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ABSTRACT 

 

Seismic reflection is a key geophysical method for hydrocarbon prospecting, 

mapping geological features, primarily focusing on assessing reservoirs and their physical 

properties.  Research was conducted on the Kadanwari Gas Field, situated in the Middle 

Indus Basin, characterized by an extensional regime dominated by horst and graben 

structures. The study involves a comprehensive approach, beginning with a 3D seismic 

structural interpretation aimed at mapping the designated block's geological structure and 

reservoir quality. Subsequently, a petrophysical interpretation is executed to pinpoint 

zones of interest within the target formations, specifically focusing on the G, F, and E 

sand intervals within the Lower Goru Formation. A model-based post-stack inversion 

algorithm was utilized to characterize the reservoir, and various attributes such as 

instantaneous phase, trace envelope, and spectral decomposition were applied to identify 

thin beds. Shear sonic velocity (Vs) is determined using both the Castagna equation and 

machine learning. Upon comparison and validation using synthetic AVA gathers, it was 

evident that the machine learning-driven multi-regression approach significantly 

improved the predictive accuracy of shear sonic velocity (Vs), yielding results that are 

80% to 90% superior to an alternative method. Additionally, machine learning was 

employed to perform facies modeling aimed at categorizing the challenging-to-

distinguish thin sand and shale layers within the Lower Goru Formation into three distinct 

groups: sand, shale, and shaly sand. Finally, the research focused on computing 

geomechanical parameters, with a particular emphasis on automating the pre-

conditioning of petrophysical logs using machine learning. This automation greatly 

facilitated the automatic detection of layer boundaries of sand and shale of Lower Goru 

Formation. The comprehensive geophysical analysis of the Kadanwari area, empowered 

by advanced methodologies and machine learning, revealed the G and E sands of the 

Lower Goru Formation as promising reservoirs with significant hydrocarbon potential. 

Incorporating machine learning techniques, the study successfully deduced essential 

geomechanical parameters.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 General Introduction 

Geophysical interpreters construct simplified representations of what lies beneath 

the Earth's surface to better understand its geological characteristics. Various geophysical 

techniques are employed for subsurface investigations, each serving specific needs. 

However, seismic methods are adaptable and widely applied in fields such as engineering, 

mining, groundwater and salt dome exploration, environmental assessments, and most 

notably, the search for hydrocarbons (Kearey, 2002). Seismic reflection techniques have 

historically been a primary tool for identifying possible oil and gas deposits and gathering 

data regarding reservoir rocks' physical properties. Variations in rock properties, like 

density, can alter the seismic acoustic impedance. This shift has a noticeable impact that 

can be discerned in high-resolution seismic data. The estimation of the petrophysical 

properties of the reservoir is a crucial parameter in borehole interpretation (Kadri, 1995).  

3D seismic is a geophysical technique employed to analyze subsurface geology 

and serves as a valuable resource for pinpointing potential drilling locations. These 

surveys, often conducted on densely sampled grids, yield high-resolution 3D images that 

unveil intricate geological structures, particularly useful in complex exploration 

scenarios. The recording of 3D seismic data enables us to discern variations in the 

reservoir environment, such as fluid saturation and pore pressure (Yilmaz, 2001). 

Additionally, it aids in mapping reflections and faults, contributing to the interpretation 

of geological features and hydrocarbon potential (Badely, 1985). 

Seismic inversion techniques are employed to create models that describe the 

characteristics of underground rocks and fluids, utilizing data from seismic surveys and 

well logs. Its primary objective is to transform the entire seismic dataset into various 

quantitative rock properties, typically focusing on impedance values (Barclay, 2008). 
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Seismic attributes play a crucial role in offering qualitative insights for understanding 

both structural and stratigraphic features, such as channels, meanders, pinch-outs, thin 

bed turning, etc (Barens, 2001). 

Geomechanics is the field that explores how subsurface rock formations deform 

or undergo structural changes in response to changes in stress, pressure, and temperature. 

It has gained increasing significance in the oil and gas exploration industry (Busetti, 

2019). 

With the advancements in computer science algorithms, machine learning (ML) 

has emerged as a recent and powerful tool in the field of geosciences. It possesses the 

capability to unveil relationships within provided data, facilitating the prediction of 

desired outcomes (Gupta et al., 2021). In recent times, machine learning (ML) has 

advanced as a robust and highly efficient approach for accurately predicting shear sonic 

logs (DTS) while minimizing the need for extensive input datasets (Ahmed et al., 2022).  

 

1.2 Introduction to Study Area 

 The study area encompasses a portion of the Kadanwari Gas Field situated in the 

Khairpur district of Sindh, within the Middle Indus Basin of Pakistan (Figure 1.1). 

Kadanwari is a productive conventional gas field situated onshore in Pakistan, and it is 

operated by Eni Pakistan. The Kadanwari Gas Field is located near the Thar Desert, to 

the southeast of Sukkur, approximately 75 kilometres away, situated within the Middle 

Indus Basin of Pakistan. The coordinates for the study area are between approximately 

27°30'10" N latitude to 27°10'00" N latitude and 69°28'20" E longitude to 69°19'00" E 

longitude (Ahmed et al., 2007). 

Kadanwari mainly consists of a series of small structural traps, specifically fault-

bounded horst blocks. The presence of numerous gas-producing wells in the study area 

confirms it as a gas-prone region. The producing reservoirs in the Kadanwari Gas Field 

are the Lower Goru sands, which are of Cretaceous age. Topographically, the study area 

comprises sand dunes and is situated in a region with low rainfall. In terms of climate, the 
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area falls within a region that experiences extremely hot summers and very cold winters. 

The overall temperature range in this area varies between 46°C and 20°C. 

 

 

Figure 1.1  Geographical Location of Kadanwari cube 

 

1.3 Exploration History of Kadanwari Gas field  

The Kadanwari Gas Field, which is currently in production, was initially explored 

in 1989 and commenced production in May 1995 (Ahmed et al. 2007). In September 

1989, the Kadanwari-01 well was drilled, and it encountered dry gas in the sandstone of 

Khairpur District 

Thar Desert 

Sindh 

Baluchistan 

Punjab 

NWFP 

Gilgit 

Kashmir 
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the Lower Goru Formation, which belongs to the Lower Cretaceous age, at a depth of 

around 3,325 meters. The well yielded a gas rate of 29.6 million standard cubic feet per 

day (MMscfd). Two additional wells, Gorwar 01 and K 03, were drilled to delineate the 

extent of the reservoir pool. The Kadanwari-03 well was successful in producing gas at 

rates ranging from 29 to 38 million standard cubic feet per day (MMscfd). However, 

Gorwar 01 initially produced gas along with a percentage of water, but over time, the 

amount of water increased rapidly, leading to the abandonment of the well. The reservoir 

within this gas field exhibits characteristics of a shoreline-estuarine system that endured 

the influence of longshore currents and tidal effects for an extended period (Ahmad & 

Chaudhry, 2002). 

The reservoir in the Kadanwari Gas field is situated within the Lower Goru 

Formation sandstone, with a shaly sequence from the Upper Goru Formation acting as a 

sealing layer above it. All significant gas findings in the Middle Indus Basin come from 

the Lower Goru sands. As a result, various companies have extensively studied these 

sands. Every company has established its own classification for the sand packages within 

the Lower Goru Formation. ENI company categorized the Lower Goru sands into 

divisions ranging from A to H. To date, a total of 15 wells have been drilled in the 

Kadanwari Gas field , targeting various sand layers within the Lower Goru Formation. 

The majority of these wells have been primarily productive in the E and G sand divisions 

of the Lower Goru Formation. Currently, only six of these 15 wells remain in active 

production (Ahmad & Chaudhry, 2002). 

 

1.4 Literature review 

In the study by Ali et al. (2023), unsupervised machine learning and cluster 

analysis were used to categorize reservoir quality at the Kadanwari gas field in SE 

Pakistan. Using well-log data from four wells, the self-organizing map (SOM) was 

employed to identify three main lithofacies: sandstone, shaly sand, and shale. Additional 

techniques like sonic-neutron and M-N cross plots helped pinpoint the sandstone matrix, 

and cluster analysis grouped the reservoirs into four quality categories, rating sandstone 

as excellent and shale as poor (Ali et al., 2023).  
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The 2022 research article by Ahmed et al. focuses on predicting shear sonic log 

(DTS) and various petrophysical and elastic attributes in the Kadanwari Gas Field in 

Pakistan. Utilizing wireline logs and well tops from four wells, the study employs rock 

physics modeling and supervised machine learning algorithms—specifically Random 

Forest (RF), Decision Tree Regression (DTR), and Support Vector Regression (SVR)—

to fill in missing DTS log curves. Among the tested algorithms, Random Forest was found 

to be the most accurate for this application (Ahmed et al., 2022). 

Another research conducted by Austin et al. in 2018, a model-based inversion 

technique was applied to a field in the coastal swamp depobelt of the Niger Delta. 

Utilizing well log data and 3D full stack seismic data, the team employed model-based 

deconvolution to invert the stacked sections into pseudo-velocity sections. The study 

highlighted the efficacy of model-based inversion in characterizing thin sand intervals in 

heteroliths found in the Niger Delta, particularly when there's good well control in study 

(Austin et al., 2018). 

Ahmed et al.'s 2015 research investigated the application of Amplitude Versus 

Offset (AVO) forward modeling and attribute analysis in distinguishing fluids in 

geological formations. Using 3D seismic data and wireline logs, the study determined 

that AVO attributes, especially the fluid factor and intercept attributes, effectively 

differentiate hydrocarbon formations from background sands, highlighting clear contrasts 

between oil and gas sands versus water sands (Ahmed et al., 2015). 

In the 2017 research article by Tayyab & Asim, the application of spectral 

decomposition techniques, specifically continuous wavelet transforms (CWT) were 

applied to 3D post stack seismic data from the Indus Basin in SW Pakistan to detect 

fluvial sand reservoirs. The research revealed that CWT effectively pinpointed potential 

hydrocarbon-rich sands at various depths. When integrated with standard seismic 

attributes and 3D visualization, CWT improves reservoir characterization and aids in 

determining the best well placements, as evidenced in the Miano gas field. (Tayyab & 

Asim, 2017). 

 

1.5 Research Gap 
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The research findings from numerous scientists indicate that the primary focus 

has predominantly been on interpretation, petrophysics and seismic inversion. Over 

recent years, the industrial application of machine learning, particularly in seismic 

interpretation and inversion, has gained significant attention. Based on the thorough 

examination of the literature mentioned earlier, it becomes evident that there is a 

compelling requirement for conducting research focused on detecting thin beds and 

automating the classification and modelling of facies within the Lower Goru Formation 

of Kadanwari Gas Field. This research will utilize the most efficient machine learning 

algorithms currently available.  

 

1.6.1 Objectives of Research Work 

 The study aimed to accomplish the following goals: 

1. The identification of different horizons and subsurface faults through seismic 

structural interpretation. 

2. The reservoir characterization of Lower Goru Sand intervals by petrophysical 

analysis and model-based seismic Inversion. 

3. Evaluation of the most optimized seismic attributes applied on seismic data to 

confirm structural and stratigraphic interpretation specifically in the context of 

thin bed detection. 

4. Machine Learning-Based Vs Computation, AVO Validation, and Facies 

Modelling. 

5. Geomechanics with Automated Pre-Conditioning of Petrophysical Logs Using 

Machine Learning. 

 

1.7 Methodology of Research 

            The comprehensive workflow for the entire work procedure can be found in 

Figure 1.2 provided below. 
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Figure 1.2 Methodology adopted for research work. 

 

The work procedure begins by assessing the reservoir quality within the 

Kadanwari cube using conventional 3D seismic interpretation methods and structural 

analysis. Next, conduct a petrophysical interpretation to highlight zones of interest within 

target formations, specifically the G, F, and E sand intervals of the Lower Goru 

Formation. A model-based post-stack inversion algorithm is then employed to 

characterize the reservoir. To identify thin beds, attributes such as instantaneous phase, 

trace envelope, and spectral decomposition are applied. In addition, ML techniques are 

used to compute sonic shear (Vs) values, which are also derived from the Castagna 

equation. The sonic shear (Vs) outcomes are then validated using AVO/AVA (Amplitude 

Versus Offset/Angle) gathers. Conclusively, geomechanics are conducted with an 
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emphasis on automating the pre-conditioning of petrophysical logs via machine learning, 

which facilitates the automatic detection of layer boundaries in the Lower Indus Basin. 

 

1.8 Data Availability 

 Upon receiving approval from the Directorate General of Petroleum Concessions 

(DGPC) for the purposes of the MS thesis, data was sourced from LMKR. Two types of 

data have been acquired. 

 

1. Seismic data  

                 The seismic dataset comprises 12 square kilometres of 3D seismic data 

cube of Kadanwari area. 

 

2. Well data 

                       The well data includes a full suite of well logs and well tops for three 

exploratory wells:  

a) Kadanwari-03 

b) Kadanwari-10 

c) Kadanwari-11 

 

1.9 Required Software 

1. Kingdom suite/Interpretation suite for Seismic interpretation and Attributes. 

2. K-tron Wavelets Software for Machine learning work. 

3. Hampson-Russell Software for Inversion. 

4. G-Verse Geographics for Petrophysical analysis. 

5. K-tron Precision Matrix for location map generation 
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CHAPTER 2 

REGIONAL GEOLOGY, TECTONICS, AND 

STRATIGRAPHY 

 

2.1 Geological Configuration of the Middle Indus Basin 

There are essentially two types of faults: normal faults, which result from an 

extensional regime, and reverse faults, which are generated due to compressional forces 

or a compressional regime. The Middle Indus Basin is situated within an extensional 

regime, exhibiting a horst and graben structure that covers a substantial portion of the 

basin (Kemal et al., 1991). 

Near the Kirthar Fold Belt, the Middle Indus Basin comprises a passive roof and 

a passive back thrust. The passive roof thrust forms a frontal culmination wall at the 

Kirthar Fold Belt's margin and extends beyond the syncline intra-molasses detachment 

fault, which is located in the Kirthar Fore-deep (Zaigham and Mallick 2000). 

 

2.2 Structural Setting of the Kadanwari area 

The Kadanwari area is situated within an extensional regime and exhibits a horst 

and graben structure. This geological structure spans from strata beneath the Paleocene 

era to the Cretaceous era. The sands found in the Lower Goru Formation, marked as 

Intervals A, B, C, D, E, F, and G, hold particular importance for exploration in this region. 

The Lower Goru Formation has a westward dip and follows a NW-SE trending orientation 

(Kazmi and Abbasi, 2008). The Kadanwari Gas field is situated within the Panno-Aqil 

graben, flanked by the Mari–Kandhkot and Jacobabad–Khairpur Highs in the Middle 

Indus Basin of Pakistan, depicted in Figure 2.1 (Rehman et al., 2016). 
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Figure 2.1   Tectonic map of the Kadanwari region, illustrating major tectonic features in 

the vicinity (Modiefied after Jadoon et al., 2020) 

 

Hydrocarbon migration from the Sembar Formation occurs through fault planes 

towards the reservoir. It's worth noting that due to the absence of outcrops in the study 

area, structural interpretation relies solely on seismic data interpretation. 

 

2.3 Regional Geological Setting of study area 

 The Kadanwari Gas field is situated on the southeastern flank of the regional 

Khairpur-Jacobabad High, making it one of the most southern gas fields of the Middle 

Indus Basin (MIB). This elevation plays a crucial role in creating traps within the 

Kadanwari Gas Field (Ahmad et al. 2007). The formation of this high was accompanied 

STUDY AREA 
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by vigorous tectonic activity, resulting in numerous hydrocarbon-bearing structural traps 

in its surrounding regions, including the area being studied. During this period, several 

stratigraphic and combined structure-stratigraphic traps also emerged (Kazmi and Jan, 

1997). Gas fields like Kadanwari, Miano, and Sawan serve as examples of these 

stratigraphic and structure-cum-stratigraphic traps. 

