FINAL YEAR PROJECT REPORT

Title Human Detection and Rescue Robot using Zigbee Technology

By

Name Hifza KhalidRegistration #Program BET 8Name Nabiha Zainab Khan Registration #Program BET 8Name Tooba SiddiquiRegistration #Program BET 8

Supervised by

Engr. Muhammad Hussain

Bahria University (Karachi Campus)

Year

2008-2012

Human Detection and Rescue Robot using Zigbee Technology

Submission Performa

Name (1) Hifza Khalid

(2) Nabiha Zainab Khan

(3) Tooba Siddiqui

Address(1)..... (Student's address)

(2)..... (Student's address)

(3) House # A-50, Sector V-2, Gulshan-e-Maymar Karachi

Title of Report Human Detection and Rescue Robot using Zigbee Technology

Project Supervisor's Name Muhammad Hussain

This report is submitted as required for the Project in accordance with the rules laid down by the Bahira University as part of the requirements for the award of the degree of Bachelor of Engineering. I declare that the work presented in this report is my own except where due reference or acknowledgement is given to the work of others.

Signatures of students	Date	
(1)		
(2)		
(3)		

Date

.....

.....

TABLE OF CONTENTS

S.	Chapters	Page #
No.		
01	Introduction	
02	Background and Literature review	
	2.1 Technological Summary of Zigbee Wireless Protocol	
03	Aim And Statement of Problem	
	3.1 Project's Scope and Objective	
	3.2 Project Infrastructure	
04	Analysis and Design	
	4.1 Proposed Hardware	
	4.2 Analysis of Different Choices For Project Design	
	4.3 Analysis of Different Wireless Technologies	
	4.4 Wireless Protocols	
	4.5 Implementation of Wireless Network	
05	Implementation	
	5.1 Keil Microvision	
	5.2 X-CTU Software for Zigbee Setup	
	5.3 ISP Programmer	
	5.4 Configuration Zigbee Modules	
	5.5 Source Code	
06	Testing	
	6.1 Testing of PCB and Circuit Design	
	6.2 Testing of ADC	
	6.3 Testing of motors	
	6.4 Testing of PIR Sensor	
	6.5 Testing of Zigbee	
07	Results	
08	Discussion	
	8.1 Microcontroller	
	8.2 Power Supply	
	8.3Analog to Digital Convertor	
	8.4 DC Motors	
	8.5 L293D Current Motor Driver	
	8.6 Sensors	
	8.6.1 Temperature Sensor	
	8.6.2 PIR sensor	
	8.7 MAX 232	
	8.8 Serial Cable	
	8.9 DB9 Convertor	
	8.10 Wireless Camera and TV Card	
09	Conclusion	
10	Future Work	
10	Appendices	
TT	List of References	

LIST OF FIGURES

Figure #	Chapter wise Figures	Page #
	<u>Chapter # 01</u>	
Fig. 1	Block Diagram of Project	02
8	Chapter # 02	
Fig.2.1	Channel Allocation In The 2.4ghz ISM Band	05
Fig.2.1	Figure showing concept of DSSS	05
Fig.2.3	Rate and period are related to bandwidth by $R_s = 1/T_s = 2B$ when pulse shaping is used. $B_c >> B_s$	07
Fig.2.4	Zigbee Protocol Stack	
	<u>Chapter # 04</u>	
Fig.4.1	Circuit Diagram of Entire Hardware	
Fig.4.2	Proposed network	
	<u>Chapter # 05</u>	
Fig.5.1	Compilation of source code	
Fig.5.2	Run the Complied Program	
Fig.5.3	X-CTU Window	
Fig.5.4	Connecting the programmer to an AT89S52	
Fig.5.5	X-CTU software setting window	
Fig.5.6	X-CTU Test / Query window	
Fig.5.7	X-CTU Remote Configuration Window	
	<u>Chapter # 06</u>	
Fig.6.1	(a)Testing of ADC	
	(b) Testing of ADC	
Fig.6.2	Connection of PIR Sensor With Supply	
Fig.6.3	Connection of PIR Sensor With Supply	
Fig.6.4	Range Test between two Zigbee modules	
Fig.6.5	Signal Strength of Packets Received By the Xbee Module	
0	<u>Chapter # 07</u>	
Fig.7.1	Actions Performed by Motor Are Shown In the Hyper Terminal Window	
Fig.7.2	To Check the Temperature "T" Is Pressed and the Above Message Is Displayed	
Fig.7.3	When Human Being Comes In Front Of Sensor, Message 'LIFE DETECTED' Is	
e	Send To The Hyper Terminal.	
Fig.7.4	To verify the connectivity between two Zigbee modules, connect one with one	
-	computer and the other with another. The message typed at the terminal tab of	
	one Zigbee will be displayed at the terminal tab of other.	
	<u>Chapter # 08</u>	
Fig.8.1	Architecture of 89S52 IC	
Fig.8.2	Oscillator Connections	
Fig.8.3	External Clock Drive Configuration	

Fig.8.4	Regulator	
Fig.8.5	Example of Voltage Regulator IC	
Fig.8.6	CS is set to low for both \overline{RD} and \overline{WR} pulses	
Fig.8.7	Pin Diagram of Microcontroller with ADC0804	
Fig.8.8	Simple DC Motor	
Fig.8.9	Working of a DC Motor	
Fig.8.10	Working of a DC Motor in the Robot	
Fig.8.11	Ampere's Right Hand Rule	
Fig.8.12	Manufacturing of DC Motor	
Fig.8.13	Commutator and Brushes of DC Motor	
Fig.8.14	Motor Controller Using L293D	
Fig.8.15	L293D Interfacing with 8051	
Fig.8.16	L293D Interfacing with DC Motor	
Fig.8.17	Basic Centigrade Temperature Sensor	
Fig.8.18	PIR Sensor	
Fig.8.19	PIR Sensor Pin Diagram	
Fig.8.20	Pin Diagram of MAX 232	
Fig.8.21	Top View of MAX 232	
Fig.8.22	Serial Cable	
Fig.8.23	Male Connector	
Fig.8.24	Female Connector	
Fig.8.25	DB9 Connector	

LIST OF TABLES

Table #	Chapter wise Tables	Page #
	Chapter # 02	
Table 2	Wireless technologies and their frequency bands	
	<u>Chapter # 04</u>	
Table 4	Comparison of the wireless protocol	
	<u>Chapter # 08</u>	
Table 8.1	Function table	
Table 8.2	Truth table	
Table 8.3		
Table 8.4	Pin Description of MAX 232	
Table 8.5	Pin Numbers of DB9 Connector, their Names and Direction	

ABSTRACT

This report discusses the scope and detailed description of our final year project "Human Detection and rescue robot using Zigbee Technology".

The project is designed to detect lives when people are buried under the debris after disasters like earthquakes or plane crashes. It is equipped with sensors to sense the life and the environment inside the building and send the information to the central control unit. It can also be used in military application when terrorists or any such human beings are used to detect. It also has a wireless camera to tell us the path and the vision inside. Camera is also useful to transmit the sound. It is remotely controlled via RF technology. The RF module will be of Zigbee's.

Commands used to move the robot and check the temperature of the area, are send through the central control unit which has one Zigbee transceiver. The other Zigbee transceiver is carried by the robot which receives the commands and when life is detected it sends back the message "LIFE DETECTED" to the central control unit.

This report briefly tells about the system and its technical description. The focus of the report is to discuss the scope and objectives of our project, components used and describe the technology used in this project.