is designed and is given in 2.6. In the data synthesis process, the extracted

data is combined and organized in such a way that it can be useful to answer the defined

research questions. Table 2.5 presents the outcome of the data synthesis process.

33

Table 2.5: Data Extraction Form

S. No. Characteristic Value

1.
Algorithm used

 TERMINATOR Algorithm

 Particle swarm optimization (PSO)

 Additional Greedy

 Sorting Algorithm

 Genetic Algorithm

 Custom algorithm

 Total Statement Coverage

 Function coverage

 PORT Algorithm

2.
Evaluation metric used

 APFDc

 APFDc

 APBIE

 APFDa

 MRP_TC

 ASFD

3.
The results validation

method used

 Empirical study

 Case study

 Industrial case study

 Experiment

4.
Dataset availability

 Yes

 No

5.
Category

 History-based

 Search-based

 Coverage-based

 Fault-based

 Requirements-based

 Risk-based

 Table 2.6 presents the data extraction results from the selected studies.

 Table 2.6: Data Extraction Results

P.ID Author
Prioritization

Algorithm Used

Evaluation

Metric

Used

Results

Validation

Dataset

Availabil

ity

Category

P1 Yu et al.

(2019), [98]

TERMINATOR

Algorithm

APFDc Empirical

study

Yes History-based

P2 Ashraf et al.

(2017), [68]

Particle swarm

optimization PSO

APFD Experiment No Search-based

P3 Miranda et al. Additional Greedy APFDc Experiment No Coverge based

34

(2017), [99]

P4 Wang et al.

(2015), [100]

Sorting Algorithm APFD Experiment No Fault-based

P5 Epitropakis et

al. (2015),

[101]

------- APFDc Empirical

study

No Coverage-

based

P6 Rauf et al.

(2015), [102]

Particle swarm

optimization PSO

APFD Experiment No Fault-based

P7 Hoq et al.

(2015), [103]

Sorting Algorithm APFDc Experiment No Fault-based

P8 Yc et al.

(2012), [86]

Genetic Algorithm APFDc Experiment No History-based

P9 Li et al.

(2013), [104]

------- APBIE Industrial

Case study

No Coverage-

based

P10 Marijan et al.

(2013), [105]

------- APFDc Industrial

Case study

No Fault-based

P11 Ashraf et al.

(2012), [17]

Particle swarm

optimization PSO

APFD Experiment No Search-based

P12 Ramler et al.

(2012), [9]

------- ------- ----- No Coverage-

based

P13 Zhang et al.

(2011), [106]

------- APFDa Case study No Fault-based

P14 Bryce et al.

(2011), [107]

Custom algorithm APFDc Empirical

study

No Coverage-

based

P15 Askarunisa et

al. (2010),

[71]

Total Statement

Coverage

APFDc Experiment No Coverage-

based

35

P16 Park et al.

(2008), [88]

------ APFDc Experiment No History-based

P17 Zhang et al.

(2007), [108]

------ MRP_TC Case Study No Requirements-

based

P18 Malishevsky

et al. (2006),

[87]

Function coverage APFDc Case study No Fault-based

P19 Srikanth et al.

(2005), [109]

PORT Algorithm ASFD Case study No Requirements-

based

P20 Srikanth et al.

(2005), [110]

------ ASFD Experiment No Requirements-

based

P21 Elbaum et al.

(2001), [111]

------ APFDc Case study No Fault-based

Table 2.7 shows the studies published on value-based TCP. It contains paper ID as P.ID,

author, the approach used, and Quality Assessment Score (QAS).

Table 2.7: Summary of studies on value-based TCP

P.

ID

Author Approach Used QAS

P1 Yu et al.

(2019), [98]

An approach TERMINATOR for the prioritization of automated

UI test cases. There is a computational overhead that recursively

updates the Support Vector Machine (SVM) model to tweak the

order of un-executed tests. Increased fault detection without the

availability of source code. Made dataset available to reproduce

results.

6

P2 Ashraf et al.

(2017), [68]

A value-based TCP technique based on six prioritization factors

using PSO to enhance the fault detection rate. An experimental

method is used to validate the results.

4

P3 Miranda et al.

(2016), [99]

A scope-aided TCP method for a better fault detection rate. 5

P4 Wang et al.

(2015), [100]

A faults-severity-based TCP method to increase fault detection

by accumulative severity detected by a test case.

5

36

P5 Epitropakis et

al. (2015),

[101]

An empirical evaluation of seven algorithms has been done on

their fault detection capability and maximizing coverage.

APFDc is used as an evaluation metric.

6

P6 Rauf et al.

(2015), [102]

A value-based TCP method using PSO algorithm to enhance the

fault detection rate. An experiment is done to prove the results.

4

P7 Hoq et al.

(2015), [103]

A dependency-cognizant TCP technique to detect more severe

faults earlier in the testing life cycle within minimum test case

execution time.

5

P8 Yc et al.

(2012), [86]

A history-based cost-cognizant TCP method by applying a GA

to produce an effective test case order. A controlled experiment

is performed to validate the results.

5

P9 Li et al.

(2013), [104]

A value-based prioritization method that lets tests be ordered by

how well the tests can decrease risk exposure. Combining this

with the tests’ relative costs aids them to be prioritized in terms

of the Return on Investment (ROI) or risk reduction leverage

(RRL). A novel metric Average Percentage of Business

Importance Earned (APBIE) is proposed for performance

evaluation.

5

P10 Marijan et al.

(2013), [105]

ROCKET a TCP approach for continuous regression testing, was

applied to an industrial case study to increase the fault detection

rate with minimum execution time.

5

P11 Ashraf et al.

(2012), [17]

A TCP algorithm that orders the system test cases based on six

different factors: customer priority, changes in the requirement,

requirement traceability, execution time, implementation

complexity, and fault impact of the requirement.

4

P12 Ramler et al.

(2012), [9]

A value-based coverage approach for requirement-based testing

to enhance business value coverage.

4

P13 Zhang et

al.(2011),

[106]

A new cost-cognizant metric is proposed for the performance

evaluation of TCP techniques.

4

P14 Bryce et al.

(2011), [107]

A cost-based combinatorial interaction coverage TCP technique

and a new metric for it are proposed. An improvement in fault

detection is evident through an empirical study.

5

P15 Askarunisa et

al. (2010), [71]

The cost and Coverage based TCP technique is proposed and

cost and coverage-based metrics are used for performance

evaluation.

5

P16 Park et al.

(2008), [88]

A VB TCP approach based on historical value to estimate fault

severity and test case cost to improve regression testing

effectiveness.

5

P17 Zhang et al.

(2007), [108]

A cost-cognizant TCP method based on varying requirements

priority and test cases cost. A new evaluation metric MRP_TC

has also been proposed.

4

P18 Malishevsky et

al. (2006), [87]

The cost-cognizant TCP method and a new metric cost-

cognizant evaluation metric APFDc consider fault severity and

test case cost in the TCP process.

6

P19 Srikanth et al.

(2005), [109]

A value-based TCP approach based on the Prioritization of

Requirements for Tests (PORT) is presented. A case study was

5

37

done to prove the results and an increase in severe fault detection

is evident.

P20 Srikanth et al.

(2005), [110]

A requirements-based TCP technique to boost the rate of

detection of severe faults.

5

P21 Elbaum et al.

(2001), [111]

A new evaluation metric that incorporates varying test cases cost

and fault severity for cost-cognizant TCP.

6

Table 2.8 shows the unique ID, title, authors, year of publication, citations, paper type,

and publisher of the studies. Some common steps in the TCP process, the algorithm used,

evaluation metrics used, the results validation method, the dataset availability,

contribution, category of TCP technique, and open research problems are also highlighted.

 Table 2.8: Data extraction results

P.ID Author Prioritization

Algorithm Used

Evaluation

Metric

Used

Results

Validation

Dataset

Availab

ility

Category

P1 Yu et al. (2019),

[98]

TERMINATOR

Algorithm

APFDc Empirical

study

Yes History-based

P2 Ashraf et al. (2017),

[68]

Particle swarm

optimization PSO

APFD Experiment No Search-based

P3 Miranda et al.

(2016), [99]

Additional Greedy APFDc Experiment No Coverage based

P4 Wang et al. (2015),

[100]

Sorting Algorithm APFD Experiment No Fault-based

P5 Epitropakis et al.

(2015), [101]

------- APFDc Empirical

study

No Coverage-based

P6 Rauf et al. (2015),

[102]

Particle swarm

optimization PSO

APFD Experiment No Fault-based

P7 Hoq et al. (2015),

[103]

Sorting Algorithm APFDc Experiment No Fault-based

P8 Yc et al. (2012),

[86]

Genetic Algorithm APFDc Experiment No History-based

P9 Li et al. (2013),

[104]

------- APBIE Industrial

Case study

No Coverage-based

P10 Marijan et al.

(2013), [105]

------- APFDc Industrial

Case study

No Fault-based

P11 Ashraf et al. (2012),

[17]

Particle swarm

optimization PSO

APFD Experiment No Search-based

P12 Ramler et al.

(2012), [9]

------- ------- ----- No Coverage-based

38

P13 Zhang et al. (2011),

[106]

------- APFDa Case study No Fault-based

P14 Bryce et al. (2011),

[107]

Custom algorithm APFDc Empirical

study

No Coverage-based

P15 Askarunisa et al.

(2010), [71]

Total Statement

Coverage

APFDc Experiment No Coverage- based

P16 Park et al. (2008),

[88]

------ APFDc Experiment No History-based

P17 Zhang et al. (2007),

[108]

------ MRP_TC Case Study No Requirements-

based

P18 Malishevsky et al.

(2006), [87]

Function coverage APFDc Case study No Fault-based

P19 Srikanth et al.

(2005), [109]

PORT Algorithm ASFD Case study No Requirements-

based

P20 Srikanth et al.

(2005), [110]

------ ASFD Experiment No Requirements-

based

P21 Elbaum et al.

(2001), [111]

------ APFDc Case study No Fault-based

2.5.8. Assessment and Findings

After a comprehensive analysis of the selected studies and synthesized data, the

assessment is performed, and the findings are concluded. In this section, all the defined

research questions have been answered.

The first paper related to value-based TCP was published in 2001 and proposed a cost-

cognizant performance evaluation metric APFDc [111]. Later, a few other authors used

this metric for the performance evaluation of their proposed TCP technique [87], [88],

[71], [107], [105], [86], [103], [101], [99], [98]. We found that only a few papers were

published in a value-based fashion that used test case cost and fault severity in the test

case prioritization process. The current trend of VB TCP techniques shows that limited

work is available in a VB approach. Therefore, more TCP studies are required in a value-

based fashion to get better and more reliable results. There is great potential for further

research to fill the gaps. The leading researchers in the domain of value-based cost-

cognizant TCP techniques are Gregg Rothermel, Sebastian Elbaum, and Alexey

Malishevsky [87], [111], [19].

39

Table 2.9: Research Trends of Value-based cost cognizant TCP techniques

P.ID Author Year Reference Publisher

P1 Yu et al. 2019 [98] Journal

P2 Ashraf et al. 2017 [68] Journal

P3 Miranda et al. 2017 [99] Journal

P4 Wang et al. 2015 [100] Journal

P5 Epitropakis et al. 2015 [101] Journal

P6 Rauf et al. 2015 [102] Journal

P7 Hoq et al. 2015 [103] Conference

P8 Yc et al. 2012 [86] Journal

P9 Li et al. 2013 [104] Journal

P10 Marijan et al. 2013 [105] Conference

P11 Ashraf et al. 2012 [17] Journal

P12 Ramler et al. 2012 [9] Journal

P13 Zhang et al. 2011 [106] Conference

P14 Bryce et al. 2011 [107] Journal

P15 Askarunisa et al. 2010 [71] Journal

P16 Park et al. 2008 [88] Conference

P17 Zhang et al. 2007 [108] Journal

P18 Malishevsky et

al.

2006 [87] Journal

P19 Srikanth et al. 2005 [109] Journal

P20 Srikanth et al. 2005 [110] Journal

P21 Elbaum et al. 2001 [111] Journal

40

2.5.8.1. Algorithms used in value-based cost-cognizant TCP (RQ1)

Different algorithms have been used in value-based cost-cognizant TCP techniques. The

algorithms include TERMINATOR Algorithm, Particle swarm optimization (PSO),

Additional Greedy, Sorting Algorithm, Genetic Algorithm, Custom algorithm, Total

Statement Coverage, Function coverage, and PORT Algorithm. Nine studies did not use

any algorithm because they sorted their test cases based on some prioritization criteria.

PSO is a dominantly used algorithm in the studies P2, P6, and P11. Figure 2.3 shows the

study distribution according to the algorithm used in the selected studies.

Figure 2.3: Distribution of studies according to the algorithm used.

2.5.8.2. Validation methods used in VB TCP (RQ2)

The literature indicates that four results validation methods have been used including,

Empirical study, Case study, Industrial case study and Experiment. Papers P1, P5, and

P14 used the empirical study method to validate their results. Empirical evaluation is

usually based on the researcher’s observations and investigation of the phenomenon.

Papers P2, P3, P4, P6, P7, P8, P11, P15, P16, and P20 used the experiment method to

compare results with the existing state-of-the-art techniques. The experiment method is

usually applied for a small project. Most of the studies are done with a small scope. Papers

P13, P17, P18, P19, and P21 used the case study method to validate their results. The case

study is usually applied to a specific case to validate the results. Papers P9 and P10 used

the industrial case study method to validate the results. Industrial case studies usually

cover real industrial projects. Paper P12 did not use any validation method. Figure 2.4

shows the distribution of selected studies according to the validation method used.

41

Figure 2.4: Distribution of studies according to results validation method used.

2.5.8.3. VB TCP process and its objectives (RQ3)

The use of standard processes and clarity of objectives are vital for the success of software

projects. In the TCP process, test cases are not eliminated or removed, rather each test

case is assigned a priority. The test cases in the test suite are sorted by their priority. Then

the testing team starts executing the test cases with the highest priority and ends when

regression time ends, or all test cases are covered. A variety of TCP techniques are

available including search-based, requirements-based, coverage-based, history-based,

fault-based, risk-based, and others [91]. This sub-section presents a TCP process that

describes few common steps involved in VB TCP techniques. These steps are reported in

different studies [17], [68], [88] and are shown in Figure 2.5.

1. Prepare the list of test cases that are required to be prioritized.

2. Define the parameters to be used for prioritization assuming that different faults may

have different severity and different test cases may have different cost.

3. Apply the formula to calculate the prioritization score for each test case.

4. Prepare test data set with prioritization score that needs to be prioritized.

5. Run the prioritization algorithm based on prioritization criteria/scores.

6. Prepare test dataset in prioritized order.

7. Execute the test cases as per the assigned priority in the above step using a value-

based cost-cognizant metric and evaluate the results. Value-based cost cognizant

42

metric is a metric in which varying severity of faults and test case costs are

considered.

8. Repeat step 3.

Figure 2.5: Common Test Case Prioritization Process

A few common objectives of VB TCP techniques given in different studies have also been

presented and are depicted in Figure 2.6.

 Early fault severity detection is the major objective of value-based TCP. Late

detection of bugs is more costly. Therefore, there is a direct relationship between

the cost with this TCP objective.

 To provide quick product maturity through critical fault detection first. Maximum

bugs are detected and fixed earlier, therefore, the product gets mature and

ultimately builds confidence to meet the deadline.

 Efficient utilization of testing resources during regression testing.

 Early business value coverage

 Saving time and budget

43

Figure 2.6: The objectives of Test Case Prioritization

2.5.8.4. An enhanced taxonomy of TCP techniques (RQ4)

RQ4 has been answered in section 3.3. Table 3.1 shows the categorization of value-based

cost-cognizant TCP techniques selected for this study, and an enhanced taxonomy of TCP

techniques has been presented in Figure 3.2.

2.5.8.5. Performance evaluation metrics used in cost-cognizant TCP (RQ5)

For the validation of any proposed technique, its performance is evaluated. Using the right

metric for the performance evaluation of TCP is imperative to get reliable and correct

results. Various metrics are there to evaluate the performance of different permutations.

Here we have described a few well-known metrics. This section describes the

performance evaluation metrics used for TCP techniques given in different studies. There

are many metrics used for the performance evaluation of TCP techniques.

The Average Percentage of Fault Detection (APFD)

APFD is a classical metric used for the performance measurement of TCP techniques and

was developed by Sebastian Elbaum et al. in 2000 [112]. It is dominantly used and popular

among researchers who worked on TCP problem. APFD is presented by equation 1.

APFD = 1 −
∑ TFi

n
i=1

mn
+ 1

2𝑛
 (1)

In this formula, m is the total number of faults detected and n is the total number of test

cases, and TFi is the place of the first test case that reveals fault Fi. This is a value-neutral

metric and is very likely to produce unsatisfactory results in cases where the severity of

faults and cost of test cases vary.

44

The Average Percentage of Fault Detection Per Cost (𝐀𝐏𝐅𝐃𝐂)

APFDc metric was proposed by the researchers to overcome the shortcomings of the

APFD metric [19]. APFDc considers varying test case costs and fault severity. This new

cost-cognizant metric was proposed in a value-based fashion. It accounts for units of fault

severity exposed by units of test case cost. The x-axis shows the total units of test case

cost instead of simply showing the percentage of test cases executed and similarly y-axis

implies the total units of fault severity instead of simply showing the percentage of faults

detected. APFDc has been presented by equation 2.

APFDC =
∑ (fi×(∑ tj−

1

2
tTFi

))n
j=TFi

m
i=1

∑ ti
n
i=1 × ∑ fi

m
i=1

 (2)

In equation 2, T is the test suite and n is the number of test cases with costs t1, t2, …, tn.

F is a set with m number of faults detected by T, and f1, f2…, fm is the severities of faults.

TFi is the first test case in a test case order that detects fault i. APFDc is also widely used

as a performance evaluation metric for TCP techniques.

The Average Percentage of Fault Detection (𝐀𝐏𝐅𝐃𝐚)

This APFDa is recommended by Zhang et al and is an improved form of APFDc [106]. It

well presents the physical details of the testing process. This metric has been presented

by equation 3.

APFDa = (1 − ∑
∑ Cj

TFi
j=1

m ∑ Cj
n
j=1

m
i=1) × 100% (3)

Here, T is the test suite of n test cases, Cj is the cost of test cases and F is the set of faults

containing m faults. TFi is the first test case that detects ith fault.

Metric Based on Varying Requirements’ Priority and Test Cases’ Cost (𝑀𝑅𝑃_𝑇𝐶)

This metric was introduced by Zhang et al. and it is based on varying requirements’

priority and test case cost [108]. It can be represented by equation 4. The value range of

𝑀𝑅𝑃_𝑇𝐶is 0 to 100% and higher value implies the better performance.

MRP_TC =
∑ (rfi × (∑ tci

n
i=TRi

−
1

2
∗tcTRi))

m

j=1

∑ rpi × ∑ tcj
n
j=1

m
j=1

 (4)

45

The Average Severity of Faults Detected (ASFD)

The ASFD metric was introduced by Hema Srikanth and Laurie Williams [110]. ASFD

value is the ratio of the sum of severities detected by a specific requirement and the Total

Severity of the Faults Detected (TSFD). It can be represented by equation 5.

ASFDi = [
∑ SVj

m
j=1

TSFD
] (5)

The Average Percentage of Business Importance Earned (APBIE)

The APBIE was introduced by Qi Li, and Barry Boehm[104]. This metric is proposed to

cover the business significance of the system under test. It can be represented by equation

6.

APBIE = ∑ PBIEi n ⁄n
i=1 (6)

Modified APFDc: A location-based TCP technique has been proposed and its

performance is evaluated by using APFD and a modified version of APFDc considering

that test case cost is identical but fault severity may vary [113]. The modified form of

APFDc is represented by the following equation 7.

APFDc = 1 −
∑ (fsi X TFi)

m

i=1

n x ∑ (fSi)m
i=1

+
1

2n
 (7)

The above-modified version of APFDc is partially cost-cognizant because it only

considers the varying severity of faults and does not consider the varying cost of the test

cases. Test cases’ cost or execution time is an important factor and is among the primary

reasons for TCP.

Average Percentage of Statement Coverage (APSC) is also a popular metric to evaluate

of performance of the TCP mechanism in the context of meeting its statement coverage

objective. This metric is designed on a similar pattern as APFD. It can be represented by

equation 8.

APSC = 1 −
TS1+TS2+TS3+⋯+TSm

n∗m
+

1

2∗n
 (8)

46

In [19], two cost-cognizant prioritization techniques have been discussed including

additional statement coverage prioritization (st-addtl) and additional function coverage

prioritization (fn-addtl). In st-addtl, the author estimated the criticality of the statement by

the severity of faults that occurred in that statement. Similarly, the criticality of a function

is estimated by the severity of faults that occurred in that function. Test cases are then

prioritized on the “statement criticality ratio cost of test case” for st-addtl prioritization.

Similarly, test cases are prioritized on the “function criticality ratio cost of the test case”

for fn-addtl prioritization. Estimating the criticality of statements, and functions through

the severity of their associated faults is not an appropriate method used in prioritization.

We believe that the term “value” is more appropriate instead of criticality. The value of

statements and the value of functions should be estimated through the business value of

the requirement with which they are associated instead of estimated through fault

severities.

2.5.8.6. Open research problems and recommendations to fill the research gaps

(RQ6)

After analysis of the existing literature on value-based TCP techniques some open

research problems are highlighted here and a few directions on how to improve the

reliability of value-based TCP techniques are also given. According to a study [114], cost-

cognizant TCP techniques are used when assumptions associated with APFD do not hold.

These assumptions are that all faults have similar severity, and all test cases have similar

costs. In practice, these assumptions seldom hold and, in this scenario, the APFD metric

does not remain appropriate to evaluate the performance of TCP techniques. Below are a

few open research questions related to the evaluation metric selection.

 How often do APFD assumptions hold?

 If the above assumptions rarely hold, then why is the APFD measure highest in

popularity in TCP research?

 Is APFDc a good alternative to APFD? If yes, then why APFDc is far behind in

comparison with APFD?

 Does the research community need a new standard measure for the performance

measurement of TCP techniques?