The Indus Basin stretches across the Pakistan’s northwestern regions and the 

western parts of India, encompassing an approximate area of 873,000 km². It is flanked 

by the MMT in the north, the offshore Indus to its south, and the Indian Shield on its 

eastern side. The Indus Basin's western edge is delineated from the Baluchistan Basin by 

the Bela – Muslim bagh - Waziristan Ophiolitic belt (Wandrey et al., 2004). The Indus 

Basin can be categorized into two main regions: the upper section and the lower section, 

which is itself further divided into central and southern basins. In the platform area, 

certain basement highs serve as boundaries. The Sargodha High demarcates the Upper 

Indus Basin from the Middle Indus Basin. On the other hand, the Jacobabad High 

differentiates the Middle Indus Basin from the Lower Indus Basin. Kadanwari region has 

been divided into horst and graben structures because of wrench faulting. The Lower 

Goru Formation (LGF), predominantly made up of alternating layers of sand and shale, 

accounts for most of the production in this area (Ehsan et al. 2018). 

The area is geologically separated into two distinct zones: the foldbelt and the 

foreland areas. The foldbelt encompasses the Kirthar Range, which forms the western 

edge of the Indo-Pakistan Plate. On the other hand, the foreland, known as the Kirthar 

Foreland, is characterized by a continental shelf that slopes gently to the west. This 

foreland stretches eastward to the Indian Shield and extends southward, reaching the 

Indus offshore fan (Wandrey et al., 2004). 

 

2.4 Regional Tectonic Setting of Study Area 

 In terms of tectonics, the Kadanwari Gas field is positioned between two 

significant regional high areas, namely the Mari-Kandhkot High and the Jacobabad-

Khairpur High (as illustrated in Figure 2.2). To the east, it is demarcated by the Indian 

Shield, while its northern boundary is defined by the Sargodha High. In the west, it is 



12 

 

bounded by the fold and thrust belt of the Kirthar and Sulaiman Ranges, and to the south, 

it is bordered by the Jacobabad-Khairpur High (Zhang et al., 2022). 

 

 

 

Figure 2.2 Tectonic Map of the study area, surrounded by adjacent gas fields (Zhang et 

al., 2022) 

  

 

The Kadanwari Gas field comprises numerous low-relief faults, creating dip 

closures beneath the surface. These faults play a crucial role in creating stratigraphic 

trapping elements. Of particular importance are the dip closures formed by these faults 

and the wrench faults, as they partition the Kadanwari Gas field into distinct reservoir 

sections (Ali et al., 2019).  
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The structural features in the Kadanwari Gas field and neighbouring fields within 

the Central Indus Basin have been influenced and shaped by three primary tectonic events 

(Kazmi & Jan, 1997), as outlined below: 

a) The first tectonic event occurred towards the end of the Cretaceous period. During 

this time, there was an uplift of the Kadanwari Gas field in the northern and 

western directions. 

b) The second phase of this tectonic activity in the region involved extensive deep-

seated strike-slip faulting with an NW-SE orientation. These faults traversed 

through the entire Mesozoic section, penetrating deep into the formations, 

including the Chiltan Formation, and extending into younger Mesozoic rocks. 

c) The third tectonic event involved a significant basin inversion that occurred 

during the Late Tertiary period. This inversion led to the formation of the 

Jacobabad High (Figure 2.2). 

 

2.4.1 Uplifting Phase of the Major Tectonic Event (Late Cretaceous) 

 Seismic investigations in the region have revealed the truncation of the Upper 

Cretaceous sedimentary layers by the base of the Tertiary unconformity. Determining the 

extent of uplift is challenging due to the loss of several hundred meters of geological 

section to the west of the Kadanwari Gas field. The orientation of this Late Cretaceous 

feature aligns with the present-day Jacobabad High, following a NNE/SSW trend (Ahmad 

and Chaudhry, 2002). 

 

2.4.2 Wrench Faulting Phase of the Major Tectonic Event (Late Paleocene/Early 

Eocene) 

 Structural features in both Cretaceous and Tertiary strata were influenced by 

basement-related wrench faults, with these faults originating during the Late Paleocene 

to Early Eocene period. Four primary sets of wrench faults are identified in the studied 
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area, cutting across the entire Mesozoic sequence, from deeper rocks to younger 

formations. These faults exhibit predominantly vertical to sub-vertical orientations, 

aligning in a NNE to SSW direction in the field. As these deep-seated faults intersect with 

younger Mesozoic rocks, they interact with smaller faults within those formations. This 

interaction results in the creation of negative flower structures in the region, indicative of 

strike-slip deformation (Khan et al., 2022). 

 

2.4.3 Inversion Phase of the Major Tectonic Event (Late Tertiary) 

 During the Late Tertiary period, a substantial inversion process significantly 

impacted the Kadanwari Gas field. The axis of this inversion is believed to be the 

Jacobabad High, located approximately 20 kilometres west of the field. The high exhibits 

a NNW-SSE orientation. On the eastern side of the Kadanwari Gas Field, the rate of uplift 

associated with this high begins to decrease. 

Simultaneously, while the larger-scale inversion was occurring and the Jacobabad 

High was forming, a smaller-scale inversion process commenced due to the tectonic 

conditions in the Kadanwari Gas field area. This smaller-scale inversion resulted in the 

formation of a low-relief anticline observed in the upper E Sand, sharing the same 

orientation as the Jacobabad High (Nasir et al., 2011). 

 

2.5 Stratigraphy of the Study Area 

 In the Cretaceous period, sedimentary rocks were deposited, with the major source 

rocks being the Sembar Formation and the major reservoir rocks being the Goru 

Formation. In the early Cretaceous period, following the initiation of the northward rift 

of the Indian plate, the Lower Indus Basin began to experience a significant influx of 

clastic sediments (Zaigham and Mallick, 2000). This influx led to the deposition of the 

clastic Sembar and Goru Formations. The Sembar Formation primarily consists of black 

shale, siltstone, and argillaceous limestone. It is found to unconformably overlie the top 

of the Jurassic Chiltan Limestone (Wandrey et al., 2004). Situated above the Sembar 
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shales, the Goru Formation lies conformably and is further subdivided into the Upper and 

Lower Goru Formations. While the Formations of Lower Goru features a mix of sand and 

shale layers, the Upper Goru Formation is mainly made up of shale and marl. These early 

Cretaceous Sembar and Goru formations play a pivotal role in defining the primary 

petroleum prospects within the area  (Zaigham and Mallick, 2000). Figure 2.3 presents 

the stratigraphic column specific to the study area, while Figure 2.4 illustrates the 

generalized stratigraphic column for the Middle Indus Basin. In both figures, the source 

rock, reservoir rock, and seal rock are depicted as rectangular boxes within the 

stratigraphic columns. 

 

 

Figure 2.3  Stratigraphic chart of study area, highlighted formations of interests in 

rectangular box (Modified after Khan et al., 2022; Ahmed et al., 2004) 
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Figure 2.4    Generalized stratigraphic profile of the Middle Indus Basin (Shakir et al., 

2021). 

 

2.6 Paleo Depositional Environments of Reservoirs of the study area  

 The Lower Goru Formation (LGF), which dates back to the Cretaceous period, 

was formed in a shallow marine deltaic setting during a period of low sea levels. The 
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formation consists of detached medium-to-coarse-grained sediments that are layered on 

top of the more distal sediments (shale and siltstone) from the preceding high stand 

system tract (Berger et al., 2009).  

The Lower Goru sands, which have been identified as reservoirs in the Kadanwari 

Gas field, originated from a coastal estuarine system. This system was consistently 

influenced by longshore currents and tides over an extended period. The volume of sand 

being deposited at that time, in conjunction with these two processes, significantly 

determined the quality of these sand reservoirs. During the C sand deposition phase, there 

was a limited influx of sand. Major shifts were noted both in alignment with the shoreline 

(longshore bars) and perpendicular to it (estuarine/tidal channel bars). However, during 

the D and E sand deposition stages, there was a substantial increase in sand influx. The 

deposition pattern became predominantly aligned with the shoreline as the shallow sands 

underwent modifications due to longshore activities. Throughout the sedimentation 

periods for C, D, and E sands, the ancient coastline was oriented in the northeast-to-

southwest direction. In the Kadanwari well, the C sand's average thickness ranges from 8 

to 10 meters. In contrast, the vertical thickness of D and E sands can reach up to 26 meters. 

The D and E sand facies originated from a rich shore-parallel depositional sequence, 

making them consistent throughout the Kadanwari Gas field and easy to correlate. 

Meanwhile, the C sand facies are derived from a sand-deficient depositional sequence 

and can be matched in areas where estuarine and tidal channels are present (Ahmad et al. 

2007). 

G-sand is a component of the Lower Goru Formation. These G sands are 

characterized as clastic deltaic deposits that were laid down in a fluvial-to-shallow water 

environment during the Early Cretaceous period. Both G and E-sands receive their 

hydrocarbon charge from the shales found in the Lower Goru and Sembar formations. 

The seal for these hydrocarbons is created by transgressive marine shales originating from 

the Upper Goru Formation. F-sand is a component of the Lower Goru Formation, 

primarily consisting of delta-front sediments. The reservoir's formation results from a 

combination of high-discharge events that create mouth bars containing high-quality 

sand. During low-discharge periods, smaller mouth bars form, characterized by shale/silt-

dominated delta fronts. The resulting reservoir is relatively thin, approximately 5-10 

meters thick, with a gradual change in sediment characteristics. In later stages, mud-prone 

interlopes develop, serving as lateral seals within the reservoir (Ali et al., 2022). 
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2.7 Petroleum Play of the Study Area 

The Kadanwari Gas Field is renowned for possessing a well-established 

petroleum play system, encompassing confirmed reservoir rocks. Some of the significant 

components that collectively characterize the petroleum system in the area and are 

collectively referred to as the Sembar/Goru petroleum system (Wandrey et al., 2004) 

include: 

 

2.7.1 Source rock 

The Lower Cretaceous Shale within the Sembar Formation has been confirmed as 

a reliable source of both oil and gas in the region, largely attributed to its high organic 

content and optimal thermal maturity. The Sembar Formation is predominantly composed 

of type-III kerogen, which has the capacity to generate natural gas. In terms of reservoirs, 

the primary ones consist of deltaic and sandstones from a shallow-marine environment 

situated in within the region's Lower Goru Formation (Kadri, 1995). 

The shales found in the Lower Goru sands & Sembar have been identified as the 

primary source rocks in the MIB and LIB (Raza et al., 1990). These shales are regarded 

as the primary source of dry gas in the study area. Nevertheless, it's worth noting that 

carbonates and shales from deeper horizons may also play a role as potential sources of 

hydrocarbons. 

 

2.7.2 Reservoir rock 

 Within the Kadanwari Gas Field , the primary reservoirs are comprised of Eocene 

carbonates and Cretaceous Lower Goru sands (Kadri, 1995). Notably, recent significant 

discoveries have been made in the Lower Goru sands. Eni, a company involved in the 

field, has undertaken a detailed categorization of the Lower Goru sands, dividing them 

into subgroups, spanning from A to H-Sand intervals. Within these subgroup 

classifications, G-Sand and E-Sand are significant contributors as reservoirs. They exhibit 
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distinct behavior due to the presence of a shale member that acts as a barrier, effectively 

separating them (Ahmad and Chaudhry, 2002). 

 

2.7.3 Cap or seal Rock 

To confine hydrocarbons within the reservoir, the presence of a barrier is essential, 

and such barriers are referred to as cap rocks. In the study area, the Upper Goru Formation 

functions as a cap rock, characterized by a stratigraphic sequence primarily composed of 

marl and silt (Kazmi and Abbasi, 2008). 

The petroleum system predominantly relies on shale as its primary sealing 

mechanism. These shales are typically interspersed with sand layers and are positioned 

above the reservoirs. In producing fields, thin shale beds of varying thicknesses 

effectively serve as sealing layers. Additionally, other sealing mechanisms come into 

play, including impermeable seals situated above truncation traps, along fault lines, and 

as a result of facies changes in up-dip areas (Ahmad and Chaudhry, 2002). In the area 

under study, the Upper Goru shale and the interbedded shales within the Sui Main 

Limestone formation play a vital role as impermeable barriers, functioning as effective 

seals for the hydrocarbon reservoirs (Ali et al., 2022). 

 

2.7.4 Trapping Mechanism 

The Kadanwari Gas Field is positioned on the eastern and southeastern flanks of 

the Khairpur High, which extends in a north-south direction. This high is of considerable 

importance in the creation of hydrocarbon traps within the Kadanwari region. Within the 

study area, the traps primarily showcase structural features that have emerged from a 

combination of extensional and trans-tensional events. These events have led to the 

development of a notable trapping system, especially along tilted fault blocks and 

negative flower structures. Nevertheless, the most prominent traps are linked to trans-

tensional outcomes, particularly negative flower structures (Ali et al., 2022). 
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CHAPTER 3 

 3D SEISMIC INTERPRETATION 

 

3.1 Introduction 

The primary aim of conducting seismic interpretation is to identify and map all 

potential subsurface information and geological features using 2-D or 3-D seismic data 

processing techniques. The interpretation of seismic surveys focuses on locating 

structures, faults, and zones of horizons that are conducive to the accumulation of 

hydrocarbons (Badley, 1988). The geology of the region where the seismic reflection data 

was collected is crucial to accurately interpreting the data. A geological model is 

constructed through the process of interpretation, which provides a reasonably accurate 

subsurface representation of the area (Yilmaz, 2001) 

Seismic reflection data, which provides acoustic images of the subsurface, holds 

significant importance in enhancing our comprehension of sedimentary, tectonic, and 

magmatic systems (Wrona et al., 2021). Conventional seismic interpretation involves the 

identification and monitoring of seismic reflectors that exhibit lateral consistency. This 

process is done with the objective of mapping geological structures, stratigraphy, and 

reservoir architecture. The ultimate goal is to identify the presence of hydrocarbon 

accumulations, define their boundaries, and quantify their volumes (Coffeen, 

1986). Stratigraphic analysis and structural analysis are the two main approaches used to 

interpret seismic data. 

 

3.1.1 Stratigraphical & Structural Analysis 

Stratigraphic analysis involves the interpretation of sedimentary sequences that 

are genetically related, and which exhibit variations in the depositional environments of 
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sediments. Stratigraphic traps can arise from various geological features, such as 

erosional truncation, pinch-outs, reefs, etc. The extensional regime is the most common 

setting for stratigraphic investigation (Bashir et al., 2021). 

Structural analysis of the seismic section is conducted to identify any probable 

structures that might store and accumulate hydrocarbons. Numerous structural 

interpretations make use of two-way seismic reflection time rather than depth. Structural 

analysis searches for hydrocarbon-hosting structural traps such anticline, dome, horst,                

graben, pop-up structures, growth faults, flower structures, imbricate, and duplex 

structures (Kearey, 1996). 

 

3.2 Work Procedure of Seismic Interpretation 

The workflow of seismic interpretation steps that are taken to interpret the 3D 

seismic data is shown in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Workflow adopted for seismic data interpretation. 
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The seismic interpretation methodology employed for data analysis was 

conducted using the Kingdom SMT 8.6 software. The initial step involves loading the 

seismic & well data into the interpretation software. The second step involves conducting 

a quality assurance assessment of the seismic data to determine its suitability for 

utilization purposes. During the third step, a correlation is established between the well 

data and seismic data. There are two methods that can be employed to achieve this 

objective. The first method involves generating a Well Correlation, while the second 

method involves generating a Synthetic Seismogram. The Well Correlation method is 

utilized for fault interpretation, whereas the Synthetic Seismogram method is employed 

for horizon interpretation. Based on these interpretations, a TWT (Two-Way Travel 

Time) map is generated and subsequently converted into a depth map using the Depth 

Conversion process.  The created depth map is used for prospect identification since it 

shows how promising the region is or provides insights into the potential of a given area.   

 

3.3 Seismic data loading 

The provided dataset comprises a 3D seismic data cube covering 12 * 12 km2 of 

the Kadanwari block, which is accessible in the SEG Y format. The data is imported into 

the Kingdom SMT 8.6 software by utilizing SEG Y headers for the purpose of inline and 

crossline loading. Furthermore, the well data, comprising LAS files of Kadanwari 3, 10, 

and 11, were also imported into the software. A lot of attention is required throughout the 

process of data loading, since even minor inaccuracies could have severe consequences, 

potentially leading to critical outcomes. The integration of 3D seismic data and well data 

in the Kadanwari region enables a comprehensive analysis. 

 

3.3.1 Base Map  

Once the seismic data loading procedure is complete, a base map is generated to 

depict the orientation of the overall grid for the Kadanwari block. The base map is 

composed of two distinct categories of lines: inline, which extend from 1911 to 2111, and 

crosslines, span from 1730 to 2132, as illustrated in Figure 3.2. The inline direction is 
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oriented from northeast to southwest, while the crossline direction spans from northwest 

to southeast. Kadanwari 11 is located at the intersection of inline 1972 and crossline 1995. 

Kadanwari 10 is positioned at the intersection of inline 2013 and crossline 1969. 

Kadanwari 03 is found at the intersection of inline 2004 and crossline 1798. 

 

 

Figure 3.2  Base Map of Kadanwari Block 

 

3.3.2 Synthetic Seismogram Generation  

A synthetic seismogram refers to a seismic response that is derived from well data. 

The Synthetic seismogram was generated by utilizing the Time-Depth chart and well logs 

data (specifically sonic and density logs) acquired from well Kadanwari 11. Figure 3.3 

depicts the workflow of synthetic seismogram generation. 
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Figure 3.3 Workflow adopted for synthetic seismogram generation. 

 

 The seismic interpretation methodology employed for data analysis was conducted 

using the Kingdom. The acoustic impedance (AI) log is derived from well logs, namely 

the bulk density and sonic log. The statistical wavelet was derived from the control line, 

which was located directly under SP 1981, where the well was located. The reflection 

coefficient series (RC) was obtained by convolving this wavelet with AI contrast. 

Subsequently, this RC is then convolved with the source wavelet (Theoretical or 

Extracted) to produce the synthetic seismogram. The primary purpose of a synthetic 

seismogram is to calibrate seismic reflections by aligning them with formation markers 

derived from the well logs. Utilizing the generated seismogram to validate the horizon. 

The horizons that were selected are as follows: 

i. G Sand 

ii. F Sand 

iii. E Sand 

Figure 3.4 displays the synthetic seismogram. 
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Figure 3.4 Synthetic seismogram generated from Kadanwari-11 well. 

 

3.3.3 Seismic to Well Tie 

The seismic data is represented in the time domain and possesses a low-frequency 

content. In contrast, well-log data is presented in the depth domain and exhibits relatively 

higher frequencies. So, to create a correct time-depth relationship, the process of seismic-

to-well tie is employed to establish a correlation between well log data and seismic 

volume in the proximity of the well. The establishment of time-depth relationships is 

typically based on check shots or the assignment of sonic log calibration to the well. If 

any mismatches are observed, various processes can be employed. Sometimes, a simple 

time shift is sufficient. Otherwise, the synthetic trace may be stretched and squeezed to 

get the best match with the seismic trace. This method allowed for the identification of 

horizons by getting the most precise match at reservoir levels. Once the well to seismic 

tie correlation was established, synthetic seismogram was then shown on control lines for 

the purpose of horizon picking as shown in Figure 3.6 given in next sections below. 

 

3.3.4 Horizon Interpretation 

The fundamental responsibility of a seismic data interpreter is to analyze and 

interpret various horizons present in a seismic section. The interpreter must possess 
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comprehensive knowledge regarding the various structures that exist within the 

designated area, as well as a thorough understanding of the stratigraphy. The correlation 

between the well tops and the seismic data is utilized to precisely identify the positions 

of the horizons on the seismic section (Stewart, 2012).  

To interpret the horizon, activate the seismic interpretation under processes in the 

input window. The synthetic and well tops were then presented on the seismic section. 

This was done to identify the event that required interpretation. Figure 3.5 depicts three 

horizons interpreted on seismic section using the well-seismic tie information from the 

synthetic seismogram, with TWTs ranging from 2.3 to 2.4. The selected horizons 

represent sand intervals of Lower Goru Formation, which are as follows: 

i. G Sand 

ii. F Sand 

iii. E Sand 

 

 

Figure 3.5:  Seismic section along with horizons of interest and faults at inline 2021. 
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3.3.5 Fault Picking 

Faults are identified and analyzed on seismic sections when there is a discernible 

discontinuity or fracture in the layers of rock. To accurately identify faults, it is imperative 

to have a comprehensive understanding of their behavior in response to regional stresses 

(Sheriff, 1995). Fault correlation refers to the development of a network of faults that 

traverse through various geological strata/formations. These faults serve as a conduit or 

passageway for hydrocarbon in oil and gas exploration.  They also act as a geologic seal, 

preventing additional hydrocarbon migration from the reservoir. The faults are more 

obvious on the seismic inline, which is the seismic line that runs parallel to the strike 

(Munir et al., 2014). In my research field, I have identified five faults, and these are 

visually depicted in the interpreted figures, which are illustrated below in the following 

sections. The hunting tool was used to interpolate the data throughout the whole cube as 

each line was interpreted, enabling the software to automatically choose the proper 

horizons based on the identified interpretation Similarly, faults were highlighted on every 

single inline across the whole cube, and fault surfaces were produced for the entire cube. 

 

3.3.6 Fault Polygons 

The creation of fault polygons holds significant importance in the context of 

contouring a specific horizon in terms of both time and depth. In any mapping software, 

it is essential to convert all faults into polygons before initiating the contouring process. 

This is necessary because if a fault is not transformed into a polygon, the software won't 

identify it as a barrier or a disruption in contour lines. Consequently, this oversight could 

obscure potential closures influenced by faults, leading to an inaccurate portrayal of the 

subsurface. 

 

3.4 Seismic Section Interpretation 

The three horizons in the 3D volume cube were interpreted on the seismic i.e., G-

sand, F-sand, E-sand, based on well to seismic correlation of synthetic seismogram. The 
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color scheme is utilized to distinguish the horizon. The trends of horizons and the style 

of structures were marked on the time-based seismic sections. In-line profiles have been 

chosen for interpretation as they run parallel to the structural dip. The orientation of 

inlines is NE to SW so horizons are also dipping in the same direction. Both G and E-

sands receive their hydrocarbon charge from the shales found in the Lower Goru and 

Sembar formations. The seal for these hydrocarbons is created by transgressive marine 

shales originating from the Upper Goru Formation.  

Kadanwari is situated in an extensional regime dominated by normal faults, the 

structures associated with it include horsts and grabens. The detection of the faults was 

made more difficult by low data quality. A total of five faults are interpreted from F1 to 

F5 with MF1 and MF2 being the major ones. Several faults, including MF1, MF2, and 

F3, persist throughout the section, spanning the whole survey area. However, the other 

two faults terminate within the center of the survey after interpretation on a limited 

number of lines. Major faults are identified by their depth of penetration, and they are all 

connected in the lower Indus at the level of Chiltan. All faults intersect the horizons of 

the Lower Goru sands, namely the G, F, and E sands.  The faults identified within this 

formation are of a regional nature. Additionally, it was observed from the section that 

there was little or no horizontal displacement (fault heave) between the layers of strata. 

The trend of Major Fault F1 is from NE-SW and dipping toward the southwest SW. The 

trend of Major Fault F2 is from NW-SE and dipping toward southeast SE. Fault F3 trends 

generally in an NE-SW direction and is inclined or dipping towards the SW.  Fault F4 

trends generally in an NW-SE direction and is inclined or dipping towards the NE. Fault 

F5 trends generally in an NW-SE direction and is inclined or dipping towards the East.  

The major faults, MF1 and MF2, are dipping away from each other, creating a 

horst-like structure in this region. On the other hand, MF2 and F3 faults dip towards each 

other, forming a graben. F3 and F4 are once again dipping away from each other, creating 

another horst-like structure, and F4 and F5 dip in the same direction towards the 

southeast, indicating normal faults. So, the identification of normal faults forming horst 

and graben structures on the seismic sections provides evidence that the Kadanwari Block 

is underlain by extensional tectonics. The Interpreted sections along with horizons and 

faults are shown in Figures 3.6 to Figure 3.9. 
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Figure 3.6 Interpreted seismic section depicting horizons and faults at Kadanwari-11 

Well, Inline 1981. 

 

 

Figure 3.7 Interpreted seismic section depicting horizons and faults at Inline 1921. 
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Figure 3.8 Interpreted seismic section depicting horizons and faults at Inline 2096. 

 

 

 

Figure 3.9 Interpreted seismic section depicting horizons and faults at Inline 2021. 
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3.5 Contour Maps 

The Contour maps also referred to as topographic maps, represent variations of 

geological characteristics in the three-dimensional surface like thickness, depth, time, 

porosity, and others across a specific area by employing two-dimensional contour lines 

that denote consistent or same values (Ahmad et al., 2021). These contour maps portray 

the structural relief of the formation, indicating any faulting, folding, and dip of the strata. 

Seismic interpretation results are typically presented in the form of maps. Mapping 

constitutes an integral aspect of data interpretation, with the seismic or contour map often 

serving as the final output of seismic exploration (Coffeen, 1984). 

 Contours are lines that connect points with equal values of time, elevation, or 

depth. The first step in seismic interpretation is the generation of time contour maps using 

Two-Way Travel Time (TWT) because seismic data is in the time domain (Davarpanah 

& Akhlaghi, 2017). Subsequently, these time sections are converted into depth sections 

by the application of a velocity function, resulting in the construction of depth contour 

maps. To create a contour map, the process involves generating a horizon grid using the 

Grid and Contour tool, upon which the contour lines are subsequently generated (Khan et 

al., 2016) 

The spacing of contour lines indicates the steepness of the terrain. Contour lines 

that are closely spaced indicate steep slopes, whereas lines that are widely spread indicate 

gentle slopes or terrain (Ahmad et al., 2021). Another crucial aspect of a contour map is 

its scale, which represents the ratio between the distances depicted on the map and their 

corresponding distances on the actual ground. The sudden interruption or displacement 

of contour lines can sometimes suggest the presence of a fault in the subsurface. Structural 

highs often serve as areas where hydrocarbons tend to accumulate. These are readily 

identifiable by observing a series of concentric closed contours with decreasing time 

values toward the center. 

 

3.6 Time & Depth Contour Map Preparation 
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A time contour map is a graphical representation that includes specific lines 

representing time values. These time values on the map indicate the actual duration it 

takes for seismic waves to travel from the source, penetrate the subsurface, and finally 

reach the receiver. In the context of a two-way time (TWT) contour map, it primarily 

reveals the highs and lows in the geological structure. On a TWT contour map, areas with 

smaller time values are referred to as "highs" because they correspond to shallower 

locations, while larger time values indicate deeper areas and are termed as "lows"  

(Hossain et al., 2021). 

Depth contour maps provide information through depth values, making it simpler 

to identify the location of subsurface horizons. These maps also offer preliminary 

estimates of reservoir size and reveal details about structural closures. To convert time 

measurements to depth, velocity data is essential. I created velocity grids for each horizon 

to acquire this necessary velocity information. The "Extended Math" feature in 

KINGDOM 8.4 software facilitated the time-to-depth conversion using the formula: 

S=V× t/2. 

Velocity information is given in Table 3.1. 

 

Table 3.1: Velocity data for each horizon, for conversion of time to depth values. 

Formation G Sand  F Sand  E Sand  

Velocity  2752.975 2806.806 2778.834 

 

The TWT contour maps for the three horizons were created to visually represent 

the structural layout of the research area. Out of these E-sand and G-sand are the major 

reservoirs. Time and depth contour maps have been created and analyzed for the horizons 

mentioned below. 

1. G-sand 

2. F-sand  

3. E-sand 
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The Kingdom software was utilized to generate all contour maps, employing the 

"Flex Gridding" algorithm for their creation. 

 

• Major interpretation of all contours 

In all contour maps of time & depth, the light-yellow color represents the lowest 

time and depth values, indicating shallower regions, while the blue color signifies the 

highest time and depth values, representing the deepest parts. As previously mentioned, 

polygons have been used to delineate and highlight five distinct faults. The faults 

identified within this formation are of a regional nature. Additionally, it was observed 

from the map that there was little or no horizontal displacement (fault heave) between the 

layers of strata. The major faults, MF1 and MF2, are dipping away from each other, 

creating a horst-like structure in this region. On the other hand, MF2 and F3 faults dip 

towards each other, forming a graben. F3 and F4 are once again dipping away from each 

other, creating another horst-like structure, and F4 and F5 dip in the same direction 

towards the southeast, indicating normal faults. The closures observed within this field 

are primarily dependent on faults. These fault-dependent closures play a crucial role in 

preventing the further migration of hydrocarbons within the field.  Therefore, the contour 

map reveals the presence of normal faults forming horst and graben structures. 

A scale of 1:100000 meters was utilized to create contour maps, with a rainbow 

color gradient indicating time values in seconds and depth values in meters. The 

identification of normal faults forming horst and graben structures on the contour maps 

provides evidence that the Kadanwari Block is underlain by extensional tectonics. 

 

3.6.1 TWT Contour Map G Sand 

           The TWT contour map for the G Sand horizon was generated by combining the 

base map with fault polygons, shown in Figure 3.10. The horizons exhibit a trend 

extending from the northeast to the southwest. The contour interval was defined at 5 

milliseconds or 0.005 seconds, effectively displaying variations in time across the range 

of 2.25 seconds to 2.335 seconds.  
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Upon analyzing the time contour map for the G Sand, a clear trend becomes 

apparent. Specifically, the region extending from the southwestern side towards the 

central area exhibits a shallowing pattern, with contour values decreasing gradually as 

one moves toward the central region. This shift in colors, ranging from red to yellow, 

signifies a transition from deeper to shallower regions. Conversely, on the northeastern 

side, the contour values are notably higher, indicating deeper areas. In the middle region, 

situated between Major Faults MF1 and MF2, the contour values significantly decrease, 

suggesting that this central region is the shallowest portion of the map. This area holds 

potential promise for hydrocarbon accumulation because hydrocarbons tend to 

accumulate in regions where contour values are low, signifying relatively shallower 

depths. This indicates that this promising region holds potential as a future prospect. 

 

 

Figure 3.10 TWT contour map of G sand, exhibiting horst and graben structures. 

 

3.6.2 Depth Contour Map G Sand 

C.I = 5 ms 
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A depth structure contour map for G Sand was generated employing a velocity 

model, as depicted in Figure 3.11. This map broadly reflects the structural configuration 

observed in the Time-Depth-Structure (TWT) contour map of G Sand. The G horizon is 

dipping from the northeast to the southwest. The contour interval, set at 5 meters, 

effectively showcases fluctuations in depth within the range of 3045 to 3160 meters. 

A strong correlation was observed between the structural time map and the 

structural depth map of this G Sand. In the depth contour map of G sand, the regions that 

indicate shallower time intervals in TWT time also correspond to shallow depth areas, 

and conversely, the areas with higher depth values in the contour map align with higher 

TWT time values. Therefore, the contour map reveals the presence of normal faults 

forming horst and graben structures. 

 

 

Figure 3.11 Depth contour map of G sand, exhibiting horst and graben structures. 

 

 

C.I = 5 m 
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3.6.3 TWT Contour Map F Sand 

The contour map for the F Sand horizon was created by merging the base map 

with fault polygons, as illustrated in Figure 3.12. These horizons display a pattern that 

extends from the northeast to the southwest. The contour interval was set at 5 

milliseconds, equivalent to 0.005 seconds, providing a clear representation of time 

variations ranging from 2.235 seconds to 2.39 seconds. 

Upon analyzing the time contour map for the F Sand, a clear trend becomes 

apparent. Specifically, the region extending from the southwestern side towards the 

central area exhibits a shallowing pattern, with contour values decreasing gradually as 

one moves toward the central region. This shift in colors, ranging from red to yellow, 

signifies a transition from deeper to shallower regions. Conversely, on the northeastern 

side, the contour values are notably higher, indicating deeper areas. In the middle region, 

situated between Major Faults MF1 and MF2, the contour values significantly decrease, 

suggesting that this central region is the shallowest portion of the map. This area holds 

potential promise for hydrocarbon accumulation because hydrocarbons tend to 

accumulate in regions where contour values are low, signifying relatively shallower 

depths. This indicates that this promising region holds potential as a future prospect. 