A limitation of the existing literature is that while using the APFD metric, the researchers

47

did not explicitly mention whether the basic assumptions of APFD hold or not. They did

not mention the reason why they selected APFD as an evaluation metric. Most of the

researchers expressed that APFD is the most popular measure which is why we are using

it. This is not a strong and valid justification for the metric selection. Therefore, the results

produced by using APFD are mostly unreliable in cases where the assumption “all faults

have equal severity and all test cases have equal cost” does not hold [111]. The selection

of performance evaluation metrics is still an open research problem. The coverage-based

techniques are related to a specific element like a statement, condition, branch, method,

or requirement. The metric used for the performance evaluation of these techniques is the

APSC, APCC, APBC, Average Percentage of Method Coverage (APMC), and APRC.

These metrics can be collectively described as the Average Percentage of Element

Coverage (APEC) [26]. These metrics are like APFD and are based on the same

assumption that all statements, conditions, branches, methods, or requirements are of the

same worth, and the test cases used to cover these certain elements have the same cost.

This is a major limitation of coverage-based techniques and their utilized metrics, and

they might not produce the intended results. We suggest that value considerations should

be considered in coverage-based techniques and traditional coverage-based metrics

should be replaced with value-based coverage metrics. Introducing value in the TCP

process can make TCP techniques more efficient and effective.

The existing coverage-based TCP techniques are not aligned with the client’s priorities.

The client may be bothered by some features and may not be with others. Some features

may involve profitability and productivity for the client business, and some may not.

There is a slogan in SE that “Client is always right” [115]. However, the client’s

perspective is missing in existing TCP techniques. Most of the existing TCP techniques

have been proposed in a value-neutral fashion and do not consider the client’s business

value expectations. Business value orientation has great potential in the TCP process.

Proposed techniques detect a huge number of faults even then releases become late

because high-severity bugs are detected late in the regression cycle. Debugging and fixing

such critical faults at the eleventh hour creates stress on development teams and fixes

become prone to further errors. Therefore, detecting critical faults early in the regression

testing life cycle is vital. The value-based TCP branch is still a gray area. There is great

potential for further research related to value orientation in all categories of TCP. Value

orientation should be considered in research methods, study contexts, prioritization

48

approaches, and performance evaluation metrics. This is a big surprise that TCP research

is continuously coming in a value-neutral fashion despite knowing the fact that all

software elements do not have equal worth. Here are a few recommendations to fill the

research gap.

VB test prioritization should be more focused. VN TCP techniques are not likely to

produce satisfactory and reliable results. Therefore, TCP remains unable to achieve its

intended goals. To fill this major research gap, further research in the domain of TCP

should be done in a value-based fashion, and performance evaluation should be done

through value-based cost-cognizant metrics. The study results show that there is a limited

application of machine learning techniques in value-based cost-cognizant TCP

techniques. Further research should try to solve the TCP problem by applying machine

learning techniques to achieve efficiency in the prioritization process. It is also evident

that the dataset used for results validation is publicly available only for one study P1. The

rest of the studies did not use the public data set for validation. Public datasets should be

used so that future researchers can conduct empirical studies to reproduce the results and

make further improvements. A limitation is reported in the recent literature that simple

statements and traditional coverage cannot guarantee 100% fault detection [26].

Coverage-based techniques are producing less optimistic outcomes. Utilizing value

coverage can overcome this limitation. According to the study, most of the work done

covers only the functional aspects of the applications [14]. Security, usability, privacy,

and performance are very important and perhaps these are not addressed in traditional

code coverage metrics. There is a need for coverage of non-functional aspects in the TCP

process as well.

2.6. Summary

The TCP is a popular approach for regression testing to meet time and budget constraints.

There are two major classes of TCP techniques 1) Value-neutral TCP techniques and 2)

Value-based TCP techniques. Both classes have many other categories like coverage-

based, history-based, and risk-based. The value-neutral TCP techniques assume that all

elements like statements, requirements, test cases, use cases, methods, and bugs are

equally important. This assumption seldom holds therefore VN TCP techniques are likely

to produce unreliable results. Due to this major limitation of the TCP process, VB TCP

49

techniques are gaining popularity. The objective of the comprehensive literature review

on existing TCP techniques is to see the current state of research in this field.

 This literature review is evident that there is very limited work on value-based test

prioritization. It is needed to realize that without value considerations in the TCP

process, its intended results cannot be achieved.

 The right metric selection for the performance evaluation of TCP techniques is

essential to get reliable results. Popularity-based metric selection is not a valid

justification, and it cannot produce reliable results. This is a big area for further

improvement. The efficiency and effectiveness of TCP approaches are strongly

dependent on the correct evaluation metric because a researcher usually targets an

improvement in a metric value while proposing a TCP technique.

This literature review yields that there is great potential in value-based cost-cognizant

TCP and future research should cover this important dimension.

50

CHAPTER 3

RESEARCH METHODOLOGY

3.1. Introduction

In software engineering, VN fashion is dominant over VB fashion. The same goes for

software testing, regression testing, and the TCP. There is limited work done in VB TCP.

The focus of this work is value-based cost cost-cognizant TCP. This chapter contains

different sections. Section 3.2 describes the research design very comprehensively with

an overview of the research methodology to achieve the above-specified goals. It has three

phases as depicted in Figure 3.1. Phase 1 is related to the literature review. An SLR is

conducted in this phase and all details are mentioned in chapter 2. As an outcome of phase

1, TCP techniques are categorized into two major categories including value-neutral TCP

and value-based TCP. These are part of phase 2 and are described as an Enhanced

Taxonomy of TCP techniques mentioned in section 3.3. In phase 2 of the research

methodology, a model is proposed to estimate the business value of requirements. The

business value is estimated based on five business success factors. This estimated value

of requirements is later utilized to estimate fault severity and test case cost. The purpose

is to incorporate business value in the TCP process. Two novel value-based TCP

techniques and two novel performance evaluation metrics have been proposed for it. The

proposed techniques have been implemented using Genetic Algorithms (GA). Phase 3

described the validation process. The proposed quantification model, TCP techniques, and

performance evaluation metrics have been validated with the help of two working

examples and two case studies. Finally, statistical analysis is performed to conclude the

results.

51

3.2. Research design

In this work, quantitative research methods are adopted to achieve the defined goals.

There are three phases of this research work. The first phase consists of comprehensive

literature on the domain under study. The first goal is achieved in this phase. The second

goal of the study is achieved in the second phase of the study. In the second phase, an

enhanced taxonomy of the TCP techniques has been proposed to segregate value-based

TCP techniques from value-neutral TCP techniques. To introduce business value in the

TCP process, a business value estimation model for requirements has been introduced. A

mechanism is introduced to estimate the fault severity and test case cost based on the

business value of requirements. The third goal was to propose value-based TCP

techniques and performance evaluation metrics. To achieve this goal, a Value Cognizant

Fault Detection Based Test Case Prioritization (VCFDB-TCP) technique and a Value

Cognizant Requirements Coverage Based TCP (VCRCB-TCP) have been proposed. is

proposed. The fourth goal was to propose novel metrics for performance evaluation of the

value-based TCP techniques. To achieve this goal a novel metric APFDv has been

introduced for the performance evaluation of VCFDB-TCP and a novel metric APRCv

has also been introduced for the performance evaluation of VCRCB-TCP. The proposed

business value estimation model, TCP techniques, and performance evaluation metrics

have been presented in this chapter.

This third phase of the study is related to the validation of the proposed business value

estimation model, proposed TCP techniques, and proposed performance evaluation

metrics. It includes statistical analysis of the case studies. It is presented in Chapter 4.

52

Figure 3.1: Overview of research methodology

3.3. An enhanced taxonomy of TCP techniques

This section presents the details about the categorization of TCP techniques given in the

different studies. According to a study, there are seven categories of TCP techniques

including search-based, coverage-based, requirements-based, fault-based, risk-based,

history-based, and others [91]. The most widely used approach is Search-based, while

other techniques used are coverage-based and fault-based. Another study presented a

53

categorization including probabilistic, cost-based, history-based, human-based,

distribution-based, coverage-based, model-based, and others [33]. Table 3.1 shows the

categorization of VB TCP techniques selected for this study.

Table 3.1: Classification of value-based cost-cognizant TCP techniques

Categories Paper ID References Year of Publication

Search-based P2, P11 [68], [17] 2017, 2012

Coverage-based P5, P9, P12, P14,

P15,

[101], [104], 65],

[107], [71]

2015, 2013, 2012,

2011, 2010,

Requirement-

based

P3, P17, P19, P20 [99], [108], [109],

[110]

2016, 2007, 2005, 2005

Fault-based P4, P6, P7, P10,

P13, P18, P21

[100], [102], [103],

[105], [106], [87],

[111]

2015, 2015, 2015,

2013, 2011, 2006, 2001

History-based P1, P8, P16 [98], [86], [88] 2019, 2012, 2008

The existing categorizations and taxonomies of TCP techniques have recognized “cost-

based” as one category among other categories. But we believe that “cost-based” or “cost-

cognition” is a value-based fashion. We must recognize cost-cognizant test prioritization

to segregate it from value-neutral TCP techniques. To address this need we proposed two

abstract classes of TCP techniques including value-neutral and value-based. For this, we

have proposed an enhanced taxonomy of TCP techniques presented in Figure 3.2. Our

enhanced taxonomy of TCP techniques is comprised of two major classes including VN

test prioritization and VB test prioritization.

54

Figure 3.2: Enhanced Taxonomy of Test Case Prioritization

3.4. Proposed Business Value Estimation Model for TCP

In this section, a model is proposed to estimate fault severities and test case costs based

on the business value of requirements for value-based TCP. The value-neutral TCP does

not consider fault severity and test case cost while prioritizing test cases and assumes that

all faults have the same severity, and all test cases have the same cost. Unlike this, the

proposed model rejected this assumption and considers varying fault severities and test

case costs in the TCP process. The following steps describe the proposed model.

 Estimating or quantifying the Business Value (BV) of software requirements

(software features as functional requirements and software quality attributes as

non-functional requirements).

 Deriving and estimating fault severities and test case costs through the business

value of requirements.

55

 Prioritizing test cases considering faults severities and test case costs in Fault-

Detection-Based TCP (FDB-TCP).

 Prioritizing test cases considering the business value of requirements and cost

of test cases in Requirements-Coverage-Based TCP (RCB-TCP).

Figure 3.3 depicts an overview of the proposed model. Initially, we collected the feature

set and quality attributes. The business value of software features is based on three factors

including Feature Client Priority (FCP), Feature Complexity (FC), and Feature Usage

(FU). The business value of quality attributes is based on Quality Attribute Client Priority

(QACP). The value of FCP and QACP is determined with the help of the business analysis

team by using five business success factors. The value of FC is determined with the help

of the application development team and the value of FU is collected from the application

database for each of the features in the feature set.

The business value of features is calculated through FCP, FC, and FU, and the business

value of quality attributes is calculated by taking the direct value of QACP. Once the

business value of requirements is calculated, the test cases and faults are mapped with

these requirements. Then the severity of faults is derived from the business value of the

features with which they are associated. Similarly, test case cost is derived from the

business value of requirements with which they are associated. For instance, if the

business value of a requirement is 4, then the business value of its associated test case will

be 4. Similarly, the severity of its associated bug will be 4.

Two types of TCP techniques are presented in this model including (FDB-TCP), and

(RCB-TCP). In (FDB-TCP), test cases are prioritized considering varying test case costs

and fault severities. In (RCB-TCP), test cases are prioritized considering varying test case

costs and requirements’ business value.

56

Feature

Business Value

calculation

using FCP, FC,

and FU

Evaluate

Features Client Priority (FCP)

QAs Client Priority (QACP)

Define

Feature Complexity (FC)

Extract

Feature Usage (FU)

DevOps

Feature set with business value

{F1, F2, F3, , Fn}

Quality attributes with

business value

{QA1, QA2, QA3, , QAn}

Functional Requirements

 Feature F1

 Feature F2

 ..

 ..

 Feature n

Non-functional Requirements

 Quality attribute QA1

 Quality attribute QA2

 ..

 ..

 Quality attribute QAn

QA Business

Value

calculation

using QACP

FDB-TCP RCB-TCP

Prioritized list of Test cases (T1, T4, T2, . Tn) Prioritized list of Test cases (T4, T1, T3, . Tn)

Figure 3.3: Proposed business value quantification model for value-based TCP

3.4.1. Business Value Factors

Knowing the business value of software requirements is imperative for various software

57

development activities. In this section, business value factors have been described.

According to Barry Boehm, the critical success factors of a business lie in the value

domains [116]. Traditionally the success of a business is related to the ROI, increased

productivity, and saving time, and cost [117]. Here is a description of important business

success factors found in the literature related to software quality.

3.4.1.1 Feature Client Priority (FCP)

The client's priority of any requirement is the most important factor while the

prioritization of software activities [118]. To calculate client priority of different features

and quality attributes, the proposed model uses five business success factors including

profitability, productivity, operational efficiency, customer satisfaction, and time to

market.

a) Profitability:

Putting more effort into improving the quality of software can lead to growth in revenue

and increased profitability [119]. Companies get a return on investment only if their

software applications satisfy customer needs and meet user expectations [120].

b) Operational Efficiency:

Operational efficiency is the level of performance for business tasks. There are multiple

factors involved in operational efficiencies like cost, time, and people involved [121]. The

users of the system expect a direct or instant response from the system when they perform

a business operation on the system [122]. If an application takes too much time to

complete the operation of the user, then it will be operationally inefficient. For instance,

a healthcare coordinator has a target to make calls to fifty patients and schedule visits with

their primary care physicians in an electronic health record (EHR) system. If the system

is not efficient enough to execute the call schedule feature, then the care coordinator will

miss the target. He/she will require more time to complete the calls and to be paid extra

against extra time spending. Operational efficiency directly affects cost and time to

perform the tasks [121].

c) Productivity

The usage of IT solutions is supposed to enhance the productivity of resources in a

business firm. The quality of software solutions directly influences the productivity of its

58

users.

d) Customer Satisfaction

Software quality has a direct impact on customer satisfaction which directly affects the

financials of any organization including its profit, and sales growth [123]. For client

satisfaction, software quality plays a vital role. The factors that have a greater influence

on client satisfaction include quality of execution, implementation, and relationship in a

software-as-a-service (SaaS) business model [124].

e) Time to Market:

Time to market is also a key business driver [120]. This factor also has a great influence

on business. But it is a little conflicting with other quality attributes. To achieve a good

time to market, other quality attributes may suffer. Time to market is also a very important

success factor. For instance, launching a new product, or service earlier can gain a bigger

market share. Time to market for such initiatives is dependent on the readiness of IT

support. Developing a product or service and developing software features for it goes

hand in hand.

We selected these factors through a comprehensive literature review. The business team

is involved in measuring how the success of the business is dependent on each feature and

quality attribute. The business analysis team involves the client and assigns the priority

value by utilizing the Delphi technique in two steps. First, a numeric value ranging from

1 to 5 is assigned to each success factor against all features and quality attributes defined

in the requirements list. Then the average value of success factors is calculated for them.

The average value of success factors against a feature is considered its client priority.

Similarly, the average value of success factors against a quality attribute is considered its

client priority.

Suppose F is a software feature, and S is a set of success factors including s1, s2, s3, …,

sn. If SVAL is the value of success factor ranges from 1 to 5 and FCP is the feature client

priority, then it can be calculated as shown in equation 9.

FCP = ∑ (SVALi)/n
i=n

i=1
 (9)

Similarly, suppose QA is a quality attribute, and S is a set of success factors including s1,

s2, s3, …, sm. If SVAL is the value of success factor ranges from 1 to 5 and QACP is the

quality attribute client priority, then it can be calculated as shown in equation 10.

59

QACP = ∑ (SVALk)/m
k=m

k=1
 (10)

3.4.1.2. Feature Complexity (FC)

The software features with higher complexity are prone to more errors and 20% of the

features result in 80% of faults [110]. Some features are developed in such a way that they

have an impact on some other features. The feature that has more impact on other features

has greater complexity. Most of the software faults detected late in the testing life cycle

are due to poor impact analysis. The comprehensive and complete impact analysis is vital

for software feature development during the requirements analysis phase. It is the main

responsibility of the business analysis team to compute feature complexities while

finalizing requirements. In our proposed method we quantify complexity as the

percentage ratio value. If we have a feature set F having n features, then suppose f is a

feature of the feature set and i is the number of features for which f has an impact. The

complexity of f is denoted by fc, and it can be computed by equation 11.

𝑓𝑐 =
𝑖

𝑛
∗ 5 (11)

According to Equation 11, the minimum value of fc can be greater than 0 and the

maximum can be less than or equal to 5. The value i cannot be 0 because the feature being

developed has its own impact too. If a feature has an impact on one other feature, then the

value of i will be considered as 2 because the feature itself is also included in the impact.

Similarly, if a feature does not have an impact on any other feature, then the value of i

will be considered as 1 because it has its own impact. In this case, if the feature itself is

not considered then the value of i will be 0, and consequently, equation 11 will return the

value of fc as 0. To address this scenario, we considered the feature itself in the value of

i because the complexity of a feature cannot be 0.

3.4.1.3. Feature Usage (FU)

The different software features have different usage frequencies. According to a study,

45% of features are never used, 19% of features are rarely used and 36% of the software

features are used regularly or most often [110]. This fact supports that the features most

often used possess greater business value. Therefore, the usage factor is also vital in

60

estimating the business value of a software feature. The usage of a different features can

be detected from the application database logs. Usually, the usage history of features is

maintained to analyze the adaptability of the systems. If we have a feature set F and the

total usage frequency of F is h then suppose f is a feature of the feature set and u is its

usage frequency. The usage value of the feature is denoted by fu, and it can be computed

by the following equation 12.

𝑓𝑢 =
𝑢

ℎ
∗ 5 (12)

According to Equation 12, the value range of fu can be greater than 0 and less than or

equal to 5. The value u cannot be 0 because every feature is used at least once. Sometimes

features are used for one time only then they become obsolete like time-specific reports.

The feature usage value can be 5 if and only if there is only a single feature in the

application. In this case, the value of u and h will be equal and equation 12 will return the

maximum value of fu which is 5.

 3.4.2. Business Value Computation

The feature business value (FBV) is represented by the formula given in Equation 13. In

this equation, FCP is feature client priority, FC is feature complexity, and FU represents

feature usage.

FBV = (
FCP

10
∗ α +

FC

10
∗ β +

FU

10
∗ γ)/10 (13)

The above formula is designed in such a way that the maximum business value of a

software feature can be up to 5 and the minimum value can be greater than 0. We need

values of 𝛼, 𝛽, and 𝛾 to operationalize equation 13. We provide them as follows. We use

the weightage of the client priority factor 𝛼 = 0.40, feature complexity 𝛽 = 0.30, and

feature usage 𝛾 = 0.30 respectively. It is pertinent to highlight that individual

organizations may adjust them according to their local requirements. Table 3.2 shows six

sample features and their business values calculated by using the equation (9), (11), (12),

and (13).

61

Table 3.2: Features list with their business value

F
eatu

re

Business Success Factors

F
eatu

re C
lien

t P
rio

rity
 (F

C
P

)

Feature

Impact

F
eatu

re C
o

m
p

lex
ity

 (F
C

)

Usage

Frequencies
F

eatu
re U

sag
e (F

U
)

Feature

Business

value

(FBV)

P
ro

fitab
ility

P
ro

d
u

ctiv
ity

O
p

eratio
n

al E
fficien

cy

C
u

sto
m

er S
atisfactio

n

T
im

e-to
-M

ark
et

T
o

tal F
eatu

res

Im
p

act V
alu

e

T
o

tal F
req

u
en

cy

F
eatu

re F
req

u
en

cy

F1 4 3 4 3 3 3.40 5 1 1.00 76 4 0.26 1.74

F2 3 2 4 3 3 3.00 5 3 3.00 76 20 1.32 2.49

F3 3 4 2 3 4 3.20 5 3 3.00 76 21 1.38 2.59

F4 5 5 5 5 4 4.80 5 4 4.00 76 2 0.13 3.16

F5 1 1 1 1 1 1.00 5 2 2.00 76 1 0.07 1.02

F6 5 5 5 5 5 5.00 5 5 5.00 76 28 1.84 4.05

The Quality Attribute Business Value (QABV) is the direct value taken from the quality

attribute client priority. Therefore, QABV can be represented by the same formula used

for QACP and is shown in equation 10.

The business value of a quality attribute ranges from 1 to 5 and it is the direct value of its

client priority. Table 3.3 shows six sample quality attributes and their business values

calculated by using Equation 10.

 Table 3.3: Quality attributes list with business value

Quality

Attribute

(QA)

Business Success Factors QA Client

Priority

(QACP)

QA Business

value

(QABV) Profitability Productivity
Operational

Efficiency

Customer

Satisfaction

Time-to-

Market

QA1 2 3 2 3 3 2.60 2.60

QA2 3 4 3 2 3 3.00 3.00

QA3 3 4 3 2 2 2.80 2.80

QA4 3 2 2 3 2 2.40 2.40

QA5 1 1 1 1 1 1.00 1.00

QA6 5 5 5 5 5 5.00 5.00

62

3.4.3. Business Value Management

The business value of software features and quality attributes can be managed in any

requirement management tool like the Microsoft Team Foundation Server (TFS) tool.

Microsoft TFS is a powerful tool used in the software industry. Software professionals

use it for the management of software requirements, code, test cases, bugs, and other

related artifacts. It provides full support to the software development life cycle and

software testing life cycle. Since it is a flexible tool, therefore, it can be utilized to manage

the business value of individual software features and quality attributes. Figure 3.4 shows

its management. The “Business Value” attribute of a specific feature is highlighted in the

rectangular box.

Figure 3.4: Business value management in TFS

3.4.4. Estimating Fault Severities

There are different techniques available in the literature to automatically assign a severity

value to a newly filed bug/fault in the bug reporting system [125], [126], [127]. Assigning

severity to a fault is a very subjective process and different testers are likely to assign

different severity to the same bug [128]. This makes bug reports unreliable while

prioritizing the bugs for their resolution. To deal with this situation, the following factors

are recommended to estimate fault severities.

i) The business value of the associated feature

ii) Tester’s expertise

63

The severity of a fault is closely dependent on the business value of the software feature

with which it is associated. Therefore, it is proposed here that the software tester should

define the severity of a fault based on the business value of the feature to which it belongs.