The similarity in the trend of Fault F3 and the TWT (Two-Way Travel Time) F Sand 

contour indicates that there is a correlation between the fault trend and the contour. This 

correlation suggests that normal faults are likely present, forming horst and graben 

structures. 
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Figure 3.12 TWT contour map of F sand, exhibiting horst and graben structures. 

 

 

3.6.4 Depth Contour Map F Sand 

A contour map depicting the depth structure of F Sand was created using a 

velocity model, as illustrated in Figure 3.13. This map generally captures the structural 

pattern observed in the Time-Depth-Structure (TWT) contour map of F Sand. The horizon 

exhibits a consistent direction, stretching from the northeast to the southwest. With a 

contour interval of 5 meters, it effectively highlights variations in depth ranging from 

3132 to 3316 meters. 

A strong correlation was observed between the structural time map and the 

structural depth map of this F Sand. In the depth contour map of F sand, the regions that 

indicate shallower time intervals in TWT time also correspond to shallow depth areas, 

and conversely, the areas with higher depth values in the contour map align with higher 

C.I = 5 ms 
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TWT time. Therefore, the contour map reveals the presence of normal faults forming 

horst and graben structures. 

 

 

Figure 3.13 Depth contour map of F sand, exhibiting horst and graben structures. 

 

3.6.5 TWT Contour Map of E Sand 

           The contour map for the E Sand horizon using TWT (Two-Way Travel Time) was 

created by merging the base map with fault polygons, as depicted in Figure 3.14. The E 

horizon exhibits a dip from the northeast to the southwest direction. The contour lines are 

spaced at intervals of 5 milliseconds or 0.005 seconds, effectively representing time 

variations within the range of 2.335 seconds to 2.415 seconds. 

Upon analyzing the time contour map for the E Sand, a clear trend becomes 

apparent. Specifically, the region extending from the southwestern side towards the 

central area exhibits a shallowing pattern, with contour values decreasing gradually as 

C.I = 5 m 
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one moves toward the central region. This shift in colors, ranging from red to yellow, 

signifies a transition from deeper to shallower regions. Conversely, on the northeastern 

side, the contour values are notably higher, indicating deeper areas. In the middle region, 

situated between Major Faults MF1 and MF2, the contour values significantly decrease, 

suggesting that this central region is the shallowest portion of the map. This area holds 

potential promise for hydrocarbon accumulation because hydrocarbons tend to 

accumulate in regions where contour values are low, signifying relatively shallower 

depths. This indicates that this promising region holds potential as a future prospect.  

The similarity in the trend of Fault F3 and the TWT (Two-Way Travel Time) E Sand 

contour indicates that there is a correlation between the fault trend and the contour. This 

correlation suggests that normal faults are likely present, forming horst and graben 

structures. 

 

 

Figure 3.14 TWT contour map of E sand, exhibiting horst and graben structures. 

 

C.I = 5 ms 
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3.6.6 Depth Contour Map of E Sand 

             A depth contour map for the E Sand formation was created using a velocity 

model, as shown in Figure 3.15. This map closely mirrors the structural pattern seen in 

the Time-Depth-Structure (TWT) contour map for the E Sand. The horizon exhibits a 

consistent pattern extending from the northeast to the southwest. By using a contour 

interval of 5 meters, it effectively highlights variations in depth ranging from 3295 to 

3405 meters. 

A strong correlation was observed between the structural time map and the 

structural depth map of this E Sand. In the depth contour map of E sand, the regions that 

indicate shallower time intervals in TWT time also correspond to shallow depth areas, 

and conversely, the areas with higher depth values in the contour map align with higher 

TWT time. Therefore, the contour map reveals the presence of normal faults forming 

horst and graben structures. 

 

 

 

Figure 3.15 Depth contour map of E sand, exhibiting horst and graben structures. 

C.I = 5 m 
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CHAPTER 4 

PETROPHYSICAL ANALYSIS  

 

4.1 General Introduction 

Petrophysical analysis examines reservoir rocks' physical and chemical properties 

and their interactions with fluids (Tiab and Donaldson, 2004). Petrophysical logs help in 

determining factors like rock type, porosity, pore structure, permeability, saturation of 

hydrocarbons, water saturation, etc. This data assists in the identification of productive 

zones, confirming the dimensions of hydrocarbon-rich layers in terms of depth and 

thickness, distinguishing between oil, gas, and water within a reservoir, and calculating 

reserve estimates (Rider, 2002). 

Petro physicists utilize various well logs including resistivity, caliper, gamma ray 

(GR), sonic log (DT), neutron logs, and many others, to gather insights about the 

subsurface. Each well log holds its distinct significance and provides accurate and 

quantitative data regarding reservoir properties like permeability, porosity, net pay zone, 

shale volume, and fluid content (Senosy et al., 2020). 

 

4.2 Methodological Framework 

This chapter contains a petrophysical interpretation of the Kadanwari-10 and 

Kadanwari-11 wells, situated in the Kadanwari Gas Field. The interpretation of these 

wells was carried out using Gverse Geographix software. The workflow diagram for 

petrophysical analysis is presented in Figure 4.1 below.  
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Figure 4.3 Workflow for evaluating petrophysical properties 

 

Each step of the analysis is described in the following sub-sections. 

 

4.3 Raw Log Curves 

Raw log curves describe the underlying rock formations directly, indicating 

variations in lithology, fluid content, and other reservoir features. These curves form the 

basis for petrophysical analysis and interpretation. To extract important insights about the 

reservoir's potential for hydrocarbon exploration and production, raw log data is 

converted into relevant petrophysical parameters via a series of statistical transformations 

and quality control steps. The full set of wireline log data for wells Kadanwari-10 and 

Kadanwari-11 is available in LAS format. This dataset contains SP, Calliper, GR, 

Resistivity (Complete suite), Sonic, Neutron, Density, and PEF log raw curves. 

 

4.4 Log Data Quality Check 

In practical application, Well Logs often experience intrinsic issues such as noise, 

gaps, and spikes. A comprehensive quality assessment was performed on the logs at 

various depth levels to ensure the accuracy of the data they contain. To confirm the 
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reliability of all other logs, the diameter of the borehole was validated using a caliper log, 

since the values of these logs cannot be trusted in washout zones, requiring alternate 

procedures. If the logs fail to provide accurate information, subsequent calculations will 

yield errors, resulting in an inaccurate formation evaluation. This inaccuracy can lead to 

improper drilling and production plans, ultimately causing financial losses and wasted 

productive time. The quality control of these logs is of utmost importance because the 

precision of the logs directly impacts the accuracy of petrophysical analyses. 

 

4.5 Marking Zone of Interest 

    After completing a quality check, log curves have been adjusted to 

standard scales and units. The process of formation evaluation involved identifying and 

marking the significant zones of interest that have the potential to produce hydrocarbons 

based on the interpretation of multiple log responses. In my research, the targeted 

formations are G, F, and E Sands of Lower Goru formations. 

The criteria used to designate zones of interest are as follows: 

1. Starting with an examination of gamma-ray response, which gives a clear 

indication of lithology. The gamma-ray log responds to naturally occurring 

radioactive minerals like Uranium, Thorium, and Potassium. Shales typically 

have higher concentrations of these radioactive materials compared to sandstones 

and limestone. If the gamma ray log curve shifts towards higher values on the log 

scale, it indicates the presence of shale beds. Conversely, lower gamma ray values 

signal clean lithology, which characterizes an outstanding reservoir (Ali et al., 

2019). 

2. Next, it is essential to assess the borehole conditions by plotting the bit size scale 

in the lithology track and examining the correlation with caliper readings. The 

caliper log measures the diameter of the borehole at various depths. If the calliper 

reading surpasses the bit size, it suggests the presence of rugosity caused by 

caving or washouts in the borehole. Conversely, if the caliper reading is less than 

the bit size, it indicates the presence of a mud cake. If the caliper reading is close 

to the drill bit size, the borehole is in-gauge. Borehole instability can significantly 
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impact other log readings, potentially leading to errors in accurately estimating 

the reservoir's characteristics (Ali et al., 2019). 

3. The next step is to examine the resistivity values. When the MSF L (Micro 

Spherically Focused Log) displays higher resistivity than the LLD (Laterolog 

Deep), it often suggests that drilling mud filtrate has infiltrated the formation, 

displacing the native fluids (hydrocarbons or formation water). This is particularly 

relevant in more porous formations where mud filtrate can readily displace the 

formation fluids. Conversely, if the LLD exhibits significantly higher resistivity 

in comparison to the MFSL, it strongly indicates the presence of hydrocarbons in 

the uninvaded zone. This is because hydrocarbons possess a higher resistivity than 

water, and the LLD measures the resistivity of the native formation (Ali et al., 

2019). 

4. The density log provides insights into the porosity of the formation. In the Neutron 

Porosity (NPHI) log, we examine the hydrogen index. In areas with water-bearing 

formations, both the density and neutron logs often yield similar porosity values, 

causing them to be closely aligned or even overlapping on the log plot. In 

hydrocarbon-rich zones, especially those containing gas, the neutron log typically 

records a higher porosity compared to the density log. This leads to a distinct 

"crossover" effect where the neutron curve shifts to the right of the density curve. 

Gas zones exhibit the most pronounced crossover due to their very low density 

and hydrogen index. Oil zones may also display some degree of separation 

between the curves, although not as pronounced as in gas zones. 

Following the identification of zones of interest based on the criteria mentioned earlier, 

the next step involves the calculation of petrophysical parameters, which include 

determining the volume of shale, porosities, and water saturation, among others. 

 

4.5.1 Rugosity and mud-cake Assessment 

  Rugosity and mud cake is calculated using the caliper log to assess the condition 

of the borehole. The calculation involves utilizing both the bit size (BS) and caliper log 

(CAL) with the following formula  (Rider, 1986): 

Rugosity = Calliper (CAL) - BS 
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Mud-cake = BS - Calliper (CAL) 

Rugosity can significantly impact the reliability of the density log. When rugosity 

is pronounced, it suggests that the density log might be calibrated incorrectly because 

padded tools measure readings inaccurately. To validate the data, density correction is 

applied, and the reliability of the readings is assessed. If the corrected values remain 

unreliable, in such cases, density porosity might not be used, and porosity calculations 

via sonic measurements (PHIS) become the preferred option. Conversely, when rugosity 

is absent, it typically signifies more reliable data. These computation helps in 

understanding the irregularities or variations in the borehole's diameter, which can be 

essential for drilling and reservoir evaluation. 

 

 4.6 Volume of Shale Computation (Vsh) 

The estimation of shale volume was derived using the gamma-ray log, which 

captures the emission of natural radioactivity from geological formations. Shales are 

commonly enriched in radioactive elements, resulting in higher gamma-ray values, 

whereas sands and carbonates exhibit lower readings. Utilizing the shale volume 

estimation aids in lithology analysis by distinguishing between reservoir and non-

reservoir sections within the interval (Asquith and Gibson in 2004). 

Equation (Asquith and Gibson, 2004) to compute the volume of shale from the 

gamma-ray log: 

𝑉shale  =
( 𝐺𝑅𝑙𝑜𝑔 –  𝐺𝑅𝑚𝑖𝑛)

(𝐺𝑅𝑚𝑎𝑥 – 𝐺𝑅𝑚𝑖𝑛 )
 

 

4.6.1 Stieber Correction 

The Stieber Correction is employed when determining shale volume in shaly sand 

formations using Gamma Ray (GR) logs. This correction is necessary to adjust for the 

natural gamma radiation emitted by clean sand, thus enabling a more accurate assessment 

of shale content. Its use is crucial for achieving precise evaluations of reservoirs and 

supporting hydrocarbon exploration (GeolOil, n.d.). By distinguishing the radioactive 
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impact of shale, it improves the effectiveness of petrophysical analyses and refines 

reservoir characterization. The formula for this correction (Thomas & Stieber, 1975), is 

as follows: 

𝑉𝑠ℎ𝑆𝑡𝑖𝑒𝑏𝑒𝑟 =
𝐼𝐺𝑅

3 − 2 × 𝐼𝐺𝑅
 

Once the volume of shale (Vshale) is estimated, the remaining portion is 

considered the net reservoir, often referred to as the clean part. The primary purpose of 

estimating Vshale is to distinguish between the dirty and clean components within the 

zone of interest. 

The equation (Rider, 1986) used for calculating Vclean is as follows: 

𝑉𝐶𝑙𝑒𝑎𝑛 = 1 − 𝑉𝑆ℎ𝑙 

This equation subtracts the estimated volume of shale from 1, resulting in the volume of 

the clean, net reservoir. 

 

4.7 Porosities Calculation 

Porosity arises from various sources, including intergranular spaces, voids 

resulting from grain dissolution, and rock fractures. The symbol denoting porosity is "ϕ," 

and it can be expressed either as a percentage or in decimal form. Primary porosity forms 

between grains during the deposition process, but secondary porosity emerges as pore 

spaces expand due to fracturing and dissolution. Secondary porosity is predominantly 

observed in limestone. 

 

4.7.1 Calculation of Density Porosity (PHID) 

Density porosity provides insights into the density of a lithology. When density 

porosity yields a high value, it suggests that the material under examination is not very 

dense, as it contains pore spaces that could potentially house hydrocarbons. Bulk density 

and density porosity share an inverse relationship. An increase in bulk density typically 

results in a decrease in density porosity, and conversely, a decrease in bulk density often 
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corresponds to an increase in density porosity. This relationship underscores how the 

density porosity log can help discern variations in lithology and fluid content within 

subsurface formations. 

Density porosity is typically calculated using a density log (Schlumberger, 1974). 

The formula for density-derived porosity (φ den) is provided as: 

φ den =
( ρ𝑚𝑎 –  ρ𝑏)

( ρ𝑚𝑎 –  ρ𝑓)
 

Here's what each of these terms represents: 

φ den: Density-derived porosity. 

ρma: Matrix density of relevant lithology, 

ρb: Formation bulk density. 

ρf: Fluid density. 

The laboratory-computed matrix density (ρma) in g/cm³ for some important lithologies is 

as follows: 

Sandstone: 2.65 g/cm³ 

Limestone: 2.71 g/cm³ 

Dolomite: 2.8 g/cm³ 

 

4.7.2 Calculation of Sonic Porosity (PHIS) 

A sonic log device comprises a transmitter that emits sound waves and a receiver 

that captures and records the compressional waves as they reach the receiver. This log 

provides a recording of time (t) versus depth, representing the interval transient time (Δt), 

which is the time it takes for a compressional wave to traverse one foot of the formation. 

Δt is inversely proportional to the velocity of the sound wave and is influenced by the 

lithology and porosity of the formation (Asquith and Gibson, 2004). 

The formula for determining porosity from a sonic log is expressed by the 

following equation (Wyllie et al., 1958): 
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∅s =
( ∆𝑡𝑙𝑜𝑔 –  ∆𝑡𝑚)

(∆𝑡𝑓 – ∆𝑡𝑚 )
 

Here, in the equation: 

∅s represents the sonic-derived porosity. 

∆tlog is the interval transient time of the formation. 

∆tm is the interval transient time of the matrix. 

∆tf is the interval transient time of the fluid. 

 

4.7.3 Calculation of Neutron Porosity (PHIN) 

A neutron porosity log determines the concentration of hydrogen ions in the 

formation by measuring the interactions between high-energy neutrons and atomic nuclei 

in the rock. The neutron porosity value is directly obtained from the neutron log, and this 

log corresponds to the density log. 

 

4.7.4 Calculation of Average Porosity (PHIA) 

The average porosity (Фavg or PHIA) is calculated by averaging the porosity 

values obtained from either density (Фden) or sonic (Фsonic) logs with the neutron 

porosity (Фneutron) as follows: 

𝜑𝑎𝑣𝑔 =
( φ𝑑𝑒𝑛 +  φ𝑁)

2
 

OR 

𝜑𝑎𝑣𝑔 =
( φ𝑆 +  φ𝑁)

2
 

 

4.7.5 Calculation of Effective Porosity (PHIE) 
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Effective porosity provides a measure of the porosity within interconnected pores. 

This calculation excludes the contribution of shale since shale-prone zones typically 

exhibit little to no effective porosity. Effective porosity is a crucial parameter for 

calculating water saturation. The effective porosity can be calculated using the following 

formula, assuming no caving (Djebbar and Donaldson, 2004). 

𝜑𝑒𝑓𝑓 =  𝜑𝑎𝑣𝑔 × (1 − 𝑉𝑆ℎ𝑙) 

Here,   

 ∅avg = Average Porosity, ∅eff = Effective porosity 

In the presence of wellbore caving, the above formula can be adjusted as follows: 

compare Here,    

 ∅S = Sonic porosity 

 

4.8 Resistivity of Water (Rw) 

The Pickett plot method is a technique used to calculate the resistivity of water. It 

involves plotting deep resistivity (LLD) on the X-axis and porosity log (PHIA or PHIS) 

on the Y-axis, using the logarithmic form of the Archie equation. On this plot, saturation 

points (Sw) are represented as dots arranged along a straight line with a negative slope, 

typically denoted as "m." The lowest line on the plot corresponds to water zones, and the 

water resistivity can be estimated from a point on this line where Sw = 1.  

Once the water line is established, other parallel lines with different Sw values 

can be drawn, assuming a constant "n," often taken as 2. Subsequently, data related to Sw 

can be plotted and analyzed. The Pickett plot figures for estimating water resistivity in 

wells, Kadanwari-10 (with a resistivity of 0.033 ohms) and Kadanwari-11 (with a 

resistivity of 0.046 ohms) are shown in Figures 4.2 and 4.3, respectively. 

 



50 

 

 

Figure 4.2   Pickett Plot of Kadanwari -10 

 

 

Figure 4.3 Pickett Plot of Kadanwari -11 

 

4.9 Saturation of Water (Sw) 

Water saturation provides information about the quantity of water present in the 

pore volume of rocks. However, it cannot definitively determine whether the pores in the 

formation contain hydrocarbons or water. Therefore, an assumption is made that these 

pores are filled with water. Water saturation is then calculated, and from this value, the 

amount of hydrocarbons present in the reservoir can be determined. Archie (Archie, 1942) 

derived a relationship for the calculation of formation water resistivity (Rw), which is as 

follows: 
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(𝑆𝑤)𝑛 = (
𝑎

𝜑𝑚
) × (

𝑅𝑤

𝑅𝑡
) 

Parameters are defined as: 

a: The tortuosity factor, which is typically taken as 1. 

m: The cementation exponent, often assumed to be 2. 

n: The saturation exponent, is also frequently set to 2. 

Rw: The resistivity of the formation water, which has been calculated previously. 

Rt: The true resistivity of the formation (Laterolog (LLD) values). 

 

 

4.10 Saturation of Hydrocarbon (Shc) 

Hydrocarbon Saturation (Shc) in Kadanwari-10 and Kadanwari-11 was calculated 

using the following equation: 

Shc = 1 - Sw (Saturation of water) 

 

4.11 Interpretation of Kadanwari-10  

The objective of the petrophysical interpretation carried out on well Kadanwari-

10 was to detect and delineate hydrocarbon-bearing zones. This analysis entailed the 

evaluation of multiple log curves to ascertain the petrophysical characteristics of the well. 

 

4.11.1 G Sand 

The G sand of Lower Goru Formation in the Kadanwari Gas Field is known to be 

productive, indicating potential zones of interest, as shown in Figure 4.4. G sand is 

situated between depths of 3076 meters and 3250 meters in Kadanwari-10. Two 

prospective zones, designated as Zone A and Zone B, have been identified within the G 

sand interval at the Kadanwari-10 location. These zones exhibit respective thicknesses of 

10 meters and 11 meters, meeting the defined criteria for delineating zones of interest as 
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elaborated in section 4.5. Both these zones displayed consistent log readings, with 

crossovers in density and NPHI. LLD readings are on the right while MFSL appears on 

the left. The GR log is particularly useful in indicating potential shale regions. A cut-off 

value of 40% on the volume of shale log distinguishes between shale and sand, with 

values below this threshold indicating sand and values above indicating shale. Moreover, 

there's notable effective porosity, meeting the prerequisites for a reservoir, coupled with 

low water saturation and high hydrocarbon saturation. These observations led to the 

marking of the two zones (Figure 4.5). 

 

 

Figure 4.4 Petrophysical analysis and interpretation of the G Sand in Kadanwari-10. 

 

A closer view of the zones of interest within the G Sand is depicted in Figure 4.5 below. 
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Figure 4.5 Closure view of zones of interest of G Sand 

 

The petrophysical properties of zones of interest can be found in Table 4.1 below. 

 

Table 4.1 Petrophysical parameters of the Reservoir zones within the G Sand Formation 

at Kadanwari-10 well. 

Depth (m) 
Thickness 

(m) 

Vshl 

(%) 

PHIA 

(%) 

PHIE 

(%) 

Swa 

(%) 

Sh 

(%) 

Zone A 

(3169- 3179) 
10 20 10 8 35 65 

Zone B 

(3233- 3244) 
11 25 9 7 39 61 

 

Zone A 

 

Zone B 
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4.11.2 F Sand 

The F sand of Lower Goru Formation in Kadanwari Gas Field is recognized to 

exhibit productivity to a certain degree. Previous studies have highlighted that only a few 

beds, spanning 4-5 meters, are active producers in this sand. In this research, 

petrophysical analysis of the F Sand in Kadanwari-10 well identifies a potential zone of 

interest measuring 5 meters in thickness, from 3284m to 3289m, as depicted in Figure 

4.6. The F Sand is situated at depths between 3250m and 3325m. Within the F Sand, a 

specific zone has been identified that meets the criteria for zones of interest, as elaborated 

in section 4.5. The F Sand displays significant variations in the resistivity log, which 

could be attributed to either the matrix or the fluids present in the formation. 

 

 

Figure 4.6  Petrophysical Interpretation and analysis of F Sand in Kadanwari -10 

 

 Zone A 
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The petrophysical properties of zones of interest can be found in Table 4.2 below. 

 

Table 4.2  Petrophysical parameters of the reservoir zones within the F Sand Formation 

at Kadanwari-10 well. 

Depth (m) 
Thickness 

(m) 

Vshl 

(%) 

PHIA 

(%) 

PHIE 

(%) 

Swa 

(%) 

Sh 

(%) 

Zone A 

(3284- 3289) 
5 23 9 7 41 59 

 

 

4.11.3 E Sand 

The E Sand of Lower Goru Formation in Kadanwari Gas Field is recognized for 

its productivity. In Kadanwari-10, the E sand is found between depths of 3323 meters and 

3252 meters. Three distinct areas within the E sand in Kadanwari-10 have been identified 

as zones of interest based on the criteria detailed in section 4.5. Each of these zones 

exhibits consistent borehole conditions, with overlapping readings in density and NPHI, 

exhibiting crossover. The LLD readings are to the right, while MFSL is to the left. The 

GR log is particularly insightful for pinpointing potential shale areas. A threshold of 40% 

on the shale volume log differentiates between shale and sand; values beneath this cut-

off indicate sand, while those above suggest shale. Additionally, there's a significant 

effective porosity that aligns with the requirements for a reservoir. This is further 

complemented by low water saturation and high hydrocarbon saturation. These factors 

contributed to the identification of the three zones in the E sand, as displayed in Figure 

4.7. 
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Figure 4.7  Petrophysical analysis and interpretation of the E Sand in Kadanwari-10. 

 

The petrophysical properties of zones of interest can be found in Table 4.3 below. 

 

Table 4.3 Petrophysical parameters of the reservoir zones within the E Sand Formation 

at Kadanwari-10 well. 

Depth (m) 
Thickness 

(m) 

Vshl 

(%) 

PHIA 

(%) 

PHIE 

(%) 

Swa 

(%) 

Sh 

(%) 

Zone A 

(3337- 3346) 
9 11 12 10 22 78 

Zone B 

(3331- 3334) 
3 8 11 9 7 93 

Zone C 

(3326- 3328) 
2 10 10 8 30 70 

 

 

 

 

 

Zone C 

 Zone B 

Zone A 
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4.12 Interpretation of Kadanwari-11  

The objective of the petrophysical interpretation carried out on well Kadanwari-

10 was to detect and delineate hydrocarbon-bearing zones. Based on various log curves, 

conclusions about the petrophysical characteristics of the well have been drawn. 

 

4.12.1 G Sand 

The G sand in the Lower Goru Formation at the Kadanwari Gas Field is 

recognized for its productivity, pointing to potential areas of interest. In Kadanwari-11, 

this G sand lies between depths of 3165 meters and 3265 meters. Two distinct zones in 

this sand, each 9 and 10 meters thick, have been identified in Kadanwari-11 as meeting 

the criteria for zones of interest, as outlined in section 4.5. Consistent log readings with 

stable borehole conditions are evident in both zones, marked by crossovers in density and 

NPHI. LLD readings are on the right, while MFSL is on the left. The GR log stands out 

for its ability to identify possible shale areas. Using a 45% cut-off on the volume of shale 

log, it's possible to differentiate between shale (values above 45%) and sand (values 

below 45%). Additionally, there's a significant effective porosity, which fulfills the 

reservoir requirements, and this is complemented by low water saturation and elevated 

hydrocarbon saturation. These findings contributed to the demarcation of the two zones, 

as shown in Figure 4.8. 
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Figure 4.8  Petrophysical analysis and interpretation of the G Sand in Kadanwari-11. 

 

The petrophysical properties of zones of interest can be found in Table 4.4 below. 

 

Table 4.4: Petrophysical parameters of the reservoir zones within the G Sand Formation 

at Kadanwari-11 well 

Depth (m) 
Thickness 

(m) 

Vshl 

(%) 

PHIA 

(%) 

PHIE 

(%) 

Swa 

(%) 

Sh 

(%) 

Zone A 

(3210- 3220) 
10 17 13 11 9 91 

Zone B 

(3249- 3258) 
9 19 9 7 14 86 

 

 

 

 

Zone A 

 

Zone B 
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4.12.2 F Sand 

The F sand of Lower Goru Formation in Kadanwari Gas field has limited 

productivity, with only a few beds spanning 4-5 meters showing production capabilities. 

The petrophysical analysis of the F Sand points to a potentially productive zone of 5 

meters thick lying between depths of 3298 and 3303 meters, as depicted in Figure 4.9. 

This F Sand of Lower Goru Formation is generally located at depths ranging from 3265 

to 3340 meters. Specifically, one zone within the F Sand in the Kadanwari-11 well meets 

the criteria for zones of interest, as elaborated in section 4.5. The F Sand Formation 

exhibits significant variations in resistivity logs, which could be attributed to either the 

formation matrix or the fluids present.  

 

 

Figure 4.9  Petrophysical analysis and interpretation of the F Sand in Kadanwari-11. 

 

 

 Zone A 
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The petrophysical properties of zones of interest can be found in Table 4.5 below. 

 

Table 4.5: Petrophysical parameters of the reservoir zones within the F Sand Formation 

at Kadanwari-11 well 

Depth (m) 
Thickness 

(m) 

Vshl 

(%) 

PHIA 

(%) 

PHIE 

(%) 

Swa 

(%) 

Sh 

(%) 

Zone A 

(3298- 3303) 
5 25 7 6 21 79 

 

 

4.12.3 E Sand 

The productivity of the Lower Goru E Sand in the Kadanwari Gas field is well-

known. In Kadanwari-11, this E Sand layer is located at depths ranging from 3330 meters 

and 3364 meters. Two distinct areas of 5 and 7 meters thick within the E sand in 

Kadanwari-11 have been identified as zones of interest based on the criteria of marking 

zone of interest outlined in section 4.5. Each of these zones exhibits stable borehole 

conditions, with overlapping readings in density and NPHI, exhibiting crossover. The 

LLD readings are to the right, while MFSL is to the left. The GR log is particularly 

insightful for pinpointing potential shale areas. A cutoff of 45% on the shale volume log 

differentiates between shale and sand; values beneath this cut-off indicate sand, while 

those above suggest shale. Additionally, there's a significant effective porosity that aligns 

with the requirements for a reservoir. This is further complemented by low water 

saturation and high hydrocarbon saturation. These factors contributed to the identification 

of the two zones in the E sand, as displayed in Figure 4.10. 
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Figure 4.10  Petrophysical analysis and interpretation of the E Sand in Kadanwari-11. 

 

The petrophysical properties of zones of interest of E Sand can be found in Table 4.6 

below. 

 

Table 4.6: Petrophysical parameters of the reservoir zones within the E Sand Formation 

at Kadanwari-11 well 

Depth (m) 
Thickness 

(m) 

Vshl 

(%) 

PHIA 

(%) 

PHIE 

(%) 

Swa 

(%) 

Sh 

(%) 

Zone A 

(3345- 3350) 

5 13 12 10 10 90 

Zone B 

(3252- 3259) 

7 15 14 12 7 93 

 

 

 

Zone A 

 
Zone B 
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CHAPTER 5 

SEISMIC INVERSION 

 

5.1 Seismic Inversion 

Seismic inversion techniques are employed to create models that describe the 

characteristics of underground rocks and fluids, utilizing data from seismic surveys and 

well logs. When well data is unavailable, these properties can still be deduced solely from 

the seismic data. In the oil and gas sector, this technique is commonly employed to 

identify layers containing hydrocarbons beneath the earth's surface (Maurya & Sarkar, 

2016). 

Seismic data is produced via the process of forward modeling. It results from the 

convolution of the earth's reflectivity with a source wavelet. This convolution produces a 

trace with a limited bandwidth, which is governed by the seismic wavelet. The seismic 

data's band-limited characteristic means it lacks low frequencies, inhibiting the 

impedance trace from capturing the fundamental impedance or velocity structure essential 

for geological interpretation. Efforts to retrieve this resolution typically involve obtaining 

the reflectivity via a deconvolution process, which poses an inverse problem. Seismic 

inversion stems from inverse modeling (Zhang & Deng, 2018). 

 Seismic inversion methodologies can be broadly characterized into two main 

types: Pre-stack inversion and post-stack inversion. While post-stack seismic data solely 

yields P impedance because it's defined by the seismic amplitude R(0), pre-stack data 

gives both P and S acoustic impedance. Additionally, it provides derivatives such as 

Vp/Vs, Lambda-rho, and Mu-rho, which are vital for determining fluid and rock 

properties beneath the surface. The foundation of seismic inversion lies in a 1-D 

convolution model. In this model, seismic traces result from the convolution of the earth's 

reflectivity with a wavelet, influenced by noise (Barclay, 2008). In this study, I will be 

focusing on implementing post-stack inversion. 
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5.2 Post Stack Inversion 

Post-stack inversion is a process employed in the geophysical industry to extract 

rock properties, such as impedance, from the reflectivity information in the seismic data. 

It doesn't need full aperture stacked data but uses only near-offset stack data to produce 

results that are both physically sound and geologically trustworthy. This inversion 

provides a rapid means to improve the fundamental stratigraphic interpretation of post-

stack seismic information (Das et al., 2017). 

Seismic data that has been stacked is used as the input for post-stack inversion. 

The stacking process helps in diminishing the influence of noise on the signal, ensuring 

that the true amplitude remains unaltered. Traces that originate from the common 

midpoint (CMP) are chosen and subsequently stacked at an incidence angle of zero. The 

seismogram produced from this depicts reflectivity at a standard incidence. Thus, when 

inversion is carried out on this type of seismic data, it's referred to as post-stack seismic 

inversion (Veeken & Da Silva, 2004). 

The basic procedure involves transforming seismic amplitude data by employing 

model base algorithm, which is collected by summing traces (or "stacking"), into a model 

of subsurface properties. The process begins by generating an initial impedance model 

from well log data and seismic data or any available prior information. Then, using this 

model, synthetic seismic data is computed. The synthetic data is being matched to the 

actual seismic data, and the differences between them, known as the residuals, are 

quantified. Iterative inversion algorithms adjust the impedance model to minimize these 

residuals. This iterative procedure persists until a desirable alignment between the 

synthetic and actual seismic data is attained, or until predefined conditions are satisfied. 

The final impedance model provides valuable insights into the subsurface lithology and 

fluid content, aiding in exploration and production decisions. 

The basic procedure of inversion is given in Figure 5.1. 
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Figure 5.1 Basic post stack inversion workflow adopted in current study. 