There are some cases where faults have a minor impact like graphical user interface faults

or some other non-functional faults like spell mistakes. In that case, the tester should use

his/her expertise and common sense to define the severity of faults. Fault severity should

be defined by using feature business value in conjunction with the tester’s expertise

following common guidelines. It is proposed here that units of severity should be mapped

with units of business value. Suppose there is a feature “Generate an automatic email for

customer on successful order submission”. If an email is not generated or this feature is

not working as intended, then the tester should file a fault in the bug reporting system by

defining its severity equivalent to the business value units of its associated feature. For

instance, if a feature is not achieving its objectives or it is not working as intended and its

business value is 6 then the tester should file a bug of severity 6. In case, the feature is

working and there are minor issues in it then the tester should use his/her expertise or

general guidelines to define the bug severity. The maximum severity of a fault can be 10

and the minimum can be 1.

3.4.5. Estimating Test Cases Cost

For cost-cognizant TCP, the cost of test cases can be estimated from their previous

executions of the test suite [19]. Execution time is usually reported in test script outputs

and this historical data can be referred to estimate the regression test case costs [129]. It

is proposed here that the cost of a test case can be estimated from the business value of

the features it covers. For instance, if a test case t covers requirements r1, and r2 having

business values 5 and 7 respectively then the test case cost will be 12 twelve units of time.

It is assumed that a test case requires 1 unit of time to cover 1 unit of the requirement’s

business value. Similarly, if a test case detects two faults f1 and f2 having severity values

of 5, and 8 respectively then the test case cost will be 13 units of time. If t is a test case in

test suite T and n is the number of requirements it covers and bv is the business value of

a requirement i then the test case’s cost tc can be calculated by equation 14.

tc = ∑ bvi
n
i=1 (14)

64

Similarly, if t is a test case in test suite T and n is the number of faults it detects, and s is

the severity of a fault m then the test case’s cost tc can be calculated by using equation

15.

tc = ∑ si
n
m=1 (15)

3.5. Incorporating Value in TCP Process

In the value-neutral software engineering fashion, all software artifacts have the same

worth. Similarly, in value-neutral TCP, all bugs have the same cost, and all test cases have

equal costs. In requirements-based TCP all requirements are treated as equally important.

But these assumptions rarely hold in practice. Unlike value-neutral fashion, in value-

based fashion, different software artifacts have different worth like every software feature,

and software quality attributes can have a different business value. The proposed method

supports the value-based TCP process for regression testing.

3.5.1. Incorporating Value in Fault-Based TCP Process

In the value context, the test cases having greater business value will get higher priority

and will come earlier in the prioritization order. The business value of a test case is defined

as the ratio of total fault severity detected by the test case and the cost of that test case. In

value-based TCP, Test Case Business Value (TCBV) serves as prioritization criteria or

adequacy criteria. Suppose T is a test suite having test cases t1, t2, t3, …, tn with already

calculated cost C1, C2, C3, …, Cn respectively, and F is the fault set having faults f1, f2,

f3, … fm. Each fault has already defined severity values like S1, S2, S3, …, Sm

respectively. Let TC-F be the test case vs fault detection traceability matrix. Let K be the

list of faults detected by a specific test case that is not already detected by any other test

case. If SK is the severity of any fault in K and C is the cost of a test case, then the Test

Case Business Value (TCBV) can be calculated by using Equation 16.

TCBV =
∑ SKi

n
i=1

C
 (16)

Suppose a test case T has cost 2 and it detects two faults F1 and F2 having severities 3,

and 1 respectively, then the business value of T can be defined by putting the values in

equation (16) and the resultant value of TCBV will be 2.

65

In the business value calculation of a test case, the severity of only those faults will be

considered that are not already detected by any other test case. In Table 3.4, the fault

detection scores of test cases T1, T2, and T3 are equal because each test case detects 2

faults. Therefore, all test cases have the same business value.

Table 3.4: Fault severity detection of test cases

 Faults & severity

Test Cases & cost

F1 F2 F3

Severity = 4 Severity = 2 Severity = 5

T1 (cost = 2) √ √

T2 (cost = 2) √ √

T3 (cost = 3) √ √

But when the business value of test cases is considered in the prioritization process, each

test case will get a different priority. The business value of test cases presented in 8 is

computed and depicted in Table 3.5. The sum of severities of faults detected by test case

T1 is 6 because it detects faults F1 and F2 having severities of 4 and 2 respectively, and

the cost of T1 is 2, therefore the business value of T1 is 3. The sum of severities of faults

detected by test case T2 is 5 because it detects faults F2 and F3 having severities 2 and 5

respectively. In this case, the severity of fault F2 is not added to the sum because it is

already detected by test case T1. The cost of test case T2 is 2 so the business value of T2

is calculated as 2.5. The sum of the severities of faults detected by test case T3 is 0 because

the faults detected by T3 are already detected by T1 and T2. The cost of T3 is 3 and its

business value is computed as 0.

Table 3.5: Test cases with business value

Test Case
𝑆𝐾1 + 𝑆𝐾2 + 𝑆𝐾3 + ⋯ + 𝑆𝐾𝑛

𝐶
 TCBV

T1
4 + 2

2
 3

T2
5

2
 2.5

T3
0

3
 0

66

Now the prioritized order of given test cases will be (T1, T2, and T3) because T1 has a

higher business value than T2 and T3, and similarly, T2 has a higher business value than

T3. In value-neutral TCP, all three cases have the same priority but when the value is

considered, all three test cases get different priorities. Hence the business value makes the

difference.

3.5.2. Incorporating Value in Requirements Coverage-Based TCP)

In the proposed requirements coverage-based TCP, the test cases are prioritized based on

their business value. The test cases having greater business value will get higher priority

and will come earlier in the prioritization order. The business value of a test case is defined

as the ratio of the total business value of requirements covered by the test case and the

cost of that test case.

In value-based TCP, Test Case Business Value (TCBV) serves as prioritization criteria or

adequacy criteria. Suppose T is a test suite having test cases t1, t2, t3, …, tn with already

calculated cost C1, C2, C3, …, Cn respectively, and R is the requirements set having

requirements r1, r2, r3, … rm. Each requirement has already calculated business values

V1, V2, V3, …, Vm respectively. Let TC-R be the test case vs requirement coverage

traceability matrix. Let K be the list of requirements/features covered by a specific test

case that is not already covered by any other test case. If BVK is the business value of

any requirement in K and C is the cost of a test case, then TCBV can be calculated by

using equation 17.

TCBV =
∑ BVKi

n
i=1

C
 (17)

Suppose a test case T has cost 2 and it covers two requirements R1 and R2 having business

values of 5, and 4.49 respectively, then the business value of T can be calculated by

putting the values in equation 17. The resultant value of TCBV is 4.745.

In the business value calculation of a test case, the business value of only those

requirements will be considered that are not already covered by any other test case. In

Table 3.6, the business value coverage of test cases T1, T2, and T3 are equal because each

test case covers 2 requirements. Therefore, all test cases have the same priority.

67

 Table 3.6: Business value coverage of test cases

 Requirements &

 business value

 Test cases & cost

R1 R2 R3

Business Value = 5.00 Business Value = 4.49 Business = 4.61

T1 (cost = 2) √ √

T2 (cost = 1) √ √

T3 (cost = 3) √ √

When the business value of test cases is considered in the prioritization process, each test

case will get a different priority. The business value of test cases presented in 10 is

computed and depicted in Table 3.7. The sum of business values of requirements covered

by test case T1 is 9.49 because it covers requirements R1 and R2 having business values

of 5 and 4.49 respectively, and the cost of T1 is 2, therefore the business value of T1 is

4.745. The sum of business values of requirements covered by test case T2 is 4.61 because

it covers faults R2 and R3 having business values of 4.49 and 4.61 respectively, but the

business value of requirement R2 is not added to the sum because it is already covered by

test case T1. The cost of test case T2 is 1 so the business value of T2 is calculated as 4.61.

The sum of business values of requirements covered by test case T3 is 0 because the

requirements covered by T3 are already covered by T1 and T2. The cost of T3 is 3 and its

business value is computed as 0.

 Table 3.7: Test cases with business value

Test Case
𝐵𝑉𝐾1 + 𝐵𝑉𝐾2 + 𝐵𝑉𝐾3 + ⋯ + 𝐵𝑉𝐾𝑛

𝐶
 TCBV

T1
5 + 4.49

2
 4.745

T2
4.61

1
 4.61

T3
0

3
 0

Hence the best order of test cases will be T1, T2, and T3. In value-neutral TCP, test cases

T1, T2, and T3 have equal priority but in value-based TCP, all three test cases have

different priorities. Hence business value makes the difference.

68

3.5.3. Proposed Value-Based TCP and Evaluation Metrics

The previous section outlines how business value can be incorporated into the TCP

process. In this section, two value-cognizant TCP approaches are proposed including

Value-Cognizant Faults Detection-Based Test Case Prioritization (VCFDB-TCP) and

Value-Cognizant Requirements Coverage-Based Test Case Prioritization (VCRCB-

TCP). For performance evaluation of the proposed techniques, two value-cognizant

metrics are proposed in this section including the APFDv, and the APRCv. In a value-

based context, it is imperative to know that different test cases can have different

execution times. Similarly, each requirement, statement, function, loop, or condition may

have a different value from another requirement, statement, function, loop, or condition,

respectively. The proposed TCP techniques are presented in this value-based context. The

proposed techniques and performance metrics are published in [135].

As per Pareto Analysis, it is widely believed that 80 percent of faults lie in 20 percent of

the modules or code [130]. Pareto Analysis is a technique to find out the parts of the

software that contain more bugs or possess more business value. This analysis indicates

that fewer factors are responsible for most of the bugs and generate most of the business

value. A TCP technique should target most value-covering test cases first. The idea behind

this is to cover those parts of the application that possess greater business value to achieve

the set performance goal. Therefore, we are focusing on those test cases first which cover

most of the business value. We are not applying Pareto distribution, but our approach is

similar to it in the context of the outcome.

3.5.3.1. Value-Cognizant Fault Detection-Based TCP (VCFDB-TCP)

a) Description

In this technique, test cases are prioritized based on their value of Severity Detection

Score (SDS). The measure “SDS” for a test case is the fault severity detection per

execution time of a test case. The proposed VCFDB-TCP is depicted in Figure 3.5.

69

Prioritization

Algorithm

DevOps

Test cases with

execution time

Faults with

severities

Fault Detection

Information

Prioritized list

of test cases

Figure 3.5: Overview of value-based TCP

The formula for the severity detection score can be represented by equation 18.

Severity detection score = Sum of fault severity detected

Test case execution time
 (18)

For a test case, the total fault severity detection is the sum of the severity of faults detected

that are not already detected by any other test case. In equation 18, if the sum of fault

severities detected is S, and the test case execution time or cost is C then for the test cases

presented in Table 3.8, the measure SDS is presented in Table 3.9.

70

 Table 3.8: Test cases with cost VS

faults with severity

 Table 3.9: Test cases fault severity

detection score

Test case A detects faults F1 and F3 having severities 2 and 4 respectively and the

execution time of A is 3. Dividing total severity 6 by cost 3 results in 2. Test case B detects

fault F2 having severity 1 and execution time of B is 1. Dividing severity 1 by cost 1

results in 1. Test case C detects faults F1 and F4 but fault F1 is already detected by test

case A, so we consider only the severity of fault F4. The severity of fault F4 is 3 and the

cost of test case C is 2. Dividing severity 3 by cost 2 results in 1.5. Now test cases can be

prioritized by the greatest to least severity detection score value. According to severity

detection score criteria A, C, B is the best order of execution. Table 3.10 shows the

performance results of different orders of test cases in the test case suite evaluated in terms

of APFDv. The value of APFDv is calculated by using the formula given in Equation 19.

Table 3.10: Performance in terms of APFDv

Test cases

with cost

Faults with severities

F1= 2 F2= 1 F3= 4 F4= 3

A= 3 x x

B= 1 X

C= 2 x x

Test case S/C SDS

A 6/3 2

B 1/1 1

C 3/2 1.5

Test case order APFDv

B, A, C 92.00%

B, C, A 91.00%

C, B, A 92.00%

C, A, B 94.00%

A, B, C 94.00%

A, C, B 95.00%

71

b) Average Percentage of Fault Detection per Value (APFDv)

In this thesis, a new metric APFDv is proposed. This metric provides the measure of the

average percentage detection of fault severity ratio test case execution time for a given

order of test cases in a test suite. For test case execution the term test case cost is used.

The metric formula is given in Equation 19.

APFDv = 1 −
∑ (TFi ×

Si
Ci

)
n

i=1

∑ (Ci)n
i=1 × ∑ (Si)m

j=1

+
1

2×∑ ci
n
i=1

 (19)

In this equation, TFi is the order of the first test case that detects fault Fi, Si is the severity

of fault Fi, and Ci is the cost of the test case. The metric APFDv accommodates varying

test case costs and fault severity. It is also applicable when test case cost and fault

severities are the same.

The metric APFDv is supposed to evaluate the performance of different prioritization

orders. It is not supposed to estimate fault severities and test case costs. It works when

fault severities and test case costs are already known. If severity and cost values are not

known, it still works by considering that each test case has a cost of 1 and each fault has

a severity of 1. It deals with cost and severity as equal units.

This formula for APFDv is derived from the classical formula of APFD proposed by

Sebastian Elbaum et al. in 2000 [112]. The mathematical base of APFDv is the same as

that of APFD. The metric APFD uses bug count, test cases count, and order of test cases

as parameters. Whereas APFDv uses two additional parameters including test case cost

and fault severity. The minimum value of APFD can be 0 and the maximum can be 1. The

metric APFDv is established on the same mathematical base. Its minimum value can be 0

and the maximum can be 1. To prove its generalization, we performed more than a

hundred trials. APFD is based on the frequency of faults and treats all faults at an equal

level whereas APFDv is based on severity detection per cost consumption considering

critical faults more important than other faults.

To understand the working of the proposed metric, consider the example given in Table

3.11 containing test cases with cost vs faults with a severity which is depicted in Figure

3.6. We calculate the APFDv value for the orders T5, T2, T1, T4, and T3.

72

Table 3.11: Test cases with cost and fault with severity

Test cases with cost

Faults with severity

F1= 2 F2= 4 F3= 1 F4= 3

T1= 4 X

T2= 1 x

T3= 2 x

T4= 1 x

T5= 3 X x

Figure 3.6: Cost vs Severity

APFDv = 1 −
3 × 2

4
 + 4 × 4

1
 + 2 × 1

1
 +1 × 3

3

(4 + 1 + 2 + 1 + 3) × (2 + 4 + 1 + 3)
+

1

2 × (4 + 1 + 2 + 1 + 3)

 APFDv = 0.86

In percentage, the resultant value of APFDv is 86.00%. The minimum value of APFDv

can be 0 and the maximum can be 1.

Now we consider four different cases to understand the working of the proposed metric.

Table 3.12 shows case A where all test cases have the identical cost and all faults have

same severity. Table 3.13 shows case B where all test cases have the identical cost, but

fault severity varies. In this case, fault F2 has severity 2, and all other faults have severity

1. Table 3.14 presents case C where all faults have the same severity, but test case cost

varies. In this case, test case T2 cost 2, and all other test cases cost 1. Table 3.15 presents

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%P
er

ce
n

ta
g
e

to
ta

l
fa

u
lt

 s
ev

er
it

y

d
et

ec
te

d

Percentage total test case cost consumed

Test case order T5, T2, T1, T4, T3

73

case D, where both test cases' cost and fault severities vary. In this case, test case T3 cost

3 and all other test cases cost 1. Similarly, fault F1 has a severity of 2, and all other faults

have a severity of 1.

Case A

Table 3.12: Same severity and same

cost

Case B

 Table 3.13: Varying severity and same

cost

For order (T1, T2, T3) APFDv= 0.50

For order (T2, T1, T3) APFDv= 0.50

For order (T1, T2, T3) APFDv= 0.50

For order (T2, T1, T3) APFDv= 0.59

In Case A, the value of APFDv is equal for both orders T1, T2, T3, and T2, T1, T3. The

exchange of T1 and T2 orders does not affect the result because they both detect 1 fault

each. In Case B, the value of APFDv for the orders T2, T1, and T3 is higher than that of

the orders T1, T2, and T3 because the detection per cost of faults severities of T2 is higher

than T1. The APFDv metric distinguished the order T2, T1, and T3 from T1, T2, and T3

and demonstrated better results for it.

Case C

Table 3.14: Varying costs and the same

severity

Case D

 Table 3.15: varying severity and

varying cost

Test cases

with cost

Faults with severities

F1= 1 F2=1 F3=1

T1=1 X

T2=2 x

T3=1 X

For order (T1, T2, T3) APFDv= 0.71

For order (T2, T1, T3) APFDv= 0.67

Test cases

with cost

Faults with severities

F1= 2 F2=1 F3=1

T1=1 x

T2=1 x

T3=3 X

For order (T1, T2, T3) APFDv= 0.80

For order (T3, T2, T1) APFDv= 0.73

Test cases

with cost

Faults with severities

F1= 1 F2=1 F3=1

T1=1 X

T2=1 x

T3=1 X

Test cases

with cost

Faults with severities

F1= 2 F2=1 F3=1

T1=1 x

T2=1 x

T3=1 X

74

In case C presented in Table 3.14, the value of APFDv for order T1, T2, T3 is higher than

that of order T2, T1, T3 because the detection per cost of faults severities of T1 is higher

than T2. The APFDv metric distinguished the order T1, T2, T3 from T2, T1, T3 and

demonstrated better results for it. In case D presented in Table 3.15, the value of APFDv

for order T1, T2, T3 is higher than that of order T3, T2, and T1 because the detection per

cost of faults severities of T1 is higher than T3. The APFDv metric distinguished the order

T1, T2, T3 from T3, T2, T1 and demonstrated better results for it.

c) Implementation Using GA

Let us start with a few definitions in the context of value-based TCP using GA. GA is a

subclass of evolutionary computation algorithms and is a form of metaheuristic search

based on Darwin’s theory of guiding search by considering “survival of fittest” [47]. In

evolutionary search-based problems like TCP, the application of GA is effective [131].

Other approaches like the greedy algorithm produce suboptimal results since they are

based on the “next best” philosophy. The additional greedy, 2-optimal algorithm and hill

climbing are three other algorithms.

Gene: A test case available in the test suite to be prioritized is a gene.

Chromosome: A single order or permutation of test cases is identified as a chromosome.

Population: A collection of all test cases in the test suite is identified as population.

Parents: Two permutations that are combined to create a new permutation.

Mating pool: A collection of parents that are utilized to create the next generation of

permutations.

Fitness Function: A function that tells how much closer the permutation result is to the

ideal result.

Mutation: A method to generate a new permutation by randomly swapping the position

of two test cases.

The proposed GA works in the following steps:

1. Create the population

2. Calculate fitness

3. Crossover

4. Mutate

75

5. Repeat

Input: Test cases suite T= (t1, t2, t3, ..., tn)

 Execution cost of test cases (c1, c2, c3, ..., cn)

 The severity of faults (f1, f2, f3, ..., fm)

 Test cases vs fault coverage matrix

 The performance goal is maximizing APFDv

Result: Permutation of test cases with maximum APFDv

Genetic Algorithm

Genetic Algorithm

Input: Test cases suite T= (t1, t2, t3, ..., tn)

 Execution cost of test cases (c1, c2, c3, ..., cn)

 Severity of faults (f1, f2, f3, ..., fm)

 Test cases vs fault coverage matrix coverage

 Performance goal is maximizing APFDv

Result: Permutation of test cases with maximum APFDv

1 Begin

 /*Initialization*/

2 Read test cases vs fault coverage matrix from the sheet in coverage

3 Calculate total severity of 'm' faults TotSev

4 Calculate the total cost of 'n' test cases TotCost

5 Record test case order in TestOrder

6 Read termination criteria from the user in Iterations

7 while (not Termination condition) do

8 begin

9 Generate n random permutations in the iteration

10 Evaluate fitness function against each permutation

11 Assign the best APFDv value to fitmax1 and assign its permutation to parent A

12 Assign the second-best APFDv value to fitmax2 and assign permutation to

parent B

13 Update BestAPFDv and its permutation with fitmax1 and parent A

14 Perform order crossover on permutation with BestAPFDv

15 Perform swap mutation after crossover

16 end

17 Display permutation with BestAPFDv

18 end

Test case prioritization is a sequence-based problem where the order or position of a test

76

case in the test suite is important. The value of the fitness function calculation is dependent

on the position of a test case in the test case sequence. The details of the GA parameter

setting, its operators, and the fitness function used in the case studies reported in this thesis

are as follows.

Input Parameters:

Set of test cases in test suite T (t1, t2, t3, … tn).

Cost (execution time) of test cases in test suite T (c1, c2, c3, … cn).

The severity of faults detected by test cases in test suite T (f1, f2, f3, …, fn).

Test cases vs fault coverage matrix.

Population:

The collection of possible permutations (solutions) of the given test suite in the search

space is called population.

Encoding:

TCP is a sequence problem therefore order chromosomes are used instead of binary

encoding.

Chromosome:

For a given test suite with n test cases, a chromosome is encoded as an array of test case

elements.

Gene:

A test case element in a chromosome is called a gene.

Order:

The position of a test case (Gene) in the array of test cases (Chromosome) is called order.

Selection:

Selection is dependent on the fitness value calculation of individual test cases.

Fitness Calculation:

The fitness of a test case is calculated as the total fault severity detected by a test case that

is not already detected by any other test case divided by the cost of that test case. It is

represented by equation 20.

77

fitness(t) =
total fault severity detected

total cost
 (20)

Fitness Function

The performance goal of the proposed technique is to maximize the value of the APFDv.

Therefore, APFDv is the fitness function for the proposed technique implemented through

GA and is represented by equation 19.

Termination criteria:

The termination criteria are the number of iterations and are taken as user input while

executing the genetic algorithm.

GA Workflow

Evaluation:

In each iteration n number of random solutions/permutations are generated and for each

solution, the fitness function is evaluated. In each iteration, the permutation with the

maximum fitness function value is assigned to parent A and the permutation with the

second maximum fitness function value is assigned to parent B. An array is defined to

store the permutation with the best APFDv value. At the end of each iteration, if the best

permutation APFDv value is less than the APFDv value of maximum fitness function

value then the permutation with maximum APFDv value is assigned to the best

permutation with Best APFDv.

Crossover

At the end of each iteration, two solutions are selected as parent A and parent B with

maximum fitness function value and second maximum fitness function value,

respectively. Parent A is selected as a suitable chromosome to create a new generation of

chromosomes. An order crossover is performed to generate a new chromosome. An order

crossover is performed at the middle position. The first half of genes are shifted to the

second half and the second half of genes are shifted to the first half. We followed the order

crossover of genes within a chromosome and this style was adopted by Antoniol et al

[132].

Mutation:

The mutation operator is used to swap the position of two genes within a chromosome.

This process is known as swap mutation. The order crossover and swap mutation process

78

are depicted in Figure 3.7.

T1 T4 T2 T3

T2 T3 T1 T4

T2 T3 T1 T4

T2 T1 T3 T4

Order Crossover Swap Mutation

Figure 3.7: Crossover and mutation process

d) Flowchart of Value-Based TCP Implementation using GA

The flowchart of value-based TCP using a genetic algorithm is depicted in Figure 3.8.

79

Begin

Test suite T with n test cases (t1, t2, t3, tn).
Cost (execution time) of test cases in test suite T (c1, c2, c3, cn).
Severity of faults detected by test cases in test suite T (f1, f2, f3, , fn).
Test cases vs fault coverage matrix.

Not Termination
 condition

Generate n random
solutions

Evaluate fitness function
for each solution

Assign permutation with maximum APFDv to parent A
Assign permutation with second maximum APFDv to parent B
Update permutation with best APFDv

Perform mutation

Perform crossover on
parent A

Return permutation
with best APFDv

Stop

Yes

No

Figure 3.8: Flowchart of value-based TCP using GA

The time complexity of the proposed solution using GA depends upon the number of

iterations performed and the computational cost of evaluating the fitness function for each

permutation in a population.

3.5.3.2. Value-Cognizant Requirements Coverage-Based TCP (VCRCB-

TCP)

a) Description

In this technique, test cases are prioritized based on their business value coverage. The

measure of “Business value coverage” for a test case is the ratio of requirements for

business value coverage per execution time of a test case. The value-cognizant

requirements coverage-based TCP is depicted in Figure 3.9.

80

Prioritization

Algorithm

DevOps

Test cases with

execution time

Requirements with

business value

Coverage

Information

Prioritized list

of test cases

Figure 3.9: Value-cognizant requirements coverage-based TCP

The formula for business value coverage can be represented by equation 21.

Business value coverage = Business value covered

Test case execution time
 (21)

The requirements total business value coverage of a test case is the sum of the covered

business value of requirements by the test case that is not already covered by any other

test case. In equation 21, if the business value covered is V, and the test case execution

time is C then for the test cases presented in Table 3.16, the Business Value Coverage

(BVC) is presented in Table 3.17.

Table 3.16: Test cases vs requirements

Test case V/C BVC

T1 4/3 1.33

T2 3/1 3

T3 0/2 0

81

Table 3.17: Test cases business value coverage

The test case T1 covers R3 which has a business value of 4 and the execution time of T1

is 3. Diving 4 by 3 results in 1.33 so the BVC of T1 is 1.33. The test case T2 covers R1

and R2 having business values 2 and 1, respectively. The total business value covered by

T2 is 3 and its cost is 1 so its BVC is 3. The test case T3 covers R1 but it is already covered

by T2 therefore BVC of T3 is 0. Now test cases can be prioritized by greatest to least

business value coverage. According to coverage score criteria, T2, T1, T3 is the best order

of execution. Table 3.18 shows the performance results of different orders of test cases

in the test case suite in terms of the APRCv. The value of APRCv is calculated by using

the formula given in Equation 22.

 Table 3.18: Performance of test orders in terms of APRCv

Test case order APRCv

T2, T1, T3 94.00%

T2, T3, T1 91.00%

T3, T2, T1 84.00%

T3, T1, T2 80.00%

T1, T2, T3 90.00%

T1, T3, T2 83.00%

B) Average Percentage of Requirement Coverage (APRCv)

In this thesis, we propose a new metric APRCv. It is a value-cognizant metric that provides

the measure of the average percentage of business value coverage of requirements per

cost of test cases for a given order of test cases in a test suite. The metric formula is given

in the following equation 22.

Test cases with cost Requirements with business value

R1= 2 R2= 1 R3= 4

T1= 3 X

T2= 1 x X

T3= 2 x

82

APRCv = 1 −
∑ (TRi×

Ri
Ci

)
n

i=1

∑ (Ci) ×n
i=1 ∑ (Ri)m

j=1

+
1

2 × ∑ ci
n
i=1

 (22)

In the above formula, TRi is the order of the first test case that covers requirement i, Ri is

the business value of requirement i, and Ci is the cost of the test case. The expanded form

of equation 22 is given in equation 23.

APRCv = 1 −
TR1×

R1
C1

 +TR2×
R2
C2

 +TR3 ×
R3
C3

 +…+TRn × Rn
Cn

∑ (Ci) ×n
i=1 ∑ (Ri)m

j=1

+
1

2 × ∑ (ci)n
i=1

 (23)

The metric APRCv is supposed to evaluate the performance of different test case orders

for the requirements coverage-based TCP technique. It assumes that the business value of

requirements is already known. According to the test case set and requirements set

presented in Table 3.18, the value of APRCv for the test case order T2, T1, T3 is 94.00%

which is the best order.

While proposing performance metrics APFDv and APRCv, we performed more than 100

trials to generalize the derived equations. This process ensured that the minimum value

of APFDv can be 0 and the maximum value can be 1. Similarly, the minimum value of

APRCv can be 0 and the maximum can be 1.

83

CHAPTER 4

DATA ANALYSIS / RESULTS / FINDINGS

4.1. Introduction

Every testing technique, approach, and methodology is proposed to add value to the

testing process. This is important to analyze and evaluate what value a new technique has

added. This chapter describes the results and discussion of two working examples to validate the

proposed business value quantification model and two case studies to validate the proposed TCP

techniques and performance evaluation metrics.

To evaluate the effectiveness of the proposed techniques, there are two performance

evaluation metrics options, one is APFDc, and the other is APFDv. We utilized the APFDv

metric for the performance evaluation of the proposed technique because it is better than

APFDc. To validate this claim we took two already published example cases. The same

already published test data have been used and the value of APFDc and APFDv is

computed for the performance evaluation of the proposed technique. Section 4.2 shows

the performance of APFDc vs APFDv.

4.2. APFDc vs APFDv

APFDc is an existing cost-cognizant metric for the performance evaluation of TCP

techniques that incorporates varying test case costs and fault severity [19]. This was

introduced to overcome the limitations of the APFD metric. APFDc is not derived from

APFD and is a little bit complex. On the other hand, APFDv is a proposed metric for the

performance evaluation of TCP techniques. APFDv is derived from the native evaluation

metric APFD. It is as simple as APFD. From the performance point of view, APFDv is

better than APFDc and it produces better results. For the performance comparison of

APFDv and APFDc, let us take two examples.

84

Example 1

Example 1 shown in Table 4.1 is reported in [19]. It contains five test cases and ten faults.

The authors assumed that test case B has cost 2 and all other test cases have cost 1.

Similarly, faults F6 and F7 have a severity of 3 and all other faults have a severity of 1.

Table 4.1: Test cases with cost vs faults with severity

Test cases

with cost

Faults with severities

F1= 1 F2= 1 F3= 1 F4= 1 F5= 1 F6= 3 F7= 3 F8= 1 F9= 1 F10= 1

A= 1 x x

B= 2 x x

C= 1 x x x x x x x

D= 1 x

E= 1 x x X

Table 4.2 shows the comparison of results of APFDc and APFDv for the test case orders

A, B, C, D, E, and B, A, C, D, E. It demonstrates that APFDv has better results than

APFDc.

 Table 4.2: Results comparison of APFDc and APFDv

Test case order APFDc APFDv

A, B, C, D, E 52.38% 70.00%

B, A, C, D, E 54.76% 72.00%

Example 2

Example 2 shown in 4.3 is reported in [133]. It contains five test cases and four faults.

The test case cost and severity of faults are shown in Table 4.3.

85

Table 4.3: Test cases with cost vs faults with severity

Test cases with cost

Faults with severities

F1= 2 F2= 1 F3= 4 F4= 3

A= 3 x x

B= 1 x

C= 2 x X

D= 1 x

E= 4 x x X

Table 4.4 shows the comparison of the results of APFDc and APFDv for the test case

orders E, D, C, B, A, and A, B, C, D, E. It demonstrates that APFDv provides better results

than APFDc.

Table 4.4: Results comparison of APFDc and APFDv

Test case order APFDc APFDv

E, D, C, B, A 75.90% 88.00%

A, B, C, D, E 75.00% 97.00%

Both Example 1 and Example 2 proved that the performance of the APFDv metric is better

than the APFDc metric. Both example datasets are taken from already published papers.

Hence APFDv is the right metric for performance evaluation of value-cognizant TCP

techniques. In this study, the APFDv metric is utilized for the performance evaluation of

proposed techniques through case studies.

86

4.3. Validation Of Proposed Business Value Quantification Model For VB-TCP

To evaluate the feasibility of the proposed model, two working examples are designed.

The proposed model is applied to a healthcare-related software system “ACO Healthcare

Solution” (ACO-HCS) developed by a US-based healthcare IT company. An ACO is an

Account Care Organization regulated by CMS (Center for Medicare and Medicaid

Services) for the management of Medicare population healthcare in the United States of

America [134]. ACO-HCS is being used by more than 40 ACOs for the healthcare

management of more than 180000 patients across the USA.

The major objective of the proposed model is to estimate fault severities and test case

costs through business value computation of software features as well as quality attributes

that serve value-based TCP processes for regression testing. First, the dataset is finalized.

The dataset contains the requirements set against which the application is required to be

tested. Then the proposed model is applied to compute the business value of requirements.

Afterward, we extracted the traceability matrix of test cases vs requirements and

requirements vs faults from the DevOps system. Test case cost and severity of faults are

derived from the business value of requirements. Once requirements business value, faults

severities, and test case costs are extracted, two coverage matrixes are developed as

refined data sets that serve to calculate the business value of test cases. These coverage

matrix datasets are presented in Table 4.5 and Table 4.7. Working Example 1 is based on

the test data presented in Table 4.5 and Working Example 2 is based on the test data

presented in Table 4.7.

4.3.1. Working Example 1

4.3.1.1. Unit of Analysis and Method

The unit of analysis for working example 1 is a software fault set of the healthcare system

ACO-HCS. The example consists of the following steps:

 A monthly data update project containing medical claims data is taken as an

example case to empirically evaluate the proposed FDC-TCP.

 Finalize a list of requirements, their associated test cases, and faults.

87

 Five business success factors are listed. The list is taken from section 2.3 of this

thesis.

 The working of the proposed model was explained to the business analysis team.

 Data is taken from the business analysis team. They applied the Delphi technique

to assign a value to five success factors against each requirement (feature/quality

attribute) of the above-mentioned system.

 As a result, a list of requirements is achieved with their computed business value.

 Requirements are managed in the DevOps system and test cases are linked with

the requirement

 Test cases with their cost and faults with their severity are extracted from DevOps

along with the coverage metrics

 The GA-based algorithm is applied to prioritize the test cases by using severity

detection as a prioritization criterion.

 Results are evaluated in terms of the APFDv

4.3.1.2. Test Data 1: Test Cases VS Faults Coverage Matrix

Test data 1 contains the list of 20 faults taken against a monthly release of a data update

project for an ACO-based patient care software application. The fault set also contains

their severities. The test case cost and their detection of faults are also presented in the

dataset. The test data is given in Table 4.5.

Table 4.5: Test data 1-test cases vs faults

 Faults &

 severity

Test Cases

& cost

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

S
 =

 3

S
 =

 4

S
=

 2

S
=

 1

S
=

 1

S
=

 2

S
=

 1

S
=

 2

S
=

 3

S
=

 5

S
=

 2

S
=

 1

S
=

 4

S
=

 2

S
=

 5

S
=

 2

S
=

 2

S
=

 3

S
=

 3

S
=

 5

T1 C= 2 x x

T2 C= 1 x

T3 C= 3 x x

T4 C= 5 x x

T5 C= 4 x X

T6 C= 2 x

88

T7 C= 1 x x

T8 C= 2 x x

T9 C= 5 x x

T10 C= 1 x

T11 C= 2 x

T12 C= 4 x x

T13 C= 3 x x

T14 C= 5 x x

4.3.1.3. Adequacy Criteria for Test Prioritization

Fault severity detection is adopted as the adequacy criteria for test case prioritization. The

test cases with higher severity detection get more priority.

4.3.1.4. Prioritization Algorithm

TCP is a permutation-based search optimization problem; therefore, a Genetic Algorithm

(GA) is utilized as a prioritization algorithm.

4.3.1.5. Evaluation Metric

APFD is the most used evaluation metric for the performance evaluation of fault

detection-based TCP techniques, but this is a value-neutral metric and cannot be used for

the performance evaluation of value-oriented fault detection-based TCP techniques.

Therefore, APFDv is adopted as an evaluation metric because it incorporates varying fault

severities and test case costs in the TCP process.

4.3.1.6. Comparison Techniques

The performance of the proposed business value-based TCP approach is compared with

four different state-of-the-art TCP approaches including Greedy Order (GO), Reverse

Order (REVO), Original Order (OO), and Random Order (RO). These four approaches

have been used for performance comparison in different studies [24] [135].

89

4.3.1.7. Results

The performance comparison results of the proposed TCP with existing approaches are

shown in Table 4.6. The results are presented in terms of APFDv and are also depicted

in Figure 4.1.

Table 4.6: Performance comparison of proposed vs existing approaches in terms of

APFDv

Evaluation

Metric

Existing TCP Approaches
Proposed

Approach

GO RO REO OO FDB-TCP

vAPFD 0.9524 0.9187 0.9214 0.9501 0.916

The results presented in Table 4.6 show that FDB-TCP has produced better results in terms

of APFDv as compared to other existing techniques. Greedy order is the second-best

approach. Random order is the least-performing approach. As per the proposed approach,

the best-prioritized order provides an APFDv value of 0.9616, and the order is as follows.

Best order:

[['T1', 1], ['T2', 4], ['T3', 10], ['T4', 12], ['T5', 11], ['T6', 3], ['T7', 5], ['T8', 7], ['T9', 13], ['T10', 14], ['

T11', 9], ['T12', 8], ['T13', 2], ['T14', 6]]

90

Figure 4.1: APFDv of proposed vs existing TCP Approaches

4.3.1.8. Discussion of Cost Consumption VS Severity Detection

Apart from the performance comparison of the proposed TCP approach with other TCP

approaches, it is observed that the test cases appearing earlier in the prioritization order

are detecting more severity of faults. This trend is depicted in Figure 4.2. In the first five

prioritized test cases, the severity detection percentage of the test is higher than their cost

consumption percentage. The test cases with a lower severity detection percentage than

the cost consumption percentage appear later in the prioritized order. This trend validates

the effectiveness of value-based FDB-TCP.

0.89
0.9

0.91
0.92
0.93
0.94
0.95
0.96
0.97

GO RO REVO OO Value-Based

A
P

FD
v

TCP Approaches

Performance Comparison

91

Figure 4.2: Test cases cost consumption vs severity detection trend

4.3.2. Working Example 2

4.3.2.1. Unit of Analysis and Method

The unit of analysis for working example 2 is a software feature set and quality attributes

set of the healthcare system ACO-HCS. The case consists of the following steps:

 A monthly data update project containing medical claims data is taken as an

example case to empirically evaluate the proposed model.

 Finalized the list of important features of the ACO-HCS system. This list contains

eight major features.

 Finalized the list of software quality attributes that are important for the specified

system. This list contains twelve quality attributes and four were the most critical

for the system.

 We combined eight features and four quality attributes resulting in a list of

fourteen requirements.

 Five business success factors are listed. The list is taken from section 2.3 of this

thesis.

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Se
ve

ri
ty

 D
e

te
ct

io
n

Test Case Execution

Test Case Cost Consumption VS Severity Detection

Cost Cosumption %age Severity Detection %age

92

 The working of the proposed model was explained to the business analysis team.

 Data is taken from the business analysis team. They applied the Delphi technique

to assign a value to five success factors against each feature, and quality attribute

of the above-mentioned system.

 As a result, a list of requirements is achieved with their computed business value.

 Requirements are managed in the DevOps system and test cases are linked with

the requirement

 A traceability matrix of test case vs requirement was prepared.

 The GA-based algorithm is applied to prioritize the test cases by using business

value coverage as prioritization criteria.

 Results are evaluated in terms of the APRCv

4.3.2.2. Test data 2: Test Cases VS Requirements Coverage Matrix

Test data 2 contains the list of 14 requirements taken against a monthly release of a data

update project for an ACO-based patient care software application. The requirements set

contains both functional requirements (features) and non-functional requirements (quality

attributes) along with their business values computed through the proposed model. The

test case cost and their coverage of requirements are also presented in the dataset. The

dataset is given in Table 4.7 and is used to calculate the business value of test cases.

93

Table 4.7: Test data 2-test cases vs requirements

4.3.2.3. Adequacy Criteria for Test Prioritization

Business value coverage is adopted as an adequacy criterion for test case prioritization.

The test cases with higher business value coverage get more priority.

4.3.2.4. Prioritization Algorithm

The prioritization algorithm is the same as utilized in the example case 1.

Requirements &
 business value

 Test Cases

 & cost

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14

B
V

=
2

B
V

=
4

B
V

=
1

B
V

=
3

B
V

=
2

B
V

=
4

B
V

=
5

B
V

=
1

B
V

=
3

B
V

=
2

B
V

=
3

B
V

=
4

B
V

=
1

B
V

=
3

T1 C= 2 x

T2 C= 1 x

T3 C= 3 x x

T4 C= 5 x

T5 C= 4 x

T6 C= 2 x

T7 C= 1 x

T8 C= 2 x x

T9 C= 5 x

T10 C= 1 x

T11 C= 2 x

T12 C= 4 x

T13 C= 3 x

T14 C= 5 x

94

4.3.2.5. Evaluation Metric

Average Percentage of Requirements Coverage (APRC) is the most used evaluation

metric for the performance evaluation of requirement coverage-based TCP techniques,

but this is a value-neutral metric and cannot be used for the performance evaluation of

value-based requirement coverage-based TCP techniques. Therefore, APRCv is adopted

as an evaluation metric because it incorporates the varying business value of requirements

and test case costs in the TCP process.

4.3.2.6. Comparison Techniques

The comparison techniques are the same as those utilized in example case 1.

4.3.2.7. Results

The performance comparison results of the proposed TCP with existing approaches are

shown in Table 4.8. The results are presented in terms of APRCv and are also depicted in

Figure 4.3.

 Table 4.8: Performance comparison of proposed vs existing approaches in terms of

APRCv

The results presented in Table 4.8 show that RCB-TCP has produced better results in

terms of APRCv as compared to other existing techniques. GO is the second-best

approach. RO is the least-performing approach. As per the proposed approach, the best-

prioritized order provides an APRCv value of 0.9671, and the order is as follows.

Best order:

[['T1', 13], ['T2', 3], ['T3', 2], ['T4', 6], ['T5', 11], ['T6', 8], ['T7', 4], ['T8', 12], ['T9', 9], ['T10', 1], ['T1

1', 5], ['T12', 14], ['T13', 10], ['T14', 7]]

Evaluation

Metric

Existing TCP Approaches
Proposed

Approach

GO RO REVO OO RCB-TCP

APRCv 0.9467 0.9270 0.9312 0.9374 0.9671

95

Figure 4.3: APRCv Comparison of proposed vs existing TCP approaches

4.3.2.8. Discussion of Cost Consumption VS Business Value Coverage

Apart from the performance comparison of the proposed RCB-TCP approach with other

TCP approaches, it is observed that the test cases appearing earlier in the prioritization

order cover more business value of requirements. This trend is shown in Figure 4.4. In

the first three prioritized test cases, the business value coverage percentage of test cases

is much higher than their cost consumption percentage. The test cases with lower business

value coverage percentages than cost consumption percentages appear later in the

prioritized order. This trend validates the effectiveness of value-based RCB-TCP.

Figure 4.4: Test cases cost consumption vs severity detection trend

It is noted that normally business guys are specialists in marketing, sales, and business

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98

GO RO REVO OO Value-Based

A
P

R
C

v

TCP Approaches

Performance Comparison

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14B
u

si
n

e
ss

 V
al

u
e

 C
o

ve
ra

ge

Test Cases Execution

Test case Cost Consumption VS Business Value Coverage

Cost Cosumption %age Business Value Coverage %age

96

growth but they do not go into the domain of IT units that are developing software to

support the businesses. Similarly, IT professionals are experts in solution findings,

algorithms, and logic building. They are not used to crossing their limits and do not go

into the business domain. This creates a huge gap in understanding business needs. The

proposed model will bridge this gap and provide insight into the business worth of IT

deliverables. When IT guys are aware of the business worth of each software feature and

quality attribute, they will better prioritize their decisions.

This model will be used by software professionals as well as software clients to finalize

their quality requirements. By utilizing it, business-critical quality attributes and software

features will be identified and addressed during the early phases of the software

development life cycle. Software regression testing is a big challenge. Due to limited time

and resources, this is not possible to re-execute all test cases. The proposed value-based

prioritization helps testing teams consume their regression testing time to execute the most

valuable test cases.

4.4. Validation of Proposed VB-TCP Techniques and Performance Metrics

This section presents two case studies designed to validate the proposed VB-TCP techniques and

their performance evaluation metrics. This section addressed RQ4.

4.4.1. Case Study 1

This section presents a case study conducted to evaluate the performance of the proposed

VCFDB-TCP technique using a proposed novel performance evaluation metric.

4.4.1.1. Context of Study

As an object of our study, two software products are selected from the healthcare domain

that is developed by a US-based Healthcare IT company. These are developed to support

the Account Care Organizations (ACO) business. An ACO is an Account Care

Organization that comprises a group of doctors, healthcare providers, and physicians who

voluntarily join to manage high-quality coordinated care of Medicare patients attributed

to them [136]. An ACO has threefold goals including better care, lowering care costs, and

97

improving patient experience [136]. We followed the guidelines provided by Per

Runeson, in [137], for performing case study research in software engineering.