 

The post-stack inversion method offers several benefits, as outlined 

below: 

i. Acoustic impedance pertains to the properties of layers, which makes 

interpreting stratigraphy more straightforward with impedance data than with 

regular seismic data. 

ii. Reducing the effects of wavelets, lateral parts, and tuning improves subsurface 

layer clarity and resolution. 

iii. The determination of acoustic impedance values allows for direct computation 

and comparison with well-log data, thereby establishing a connection to 

reservoir attributes. 

iv. There's a correlation between porosity and acoustic impedance. Through 

geostatistical techniques, this impedance information can be translated into 

porosity details for the reservoir. 

v. Specific reservoir zones can be accurately identified by utilizing acoustic 

impedance. 
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5.3 Basic Methodology 

The main objective is to enhance the quality of underground imaging by 

minimizing the impact of wavelets that are present in seismic data (Margrave et al., 2001). 

This approach is based on the principle of convolution, which suggests that a seismic 

trace is created by combining the natural reflectivity of the earth with a wavelet and 

additional noise. Mathematically, this can be expressed as follows:  

𝑆 = 𝑅 × 𝑊 + 𝑁  

Here, 

S represents the seismic trace, R stands for the reflectivity of the earth, W denotes 

the wavelet, and N indicates noise. Assuming negligible noise, the equation simplifies to: 

𝑆 = 𝑅 × 𝑊 

To compute Earth's reflectivity (R), the formula used is: 

𝑅 = ρi + Vi + 1 + ρi × Vi × ρi + Vi + 1 − ρi × Vi 

 Here, ρ refers to density and V refers to the velocity of the p-wave. +1i+1 is the layer 

beneath layer i. 

 After noise filtering, the remaining seismic trace is then deconvolved by being 

multiplied with the inverse of the wavelet, thus isolating Earth's reflectivity. This isolated 

reflectivity can further be utilized to calculate acoustic impedance, achieved by altering 

the original formula as follows: 

𝑅 = ρi + Vi + 1 = ρi × Vi × (1 − R1 + R)  

The method does come with its challenges. A significant limitation is that band-

limited wavelets are expected to eliminate the reflectivity's low-frequency component. 

Another central issue in inversion is filtering out noise and appropriately scaling the 

seismic data, as noted by (Russell & Hampson, 1991). To get more accurate results, the 

missing low-frequency component from seismic data is supplemented with logging data 

combined with stacked seismic data. A newer inversion technique is the model-based 

inversion, where an initial low-frequency model is continually adjusted to best match the 

seismic data The inversion process mainly involves preparing the data and feeding it into 

the software, syncing well logs with the seismic data, estimating wavelets, creating an 
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initial low-frequency model, and carrying out inversion analysis and the actual inversion 

(Karim et al., 2016). 

 

5.4 Modal Based Inversion 

           In model-based inversion, an iterative process is employed to construct a 

geological model. The model is subsequently juxtaposed with the factual seismic data for 

evaluation. The outcomes of this comparison serve as a basis for enhancing the model 

during subsequent iterations, aiming to achieve a more accurate representation (Russel, 

1991). 

Model-based inversion proves to be effective in analyzing thin reservoirs because 

conventional seismic data is constrained by its band-limited nature, limiting both 

resolution and accuracy. Traditional direct inversion methods often fall short of meeting 

the stringent demands of the exploration industry. In contrast, model-based inversion 

incorporates both high and low-frequency elements, enabling a more detailed 

understanding of both stratigraphic and petrophysical reservoir properties (Russel, 1991). 

The equation presented is for the Probabilistic Model-Based Seismic Inversion 

(PMBSI) as described by Hampson et al. (2005): 

𝐽 = 𝑊𝑒𝑖𝑔ℎ𝑡1 × (𝑆𝑡 − 𝑊𝑡 × 𝑅𝑡) + 𝑊𝑒𝑖𝑔ℎ𝑡2 × (𝑀 − 𝐻 × 𝑅𝑡)  

In this equation: 

➢ J represents the objective function. The objective function essentially measures 

the difference between the observed seismic data and the data simulated using a 

given model. The goal in the inversion process is to minimize this difference, thus 

obtaining a model that fits the data best. 

➢ St stands for the observed seismic data. 

➢ Wt is the wavelet in the time domain. 

➢ Rt refers to the reflectivity series in the time domain. Reflectivity series is a 

measure of how much seismic energy will be reflected at an interface between 

two layers with differing properties. 
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➢ M is the initial guess or starting model for impedance. This model can be derived 

from well logs, which are essentially recordings of the properties of rock layers 

encountered during drilling. 

➢ H is the integration operator. When convolved with reflectivity Rt, it produces the 

acoustic impedance. Acoustic impedance is a measure of how much resistance a 

rock layer offers to the propagation of a seismic wave. It's a product of rock 

density and seismic velocity. 

 

           The equation essentially weighs the difference between observed seismic data and 

the synthetic (or predicted) seismic data produced by the model. The two terms in the 

equation allow for adjustments based on both the seismic data (1st part of equation) and 

the initial guess of the impedance model (2nd part of equation). By adjusting parameters 

and using optimization techniques, the best-fitting model (that which minimizes J) can be 

determined (Shakir et al., 2021). 

 

5.5 Procedure of Modal Based Inversion 

Seismic inversion, using a model-based approach, was executed on the seismic 

cube, with the reference well “Kadanwari-11" and “Kadanwari-10". The procedural steps 

for this inversion can be viewed in Figure 5.2. While data selection and horizon picking 

have been previously covered in the seismic interpretation chapter, the remaining steps 

will be elaborated upon here. Specifically, the G, F, and E Sands horizons were selected 

for seismic inversion. The Hampson and Russell software was employed to facilitate this 

inversion process. 
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 Figure 5.2   Adopted workflow for model-based Inversion. 

 

 

5.5.1 Data Loading 

The first step in the post-stack inversion process is to upload both seismic and 

well-related information into the Hampson & Russell Software. A 3D data block of the 

Kadanwari block is introduced into the software in SEG-Y format, along with interpreted 

are correlated with the seismic information to verify the exact well locations within the 

seismic volume. Loaded cube is shown in Figure 5.3. 
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Figure 5.3   Configured the cube and well data in HRS software to initiate the inversion 

process. 

 

5.5.2 Importing Horizons 

The next step involves incorporating the specific horizons into the seismic section. 

These horizons, once interpreted, are sourced from the Kingdom software, and are 

formatted in time & amplitude. Reflections from three geological formations—G Sand, 

F Sand, and E Sand are fed into the corresponding software.  

 

5.5.3 Extracted Statistical Wavelet 

A reliable wavelet is the core of seismic inversion. To derive an acoustic 

impedance, a constant-phase wavelet is extracted from the seismic data and then 

convolved with the reflectivity series of the seismic section. This process facilitates the 

correlation between the inverted seismic reflectivity at the well location and the extracted 

reflectivity (Jain, 2013). 

The wavelet varies across different subsurface locations. Factors such as 

geometrical spreading and attenuation complicate the wavelet's structure (Barclay et al., 

2008). For this research, a statistical wavelet was employed. The extraction time window 

for this wavelet ranges from 2000 to 2500 ms, featuring a 200 ms wavelength and a taper 
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length of 25 ms. A zero-phase wavelet was utilized for the synthetic data. Figure 5.4 

illustrates the extracted wavelet, highlighting its amplitude and phase spectrum. 

 

 

Figure 5.4 Statistical wavelet wavelet is extracted from the seismic data, highlighting 

its amplitude and phase spectrum. 

 

To achieve accurate outcomes from seismic analysis and inversion, the wavelet 

must be in zero or minimal phase. The degree of phase shift in the input wavelet can 

significantly impact the inversion outcomes. A larger phase shift can lead to increased 

discrepancies in the derived impedance data (Jain, 2013). 

 

5.5.4 Well-to-Seismic tie  

In the process of well correlation, a synthetic trace is created to align with the 

existing seismic trace. This synthetic trace was adjusted – either elongated or compressed 

– to achieve the best fit with the actual seismic data. The integrity of the well-log data can 

have a substantial impact on the final display of the synthetic trace. The wells Kadanwari-

10, and Kadanwari-11 were used to correlate well data with seismic data using synthetic 

traces generated from an extracted wavelet. This correlation is pivotal for seismic 

interpretation as it bridges the well and seismic data. As depicted in Figure 5.5, the 

correlation coefficient for Kadanwari-10 is approximately 74%. For Kadanwari-11, as 
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shown in Figure 5.6, the coefficient is 76%. The correlation was performed without 

rotating the phase. 

 

 

Figure 5.5 Seismic to well data correlation of Kadanwari-10 

 

 

Figure 5.6 Seismic to well Data Correlation of Kadanwari-11  

 

5.5.5 Low-frequency Model 

The initial low-frequency model is often estimated using acoustic impedance, 

which can be categorized into two types: Relative Acoustic Impedance and Absolute 



72 

 

Acoustic Impedance. Relative Acoustic Impedance calculations don't necessitate the 

formation of a low-frequency model, making it useful for the qualitative assessment of 

seismic layers due to its focus on their relative attributes (Cooke and cant, 2010). On the 

other hand, Absolute Acoustic Impedance is an intrinsic property of geological layers and 

is pertinent to both qualitative and quantitative evaluations in seismic interpretation (Lee 

et al., 2013). 

Seismic data typically lack low frequencies. To address this, a Low-Frequency 

Model (LFM) is created using a low-pass filter, which permits frequencies up to 10 Hz to 

pass while filtering out those above 15 Hz. Within the context of model-based inversion, 

the initial model was constructed using only the Zp log (created from density and sonic 

logs). The impedance (Zp) curve derived from both wells was applied to form a Low-

Frequency Model, illustrated in Figures 5.7 and 5.8. This initial model was created for 

the time range between 2,000ms and 2,500ms, which encompasses the formation of 

interest. Subsequently, this model was then convolved with the seismic trace extracted 

from the seismic data. 

 

 

Figure 5.7 Low-frequency model of seismic data with well location of Kadanwari-10 
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In the figure, low impedance is represented by shades ranging from yellow to 

brown, signifying the presence of sand bodies. The figure illustrates that G and E sands 

exhibit comparatively lower P-impedance values ranging from 9536 to 10825 g/cm3-m/s, 

in contrast to the F sand which shows a moderate range of impedance values spanning 

from 10825 to 11925 g/cm3-m/s. 

 

 

Figure 5.8 Low-frequency model of seismic data with well location of Kadanwari-11 

 

Within the figure, the indication of low impedance is depicted through shades 

transitioning from yellow to brown, which highlights the presence of sand bodies. The 

visual representation illustrates that E sand displays notably lower P-impedance values, 

ranging from 8984 to 10825 g/cm3-m/s. On the other hand, G sand demonstrates 

impedance values that vary from lower to moderate, spanning the range of 10272 to 11009 

g/cm3-m/s. In contrast, F sand exhibits a moderate range of impedance values from 10825 

to 11925 g/cm3-m/s. 

 

5.5.6 Inversion Analysis 
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In the process of model-based inversion, an initial low-frequency P-impedance 

model serves as the starting point. This model is then iteratively refined to achieve a close 

match between the seismic data and the synthetic trace. 

 

The seismic cube data provided was examined for model-based inversion at the 

Kadanwari-10 and Kadanwari-11 well sites. Wavelets were extracted from a time window 

ranging from 2000 to 2500ms. The seismically extracted wavelet was adjusted by 

comparing the synthetic trace to the inverted trace at the well's location. Figures 5.9, and 

5.10 depict the correlation between seismic traces (in black) and synthetic traces (in red). 

Kadanwari-10 displays a strong correlation coefficient of 99%, and a root mean square 

error of 0.0853 or 8% between the seismic and synthetic traces. The inversion analysis 

for Kadanwari-11 is similarly robust with a correlation coefficient of 99% and a root mean 

square error of 0.0416 or 4%.  

 

 

Figure 5.9  Model-based inversion analysis of Kadanwari-10 

 

 

 



75 

 

 

Figure 5.10  Model-based inversion analysis of Kadanwari-11 

 

 

5.5.7 Model-Based Inversion Result (Inverted Section) 

Model-based inversion proves to be highly effective, especially when examining 

both lateral and vertical variations in acoustic impedance.  Model-based inversion was 

utilized to convert data into inverted Zp impedance within a specific time range from 

2,000ms to 2,500ms, covering the formations of interest. Figures 5.11 and 5.12 display 

the resulting colourful sections, which are employed to detect the presence of the target 

in the area of interest. These inverted impedance sections demonstrate that MBI not only 

provides outstanding lateral resolution but also accurately captures variations in 

impedance within the reservoir. 
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Figure 5.11  Inverted colorful section of impedance model at well Kadanwari-10 

 

The color bar utilizes various colors to represent variations in the inverted 

impedance. In this scheme, yellow and brown indicate low impedance values, green 

indicates moderate impedance values while magenta and blue correspond to high 

impedance values. 

In the vicinity of well Kadanwari-10, the main reservoir displays a notably low 

impedance (Zp) that ranges between 8984 and 10641 g/cm3-m/s. This serves as a strong 

sign of gas saturation in the E Sand. The figure points out that the G Sand have even lower 

Zp impedance values, between 8984 and 11929 g/cm3-m/s, suggesting the existence of a 

sand channel. On the other hand, F Sand presents impedance values in the range of 10825 

to 11925 g/cm3-m/s, hinting at the potential presence of a small-scale reservoir. The 

Lower Goru Formation comprises several layers of both sand and shale. Notably, high 

impedance anomalies are observed above and below the sand bodies, signalling the likely 

presence of shale layers. These shale layers could serve as seal rocks, effectively trapping 

hydrocarbons. The results are supported by both petrophysical and seismic 

interpretations, reinforcing the validity of these findings. 
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Figure 5.12  Inverted colorful section of impedance model at well Kadanwari-11 

 

The color bar employs a range of colors to illustrate variations in the inverted 

impedance. In this color scheme, yellow and brown are indicative of low impedance 

values, green signifies moderate impedance values and magenta and blue represent high 

impedance values. 

On section of the well Kadanwari-11, the primary reservoir exhibits a distinctively 

low impedance (Zp) value, falling between 8984 and 11009 g/cm3-m/s. This is a clear 

indication of gas saturation within the E Sand. The figure demonstrates that the G sands 

show diminished Zp impedance values, spanning from 8984 to 11929 g/cm3-m/s -m/s, 

pointing to the likelihood of a sand channel being present. Conversely, the F sand has 

impedance readings ranging from 9720 to 11925 g/cm3-m/s, suggesting the potential 

existence of a minor reservoir. As the Lower Goru consists of several sequences of sand 

and shale layers. Observations of high impedance anomalies both above and below the 

sand formations indicate the presence of shale bodies. These shale bodies could serve as 

seal rocks. These findings are supported by both petrophysical and seismic 

interpretations. 

 

5.5.8 Final Slices 
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The last stage involves extracting the P-Impedance slices for all formations of 

interest. 

 

5.6 Slices of P-impedance 

The slices of all three formations display the comprehensive variation in P-

impedance across the entire cube. The color bar used in the slices utilizes a spectrum of 

colors to depict variations in the inverted impedance. In this color scheme, yellow and 

brown signify lower impedance values, green represents intermediate impedance values 

and magenta and blue correspond to higher impedance values. 

5.6.1 P-Impedance slice of G Sand 

The Inverted Zp Impedance slice of the G Sand, displayed in Figure 5.13, shows 

that the impedance values for G Sand range from 9,813 to 11,732 g/cm3-m/s.  

 

Figure 5.13  Inverted P-Impedance variations in a 3D cube slice of the G Sand. 

Future Drilling Prospect 
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The slice indicates areas of low impedance, ranging from 9,813 to 10,613 g/cm3-

m/s, lie in the central section of the study, predominantly in the cube's northwest corner 

and near the Kadanwari10 and 11 wells. These zones suggest the potential presence of 

hydrocarbon-bearing sand channels. In contrast, the northeast and certain sections of the 

southeast cube exhibit higher impedance values ranging from 11,252 to 11,732 g/cm3-

m/s. Meanwhile, the remainder of the cube exhibits moderate impedance values, spanning 

from 10,772 to 11,332 g/cm3-m/s. The inversion results support and validate the findings 

obtained through both petrophysical analysis and seismic interpretation, confirming their 

accuracy. Based on all this information, it can be concluded that the G sand serve as a 

producing reservoir. The highlighted section within the inverted cube of G Sand, as 

depicted in Figure 5.13, indicates that this highlighted region, owing to its low impedance 

characteristics, holds potential as a prospective area for future drilling to extract 

hydrocarbons. This observation is further supported by the information found in the time 

and depth contour maps of the seismic interpretation. 