The test data used for case study 1 is described in 4.9 which is related to two healthcare

products to evaluate the performance of the proposed VCFDB-TCP technique in terms of

specified performance goals. The test data is collected from the Azure DevOps system in

which the population care management projects are managed through the scrum model.

Product development is managed in the form of epics, features, requirements, and tasks.

Each release is comprised of a set of features. A feature can have many requirements. Test

cases are designed against requirements. Bugs or faults are filed against the execution of

test cases. Each fault is associated with a test case and each test case is associated with a

requirement. A complete traceability matrix is developed through a fully automated

process. Microsoft configuration management tools Azure DevOps, and Microsoft Test

Manager (MTM) are used for the automated testing life cycle. The extracted dataset

comprises test cases, faults, and fault detection information. The test cases also include

their execution time or cost, and faults include their severities. Test case execution time

is recorded by Microsoft Test Manager and fault severities are defined by test experts

using standard guidelines. The test cases and fault data are collected for the last three

releases against Product A and Product B. Product A is a healthcare management system

developed for care analytics. Its current version is V7, it has 87132 lines of code and was

developed using .Net/MVC technologies. Product B is a healthcare-related application

developed for the care management of patients. Its current version is V7, it has 97450

LOC and was developed using .Net/MVC technologies. The test data specifications are

given in Table 4.9.

Table 4.9: Test data for Product A and Product B

Product A Product B

Release
Regression Test

cases
Faults Release

Regression Test

cases
Faults

R1 102 156 R1 108 135

R2 114 188 R2 115 165

R3 123 212 R3 101 124

98

4.4.1.2. Testing Criteria, Evaluation Algorithm, and Evaluation Metric

To answer the established research question, fault detection capability is used as the

testing criteria. This fault detection capability is taken in a value-based fashion where the

severity of faults and test case cost are considered. The fault detection capability of a test

case is the ratio value of total severity detected and total cost consumed. We extracted the

test cases vs faults matrix along with test cases cost and severity of faults. Fault severity

detection is the coverage criteria to be optimized. The performance of the proposed

technique is compared with four other state-of-the-art techniques including Original

Order (OO), Reverse Order (REV-O), Random Order (RO), and Greedy algorithm. The

comparison techniques were utilized in [24] [135].

A greedy Algorithm is a search-based algorithm that is implemented to find the “next best”

[47]. The element with the highest weight is selected first followed by the second highest,

third highest, and so on. A greedy algorithm is used to solve TCP problems in many

research papers [15], [138]. Consider test cases are required to be ordered based on fault

detection rate. Using the Greedy approach, the test cases with the higher number of

detected bugs will come earlier in the test case order in a test suite. For instance, there is

a test suite having five test cases t1, t2, t3, t4, t5 and assume that t4 detects 3 bugs, t5

detects 2 bugs, t3 detects 4 bugs, t1 detects 2 bugs, and t2 detects 1 bug, then prioritized

test case order will be (t3, t4, t1, t5, t2).

The dominant metric for performance evaluation of TCP techniques is APFD but this is

not applicable for value-based TCP where test case execution time, the severity of faults,

or the business value of elements may vary. There are two value-based cost-cognizant

APFDc and APFDv for the performance evaluation of our proposed value-based TCP

technique [135]. Example case 1, and example case 2 proved that APFDv is producing

better results than APFDc. Therefore, we used APFDv as a performance evaluation metric

because the performance goal of the proposed VCFDB-TCP is to increase the average

percentage of fault severity detection per value.

4.4.1.3. Results of the Study

In this section, the results have been presented to answer the defined research question.

The results of the case study are compared in terms of APFDv for the proposed and

99

existing state-of-the-art approaches and are presented in Table 4.10 and Table 4.11.

Table 4.10: APFDv of products A releases
R

el
ea

se

R
eg

re
ss

io
n

T
es

t
ca

se
s

F
au

lt
s

APFDv Execution

Time of

Value-Based

GA

Original

order

Reverse

Order
Random Greedy

Value-Based

GA

R1 102 156 0.9313 0.9193 0.9178 0.9279 0.9408 35.1121

R2 114 188 0.9332 0.9262 0.9263 0.9275 0.9445 38.5359

R3 123 212 0.9221 0.9356 0.9313 0.9286 0.9437 48.1182

Average of All

Releases
0.9288 0.9271 0.9251 0.9280 0.9430 40.5887

The performance results of all three releases are averaged out. 4.11 indicates that the

performance results of the proposed technique is better than RO, OO, Greedy Order, and

REVO approaches in terms of APFDv against all releases of Product A. The proposed

technique outperformed state-of-the-art techniques. The performance of the RO approach

was the worst among all the techniques. The performance of OO was second best. The

results are presented in a box plot chart in Figure 4.5.

Figure 4.5: Performance results of product A releases in terms of APFDv

 Table 4.11 depicts the performance results of different releases of product B. It indicates

that the performance of the proposed technique is better than RO, OO, Greedy Order, and

100

REVO approaches in terms of APFDv against product B.

Table 4.11: APFDv of the three releases for two products B

R
el

ea
se

R
eg

re
ss

io
n

T
es

t
ca

se
s

F
au

lt
s

APFDv Execution

Time of

Value-Based

GA

Original

order

Reverse

Order
Random Greedy

Value-

Based GA

R1 101 124 0.9385 0.9339 0.9367 0.9374 0.9477 40.8578

R2 108 135 0.9456 0.9188 0.9278 0.9336 0.9502 55.6960

R3 115 165 0.9348 0.9409 0.9386 0.9423 0.9472 44.7882

Average of All

Releases
0.9397 0.9313 0.9344 0.9378 0.9484 47.1140

A pictorial representation of the results is given in the box plot chart in Figure 4.6. The

proposed technique outperformed existing state-of-the-art techniques in terms of APFDv.

OO is the second-best performer and REVO is the least performer.

Figure 4.6: Performance results of product B release in terms of APFDv

The proposed technique is the GA-based search optimization TCP technique implemented

101

using Python language. The execution of GA is based on some termination criteria. In this

study, termination criteria are based on the number of iterations. The number of iterations

is a value taken as user input. Each iteration processes five permutations and calculates

APFDv against the dataset. The execution time of the implemented technique is based on

the number of iterations. Against each release dataset, we executed it with 25, 50, 100,

200, 400, and 800 iterations and recorded its APFDv and maximum execution time. Table

4.12, and Table 4.13 shows the value of APFDv and maximum execution time for a

different number of iterations against each release. The average maximum execution time

of products A and B are 40.0237 seconds and 47.1140 seconds, respectively.

 Table 4.12: APFDv of value-based TCP using GA against different numbers of

iterations for releases of products A

R
el

e
a

se

R
eg

re
ss

io
n

T
es

t
ca

se
s

F
a

u
lt

s

APFDv of Value-Based TCP Using GA per Iterations
Maximum

Execution

Time
25

Iterations

50

Iterations

100

Iterations

200

Iterations

400

Iterations

800

Iterations

R1 102 156 0.9339 0.9359 0.9372 0.9375 0.9400 0.9407 33.4168

R2 114 188 0.9415 0.9425 0.9425 0.9436 0.9445 0.9445 38.5359

R3 123 212 0.9390 0.9415 0.9418 0.9433 0.9433 0.9437 48.1182

Average of All

Releases
0.9382 0.9399 0.9405 0.9415 0.9426 0.9430 40.0237

The APFDv value trend with the different numbers of iterations for Product A is depicted

in Figure 4.7. The graph shows that as the number of iterations increases, the APFDv value

increases gradually. The growth trend in all three releases of product A is almost

consistent.

102

Figure 4.7: APFDv trend per number of iterations for product A

 Table 4.13: APFDv of Value-based TCP using GA against different numbers of

iterations for releases of products B

R
el

e
a

se

R
eg

re
ss

io
n

T
es

t
ca

se
s

F
a

u
lt

s

APFDv of Value-Based TCP Using GA per Iterations
Maximum

Execution

Time
25

Iterations

50

Iterations

100

Iterations

200

Iterations

400

Iterations

800

Iterations

R1 101 124 0.9437 0.9435 0.9464 0.9466 0.9467 0.9476 40.8578

R2 108 135 0.9445 0.9440 0.9480 0.9454 0.9493 0.9501 55.6959

R3 115 165 0.9442 0.9438 0.9450 0.9464 0.9461 0.9472 44.7881

Average of All

Releases 0.9442 0.9438 0.9465 0.9461 0.9474 0.9483 47.1139

Similarly, the APFDv value trend with the different numbers of iterations for Product B

is depicted in Figure 4.8. The graph shows that as the number of iterations increases, the

APFDv value increases gradually. The growth trend in releases R1 and R3 of product B

is consistent. For R2, the APFDv value declined with 200 iterations and then improved

with 400, and 800 iterations gradually.

The overall trend of increase in APFDv value with a greater number of iterations is

consistent. The different number of iterations are exercised for different releases of

0.928

0.93

0.932

0.934

0.936

0.938

0.94

0.942

0.944

0.946

25 Iterations 50 Iterations 100 Iterations 200 Iterations 400 Iterations 800 Iterations

A
P

FD
v

Number of Iterations

Product A

R1 R2 R3

103

Product A and Product B. With 800 iterations, the results are almost mature.

Figure 4.8: APFDv trend per number of iterations for product B

Tables 4.14 and 4.15 show the execution times of the different numbers of iterations

against different releases along with the maximum value of APFDv. The average

maximum APFDv values of products A and B are 0.9430 and 0.9484, respectively.

 Table 4.14: Execution time of value-based TCP using GA for different numbers of

iterations for releases of products A

R
el

ea
se

R
eg

re
ss

io
n

T
es

t
ca

se
s

 F

au
lt

s

Execution Time of Value-Based TCP Using GA per Iterations

Maximum

APFDv 25

Iterations

50

Iterations

100

Iterations

200

Iterations

400

Iterations

800

Iterations

R1 102 156 1.1180 2.2330 4.4951 9.2402 17.5999 35.1120 0.9408

R2 114 188 1.5169 2.7855 5.3598 10.4341 20.5091 38.5358 0.9445

R3 123 212 1.4989 3.8237 6.2855 14.8163 28.3415 48.1182 0.9437

Average of All

Releases 1.3780 2.9474 5.3801 11.4969 22.1501 40.5887 0.9430

Tables 4.14 and 4.15 and Figures 4.9 and 4.10 show that execution time is directly

proportional to the number of iterations.

0.94

0.942

0.944

0.946

0.948

0.95

0.952

25 Iterations 50 Iterations 100 Iterations 200 Iterations 400 Iterations 800 Iterations

A
P

FD
v

Number of Iterations

Product B

R1 R2 R3

104

Figure 4.9: Execution time trend per number of iterations for product A

Table 4.15: Execution time of value-based TCP using GA for different numbers of

iterations for releases of products B

R
el

ea
se

R
eg

re
ss

io
n

T
es

t
ca

se
s

F
au

lt
s

Execution Time of Value-Based TCP Using GA per Iterations

Maximum

APFDv 25

Iterations

50

Iterations

100

Iterations

200

Iterations

400

Iterations

800

Iterations

R1 101 124 0.9214 1.9816 4.3108 9.9952 15.7253 40.8578 0.9476

R2 108 135 0.9245 3.7579 3.9753 7.8290 14.9545 55.6959 0.9501

R3 115 165 1.1888 2.7127 10.2575 9.8386 19.5523 44.7881 0.9472

Average of All Releases 1.0116 2.8175 6.1813 9.2209 16.7440 47.1139 0.9483

0

10

20

30

40

50

60

25 Iterations 50 Iterations 100 Iterations 200 Iterations 400 Iterations 800 Iterations

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

Number of Iterations

Product A

R1 R2 R3

105

Figure 4.10: Execution time trend per number of iterations for product B

The growth trend in execution time of all three releases of product A is consistent.

Similarly, the growth trend of all releases of product B is also consistent. The execution

time for 800 iterations of product B quickly increased. The consistency in the execution

time of the algorithm makes it reliable.

4.4.1.4. Cost Consumption VS Severity Detection

The section describes the cost consumption vs severity detection trend in pictorial form.

In product A, all three releases R1, R2, and R3 show that the initial set of test cases

consumed less and detected greater severity. Later test cases consumed higher costs and

severity detection declined. This trend shows that the test cases that are likely to detect

higher fault severity are prioritized first and are depicted in Figures 4.11, 4.12, and 4.13.

In product B, all three releases R1, R2, and R3 generally show that the higher severity

ratio cost test cases are prioritized first. This trend is depicted in Figures 4.14, 4.15, and

4.16.

0

10

20

30

40

50

60

25 Iterations 50 Iterations 100 Iterations 200 Iterations 400 Iterations 800 Iterations

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

Number of Iterations

Product B

R1 R2 R3

106

Figure 4.11: Product A, release 1

Figure 4.12: Product A, release 2

Figure 4.13: Product A, release 3

Figure 4.14: Product B, release 1

Figure 4.15: Product B, release 2

Figure 4.16: Product B, release 3

0

10

20

30

40

50

1 2 3 4 5 6

Cost consumption vs
severity detection

Cost Consumption Severity Detection

0

10

20

30

40

50

1 2 3 4 5 6

Cost consumption vs
severity detection

Cost Consumption Severity Detection

0

10

20

30

40

50

1 2 3 4 5 6

Cost consumption vs
severity detection

Cost Consumption Severity Detection

0

10

20

30

40

50

1 2 3 4 5

Cost consumption vs
severity detection

Cost Consumption Severity Detection

0

10

20

30

40

50

1 2 3 4 5 6

Cost consumption vs
severity detection

Cost Consumption Severity Detection

0

10

20

30

40

1 2 3 4 5 6

Cost consumption vs
severity detection

Cost Consumption Severity Detection

107

4.4.1.5. Statistical Analysis

To statistically analyze the results of case study 1, we applied a t-test. A t-test is

an inferential statistic utilized to know if there is a significant difference between the

means of two different groups. In our case, we compared the APFDv mean value of our

proposed value-based GA with the other four techniques. The first t-test is applied to the

mean value of “Original order” and “Value-Based GA”.

Null Hypothesis (H0): APFDv value of “Original order” and “Value-Based GA” is the

same.

Alternate Hypothesis (H1): APFDv value of “Original order” and “Value-Based GA” is

different.

The mean APFDv value of the Original Order was 0.93425 and it was 0.945683 for Value-

Based GA. The level of significance “Alpha” was set as 0.05. The statical test returned a

p-value of 0.004266839. A p-value is the likelihood of finding a mean difference by

chance if indeed there is no difference in the population. If the p-value is less than the

defined significance level, then the difference between means is statistically significant.

In this statistical test the value of p is less than the value of Alpha therefore Null

hypothesis H0 is rejected. It indicated that the performance of Value-Based GA is

significantly different from Original Order.

The second t-test is applied to the mean value of “Reverse order” and “Value-Based GA”.

Null Hypothesis (H0): APFDv value of “Reverse order” and “Value-Based GA” is the

same.

Alternate Hypothesis (H1): APFDv value of “Reverse order” and “Value-Based GA” is

different.

The mean APFDv value of Revers Order was 0.929116667 and it was 0.945683 for Value-

Based GA. The level of significance “Alpha” was set as 0.05. The statical test returned a

p-value of 0.0072552. In this statistical test, the value of p is less than the value of Alpha,

therefore, Null hypothesis H0 is rejected. It indicated that the performance of Value-Based

GA is significantly different from Reverse Order.

The third t-test is applied to the mean value of “Random order” and “Value-Based GA”.

108

Null Hypothesis (H0): APFDv value of “Random order” and “Value-Based GA” is the

same.

Alternate Hypothesis (H1): APFDv value of “Random order” and “Value-Based GA” is

different.

The mean APFDv value of Random Order was 0.92975 and it was 0.945683 for Value-

Based GA. The level of significance “Alpha” was set as 0.05. The statical test returned a

p-value of 0.001406697. In this statistical test the value of p is less than the value of Alpha

therefore Null hypothesis H0 is rejected. It indicated that the performance of Value-Based

GA is significantly different from Random Order.

The fourth t-test is applied to the mean value of “Greedy order” and “Value-Based GA”.

Null Hypothesis (H0): APFDv value of “Greedy order” and “Value-Based GA” is the

same.

Alternate Hypothesis (H1): APFDv value of “Greedy order” and “Value-Based GA” is

different.

The mean APFDv value of Greedy Order was 0.932883333 and it was 0.945683 for Value-

Based GA. The level of significance “Alpha” was set as 0.05. The statical test returned a

p-value of 0.001041445. In this statistical test the value of p is less than the value of Alpha

therefore Null hypothesis H0 is rejected. It indicated that the performance of Value-Based

GA is significantly different from Greedy Order. The statistical analysis of case study one

is given in Table 4.16, 4.17, 4.18, and 4.19.

Table 4.16: Statistical Analysis of Original Order and Value-Based GA

Mean APFDv of

Original Order

Mean APFDv of

Value-Based GA

Level of

Significance ‘α’
p-value Difference

0.93425 0.945683 0.05 0.004266839 Significant

Table 4.17: Statistical Analysis of Reverse Order and Value-Based GA

Mean APFDv of

Reverse Order

Mean APFDv of

Value-Based GA

Level of

Significance ‘α’
p-value Difference

109

0.929116667 0.945683 0.05 0.0072552 Significant

Table 4.18: Statistical Analysis of Random Order and Value-Based GA

Mean APFDv of

Random Oder

Mean APFDv of

Value-Based GA

Level of

Significance ‘α’
p-value Difference

0.92975 0.945683 0.05 0.001406697 Significant

Table 4.19: Statistical Analysis of Greedy Order and Value-Based GA

Mean APFDv of

Greedy Order

Mean APFDv of

Value-Based GA

Level of

Significance ‘α’
p-value Difference

0.932883333 0.945683 0.05 0.001041445 Significant

Considering the level of significance as 0.05, the null hypothesis H0 is rejected in four t-

tests. Statistically, the performance of the proposed technique is significantly better than

the other four techniques.

4.4.2. Case Study 2

This section describes a case study conducted to evaluate the performance of proposed

VCRCB-TCP techniques using a proposed novel performance evaluation metric.

4.4.2.1. Context of Study

This section describes the context of the case study. As an object of our study, two

healthcare applications developed by a US-based software company are selected. These

applications are developed to support ACO business in the USA. The performance goal

of the proposed VCRCB-TCP is to increase the APRC in a value context. The test data

for this study is comprised of test cases set, requirements set, and coverage information.

The test cases also include their execution time or cost, and requirements include their

business value. The test case execution time is recorded by MTM, and requirements

business value is defined by the business analysis team by using expert judgment

110

techniques. Data is collected against three releases. The test data is presented in Table

4.20.

The test data is collected from the Azure DevOps system in which the population care

management projects are managed. Test cases are designed against requirements. Each

requirement is associated with a test. The test cases set, requirements set, and coverage

information for the last three releases are collected against Application A and Application

B. Application A is a healthcare management system developed for care analytics. Its

current version is V12, it has 65028 lines of code and was developed using .Net/MVC

technologies. Application B is a healthcare-related application developed for the care

management of patients. Its current version is V12, it has 88210 LOC and was developed

using .Net/MVC technologies. The test data specifications are given in Table 4.20.

Table 4.20: Dataset for Application A and Application B

Application A Application B

Release Test Cases Requirements Release Test Cases Requirements

R1 41 48 R1 36 42

R2 44 52 R2 40 50

R3 48 60 R3 44 53

4.4.2.2. Testing Criteria, Evaluation Algorithm, and Evaluation Metric

To answer the established research question, requirements coverage is used as the testing

criteria. This coverage is taken in a value-based fashion where the business value of

requirements and test case cost are considered. The business value coverage of a test case

is the ratio value of the total requirements business value covered and total cost consumed.

The test cases vs requirements coverage matrix along with test cases cost and business

value of requirements are extracted. The requirement’s business value is the coverage

criteria to be optimized. The performance of the proposed technique is compared with

111

four other state-of-the-art techniques including Original Order (OO), Reverse Order

(REV-O), Random Order (RO), and Greedy algorithm. The comparison techniques were

also utilized in some other studies [24] [135].

Coverage-based methods are most prominent in TCP, therefore most of the researchers

evaluated the performance of their proposed techniques with this method [85]. The metric

for performance evaluation of requirements coverage-based TCP techniques is APRC but

this is not applicable for value-based requirements coverage-based TCP where test cases

execution time and the value of requirements vary. In this study, the performance

evaluation metric APRCv [135] is used for the performance evaluation of VCRCB-TCP.

The metric APRCv is presented by equation 22 in section 3.5.2.

4.4.2.3. Results of the Study

In this section, the results of the study have been presented to answer the defined research

question. The results of the case study are compared in terms of APRCv for the proposed

and existing state-of-the-art approaches and are presented in Tables 4.21 and 4.22.

Table 4.21: APRCv of application A releases

R
el

ea
se

T
es

t
ca

se
s

R
eq

u
ir

em
en

ts

APRCv
Execution

Time of

Value-

Based GA
Original

order

Reverse

Order

Random

Order
Greedy

Value-

Based GA

R1 41 48 0.9121 0.8888 0.9012 0.6282 0.9366 38.5386

R2 44 52 0.9510 0.9404 0.9405 0.7976 0.9594 42.8723

R3 48 60 0.9387 0.9048 0.9271 0.7042 0.9410 56.1029

Average of All

Releases
0.9339 0.9113 0.92297 0.7100 0.9457 45.8380

The performance results of all three releases are averaged out. Table 4.21 indicates that

the performance result of the proposed VCRCB-TCP technique is better than the RO, OO,

Greedy Order, and REVO approach in terms of APRCv against all different releases of

Application A. The proposed technique outperformed state-of-the-art techniques. The

performance results of the Greedy approach were the worst among all other techniques.

112

The performance of OO was second best. The results are presented in a box plot chart in

Figure 4.17.

Figure 4.17: Performance results of application A releases in terms of APRCv

 Table 4.22 depicts the performance results of different releases of Application B. It

indicates that the performance results of the proposed technique are better than RO, OO,

Greedy Order, and REVO approaches in terms of APRCv against Application B.