 

 

5.6.2 P-Impedance slice of E Sand 

          The Inverted Zp Impedance slice of the E sand, as illustrated in Figure 5.14, 

indicates that the impedance values for the E Sand span from 8,368 to 10,575 g/cm3-m/s. 
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Figure 5.14  Inverted P-impedance variations in a 3D cube slice of the E Sand. 

 

The slice highlights regions with low impedance values, which range between 

8368 and 9288 g/cm3-m/s, situated mainly in the centre of the study. These regions are 

especially prominent in the northwest corner of the cube and around the Kadanwari10 

and 11 wells, as well as the upper northeast section. Such zones hint at the possible 

existence of hydrocarbon-rich sand channels. On the other hand, the eastern part and 

specific southern sections of the cube display elevated impedance values, lying between 

10023 and 10575 g/cm3-m/s. The rest of the cube shows moderate impedance values, 

ranging from 9380 to 9931 g/cm3-m/s. The results from the inversion align with and 

reinforce the conclusions drawn from both the petrophysical study and the seismic 

interpretation, affirming their reliability. Considering all the information provided, it is 

evident that the E Sand is the primary hydrocarbon producer in this particular area. As 

shown in Figure 5.14, the emphasized area within the E Sand layer, due to its low 

Future Drilling Prospect 
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impedance nature, is viewed as a promising zone for potential future drilling activities to 

retrieve hydrocarbons. The seismic interpretation's time and depth contour maps further 

support this hypothesis. 

 

5.6.3 P-Impedance slice of F Sand 

The Inverted Zp Impedance slice of the F sand, as presented in Figure 5.15, reveals 

that the impedance values within the F Sand formation span from 8,351 to 12,025 g/cm3-

m/s. 

 

 

Figure 5.15  Inverted P-impedance variations in a 3D cube slice of the F Sand. 

 

 

Future Drilling Prospect 
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The slice identifies areas with low impedance values, ranging from 8351 to 9729 

g/cm3-m/s, mainly located in a small section of the middle and east. Conversely, the upper 

northern portion and a few southern parts of the cube showcase higher impedance values 

between 11107 and 12025 g/cm3-m/s. The remaining parts of the cube present moderate 

impedance values, spanning from 9882 to 10953 g/cm3-m/s. The inversion results 

validate and enhance the findings obtained from both the petrophysical analysis and 

seismic interpretation, thus confirming their reliability. While the F layer isn't highly 

productive, it hints at a potential presence of hydrocarbons. As depicted in Figure 5.15, 

the highlighted central region of the F Sand, due to its distinct low impedance features, 

also suggests a favorable area for prospective drilling to harvest hydrocarbons. This idea 

is further strengthened by the information presented in the time and depth contour maps 

derived from seismic interpretation. 

5.7 Result and Discussion 

The results of the inversion analysis provide a clear understanding of the 

geological formations and their relation to hydrocarbon production in the Kadanwari Gas 

Field. Two primary formations, G and E Sand of Lower Goru Formation, stand out as 

significant sources of hydrocarbon production due to their consistently low impedance 

values. These low impedance values indicate the likelihood of hydrocarbon presence 

within these formations. Conversely, the F layer, while not a prolific producer, exhibits 

distinctive low impedance features at specific locations, suggesting the possible presence 

of hydrocarbons. This highlights the potential for successful hydrocarbon extraction 

through prospective drilling efforts in this area. Notably, the Lower Goru Formation, 

characterized by alternating layers of sand and shale, plays a vital role in the entrapment 

of hydrocarbons. The high impedance anomalies observed both above and below the G 

and E sand bodies are indicative of shale layers, which serve as effective seal rocks, 

trapping hydrocarbons within the reservoir. The insights obtained from this analysis align 

with previous research studies by Zhang et al. (2022), Monalisa et al. (2023), and Francis 

& Syed (2001). These studies support and substantiate the findings regarding the reservoir 

potential of G and E sand zones in the Kadanwari Gas Field, derived from the inversion 

results. 
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CHAPTER 6 

SEISMIC ATTRIBUTES 

 

6.1 Seismic Attributes 

Seismic attributes can be described as "quantities that are measured, computed, or 

inferred from seismic data." The primary purpose of attributes is to offer precise and 

comprehensive insights to interpreters regarding the structural, stratigraphic, and 

petrophysical characteristics of a seismic prospect (Taner, 2001). 

Seismic attribute analysis involves breaking down seismic data into various 

distinct attributes. This disintegration of seismic data lacks formal guidelines for attribute 

computation or defining their nature. In fact, any geological or geophysical parameter 

derived from seismic data can be considered an attribute. Amplitude is an inherent 

attribute of seismic data (Barens, 2001). Seismic attributes play a crucial role in offering 

qualitative insights for understanding both structural and stratigraphic features, such as 

channels, meanders, pinch-outs, thin bed tuuning etc. They can also provide indicators 

for rock types and fluid content, contributing to a more comprehensive understanding of 

reservoir characteristics (Strecker et al. 2004).  

Attributes are primarily employed to detect various features and changes in the 

subsurface. These include the identification of distinct bright spots, areas of gas 

accumulation, and demarcations of sequences. They can also highlight significant shifts 

in depositional settings, effects arising from thin-bed tuning, and discrepancies such as 

unconformities. Additionally, they can point out notable lithological transitions, localized 

alterations suggesting fault presence, and spatial relationships related to porosity 

(Seregey, 2007). 

 

6.2 Significance of Seismic Attribute 
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Seismic amplitude represents a fundamental attribute of seismic data, influenced 

by the reflection coefficient. Seismic attributes hold significance because each of them 

has the capability to emphasize distinct geological features. The interpretation of 3-D 

seismic data is improved by analysing seismic attributes, including amplitude, 

instantaneous frequency, reflection strength, and instantaneous phase polarity. These 

attributes assist in recognizing geological structures and signal the existence of 

fluids (Dewett et al., 2021).  

Seismic attributes have become increasingly important in the fields of petroleum 

exploration and production, especially as a component of seismic interpretation. 

Originating in the 1990s, these attributes have evolved into various forms, including 

structural and stratigraphic attributes While amplitude data is the basic type of seismic 

data, seismic attributes can unveil features that aren't readily apparent in the amplitude 

data alone. Utilizing seismic attributes can enhance our capabilities in geological 

interpretation, especially in environments with thin-bed reservoirs (Chopra and Marfurt,  

2005). 

 

6.3 Classification of Attributes  

Over the past thirty years, as the range and types of seismic attributes have 

expanded, numerous researchers have endeavoured to categorize them into groups. 

Seismic properties may be classified in several ways, and over the years, multiple authors 

have put forward their own categorizations. The categorization often corresponds to the 

application, locality, or approach that the author is emphasising. The presence of several 

categorizations highlights the dynamic nature of the discipline and the numerous 

applications of seismic features in geological interpretation and reservoir characterization 

(Koson, 2014). Seismic attributes can be classified in various ways as elaborated below: 

Attribute families categorized based on the generation process (Dewett et al., 2021). 

i. Complex trace attributes (e.g., instantaneous attributes etc.) 

ii. Fourier attributes (e.g., Spectral decomposition attribute etc.) 

iii. Multi-trace Attributes (e.g., coherence, dip/azimuth etc.) 
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iv. Time attribute (e.g., horizon time picks, isochrones) 

Complex trace attributes are further classified based on the domain characteristics of the 

attributes (Taner, 2001).  

i. Post stack attributes 

ii. Pre stack attributes  

b. Classified according to their computational characteristics: 

i. Instantaneous Attributes 

ii. Wavelet Attributes or Response Attributes 

c. Attributes can be further sub-classified based on their relationship to geology: 

i. Physical Attributes 

ii. Geometrical Attributes 

 

6.4 Attributes Analysis in the Study Area 

The study area's attribute analysis involved the utilization of the following 

attributes. 

 

6.4.1 Instantaneous Phase 

The phase information operates independently of trace amplitudes and pertains to 

the propagation of the phase of the seismic wave front. Given that wave fronts are often 

characterized as lines of consistent phase, the phase attribute is also a physical property. 

This makes it an effective tool for discriminating and classifying geometric shapes. The 

computation for this attribute, using real and imaginary traces, is given by: 

Θ (t) = arctan [ h (t) / f (t) ] 
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Because instantaneous phase refers to the phase component of wave propagation 

and lacks amplitude information, it is the greatest indication of lateral continuity. It may 

be used to highlight interfaces in sections with high amplitude decay and even deeper 

horizons that are not apparent in normal amplitude sections (Khan & Akhter, 2015). The 

instantaneous phase attribute enhances the visibility of strong events, making them more 

distinct. It is particularly effective at emphasizing the discontinuities of reflectors, faults, 

pinch outs, angularities, and bed interfaces. Additionally, features such as seismic 

sequence boundaries, sedimentary layer patterns, and areas with onlap/offlap patterns 

tend to exhibit enhanced clarity when visualized using the instantaneous phase attribute 

(Das et al., 2017).  

The highlighted circles in Figures 6.1, 6.2 and 6.3 pinpoint the discontinuities 

caused by faults, as well as the lateral continuity of Lower Goru sands.   

 

 

Figure 6.1  Instantaneous Phase Attribute at well Kadanwari-11 on inline 1981, with 

circles highlighting the discontinues and lateral continuity of horizons. 

 

Chiltan Formation 
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Figure 6.2  Instantaneous Phase Attribute at well Kadanwari-11 on inline 1981, with 

circles highlighting the discontinues and lateral continuity of marked horizons of 

interests. 

 

 

Figure 6.3  Instantaneous Phase Attribute at well Kadanwari-11 on inline 1981, 

demonstrates the identifies the faults and horizons at previous discontinuity points. 
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6.4.1.1 Results and Discussion  

Figure 6.1, 6.2 & 6.3 illustrates the instantaneous phase attribute, with a range of 

values spanning from -108 to +108 degrees. The interpreted horizons align with the zero 

phase regions highlighted in yellow. This alignment provides additional validation for the 

interpretation, considering that the input data is zero phase. Circles highlighted the 

discontinuities caused by faults. While arrow denotes the lateral continuity of high 

impedance Chiltan Formation of Lower Indus Basin. Major primary faults which are in 

my case are MF1 and MF2, are originated from Chiltan formation.  

The highlighted circles in Figures 6.1, 6.2, and 6.3 serve to identify faults, 

confirming their presence by comparing them to the normal amplitude section depicted 

in Figure 3.6 of the interpretation section. A noticeable distinction can be made when 

comparing the results with amplitude-based sections: the instantaneous phase attribute 

reveals significantly deeper horizons, and clear discontinuities of faults that might not be 

as clearly visible in conventional amplitude sections, same is suggested by (Das et al., 

2017). 

 

6.4.2 Trace envelope (instantaneous amplitude) 

The attribute known as the "Trace Envelop," alternatively referred to as 

"Reflection Strength," signifies the total instantaneous energy of the trace or signal and 

exhibits a magnitude that is directly related to the reflection coefficient. The trace 

envelope attribute has a direct connection to the contrasts in acoustic impedance.  It can 

reflect either the contrast of individual interfaces or, more commonly, the collective 

behaviour of multiple interfaces, contingent on the seismic bandwidth (Barnes, 2001). It 

emphasizes areas with pronounced acoustic events, appearing as bright spots on both 

positive and negative events. Bright spots offer valuable insights into the presence of 

channel bodies or sandy lithology due to variations in acoustic impedance. This attribute 

also provides information regarding lithological changes, sequence boundaries, the 

effects of thin-bed tuning, significant shifts in the depositional environment, and the 
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potential presence of gas, among other geological features (Taner and images, 2001). 

Seismic interpreters find this attribute particularly valuable because it eliminates the 

reliance on the original seismic trace values, which are influenced by the phase or polarity 

of the seismic data, both factors significantly influence the apparent brightness of a 

reflection (Koson et al., 2014).  

This attribute is calculated for the Kadanwari cube to identify significant 

variations in lithologies. Since it represents the modulus of the complex trace, the 

envelope trace will consistently maintain a positive value. Figure 6.4 displays the 

envelope attribute map for Incline 1981 within the Kadanwari cube with circles 

highlighting the discontinuities and high amplitude or horizons. In this map, a prominent 

thick (red) area signifies the highest reflection strength, which corresponds to the Lower 

Goru Sands. The highlighted circles in the subsequent Figure 6.4 illustrate spatial patterns 

that indicate variations in sand thickness and structural breaks due to faults. 

 

 

Figure 6.4  Instantaneous amplitude or Trace envelope attribute at well Kadanwari-11 on 

inline 1981, with circles highlighting the discontinues and lateral continuity of marked 

horizons of interests. 

 

Chiltan Formation 
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Figure 6.5 displays the envelope attribute map for Inline 1981 within the 

Kadanwari cube with marked horizon of G, F and E sand of Lower Goru Formation.   

 

 

Figure 6.5  Instantaneous amplitude or Trace envelope attribute at well Kadanwari-11 on 

inline 1981, with marked horizon of G, F and E sand of Lower Goru Formation.   

 

6.4.2.1 Results and Discussion  

In the figures, a significant and pronounced red-colored region indicates the 

highest level of reflection strength, which corresponds to the Lower Goru Sand intervals 

(G, F, and E sand intervals) and the Chiltan formation. The highlighted circles in Figure 

6.4 and 6.5 serve to illustrate spatial patterns that reveal variations in sand thickness and 

structural disruptions caused by faults. This confirmation is achieved by comparing them 

to the standard amplitude section shown in Figure 3.6 in the interpretation section.  

The amplitude anomaly at the desired horizons (G, F, and E sand intervals) is 

more conspicuously and distinctly observable in the Instantaneous Amplitude attribute 

section. The Chiltan Limestone stands out with a remarkable peak in instantaneous 

amplitude, primarily owing to the substantial contrast in acoustic impedance between the 
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Chiltan Limestone and the shales overlying it (Sembar Formation). So, the lower Guru 

sands (G, F, and E sand intervals) and Chiltan formation exhibit a positive response, 

thereby verifying their presence. Several other authors (Chopra & Pruden, 2003; Das et 

al., 2017; Ashraf et al., 2019) have also provided similar reviews on this observation. 

 

6.4.3 Spectral Decomposition Attribute 

The process of spectral decomposition involves breaking down seismic data into 

its constituent different frequency elements through various mathematical techniques, 

such as employing short-time windows and utilizing the Fourier transform. This method 

shifts the analysis of seismic information from the time-based perspective to a frequency-

based one. By investigating data across different frequencies in the time domain and 

making comparisons, valuable insights into the finer aspects of the data can be gained 

(Ashraf et al., 2019). 

Spectral decomposition phenomenon, characterized by higher frequencies 

corresponding to shorter wavelengths and the ability to detect narrow channels, led to the 

development of this technique. Within specific frequency bandwidths, various structures 

of differing sizes become more discernible because of tuning to factors such as thickness 

and other properties (Tayyab et al., 2017). Spectral decomposition attributes were 

employed in my study area. By conducting spectrum analysis on the recorded amplitude 

and frequency data of the Kadanwari 3D cube, it was determined that a frequency 

bandwidth of 8-60 Hz is evident in the dataset. The provided figure illustrates that the 

amplitude remains stable within the range of 0.6-1, with a bandwidth of 10-40 Hz  (Figure 

6.6). 
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Figure 6.6  Amplitude and frequency spectra for Kadanwari 3D cube. 

 

The attribute seismic sections, taken from the same inline, were exhibited using 

distinct frequencies (28 Hz, 37 Hz, and 48 Hz) with the intention of examining the 

outcome of spectral decomposition at each precise frequency. As the frequencies 

increased incrementally, the thin sand beds of Lower Goru (G, F, and E sands) within the 

Kadanwari 11 well became progressively visible. This trend is depicted in Figure 6.7 to 

Figure 6.10, each within their corresponding frequency sub-bands. 