Table 4.22: APRCv of the three releases for Application B

R
el

ea
se

T
es

t
ca

se
s

R
eq

u
ir

em
en

ts

APRCv Execution

Time of

Value-

Based GA
Original

order

Reverse

Order
Random Greedy

Value-

Based GA

R1 36 42 0.9119 0.9270 0.9087 0.6870 0.9444 51.3133

R2 40 50 0.9289 0.9273 0.9251 0.6961 0.9492 83.0596

R3 44 53 0.9143 0.9214 0.9118 0.6759 0.9454 70.2029

Average of All

Releases
0.9183 0.9252 0.9152 0.6863 0.9463 68.1919

A pictorial representation of the results is given in the box plot chart in Figure 4.18. The

proposed technique outperformed existing state-of-the-art techniques in terms of APRCv.

REVO is the second-best performer and Greedy is the worst among all other techniques.

113

Figure 4.18: Performance results of application B releases in terms of APRCv

The proposed technique is the GA-based search optimization TCP technique implemented

using Python language. The execution of GA is based on some termination criteria. In this

thesis, termination criteria are based on the number of iterations. The number of iterations

is a value taken as user input. Each iteration processes five permutations and calculates

APRCv against the dataset. The execution time of the implemented technique is based on

the number of iterations. Against each release dataset, we executed it with 25, 50, 100,

200, 400, and 800 iterations and recorded its APRCv and maximum execution time. Table

4.23, and 4.24 shows the value of APRCv and maximum execution time for the different

number of iterations against each release. The average maximum execution time of

Application A and B are 45.8379 seconds and 68.1919 seconds, respectively.

Table 4.23: APRCv of value-based TCP using GA for different numbers of iterations for

releases of applications A

R
el

ea
se

T
es

t
ca

se
s

R
eq

u
ir

em
e

n
ts

APRCv of Value-Based TCP Using GA per Iterations Maximum

Execution

Time 25

Iterations

50

Iterations

100

Iterations

200

Iterations

400

Iterations

800

Iterations

R1 41 48 0.9191 0.9228 0.9242 0.9260 0.9278 0.9366 38.5386

R2 44 52 0.9545 0.9587 0.9566 0.9569 0.9590 0.9594 42.8723

R3 48 60 0.9385 0.9376 0.9378 0.9391 0.9393 0.9409 56.1029

Average of

All

Releases

0.9373 0.9397 0.9395 0.9407 0.9420 0.9456 45.8379

114

The APRCv value trend with the different number of iterations for application A is

depicted in Figure 4.19. The graph shows that as the number of iterations increases, the

APRCv value increases gradually. The growth trend in all three releases of Application A

is almost consistent.

Figure 4.19: APRCv trend per number of iterations for application A

Table 4.24: APRCv of value-based TCP using GA for different number of iterations for

releases of applications B

R
el

ea
se

T
es

t
ca

se
s

R
eq

u
ir

em
en

t

s

APRCv of Value-Based TCP Using GA per Iterations

Maximum

Execution

Time
25

Iterations

50

Iterations

100

Iterations

200

Iterations

400

Iterations

800

Iterations

R1 36 42 0.9334 0.9367 0.9367 0.9381 0.9374 0.9444 51.3133

R2 40 50 0.9424 0.9448 0.9452 0.9471 0.9471 0.9492 83.0596

R3 44 53 0.9372 0.9406 0.9406 0.9420 0.9449 0.9453 70.2029

Average of All

Releases
0.9376 0.9407 0.9408 0.9424 0.9432 0.9464 68.1919

0.89
0.9

0.91
0.92
0.93
0.94
0.95
0.96
0.97

25 Iterations 50 Iterations 100 Iterations 200 Iterations 400 Iterations 800 Iterations

A
P

R
C

v

Number of Iterations

Application A

R1 R2 R3

115

Similarly, the APRCv value trend with the different number of iterations for Application

B is depicted in Figure 4.20. The graph shows that as the number of iterations increases,

the APRCv value increases gradually. The growth trend in releases R2 and R3 of

Application B is consistent. For R1, the APRCv value declined with 400 iterations and

then significantly improved by 800 iterations.

The overall trend of increase in APRCv value with a greater number of iterations is

consistent. The different number of iterations for different releases of Application A and

Application B is exercised. With 800 iterations, the results are almost mature.

Figure 4.20: APRCv trend per number of iterations for application B

Tables 4.25 and 4.26 show the execution times of the different numbers of iterations aga

inst different releases along with the maximum value of APRCv. The average maximum

APRCv values of Application A and B are 0.9447 and 0.9464, respectively.

0.925

0.93

0.935

0.94

0.945

0.95

0.955

25 Iterations 50 Iterations 100 Iterations 200 Iterations 400 Iterations 800 Iterations

A
P

R
C

v

Number of Iterations

Application B

R1 R2 R3

116

 Table 4.25: Execution time of value-based TCP using GA for different numbers of

iterations for releases of applications A

R
el

ea
se

T
es

t
ca

se
s

R
eq

u
ir

em
en

ts

Execution Time of Value-Based TCP Using GA per Iterations

Maximum

APRCv 25

Iterations

50

Iterations

100

Iterations

200

Iterations

400

Iterations

800

Iterations

R1 41 48 1.2664 2.6299 5.3586 10.4505 20.8860 38.5386 0.9366

R2 44 52 1.8494 4.9856 8.0136 15.1965 29.3816 42.8723 0.9566

R3 48 60 2.7455 3.8984 8.8448 16.4846 29.0515 56.0150 0.9409

Average of All

Releases
1.9538 3.8380 7.4057 14.0439 26.4397 45.8086 0.9447

Tables 4.25 and 4.26 and Figures 4.21 and 4.22 show that execution time is directly

proportional to the number of iterations.

Figure 4.21: Execution time trend per number of iterations for application A

0

10

20

30

40

50

60

25 Iterations 50 Iterations 100 Iterations 200 Iterations 400 Iterations 800 Iterations

Ex
ec

u
ti

o
n

 t
im

e
(S

ec
o

n
d

s)

Number of Iterations

Application A

R1 R2 R3

117

 Table 4.26: Execution time of value-based TCP using GA against different numbers of

iterations for releases of applications B

R
el

ea
se

T
es

t
ca

se
s

R
eq

u
ir

em
en

t

s

Execution Time of Value-Based TCP Using GA per Iterations

Maximum

APRCv 25

Iterations

50

Iterations

100

Iterations

200

Iterations

400

Iterations

800

Iterations

R1 36 42 2.5989 3.4699 6.2440 13.7613 26.8584 51.3133 0.9444

R2 40 50 2.6731 6.1350 11.0016 22.1467 42.3335 83.0596 0.9492

R3 44 53 1.5286 2.7596 5.5091 11.7314 21.5678 70.2029 0.9453

Average of All

Releases 2.2668 4.1215 7.5849 15.8798 30.2532 68.1919 0.9463

Figure 4.22: Execution time trend per number of iterations for application B

The growth trend in execution time of all three releases of Application A is consistent.

Similarly, the growth trend of all releases of Application B is also consistent. The

consistency in the execution time of the algorithm makes it reliable.

0

10

20

30

40

50

60

70

80

90

25 Iterations 50 Iterations 100 Iterations 200 Iterations 400 Iterations 800 Iterations

Ex
ec

u
ti

o
n

 t
im

e
(S

ec
o

n
d

s)

Number of Iterations

Application B

R1 R2 R3

118

4.4.2.4. Cost Consumption VS Business Value Coverage

The section describes the cost consumption vs business value coverage trend in graphical

form. In Application A, all three releases R1, R2, and R3 show that the initial set of test

cases consumed less cost and covered greater business value. Later test cases consumed

higher costs and their business value coverage declined. This trend shows that the test

cases that are likely to cover higher requirements business value are prioritized first and

are depicted in Figures 4.23, 4.24, and 4.25. In Application B, all three releases R1, R2,

and R3 generally show that the higher business value coverage ratio cost test cases are

prioritized first. This trend is depicted in Figures 4.26, 4.27, and 4.28.

Figure 4.23: Application A – R1

Figure 4.24: Application A – R2

Figure 4.25: Application A – R3

Figure 4.26: Application B – R1

0

10

20

30

40

50

1 2 3 4 5 6

Cost consumption VS Business value
coverage

Business Value Coverage

Cost Consumption

0

10

20

30

40

1 2 3 4 5 6 7

Cost consumption VS Business value
coverage

Business Value Coverage

Cost Consumption

0

10

20

30

40

50

1 2 3 4 5 6

Cost consumption VS Business value
coverage

Business Value Coverage

Cost Consumption

0

10

20

30

40

50

1 2 3 4 5

Cost consumption VS Business value
coverage

Business Value Coverage

Cost Consumption

119

Figure 4.27: Application B- R2

Figure 4.28: Application B- R3

4.4.2.5. Statistical Analysis

To statistically analyze the results of case study 2, we applied a t-test. In our case, we

compared the APRCv mean value of the proposed value-based GA with the other four

techniques. The first t-test is applied to the mean value of “Original order” and “Value-

Based GA”.

Null Hypothesis (H0): APRCv value of “Original order” and “Value-Based GA” is the

same.

Alternate Hypothesis (H1): APRCv value of “Original order” and “Value-Based GA” is

different.

The mean APRCv value of the Original Order was 0.9121 and it was 0.946 for Value-

Based GA. The level of significance “Alpha” was set as 0.05. The statical test returned a

p-value of 0.010566514. Here, the value of p is less than the value of Alpha therefore null

hypothesis H0 is rejected. It indicated that Value-Based GA is significantly better than

Original Order.

The second t-test is applied to the mean value of “Reverse order” and “Value-Based GA”.

Null Hypothesis (H0): APRCv value of “Reverse order” and “Value-Based GA” is the

same.

Alternate Hypothesis (H1): APRCv value of “Reverse order” and “Value-Based GA” is

0

10

20

30

40

50

60

1 2 3 4 5

Cost consumption VS Business value
coverage

Business Value Coverage

Cost Consumption

0

10

20

30

40

1 2 3 4 5 6

Cost consumption VS Business value
coverage

Business Value Coverage

Cost Consumption

120

different.

The mean APRCv value of Revers Order was 0.918283333 and it was 0.946 for Value-

Based GA. The level of significance “Alpha” was set as 0.05. The statical test returned

the p-value as 0.002290953. Here, the value of p is less than the value of Alpha therefore

null hypothesis H0 is rejected. It indicated that the performance of Value-Based GA is

significantly better than Reverse Order.

The third t-test is applied to the mean value of “Random order” and “Value-Based GA”.

Null Hypothesis (H0): APRCv value of “Random order” and “Value-Based GA” are the

same.

Alternate Hypothesis (H1): APRCv values of “Random order” and “Value-Based GA” are

different.

The mean APRCv value of Random Order was 0.919066667 and it was 0.946 for Value-

Based GA. The level of significance “Alpha” was set as 0.05. The statical test returned p-

value of 0.000875866. Here, the value of p is less than the value of Alpha therefore null

hypothesis H0 is rejected. It indicated that the performance of Value-Based GA is

significantly different from Random Order.

The fourth t-test is applied to the mean value of “Greedy order” and “Value-Based GA”.

Null Hypothesis (H0): APRCv values of “Greedy order” and “Value-Based GA” are the

same.

Alternate Hypothesis (H1): APRCv values of “Greedy order” and “Value-Based GA” are

different.

The mean APRCv value of Greedy Order was 0.698166667 and it was 0.946 for Value-

Based GA. The level of significance “Alpha” was set as 0.05. The statical test returned p

value of 0.000057984631. Here, the value of p is less than the value of Alpha therefore

null hypothesis H0 is rejected. It indicated that the performance of Value-Based GA is

significantly different from Greedy Order. The statistical analysis of case study one is

given in Table 4.27, 4.28, 4.29, and 4.30.

121

Table 4.27: Statistical Analysis of Original Order and Value-Based GA

Mean APFDv of

Original Order

Mean APFDv of

Value-Based GA

Level of

Significance ‘α’
p-value Difference

0.9121 0.946 0.05 0.010566514 Significant

Table 4.28: Statistical Analysis of Reverse Order and Value-Based GA

Mean APFDv of

Reverse Order

Mean APFDv of

Value-Based GA

Level of

Significance ‘α’
p-value Difference

0.918283333 0.946 0.05 0.002290953 Significant

Table 4.29: Statistical Analysis of Random Order and Value-Based GA

Mean APFDv of

Random Oder

Mean APFDv of

Value-Based GA

Level of

Significance ‘α’
p-value Difference

0.919066667 0.946 0.05 0.000875866 Significant

Table 4.30: Statistical Analysis of Greedy Order and Value-Based GA

Mean APFDv of

Greedy Order

Mean APFDv of

Value-Based GA

Level of

Significance ‘α’
p-value Difference

0.698166667 0.946 0.05 0.000057984631 Significant

Considering the level of significance as 0.05, the null hypothesis H0 is rejected in all four

t-tests. Statistically, the performance of the proposed technique is significantly better than

the other four techniques.

122

CHAPTER 5

DISCUSSION AND CONCLUSION

5.1 Discussion

The TCP is a vital approach for regression testing to meet time and budget constraints.

There are two major classes of TCP techniques 1) Value-neutral TCP techniques and 2)

Value-based TCP techniques. Both classes have many other categories like coverage-

based, history-based, and risk-based. The value-neutral TCP techniques assume that all

elements like statements, requirements, test cases, use cases, methods, and bugs are

equally important. This assumption sldom holds therefore VN TCP techniques are likely

to produce unreliable results. Due to this major limitation of the TCP process, value-based

cost-cognizant TCP techniques are gaining popularity.

There was no comprehensive literature review available on VB TCP techniques. In this

study, a detailed literature review of VB TCP techniques is performed. The objective is

to see the current state of research in this field. The literature review is evident that there

is very limited work on value-based test prioritization. It is needed to realize that without

value considerations in the TCP process, its intended results cannot be achieved. An

enhanced taxonomy of TCP techniques has been devised in this work for further

advancements in the value-based cost-cognizant TCP process. This taxonomy yields that

there is great potential in value-based cost-cognizant TCP.

From the literature review, it is evident that no quantitative definition of business value is

available for estimating test case cost and severity of bugs. All existing definitions are

practice-oriented. A business value quantification model is proposed in this work. This

model can be helpful to know the notion of business value through its quantitative

definition. To make software initiatives aligned with client business success, the business

value of different features and quality attributes must be known to IT units. To address

this need; the proposed model can help software stakeholders to identify and meet

123

business expectations. The core objective of this study is to propose a business value

quantification mechanism for software requirements both functional and non-functional.

Secondly to propose a method to estimate fault severities and test case costs that serves

as an input in value-based cost-cognizant TCP for regression testing. We have

incorporated business value in the TCP process through this model.

Most of the existing work related to the TCP is done in a value-neutral fashion and has

many limitations. The existing techniques are based on the coverage of code components,

and it is evident that 100% coverage does not guarantee 100% fault detection. They

assume that each fault has an equal cost. Another limitation is that they only considered

functional aspects of the application and non-functional aspects have been ignored in the

existing work. This research presents a value-based TCP technique (VB-TCP) for value-

based regression testing. The major contribution of this work is to re-order test cases for

improving the performance of prioritization using business value. It focuses on business

value coverage instead of traditional coverage metrics. The performance of the proposed

fault detection-based prioritization technique and other comparison techniques is

evaluated in terms of APFDv. The performance of the proposed requirements coverage-

based prioritization technique and other comparison techniques are evaluated in terms of

APRCv. The results show that the use of the value-based approach provides better

performance as compared to random, value-based, and dependency-based approaches.

Two value-based TCP techniques and two novel performance evaluation metrics are

proposed in this work. The performance of the proposed VCFDB-TCP technique and

other comparison techniques is evaluated in terms of APFDv. The performance of the

proposed VCRCB-TCP technique and other comparison techniques is evaluated in terms

of APRCv. Two case studies are performed for results evaluation. A statistical analysis is

performed, and the statistical results show that the use of the value-based approach

provides better performance as compared to RO, OO, REVO, and the Greedy approaches.

5.2 Implications of the Study

The proposed business value quantification mechanism can better elaborate the business

goals of each software feature. If IT teams are equipped with such a clear insight into the

business worth associated with their software initiatives, they can better align their efforts

and resources. This can help to eliminate ambiguities while defining quality-related

124

parameters. This can result in a good client-vendor contract through better perception and

understanding of the client’s product quality expectations. The proposed value-based

model can be applied to address different challenges in the software development life

cycle. We applied this model for TCP for value-based regression testing and it produced

satisfactory and reliable results. Incorporating business value in the TCP process will

prioritize those test cases first which cover overall higher severity of faults and higher

business value of requirement. This way testing time and resources will be utilized to

cover high business value features or modules of software products. This fact supports

the generality and practicality of the findings.

5.3 Research Contribution

 An SLR has been performed on value-based cost-cognizant TCP techniques.

Existing TCP techniques have been analyzed in terms of the algorithm used,

performance metric used, result validation method adopted, and open research

problems. An enhanced taxonomy of TCP techniques has been devised after a

comprehensive literature review for further advancements in the value-based TCP

process. This contribution addressed our RQ1.

 A Business Value Quantification Model has been proposed for the measurement

of the business value of software requirements (functional/non-functional) by

using five business success factors including profitability, productivity,

operational efficiency, client satisfaction, and time to market. A mechanism has

been proposed to estimate the severity of faults and cost of test cases based on the

business value of requirements for value-based test case prioritization. This

contribution has answered our RQ2.

 Two value-based cost-cognizant TCP techniques for regression testing using GA

have been proposed. These techniques include Value-Cognizant Fault Detection-

Based TCP (VCFDB-TCP) and Value-Cognizant Requirements Coverage-Based

TCP (VCRCB-TCP). This contribution has addressed our RQ3.

 Two novel value-based performance evaluation metrics are also introduced for

value-based TCP techniques including the APFDv and APRCv. APFDv deals with

varying test case costs and fault severity whereas APRCv deals with varying test

125

case costs and requirements for business value. RQ4 has been answered through

this contribution.

5.4 Threats to Validity

In this section, we identified a few known threats to the validity of this study's results.

Construct Validity Threat:

Our defined research questions may not include all aspects of value-based cost-cognitive

TCP techniques. We addressed it through discussions. We believe that our research

questions are well-designed and mapped with the goals of the study.

Internal Validity Threats:

Ensuring perfection in the data collection process is a difficult task. We cannot guarantee

that our data collection is complete. Imperfect data collection can be a threat to the validity

of the literature review. We carefully selected our search keywords to fetch more relevant

studies from the research repositories. Our paper search was limited to a few prominent

research repositories. There might be more relevant publications available in other search

repositories. To minimize this problem, we utilized those research repositories that were

utilized by previous literature reviews of TCP techniques. Validation of the study

relevancy evaluation process is also a major threat to any literature review. To address

this issue, an independent reviewer also evaluated the selected studies' relevance. The

second author (supervisor) played this role as an independent reviewer. The data

extraction process may be imprecise, and this may affect the validity of this research. This

is due to the unsystematic data extraction process. To reduce this risk, we applied manual

data extraction through expert judgment. The study assumes that one unit of severity is

equivalent to one unit of test case cost or execution time. Similarly, one unit of the

business value of a requirement is equivalent to one unit of the test case time to cover it.

External Validity Threat:

This study assumes that the business value of requirements and test case execution time

is already known in the case of VCRCB-TCP. Similarly, it assumes that the severity of

faults and test case cost is already known in the case of VCFDB-TCP. In this study, it is

considered that both test case cost and fault severity are equally important. However, in

126

some scenarios, there might be a tradeoff between cost and severity. Similarly, there might

be a tradeoff between test case cost and the business value of requirements. Thirdly the

datasets used for the study are of smaller size and are collected against different

products/applications from a single company. The results may vary with the variety of

other software applications developed by different software development organizations.

5.5 Future Work

Value-based TCP still has many dimensions to be investigated in the future. A few future

directions include the performance evaluation of VB TCP techniques and the

development of novel performance evaluation standard metrics for it.

Value orientation can be applied to different coverage-based TCP techniques like it can

be applied to statement coverage, branch coverage, function coverage, or any other

element coverage.

The right metric selection for the performance evaluation of TCP techniques is essential

to get reliable results. Popularity-based metric selection is not a valid justification, and it

cannot produce reliable results. This is a big area for further improvement. The efficiency

and effectiveness of TCP approaches are strongly dependent on the correct evaluation

metric because a researcher usually targets an improvement in a metric value while

proposing a TCP technique.

The value-cognizant performance evaluation metrics can be derived as the Average

Percentage of Branch Coverage per value (APBCv), Average Percentage of Loop

Coverage per Value (APLCv), or Average Percentage of Function Coverage per value

(APFCv. It can bring a shift from value-neutral TCP to value-based TCP.

The proposed business value quantification model can be validated for different

dimensions of the software development life cycle. We believe cost and time-to-market

for any software product are the most important factors. Software budget and time should be

utilized in a value-based manner for software activities. This work can provide a base for other

SDLC phases to be considered in a value context.

127

BIBLIOGRAPHY

[1] S. R. Faulk, R. R. Harmon, and D. M. Raffo, “Value-Based Software Engineering

(VBSE),” in Software Product Lines, P. Donohoe, Ed., Boston, MA: Springer US, 2000,

pp. 205–223. DOI: 10.1007/978-1-4615-4339-8_12.

[2] D. Zhang, “Machine Learning in Value-Based Software Test Data Generation,” in 2006

18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’06), Nov.

2006, pp. 732–736. DOI: 10.1109/ICTAI.2006.77.

[3] B. W. Boehm, “Value-Based Software Engineering: Overview and Agenda,” in Value-

Based Software Engineering, S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P.

Grünbacher, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 3–14. DOI:

10.1007/3-540-29263-2_1.

[4] T. Dingsøyr and C. Lassenius, “Emerging themes in agile software development:

Introduction to the special section on continuous value delivery,” Inf. Softw. Technol., vol.

77, pp. 56–60, 2016.

[5] Srikanth H. and Williams L. “On the economics of requirements-based test case

prioritization,” ACM SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–3, Jul. 2005,

https://DOI.org/10.1145/1082983.1083100

[6] D. Saff and M. D. Ernst, “Reducing wasted development time via continuous testing,” in

14th International Symposium on Software Reliability Engineering, 2003. ISSRE 2003.,

Nov. 2003, pp. 281–292. DOI: 10.1109/ISSRE.2003.1251050.

[7] X. Zhang, C. G. Onita, and J. S. Dhaliwal, “The impact of software testing governance

choices,” J. Organ. End User Comput. JOEUC, vol. 26, no. 1, pp. 66–85, 2014.

[8] R. Ramler, S. Biffl, and P. Grünbacher, “Value-Based Management of Software Testing,”

in Value-Based Software Engineering, S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and

P. Grünbacher, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 225–244.

DOI: 10.1007/3-540-29263-2_11.

[9] R. Ramler, T. Kopetzky, and W. Platz, “Value-based coverage measurement in

requirements-based testing: Lessons learned from an approach implemented in the tosca

test suite,” in 2012 38th Euromicro Conference on Software Engineering and Advanced

Applications, IEEE, 2012, pp. 363–366.

[10] B. Boehm, “Value-Based Software Engineering,” ACM SIGSOFT, vol. 28, no. 2, p. 12.

128

[11] S. Biswas, R. Mall, M. Satpathy, and S. Sukumaran, “Regression test selection techniques:

A survey,” Informatica, vol. 35, no. 3, 2011.

[12] M. R. N. Dobuneh, D. N. A. Jawawi, and M. V. Malakooti, “Web Application Regression

Testing: A Session Based Test Case Prioritization Approach,” in The International

Conference on Digital Information Processing, E-Business and Cloud Computing

(DIPECC), Society of Digital Information and Wireless Communication, 2013, p. 107.

[13] A. Orso and G. Rothermel, “Software testing: a research travelogue (2000–2014),” in

Proceedings of the on Future of Software Engineering, ACM, 2014, pp. 117–132.

[14] N. Gupta, A. Sharma, and M. K. Pachariya, “An Insight Into Test Case Optimization: Ideas

and Trends With Future Perspectives,” IEEE Access, vol. 7, pp. 22310–22327, 2019, DOI:

10.1109/ACCESS.2019.2899471.

[15] G. Rothermel, R. H. Untch, and M. J. Harrold, “Prioritizing Test Cases For Regression

Testing,” IEEE Trans. Softw. Eng., vol. 27, no. 10, p. 20, 2001.

[16] Z. Sultan, R. Abbas, S. N. Bhatti, and S. A. A. Shah, “Analytical Review on Test Cases

Prioritization Techniques: An Empirical Study,” Int. J. Adv. Comput. Sci. Appl. IJACSA,

vol. 8, no. 2, 2017.

[17] E. Ashraf, A. Rauf, and K. Mahmood, “Value based Regression Test Case Prioritization,”

p. 5, 2012.

[18] B. Boehm and L. G. Huang, “Value-based software engineering: A case study,” Computer,

vol. 36, no. 3, pp. 33–41, 2003.

[19] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating varying test costs and fault

severities into test case prioritization,” in Proceedings of the 23rd International Conference

on Software Engineering. ICSE 2001, Toronto, Ont., Canada: IEEE Comput. Soc, 2001,

pp. 329–338. DOI: 10.1109/ICSE.2001.919106.

[20] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing as a service model

for smart cities supported by Internet of Things,” Trans. Emerg. Telecommun. Technol.,

vol. 25, no. 1, pp. 81–93, 2014, DOI: 10.1002/ett.2704.

[21] V. Mandić, V. Basili, L. Harjumaa, M. Oivo, and J. Markkula, “Utilizing GQM+ Strategies

for business value analysis: An approach for evaluating business goals,” in Proceedings of

the 2010 ACM-IEEE International Symposium on Empirical Software Engineering and

Measurement, ACM, 2010, p. 20.

[22] Z. Racheva, M. Daneva, and K. Sikkel, “Value Creation by Agile Projects: Methodology

or Mystery?,” in Product-Focused Software Process Improvement, vol. 32, F. Bomarius,

129

M. Oivo, P. Jaring, and P. Abrahamsson, Eds., Berlin, Heidelberg: Springer Berlin

Heidelberg, 2009, pp. 141–155. DOI: 10.1007/978-3-642-02152-7_12.

[23] A. F. Minkiewicz, “The evolution of software size: A search for value,” Softw. Eng.

Technol., pp. 23–26, 2009.

[24] H. Jahan, Z. Feng, and S. M. H. Mahmud, “Risk-Based Test Case Prioritization by

Correlating System Methods and Their Associated Risks,” Arab. J. Sci. Eng., Apr. 2020,

DOI: 10.1007/s13369-020-04472-z.

[25] R. Huang, Q. Zhang, T. Y. Chen, J. Hamlyn-Harris, D. Towey, and J. Chen, “An Empirical

Comparison of Fixed-Strength and Mixed-Strength for Interaction Coverage Based

Prioritization,” IEEE Access, vol. 6, pp. 68350–68372, 2018, DOI:

10.1109/ACCESS.2018.2879638.

[26] A. Bajaj and O. P. Sangwan, “A Systematic Literature Review of Test Case Prioritization

Using Genetic Algorithms,” IEEE Access, vol. 7, pp. 126355–126375, 2019, DOI:

10.1109/ACCESS.2019.2938260.

[27] B. Miranda and A. Bertolino, “An assessment of operational coverage as both an adequacy

and a selection criterion for operational profile based testing,” Softw. Qual. J., vol. 26, no.

4, pp. 1571–1594, Dec. 2018, DOI: 10.1007/s11219-017-9388-0.

[28] G. Luque and E. Alba, Parallel Genetic Algorithms: Theory and Real World Applications.

Springer, 2011.

[29] H. Krasner, “The Cost of Poor Software Quality in the US: A 2020 Report,” p. 46, 2020.

[30] “11 of the most costly software errors in history,” Raygun Blog. Accessed: Feb. 02, 2022.

[Online]. Available: https://raygun.com/blog/costly-software-errors-history/

[31] F. S. Ahmed, A. Majeed, T. A. Khan, and S. N. Bhatti, “Value-based cost-cognizant test

case prioritization for regression testing,” PLOS ONE, vol. 17, no. 5, p. e0264972, May

2022, DOI: 10.1371/journal.pone.0264972.

[32] I. Hooda and R. S. Chhillar, “Software test process, testing types and techniques,” Int. J.

Comput. Appl., vol. 111, no. 13, 2015, Accessed: Oct. 12, 2023.

DOI=0fbe1b5515e747025d950658fbc039e98b29b801

[33] J. A. Prado Lima and S. R. Vergilio, “Test Case Prioritization in Continuous Integration

environments: A systematic mapping study,” Inf. Softw. Technol., vol. 121, p. 106268,

May 2020, DOI: 10.1016/j.infsof.2020.106268.

130

[34] R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann, “Test Generation and Test

Prioritization for Simulink Models with Dynamic Behavior,” IEEE Trans. Softw. Eng.,

vol. 45, no. 9, pp. 919–944, Sep. 2019, DOI: 10.1109/TSE.2018.2811489.

[35] M. Khatibsyarbini, M. A. Isa, D. N. A. Jawawi, H. N. A. Hamed, and M. D. Mohamed

Suffian, “Test Case Prioritization Using Firefly Algorithm for Software Testing,” IEEE

Access, vol. 7, pp. 132360–132373, 2019, DOI: 10.1109/ACCESS.2019.2940620.

[36] S. Tahvili, R. Pimentel, W. Afzal, M. Ahlberg, E. Fornander, and M. Bohlin, “sOrTES: A

Supportive Tool for Stochastic Scheduling of Manual Integration Test Cases,” IEEE

Access, vol. 7, pp. 12928–12946, 2019, DOI: 10.1109/ACCESS.2019.2893209.

[37] R. Mukherjee and K. S. Patnaik, “Prioritizing JUnit Test Cases Without Coverage

Information: An Optimization Heuristics Based Approach,” IEEE Access, vol. 7, pp.

78092–78107, 2019, DOI: 10.1109/ACCESS.2019.2922387.

[38] C. Lu, J. Zhong, Y. Xue, L. Feng, and J. Zhang, “Ant Colony System With Sorting-Based

Local Search for Coverage-Based Test Case Prioritization,” IEEE Trans. Reliab., pp. 1–

17, 2019, DOI: 10.1109/TR.2019.2930358.

[39] Md. Abdur, Md. Abu, and Md. Saeed, “Prioritizing Dissimilar Test Cases in Regression

Testing using Historical Failure Data,” Int. J. Comput. Appl., vol. 180, no. 14, pp. 1–8,

Jan. 2018, DOI: 10.5120/ijca2018916258.

[40] D. Hao, L. Zhang, L. Zang, Y. Wang, X. Wu, and T. Xie, “To be optimal or not in test-

case prioritization,” IEEE Trans. Softw. Eng., vol. 42, no. 5, pp. 490–505, 2016.

[41] Y. Bian, Z. Li, R. Zhao, and D. Gong, “Epistasis Based ACO for Regression Test Case

Prioritization,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 1, no. 3, pp. 213–223, Jun.

2017, DOI: 10.1109/TETCI.2017.2699228.

[42] S. Eghbali and L. Tahvildari, “Test Case Prioritization Using Lexicographical Ordering,”

IEEE Trans. Softw. Eng., vol. 42, no. 12, pp. 1178–1195, Dec. 2016, DOI:

10.1109/TSE.2016.2550441.

[43] A. Marchetto, Md. M. Islam, W. Asghar, A. Susi, and G. Scanniello, “A Multi-Objective

Technique to Prioritize Test Cases,” IEEE Trans. Softw. Eng., vol. 42, no. 10, pp. 918–

940, Oct. 2016, DOI: 10.1109/TSE.2015.2510633.

[44] Md. Abu Hasan, Md. Abdur Rahman, and Md. Saeed Siddik, “Test Case Prioritization

Based on Dissimilarity Clustering Using Historical Data Analysis,” in Information,

Communication and Computing Technology, vol. 750, S. Kaushik, D. Gupta, L. Kharb,

131

and D. Chahal, Eds., Singapore: Springer Singapore, 2017, pp. 269–281. DOI:

10.1007/978-981-10-6544-6_25.

[45] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and G. Rothermel, “A Static Approach to

Prioritizing JUnit Test Cases,” IEEE Trans. Softw. Eng., vol. 38, no. 6, pp. 1258–1275,

Nov. 2012, DOI: 10.1109/TSE.2011.106.

[46] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel, “The Effects of Time Constraints on

Test Case Prioritization: A Series of Controlled Experiments,” IEEE Trans. Softw. Eng.,

vol. 36, no. 5, pp. 593–617, Sep. 2010, DOI: 10.1109/TSE.2010.58.

[47] Z. Li, M. Harman, and R. M. Hierons, “Search Algorithms for Regression Test Case

Prioritization,” IEEE Trans. Softw. Eng., vol. 33, no. 4, pp. 225–237, Apr. 2007, DOI:

10.1109/TSE.2007.38.

[48] N. Chen and S. Kim, “Puzzle-based automatic testing: Bringing humans into the loop by

solving puzzles,” in Proceedings of the 27th IEEE/ACM International Conference on

Automated Software Engineering, ACM, 2012, pp. 140–149.

[49] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim, “CrashLocator: locating crashing faults based

on crash stacks,” in Proceedings of the 2014 International Symposium on Software Testing

and Analysis, ACM, 2014, pp. 204–214.

[50] H. Do and G. Rothermel, “A controlled experiment assessing test case prioritization

techniques via mutation faults,” in Software Maintenance, 2005. ICSM’05. Proceedings of

the 21st IEEE International Conference on, IEEE, 2005, pp. 411–420.

[51] H. Stallbaum, A. Metzger, and K. Pohl, “An automated technique for risk-based test case

generation and prioritization,” in Proceedings of the 3rd international workshop on

Automation of software test, ACM, 2008, pp. 67–70.

[52] G. Chaurasia, S. Agarwal, and S. S. Gautam, “Clustering based novel test case

prioritization technique,” in Engineering and Systems (SCES), 2015 IEEE Students

Conference on, IEEE, 2015, pp. 1–5.

[53] H. Kumar and N. Chauhan, “A Coupling effect based test case prioritization technique,”

in Computing for Sustainable Global Development (INDIACom), 2015 2nd International

Conference on, IEEE, 2015, pp. 1341–1345.

[54] M. R. N. Dobuneh, D. N. Jawawi, M. Ghazali, and M. V. Malakooti, “Development test

case prioritization technique in regression testing based on hybrid criteria,” in Software

Engineering Conference (MySEC), 2014 8th Malaysian, IEEE, 2014, pp. 301–305.

132

[55] B. Jiang and W. K. Chan, “Input-based adaptive randomized test case prioritization: A

local beam search approach,” J. Syst. Softw., vol. 105, pp. 91–106, Jul. 2015, DOI:

10.1016/j.jss.2015.03.066.

[56] B. Miranda, “FAST Approaches to Scalable Similarity-Based Test Case Prioritization,” p.

11, 2018.

[57] A. Nanda, S. Mani, S. Sinha, M. J. Harrold, and A. Orso, “Regression testing in the

presence of non-code changes,” in Verification and Validation 2011 Fourth IEEE

International Conference on Software Testing, Mar. 2011, pp. 21–30. DOI:

10.1109/ICST.2011.60.

[58] “An empirical study on clustering approach combining fault prediction for test case

prioritization,” in 2017 IEEE/ACIS 16th International Conference on Computer and

Information Science (ICIS), May 2017, pp. 815–820. DOI: 10.1109/ICIS.2017.7960104.

[59] P. Konsaard and L. Ramingwong, “Total coverage based regression test case prioritization

using genetic algorithm,” in 2015 12th International Conference on Electrical

Engineering/Electronics, Computer, Telecommunications and Information Technology

(ECTI-CON), Jun. 2015, pp. 1–6. DOI: 10.1109/ECTICon.2015.7207103.

[60] T. B. Noor and H. Hemmati, “Test case analytics: Mining test case traces to improve risk-

driven testing,” in 2015 IEEE 1st International Workshop on Software Analytics (SWAN),

Mar. 2015, pp. 13–16. DOI: 10.1109/SWAN.2015.7070482.

[61] D. Marijan, M. Liaaen, A. Gotlieb, S. Sen, and C. Ieva, “TITAN: Test Suite Optimization

for Highly Configurable Software,” in 2017 IEEE International Conference on Software

Testing, Verification and Validation (ICST), Mar. 2017, pp. 524–531. DOI:

10.1109/ICST.2017.60.

[62] R. Lachmann, “12.4 - Machine Learning-Driven Test Case Prioritization Approaches for

Black-Box Software Testing,” AMA Serv. GmbH Von-Münchhausen-Str 49 31515

Wunstorf Ger., 2018, DOI: 10.5162/ettc2018/12.4.

[63] A. Ansari, A. Khan, A. Khan, and K. Mukadam, “Optimized Regression Test Using Test

Case Prioritization,” Procedia Comput. Sci., vol. 79, pp. 152–160, 2016, DOI:

10.1016/j.procs.2016.03.020.

[64] M. M. Öztürk, “A bat-inspired algorithm for prioritizing test cases,” Vietnam J. Comput.

Sci., vol. 5, no. 1, pp. 45–57, Feb. 2018, DOI: 10.1007/s40595-017-0100-x.

133

[65] D. Marijan, “Multi-perspective Regression Test Prioritization for Time-Constrained

Environments,” in 2015 IEEE International Conference on Software Quality, Reliability

and Security, Aug. 2015, pp. 157–162. DOI: 10.1109/QRS.2015.31.

[66] S. Wang, J. Nam, and L. Tan, “QTEP: quality-aware test case prioritization,” in

Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering -

ESEC/FSE 2017, Paderborn, Germany: ACM Press, 2017, pp. 523–534. DOI:

10.1145/3106237.3106258.

[67] M. Aggarwal and S. Sabharwal, “Combinatorial Test Set Prioritization Using Data Flow

Techniques,” Arab. J. Sci. Eng., vol. 43, no. 2, pp. 483–497, Feb. 2018, DOI:

10.1007/s13369-017-2631-y.

[68] E. Ashraf, K. Mahmood, T. Ahmed, and S. Ahmed, “Value based PSO Test Case

Prioritization Algorithm,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 1, 2017, DOI:

10.14569/IJACSA.2017.080149.

[69] M. Bagherzadeh, N. Kahani, and L. Briand, “Reinforcement Learning for Test Case

Prioritization,” IEEE Trans. Softw. Eng., pp. 1–1, 2021, DOI:

10.1109/TSE.2021.3070549.

[70] Q. Luo, K. Moran, D. Poshyvanyk, and M. Di Penta, “Assessing Test Case Prioritization

on Real Faults and Mutants,” ArXiv180708823 Cs, Sep. 2018, Accessed: Dec. 15, 2019.

[Online]. Available: http://arxiv.org/abs/1807.08823

[71] A. Askarunisa, L. Shanmugapriya, and D. N. Ramaraj, “Cost and Coverage Metrics for

Measuring the Effectiveness of Test Case Prioritization Techniques,” INFOCOMP Journal

of Computer Science, Vol. 9 No. 1, p. 10, March, 2010

[72] X. Wang and H. Zeng, “History-based Dynamic Test Case Prioritization for Requirement

Properties in Regression Testing,” in Proceedings of the International Workshop on

Continuous Software Evolution and Delivery, in CSED ’16. New York, NY, USA: ACM,

2016, pp. 41–47. DOI: 10.1145/2896941.2896949.

[73] C.-T. Lin, C.-D. Chen, C.-S. Tsai, and G. M. Kapfhammer, “History-Based Test Case

Prioritization with Software Version Awareness,” in 2013 18th International Conference

on Engineering of Complex Computer Systems, Jul. 2013, pp. 171–172. DOI:

10.1109/ICECCS.2013.33.

[74] D. Marijan, “Multi-perspective Regression Test Prioritization for Time-Constrained

Environments,” in 2015 IEEE International Conference on Software Quality, Reliability

and Security, Vancouver, BC, Canada: IEEE, Aug. 2015, pp. 157–162. DOI:

10.1109/QRS.2015.31.

134

[75] T. Noor and H. Hemmati, “Test case analytics: Mining test case traces to improve risk-

driven testing,” in 2015 IEEE 1st International Workshop on Software Analytics (SWAN),

Montreal, QC, Canada: IEEE, Mar. 2015, pp. 13–16. DOI: 10.1109/SWAN.2015.7070482.

[76] B. Busjaeger and T. Xie, “Learning for test prioritization: an industrial case study,” in

Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations

of Software Engineering - FSE 2016, Seattle, WA, USA: ACM Press, 2016, pp. 975–980.

DOI: 10.1145/2950290.2983954.

[77] L. Xiao, H. Miao, W. Zhuang, and S. Chen. “An Empirical Study on Clustering Approach

Combining Fault Prediction for Test Case Prioritization", IEEE, ICIS 2017, May 24–26,

2017, Wuhan, China.

[78] J. A. do Prado Lima and S. R. Vergilio, “A Multi-Armed Bandit Approach for Test Case

Prioritization in Continuous Integration Environments,” IEEE Trans. Softw. Eng., pp. 1–

1, 2020, DOI: 10.1109/TSE.2020.2992428.

[79] Z. Q. Zhou, C. Liu, T. Y. Chen, T. H. Tse, and W. Susilo, “Beating Random Test Case

Prioritization,” IEEE Trans. Reliab., pp. 1–22, 2020, DOI: 10.1109/TR.2020.2979815.

[80] M. L. Mohd-Shafie, W. M. N. Wan-Kadir, M. Khatibsyarbini, and M. A. Isa, “Model-

based test case prioritization using selective and even-spread count-based methods with

scrutinized ordering criterion,” PLOS ONE, vol. 15, no. 2, p. e0229312, Feb. 2020, DOI:

10.1371/journal.pone.0229312.

[81] Y. Venugopal, P. Quang-Ngoc, and L. Eunseok, “Modification Point Aware Test

Prioritization and Sampling to Improve Patch Validation in Automatic Program Repair,”

Appl. Sci., vol. 10, no. 5, p. 1593, Feb. 2020, DOI: 10.3390/app10051593.

[82] H. Wang, M. Yang, L. Jiang, J. Xing, Q. Yang, and F. Yan, “Test Case Prioritization for

Service-Oriented Workflow Applications: A Perspective of Modification Impact

Analysis,” IEEE Access, vol. 8, pp. 101260–101273, 2020, DOI:

10.1109/ACCESS.2020.2998545.

[83] Saqib Iqbal, Issam Al-Azzoni , “Test case prioritization for model transformations |

Elsevier Enhanced Reader.”, Volume 34, Issue 8, Part B, September 2022, Pages 6324-

6338, https://DOI.org/10.1016/j.jksuci.2021.08.011

[84] R. Cheng, L. Zhang, D. Marinov, and T. Xu, “Test-case prioritization for configuration

testing,” in Proceedings of the 30th ACM SIGSOFT International Symposium on Software

Testing and Analysis, Virtual Denmark: ACM, Jul. 2021, pp. 452–465. DOI:

10.1145/3460319.3464810.

https://www.sciencedirect.com/journal/journal-of-king-saud-university-computer-and-information-sciences/vol/34/issue/8/part/PB

135

[85] C. Catal and D. Mishra, “Test case prioritization: a systematic mapping study,” Softw.

Qual. J., vol. 21, no. 3, pp. 445–478, Sep. 2013, DOI: 10.1007/s11219-012-9181-z.

[86] Y.-C. Huang, K.-L. Peng, and C.-Y. Huang, “A history-based cost-cognizant test case

prioritization technique in regression testing,” J. Syst. Softw., vol. 85, no. 3, pp. 626–637,

Mar. 2012, DOI: 10.1016/j.jss.2011.09.063.

[87] A. G. Malishevsky, J. R. Ruthruff, G. Rothermel, and S. Elbaum, “Cost-cognizant Test

Case Prioritization,”, Technical Report TR-UNL-CSE-2006-0004, p. 41, Department of

Computer Science and Engineering, University of Nebraska–Lincoln, Lincoln, Nebraska,

U.S.A., 12 March 2006

[88] H. Park, H. Ryu, and J. Baik, “Historical Value-Based Approach for Cost-Cognizant Test

Case Prioritization to Improve the Effectiveness of Regression Testing,” in 2008 Second

International Conference on Secure System Integration and Reliability Improvement, Jul.

2008, pp. 39–46. DOI: 10.1109/SSIRI.2008.52.

[89] B. Kitchenham, “Procedures for Performing Systematic Reviews,” p. 33, Keele, UK, Keele

University, 2004, Citeseer

[90] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman,

“Systematic literature reviews in software engineering – A systematic literature review,”

Inf. Softw. Technol., vol. 51, no. 1, pp. 7–15, Jan. 2009, DOI:

10.1016/j.infsof.2008.09.009.

[91] M. Khatibsyarbini, M. A. Isa, D. N. Jawawi, and R. Tumeng, “Test case prioritization

approaches in regression testing: A systematic literature review,” Inf. Softw. Technol., vol.

93, pp. 74–93, 2018.

[92] R. Mukherjee and K. S. Patnaik, “A survey on different approaches for software test case

prioritization,” J. King Saud Univ. - Comput. Inf. Sci., p. S1319157818303616, Oct. 2018,

DOI: 10.1016/j.jksuci.2018.09.005.

[93] J. Ahmad and S. Baharom, “A Systematic Literature Review of the Test Case Prioritization

Technique for Sequence of Events,” vol. 12, no. 7, p. 7, 2017.

[94] H. de S. Campos Junior, M. A. P. Araújo, J. M. N. David, R. Braga, F. Campos, and V.

Ströele, “Test case prioritization: a systematic review and mapping of the literature,” in

Proceedings of the 31st Brazilian Symposium on Software Engineering - SBES’17,

Fortaleza, CE, Brazil: ACM Press, 2017, pp. 34–43. DOI: 10.1145/3131151.3131170.

[95] S. Yoo and M. Harman, “Regression testing minimization, selection and prioritization: a

survey,” Softw. Test. Verification Reliab., vol. 22, no. 2, pp. 67–120, 2012.

136

[96] D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, and for the PRISMA Group, “Preferred

reporting items for systematic reviews and meta-analyses: the PRISMA statement,” BMJ,

vol. 339, no. jul21 1, pp. b2535–b2535, Jul. 2009, DOI: 10.1136/bmj.b2535.

[97] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil, “Lessons from

applying the systematic literature review process within the software engineering domain,”

J. Syst. Softw., vol. 80, no. 4, pp. 571–583, Apr. 2007, DOI: 10.1016/j.jss.2006.07.009.

[98] Z. Yu, F. M. Fahid, T. Menzies, G. Rothermel, K. Patrick, and S. Cherian,

“TERMINATOR: Better Automated UI Test Case Prioritization,” Proc. 2019 27th ACM

Jt. Meet. Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng. - ESECFSE 2019, pp. 883–

894, 2019, DOI: 10.1145/3338906.3340448.

[99] B. Miranda and A. Bertolino, “Scope-aided test prioritization, selection and minimization

for software reuse,” J. Syst. Softw., vol. 131, pp. 528–549, Sep. 2017, DOI:

10.1016/j.jss.2016.06.058.

[100] Y. Wang, X. Zhao, and X. Ding, “An effective test case prioritization method based on

fault severity,” in 2015 6th IEEE International Conference on Software Engineering and

Service Science (ICSESS), Beijing, China: IEEE, Sep. 2015, pp. 737–741. DOI:

10.1109/ICSESS.2015.7339162.

[101] M. G. Epitropakis, S. Yoo, M. Harman, and E. K. Burke, “Empirical evaluation of pareto

efficient multi-objective regression test case prioritisation,” in Proceedings of the 2015

International Symposium on Software Testing and Analysis - ISSTA 2015, Baltimore,

MD, USA: ACM Press, 2015, pp. 234–245. DOI: 10.1145/2771783.2771788.

[102] A. Rauf and A. I. AlSalem, “Intelligent Web Application Systems Testing through Value

Based Test Case Prioritization,” in Progress in Systems Engineering, vol. 366, H. Selvaraj,

D. Zydek, and G. Chmaj, Eds., in Advances in Intelligent Systems and Computing, vol.

366. , Cham: Springer International Publishing, 2015, pp. 765–768. DOI: 10.1007/978-3-

319-08422-0_110.

[103] B. Hoq, S. Jafrin, and S. Hosain, “Dependency Cognizant Test Case Prioritization,” p. 5,

Department of Electrical Engineering and Computer Science North South University,

Dhaka, Bangladesh , 2011.

[104] Q. Li and B. Boehm, “Improving scenario testing process by adding value-based

prioritization: an industrial case study,” in Proceedings of the 2013 International

Conference on Software and System Process - ICSSP 2013, San Francisco, CA, USA:

ACM Press, 2013, p. 78. DOI: 10.1145/2486046.2486061.

137

[105] D. Marijan, A. Gotlieb, and S. Sen, “Test Case Prioritization for Continuous Regression

Testing: An Industrial Case Study,” in 2013 IEEE International Conference on Software

Maintenance, Eindhoven, Netherlands: IEEE, Sep. 2013, pp. 540–543. DOI:

10.1109/ICSM.2013.91.

[106] X. Zhang and B. Qu, “An Improved Metric for Test Case Prioritization,” in 2011 Eighth

Web Information Systems and Applications Conference, Chongqing, China: IEEE, Oct.

2011, pp. 125–130. DOI: 10.1109/WISA.2011.31.

[107] R. C. Bryce, S. Sampath, J. B. Pedersen, and S. Manchester, “Test suite prioritization by

cost-based combinatorial interaction coverage,” Int. J. Syst. Assur. Eng. Manag., vol. 2,

no. 2, pp. 126–134, Jun. 2011, DOI: 10.1007/s13198-011-0067-4.

[108] X. Zhang, C. Nie, B. Xu, and B. Qu, “Test Case Prioritization Based on Varying Testing

Requirement Priorities and Test Case Costs,” in Seventh International Conference on

Quality Software (QSIC 2007), Oct. 2007, pp. 15–24. DOI: 10.1109/QSIC.2007.4385476.

[109] H. Srikanth, L. Williams, and J. Osborne, “System test case prioritization of new and

regression test cases,” in 2005 International Symposium on Empirical Software

Engineering, 2005., Nov. 2005, p. 10 pp.-. DOI: 10.1109/ISESE.2005.1541815.

[110] H. Srikanth and L. Williams, “On the economics of requirements-based test case

prioritization,” ACM SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–3, Jul. 2005, DOI:

10.1145/1082983.1083100.

[111] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating varying test costs and fault

severities into test case prioritization,” in Proceedings of the 23rd International Conference

on Software Engineering. ICSE 2001, Toronto, Ont., Canada: IEEE Comput. Soc, 2001,

pp. 329–338. DOI: 10.1109/ICSE.2001.919106.

[112] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Prioritizing Test Cases for Regression

Testing,” in Proceedings of the 2000 ACM SIGSOFT International Symposium on

Software Testing and Analysis, in ISSTA ’00. New York, NY, USA: ACM, 2000, pp. 102–

112. DOI: 10.1145/347324.348910.

[113] X. Wang, H. Zeng, H. Gao, H. Miao, and W. Lin, “Location-Based Test Case Prioritization

for Software Embedded in Mobile Devices Using the Law of Gravitation,” Mob. Inf. Syst.,

vol. 2019, pp. 1–14, Jan. 2019, DOI: 10.1155/2019/9083956.

[114] A. Jatain and G. Sharma, “A Systematic Review of Techniques for Test Case

Prioritization,” Int. J. Comput. Appl., vol. 68, no. 2, pp. 38–42, Apr. 2013, DOI:

10.5120/11554-6833.

138

[115] G. L. Geissler, “Building customer relationships online: the Web site designers’

perspective,” J. Consum. Mark., vol. 18, no. 6, pp. 488–502, Jan. 2001, DOI:

10.1108/EUM0000000006154.

[116] J. Azar, R. Smith, and D. Cordes, “Value-Oriented Requirements Prioritization in a Small

Development Organization,” IEEE Softw., vol. 24, no. 1, pp. 32–37, Jan. 2007, DOI:

10.1109/MS.2007.30.

[117] K. Mossakowska and A. Jarzębowicz, “A Survey Investigating the Influence of Business

Analysis Techniques on Software Quality Characteristics,” in Towards a Synergistic

Combination of Research and Practice in Software Engineering, in Studies in

Computational Intelligence. , Springer, Cham, 2018, pp. 135–148. DOI: 10.1007/978-3-

319-65208-5_10.

[118] S. Raju, “Factors Oriented Test Case Prioritization Technique in Regression Testing using

Genetic Algorithm,”, European Journal of Scientific Research ISSN 1450-216X

Vol.74 No.3 (2012), pp. 389-402

[119] G. Issac, C. Rajendran, and R. N. Anantharaman, “An instrument for the measurement of

customer perceptions of quality management in the software industry: An empirical study

in India,” Softw. Qual. J., vol. 14, no. 4, pp. 291–308, 2006.

[120] J. Offutt, “Quality attributes of web software applications,” IEEE Softw., vol. 19, no. 2,

pp. 25–32, 2002.

[121] N. Iqbal, W. Nadeem, and A. Zaheer, “Impact of BPR critical success factors on inter-

organizational functions: an empirical study,” Ment Rev., vol. 6, no. 1, p. 152, 2015.

[122] A. Stefani and M. Xenos, “E-commerce system quality assessment using a model based

on ISO 9126 and Belief Networks,” Softw. Qual. J., vol. 16, no. 1, pp. 107–129, Mar. 2008,

DOI: 10.1007/s11219-007-9032-5.

[123] H.-W. Jung, S.-G. Kim, and C.-S. Chung, “Measuring software product quality: A survey

of ISO/IEC 9126,” IEEE Softw., vol. 21, no. 5, pp. 88–92, 2004.

[124] R. A. Asaka, G. H. S. Mendes, and G. M. D. Ganga, “Factors Influencing Customer

Satisfaction in Software as a Service (SaaS): Proposal of a System of Performance

Indicators,” IEEE Lat. Am. Trans., vol. 15, no. 8, pp. 1536–1541, 2017, DOI:

10.1109/TLA.2017.7994803.

[125] T. Menzies and A. Marcus, “Automated severity assessment of software defect reports,”

in 2008 IEEE International Conference on Software Maintenance, Sep. 2008, pp. 346–355.

DOI: 10.1109/ICSM.2008.4658083.

139

[126] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the severity of a reported

bug,” in 2010 7th IEEE Working Conference on Mining Software Repositories (MSR

2010), May 2010, pp. 1–10. DOI: 10.1109/MSR.2010.5463284.

[127] Y. Tian, D. Lo, and C. Sun, “Information Retrieval Based Nearest Neighbor Classification

for Fine-Grained Bug Severity Prediction,” in 2012 19th Working Conference on Reverse

Engineering, Oct. 2012, pp. 215–224. DOI: 10.1109/WCRE.2012.31.

[128] Y. Tian, N. Ali, D. Lo, and A. E. Hassan, “On the unreliability of bug severity data,” Empir.

Softw. Eng., vol. 21, no. 6, pp. 2298–2323, Dec. 2016, DOI: 10.1007/s10664-015-9409-1.

[129] A. K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma, “Regression testing in an

industrial environment,” Commun. ACM, vol. 41, no. 5, pp. 81–86, May 1998, DOI:

10.1145/274946.274960.

[130] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and failures in a complex

software system,” IEEE Trans. Softw. Eng., vol. 26, no. 8, pp. 797–814, Aug. 2000, DOI:

10.1109/32.879815.

[131] P. Husbands, “Genetic algorithms for scheduling,” AISB Q., vol. 89, pp. 38–45, 1994.

[132] G. Antoniol, M. Di Penta, and M. Harman, “Search-based techniques applied to

optimization of project planning for a massive maintenance project,” in 21st IEEE

International Conference on Software Maintenance (ICSM’05), Sep. 2005, pp. 240–249.

DOI: 10.1109/ICSM.2005.79.

[133] M. Tulasiraman, N. Vivekanandan, and V. Kalimuthu, “Multi-objective Test Case

Prioritization Using Improved Pareto-Optimal Clonal Selection Algorithm,” 3D Res., vol.

9, no. 3, p. 32, Sep. 2018, DOI: 10.1007/s13319-018-0182-y.

[134] R. Matulis and J. Lloyd, “The History, Evolution, and Future of Medicaid Accountable

Care Organizations,” Center for Health Care Strategies, p. 22, February 2018.

[135] H. Jahan, Z. Feng, S. M. H. Mahmud, and P. Dong, “Version specific test case

prioritization approach based on artificial neural network,” J. Intell. Fuzzy Syst., vol. 36,

no. 6, pp. 6181–6194, Jan. 2019, DOI: 10.3233/JIFS-181998.

[136] K. J. Kelleher et al., “Cost Saving and Quality of Care in a Pediatric Accountable Care

Organization,” PEDIATRICS, vol. 135, no. 3, pp. e582–e589, Mar. 2015, DOI:

10.1542/peds.2014-2725.

[137] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study research in

software engineering,” Empir. Softw. Eng., vol. 14, no. 2, pp. 131–164, Apr. 2009, DOI:

10.1007/s10664-008-9102-8.

140

[138] S. Yoo and M. Harman, “Pareto efficient multi-objective test case selection,” in

Proceedings of the 2007 international symposium on Software testing and analysis - ISSTA

’07, London, United Kingdom: ACM Press, 20s07, p. 140. DOI:

10.1145/1273463.1273483.

141

s

APPENDIX A

Source Code Snippets

1) Library Files

2) Reading Test Data

3) Objective Function

142

4) Crossover Function

5) Mutation Function

6) Fitness Function

143

7) Main Body of the Program

144

8) Function Calling

9) Printing Results

10) Execution Time

145

APPENDIX B

1. Example 1: ACO Healthcare Solution for Validation of Business Value

Estimation Model- Fault-Based TCP

Test Data: Test Cases Vs Fault Traceability Matrix

 Faults &

 severity

Test Cases

& cost

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

S
 =

 3

S
 =

 4

S
=

 2

S
=

 1

S
=

 1

S
=

 2

S
=

 1

S
=

 2

S
=

 3

S
=

 5

S
=

 2

S
=

 1

S
=

 4

S
=

 2

S
=

 5

S
=

 2

S
=

 2

S
=

 3

S
=

 3

S
=

 5

T1 C= 2 x x

T2 C= 1 x

T3 C= 3 x x

T4 C= 5 x x

T5 C= 4 X x

T6 C= 2 x

T7 C= 1 x x

T8 C= 2 x x

T9 C= 5 x x

T10 C= 1 x

T11 C= 2 x

T12 C= 4 x x

T13 C= 3 x x

T14 C= 5 X x

146

2. Example 2: ACO Healthcare Solution for Validation of Business Value

Quantification Model for Requirements-Based TCP

Test Data: Test Cases Vs Requirements Coverage Traceability Matrix

 Requirements

 & Business

 value

Test Cases & cost

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14

B
V

=
2

B
V

=
4

B
V

=
1

B
V

=
3

B
V

=
2

B
V

=
4

B
V

=
5

B
V

=
1

B
V

=
3

B
V

=
2

B
V

=
3

B
V

=
4

B
V

=
1

B
V

=
3

T1 C= 2

T2 C= 1 x

T3 C= 3 x x

T4 C= 5 x

T5 C= 4 x

T6 C= 2 x

T7 C= 1 x

T8 C= 2 x x

T9 C= 5 x

T10 C= 1 x

T11 C= 2 x

T12 C= 4 x

T13 C= 3 x

T14 C= 5 x

147

APPENDIX C

Case Study 1: ACO Healthcare Solution for Validation of VCFDB-TCP

1. Test Data 1: Test Cases Vs Faults Traceability Matrix

148

2. Test Data 2: Test Cases Vs Faults Traceability Matrix

149

3. Test Data 3: Test Cases Vs Faults Traceability Matrix

150

4. Test Data 4: Test Cases vs Requirements Traceability Matrix

151

5. Test Data 5: Test Cases Vs Requirements Traceability Matrix

152

6. Test Data 6: Test Cases Vs Requirements Traceability Matrix

153

APPENDIX D

Case Study 2: ACO Healthcare Solution for Validation of VCRCB-TCP Technique

1. Test Data 1: Test Cases Vs Faults Traceability Matrix

154

2. Test Data 2: Test Cases Vs Faults Traceability Matrix

155

3. Test Data 3: Test Cases Vs Faults Traceability Matrix

156

4. Test Data 4: Test Cases Vs Requirements Traceability Matrix

157

5. Test Data 5: Test Cases Vs Requirements Traceability Matrix

158

6. Test Data 6: Test Cases Vs Requirements Traceability Matrix

159

APPENDIX E

1. Case Study 1 Statistical Analysis Results

Test 1: Original Order and VB-GA APFDv

Product Release Original order Value-Based GA

Product A

R1 0.9313 0.9408

R2 0.9332 0.9445

R3 0.9221 0.9437

Product B

R1 0.9385 0.9477

R2 0.9456 0.9502

R3 0.9348 0.9472

Statistical Analysis Results t-Test: Paired Two Sample for Means

 Original Order VB-GA

Mean 0.93425 0.9456833

Variance 6.0923E-05 1.119E-05

Observations 6 6

Pearson Correlation 0.769182461

Hypothesized Mean

Difference
0

df 5

t Stat -4.954909371

P(T<=t) one-tail 0.002133419

t Critical one-tail 2.015048373

P(T<=t) two-tail 0.004266839

t Critical two-tail 2.570581836

160

Test 2: Reverse Order vs VB-GA APFDv

 Product Release Reverse order Value-Based GA

Product A

R1 0.9193 0.9408

R2 0.9262 0.9445

R3 0.9356 0.9437

Product B

R1 0.9339 0.9477

R2 0.9188 0.9502

R3 0.9409 0.9472

Statistical Analysis Results t-Test: Paired Two Sample for Means

 Reverse order VB-GA

Mean 0.9291167 0.945683333

Variance 8.301E-05 1.11897E-05

Observations 6 6

Pearson Correlation 0.1276449

Hypothesized Mean

Difference 0

df 5

t Stat -4.365127

P(T<=t) one-tail 0.0036276

t Critical one-tail 2.0150484

P(T<=t) two-tail 0.0072552

t Critical two-tail 2.5705818

161

Test 3: Random Order and VB-GA APFDv

 Product Release Random order Value-Based GA

Product A

R1 0.9178 0.9408

R2 0.9263 0.9445

R3 0.9313 0.9437

Product B

R1 0.9367 0.9477

R2 0.9278 0.9502

R3 0.9386 0.9472

Statistical Analysis Results t-Test: Paired Two Sample for Means

 Random Order Value-Based GA

Mean 0.92975 0.9456833

Variance 5.7507E-05 1.119E-05

Observations 6 6

Pearson Correlation 0.614933039

Hypothesized Mean Difference 0

df 5

t Stat -6.37344664

P(T<=t) one-tail 0.000703349

t Critical one-tail 2.015048373

P(T<=t) two-tail 0.001406697

t Critical two-tail 2.570581836

Test 4: Greedy Order vs VB-GA APFDv

 Product Release Greedy order Value-Based GA

Product A

R1 0.9279 0.9408

R2 0.9275 0.9445

R3 0.9286 0.9437

Product B

R1 0.9374 0.9477

R2 0.9336 0.9502

R3 0.9423 0.9472

162

Statistical Analysis Results t-Test: Paired Two Sample for Means

 Greedy order Value-Based GA

Mean 0.9328833 0.945683333

Variance 3.635E-05 1.11897E-05

Observations 6 6

Pearson Correlation 0.6528059

Hypothesized Mean

Difference 0

df 5

t Stat -6.808254

P(T<=t) one-tail 0.0005207

t Critical one-tail 2.0150484

P(T<=t) two-tail 0.0010414

t Critical two-tail 2.5705818

2. Case Study 2 Statistical Analysis Results

Statistical Analysis Results t-Test: Paired Two Sample for Means

Test 1: Original Order and VB-GA APRCv

 Original order Value-Based GA

Product A

R1 0.9121 0.9366

R2 0.951 0.9594

R3 0.9387 0.941

Product B

R1 0.9119 0.9444

R2 0.9289 0.9492

R3 0.9143 0.9454

 Variable 1 Variable 2

Mean 0.92615 0.946

Variance 0.000264695 6.122E-05

Observations 6 6

Pearson Correlation 0.692919746

Hypothesized Mean

Difference 0

df 5

t Stat -3.976593356

P(T<=t) one-tail 0.005283257

t Critical one-tail 2.015048373

P(T<=t) two-tail 0.010566514

t Critical two-tail 2.570581836

163

Test 2: Reverse Order vs VB-GA APRCv

 Product Release Reverse order
Value-Based

GA

Product A

R1 0.8888 0.9366

R2 0.9404 0.9594

R3 0.9048 0.941

Product B

R1 0.927 0.9444

R2 0.9273 0.9492

R3 0.9214 0.9454

Statistical Analysis Results t-Test: Paired Two Sample for Means

 Variable 1 Variable 2

Mean 0.9182833 0.946

Variance 0.0003414 6.1216E-05

Observations 6 6

Pearson Correlation 0.9046705

Hypothesized Mean

Difference 0

df 5

t Stat -5.716019

P(T<=t) one-tail 0.0011455

t Critical one-tail 2.0150484

P(T<=t) two-tail 0.002291

t Critical two-tail 2.5705818

Test 3: Random Order and VB-GA APRCv

 Random order
Value-Based

GA

Product A

R1 0.9012 0.9366

R2 0.9405 0.9594

R3 0.9271 0.941

Product B

R1 0.9087 0.9444

R2 0.9251 0.9492

R3 0.9118 0.9454

164

Statistical Analysis Results t-Test: Paired Two Sample for Means

 Variable 1 Variable 2

Mean 0.919066667 0.946

Variance 0.000207963 6.122E-05

Observations 6 6

Pearson Correlation 0.806947438

Hypothesized Mean Difference 0

df 5

t Stat -7.069681871

P(T<=t) one-tail 0.000437933

t Critical one-tail 2.015048373

P(T<=t) two-tail 0.000875866

t Critical two-tail 2.570581836

Test 4: Greedy Order vs VB-GA APRCv

 Product Release Greedy order Value-Based GA

Product A

R1 0.6282 0.9366

R2 0.7976 0.9594

R3 0.7042 0.941

Product B

R1 0.687 0.9444

R2 0.6961 0.9492

R3 0.6759 0.9454

Properties Variable 1 Variable 2

Mean 0.6981667 0.946

Variance 0.0030887 6.1216E-05

Observations 6 6

Pearson Correlation 0.9127873

Hypothesized Mean Difference 0

df 5

t Stat -12.50658

P(T<=t) one-tail 2.899E-05

t Critical one-tail 2.0150484

P(T<=t) two-tail 0.0000579846311191025

t Critical two-tail 2.5705818