The highlighted circles point out structural features that are not readily distinguishable in 

normal amplitude seismic section as shown in following figures below. 

\ 
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Figure 6.7  Spectral Decomposition attribute of inline 1981 at 9.3 Hz frequency. 

 

 

Figure 6.8  Spectral Decomposition attribute of inline 1981 at 16.9 Hz frequency. 
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Figure 6.9  Spectral Decomposition attribute of inline 1981 at 26.5 Hz frequency. 

 

 

 

Figure 6.10  Spectral Decomposition attribute of inline 1981 at 41.5 Hz frequency. 
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6.4.3.1 Results and Discussion  

Spectral decomposition attribute proves particularly effective in identifying thin 

bed sand layers. Thicker beds are more prominently depicted through lower frequencies, 

whereas finer bed layers are optimally distinguished using higher frequencies (Koson et 

al., 2014). Similar methodology was applied to my area under investigation, resulting in 

the identification of faults and horizons within the Lower Goru Sands at various 

frequencies. These figures illustrate that as frequency increases, spectral decomposition 

becomes valuable for effectively revealing discontinuities. Circles highlights the 

discontinuities. These features were previously undetectable within the normal time 

amplitude seismic section. In certain frequency ran 

ges, different structures with varying sizes become more distinguishable due to 

their sensitivity to factors like thickness and various properties (Ahmad & Rowell, 2012). 

The spectral decomposition attribute reveals distinct characteristics at various frequencies 

within a specified band limit. Among these frequencies, four particularly noteworthy 

results are depicted in the figures above. The initial figure illustrates the attribute's 

performance at a frequency of 9.3 Hz. At this specific frequency, the identification of thin 

beds is challenging, but thicker beds are clearly discernible. Subsequently, the attribute 

was examined at a slightly higher frequency, 16.9 Hz, where the beds remain somewhat 

unresolved but exhibit improved delineation compared to the 9.3 Hz frequency. As the 

frequency increased to 26.5 Hz, the spectral decomposition attribute remarkably achieved 

a precise resolution of the thin beds, and an emerging fault became evident, which had 

remained unresolved at previous frequencies. Finally, the attribute was assessed at 41.5 

Hz, where it proficiently resolved the thin beds and confirmed the presence of a fault that 

was relatively challenging to pinpoint on a standard seismic section. 

Thicker beds or characteristics exhibit enhanced amplitude at lower frequencies, 

while thinner beds display increased amplitude at higher frequencies (Tayyab et al., 

2017). The figures demonstrate that as frequencies rise, sand beds G, F, and E are most 

effectively resolved. The highlighted circles in the preceding figures depict structural 

disruptions arising from faults. This validation is accomplished by contrasting them with 

the reference amplitude section featured in Figure 3.6 within the interpretation section. 



96 

 

 

CHAPTER 7 

 MACHINE LEARNING-BASED VS COMPUTATION, 

AVO VALIDATION, AND FACIES MODELING 

 

7.1 General Introduction 

Within the broad field of artificial intelligence, machine learning centers on 

techniques and algorithms that allow computers to learn from examples. Its primary 

objective is to autonomously extract information from data, employing computational 

and statistical approaches (Ali et al., 2023). The utilization of machine learning (ML) in 

geosciences has become increasingly prevalent because of advancements in computer 

science algorithms. ML has proven to be a valuable tool in this field due to its ability to 

analyze provided data and identify underlying relationships, ultimately enabling the 

prediction of the desired outcome (Gupta et al., 2021). 

 Shear sonic log (DTS) plays a significant role in identifying the specific 

lithologies and fluid types present within reservoirs, which holds paramount importance 

in field development & production. It is especially valuable for distinguishing between 

wet sands and gas-bearing sands (Liu et al., 2021).  In the Lower Indus Basin (LIB), many 

wells lack shear sonic logs (DTS) for various reasons. In such cases, DTS logs are often 

generated through complex computational processes that rely on several assumptions and 

prerequisites. These computational methods can potentially impact the accuracy of the 

true reservoir characteristics Recently, machine learning (ML) has evolved as a robust 

and highly optimized method for accurately predicting shear sonic logs (DTS) with a 

reduced requirement for extensive input dataset (Ahmed et al., 2022). 

In my research, I utilize a machine learning-based multi-regression approach to 

calculate shear sonic velocity (Vs), which greatly improves prediction accuracy when 

compared to Vs values obtained through the Castagna equation. To validate the reliability 

of this approach, I employed the AVO forward modeling algorithm to the shear sonic 
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velocity (Vs) values obtained from both methods. The results revealed that the Vs 

computations derived from the machine learning approach consistently provided better 

results compared to those obtained from the Castagna equation. 

7.2 Methodology for Vs Prediction 

In order to improve the accuracy of predicting shear velocity (Vs), conducted a 

comparative analysis between two distinct methods: the widely accepted Castagna 

equation and a new approach incorporating machine learning-based multi-regression. 

This study not only assesses and compares the predictive capabilities of these methods 

but also validates their results using the AVO forward modeling algorithm. Figure 7.1 

below presents a comprehensive workflow that illustrates the entire process.  
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Figure 7.1  Flow Chart of the ML-based multi-regression approach for predicting shear 

sonic velocity (Vs) and its validation using AVO forward modelling compared to the 

Castagna equation. 

 

The flow chart presented above provides a structured overview of the Vs 

prediction process and its validation through AVO forward modeling. Each step is 

delineated in detail in the subsequent sections. 

 

7.3 Load LAS file 

At the initiation of the workflow, the LAS data file of the Kadanwari-03 well is 

imported. This pivotal step serves as the foundation for further analysis. The predictive 

methodology employed in this chapter is systematically evaluated by executing the entire 

workflow using specialized K-tron wavelet software. 

 

7.4 Data Quality Control & Conditioning  

In the second phase of the workflow, a comprehensive quality control (QC) 

assessment of the data is carried out to ensure its accuracy and reliability. The primary 

objective is to identify any irregularities, errors, or anomalies within the data that could 

potentially undermine its reliability or accuracy. The process begins by loading the LAS 

data files and identifying the specific depth range within which the logs have been run or 

acquired. This step sets the boundaries for the dataset under examination. To refine or 

enhance the quality of the data and prepare it for subsequent analysis, an initial data 

conditioning process, including procedures like deglitching, trimming, and filtering, is 

performed. This phase's significance lies in ensuring that the LAS data is free from 

artifacts or discrepancies that could potentially lead to misinterpretations in subsequent 

geological analyses. Through the systematic resolution of glitches, removal of irrelevant 
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data, and noise mitigation, this phase establishes a solid foundation for accurate 

interpretations and modeling of subsurface geological features. After the conditioning 

process, Figure 7.2 illustrates the final set of input logs that will be employed for 

computation purposes. 

 

 

Figure 7.2  Final set of Input log curves for depth interval of my interest from 3110 to 

3400 m. 

 

7.5 Parameter Computation and Analysis 

After performing the initial refinement/conditioning on the data, three parameters 

were calculated, which are as follows: 

1) Rock physics analysis 

2) Volume of shale computation 

3) Porosity computation 

 

7.5.1 Rock Physics Computation 
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The term "rock physics" encompasses a range of methods used to characterize the 

geological attributes (such as lithology, porosity, and saturation) of rock under specific 

physical conditions (such as temperature and pressure), along with their corresponding 

elastic and seismic properties (including velocity, elastic modulus, and impedance). 

These approaches can be employed for rock physics modeling, which involves predicting 

seismic elastic properties based on geological information, or for rock physics inversion, 

which entails estimating geological characteristics from elastic (seismic) observations 

(Dalvand & Falahat, 2021). 

In order to construct a machine learning-based multi-regression model for 

predicting Vs, it is crucial to have labeled training data. Rock physics equations provide 

a framework for generating synthetic data by simulating the expected Vs given certain 

rock properties. These synthetic datasets can be combined with real data for training 

purposes. The P-wave velocity (sonic) log, S-wave velocity (computed shear sonic) log, 

and density log serve as the inputs for calculating various elastic logs associated with 

different moduli, including acoustic impedance and shear acoustic impedance logs. In the 

K-tron Wavelet software, the rock physics functions library is utilized to extract rock 

physics parameters, as depicted in the figure presented below, labeled as Figure 7.3. 

 

 

Figure 7.3  Automated computation of rock physics parameters via the rock physics 

functions library in K-tron Wavelet software. 
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The rock physics analysis illustrated in the figure above yields critical parameters 

that hold significant importance in understanding the mechanical properties of rocks. 

These derived parameters serve as fundamental inputs for a machine learning-based 

multi-regression model. This model is designed to learn, analyze and comprehend 

intricate relationships between these mechanical properties and the shear wave velocity 

(Vs). By assimilating these relationships, the model gains the ability to make highly 

accurate predictions of Vs. This integration of rock physics analysis and machine learning 

enhances the predictive capabilities, allowing for improved characterization and 

modeling of subsurface materials and their associated mechanical properties. These rock 

physics  parameters play a crucial role in characterizing the physical properties of 

subsurface materials, facilitating better geological and geophysical analysis in various 

applications. 

 

7.5.2 Volume of Shale Calculation 

The volume of shale was computed from the input GR log. For an understanding 

of the lithological composition of subsurface formations, shale volume is essential. Shale 

possesses distinct acoustic and mechanical properties that have a significant impact on 

the velocity of shear waves (Vs). The determination of the shale fraction within a 

geological formation can be achieved by the computation of its volumetric measurements. 

The provided information has significant value due to the characteristic of shale 

exhibiting comparatively lower Vs in comparison to other rock types. Shale volume is a 

key factor in predicting Vs (shear wave velocity) based on the lithological composition 

of the subsurface. The volume of shale (Vsh) was employed as one of the input features 

for the machine learning-based multi-regression model. 

 

7.5.3 Porosity Computation 

Porosity is an essential characteristic of subsurface formations. Porosity values 

can be determined by analyzing neutron porosity (NPHI) and compressional velocity 

(Vp) data. Averaging these values provides an accurate representation of the subsurface 

porosity distribution. Porosity provides information about the empty or void spaces within 
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the subsurface material, which can significantly affect the propagation of seismic waves, 

including the velocity of shear waves (Vs). Porosity and Vs are frequently correlated. In 

general, materials that have higher porosity tend to exhibit lower values of Vs. This is 

because the existence of voids or pores within the material decreases its stiffness, which 

in turn reduces its shear wave velocity.  Porosity was employed as an input feature in a 

machine learning-based multi-regression model with a purpose of predicting Vs. By 

incorporating porosity as an input feature, the model can utilize this data to improve the 

accuracy of its predictions. 

 

7.6 Machine Learning-Based Multi Regression 

  ML encompasses computational techniques that enable systems to learn from data 

and improve their ability to make accurate estimations and classifications  (Rahimi & 

Riahi, 2022). 

 Multiple Linear Regression is a widely used statistical method in various fields, 

such as geophysics, for establishing the connection between multiple independent 

variables and a dependent one. In geophysics, multiple linear regression is a highly 

adaptable technique capable of addressing various challenges, including the prediction of 

geological features, the estimation of parameters beneath the Earth's surface, and the 

simulation of geophysical processes (Radwan et al., 2022). 

In my scenario, I employ a Multi-Linear Regression (MLR) model for the 

automated prediction of shear sonic (DTS). The model is trained by utilizing a variety of 

independent variables that have been previously computed. These variables encompass 

initial logs, rock physics calculations, volume of shale determinations, and porosity 

computations, all of which are fed into a neural network. The model uses these inputs to 

learn the intricate relationships between these parameters and Vs (shear sonic velocity), 

enabling it to make more accurate predictions of Vs.  

In the Lower Indus Basin, there are thin packages of sand and shale that are 

challenging to differentiate manually. To address this, I've employed machine learning to 

identify and classify these layers into distinct groups. After the classification, neural-

network-based multi-regression analysis is carried out to derive their specific shear wave 
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equations. Figure 7.4 depicts the computation of Vs Equations for the three distinct 

lithologies using a machine-learning approach. 

 

 

Figure 7.4  Shear Sonic (Vs) Computed from Multi-Regression Based Machine 

Learning Algorithm. 

 

In this particular machine learning model, the primary objective is to categorize 

data based on input parameters through a multiple regression approach. The data is 

categorized into three distinct categories: 

1. Pure Clean Sand: This category represents geological formations composed 

primarily of clean, unadulterated sand. 

2. Shaly Sand (Tight Sand): This category encompasses sand formations that 

contain varying degrees of shale intermixed, often referred to as tight sand. 

3. Shale: This category consists of geological formations dominated by shale rock. 

Once the data points are successfully categorized and clustered into these three 

groups, individual regression equations are computed for each category, enabling precise 

shear sonic predictions. The equations for each lithology are as follows: 

i. For Clean Sand:  
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VS = 462.758 + 0.50190 VP 

ii. For Tight Sand (Shaly Sand):  

VS = -761.739 + 0.77214 VP 

iii. For Shale:  

VS = -163.300 + 0.63356 VP 

These equations were formulated using data from wells where both compressional 

sonic (Vp) and shear sonic (Vs) values were accessible. The model dynamically switches 

between these equations on a sample-by-sample basis, contingent upon the specific 

lithology of each sample being evaluated. If this multi-regression model is used on a well 

without shear sonic data, the appropriate equation will automatically be selected based on 

the category. 

The presence of Shear Sonic logs, commonly referred to as DTS, holds paramount 

importance in the process of distinguishing lithological and fluid properties within 

reservoirs. This discrimination is pivotal for effective field development and production 

strategies. Unfortunately, a significant number of wells within the Lower Indus Basin 

(LIB) do not possess DTS logs. In the absence of these logs, reservoir analysis relies on 

traditional methods that rely on empirical relationships and rock physics models. 

However, these conventional techniques entail extensive computations and necessitate 

certain assumptions and prerequisites. These factors can potentially introduce 

uncertainties and compromise the accurate characterization of reservoir properties. 

(Ahmed et al., 2022). 

To assess the accuracy of the shear sonic values predicted by the Machine 

Learning model, a comparative analysis was conducted. Initially, Vs values were 

calculated using the Castagna equation. Subsequently, an Amplitude Versus Offset 

(AVO) analysis was employed to compare the predicted Vs values with those obtained 

through the Castagna equation. This rigorous evaluation ensures the reliability and 

effectiveness of the machine learning model in estimating shear sonic values within 

various lithological contexts. 

 

7.7 Castagna’s Computed Vs 
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The Castagna relationship, which relates compressional velocity (Vp) to shear 

velocity (Vs), was originally employed the DTS (Shear Sonic) log in wells where Vs was 

not available (Castagna et al., 1985). The Castagna equation for Vs is as follows: 

𝑉𝑆 =  𝑎 ×  𝑉𝑃
𝑏  

Or 

𝑉𝑆 =  𝑎 + 𝑏 × 𝑉𝑃
 

Or 

𝑉𝑃 =  1.16 × 𝑉𝑆 + 1.36  

Where: 

✓ 𝑉𝑆 represents the shear wave velocity.  

✓ 𝑉𝑃 denotes compressional wave velocity. 

✓ a and b are constants that depend on the type and region of rocks being 

analyzed.  

To determine the reliability of the computed shear sonic (Vs), I employed the 

Castagna equation across the entire log, from top to bottom, and derived the Vs values 

(referred to as Vs from Castagna). For this computation, I exclusively utilized the actual 

acquired Vp and density data, with the Vs values being determined solely through the 

Castagna equation.  

 

7.8 AVO/AVA Modelling 

AVO, which stands for Amplitude Variation with Offset, is also referred as AVA 

(Amplitude Variation with Angle) because it is based on the relationship between the 

angle of incidence and the reflection coefficient (Amplitude Variations with Offset 

(AVO) - AAPG Wiki, n.d.). AVO modeling is a geophysical technique utilized to 

simulate the propagation of seismic waves as they travel beneath the Earth's surface 

across geological formations. It helps in predicting how the amplitude of seismic 

reflections varies with changes in the angle of incidence or offset, which is vital for 

characterizing subsurface properties (Castagna, 1993).  
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Geophysicists can gain insights into rock properties, such as porosity, density, and 

rigidity, as well as the fluid content (whether it contains water, oil, or gas, and in what 

proportions) by studying how the amplitude of the reflection changes with offset. 

Specifically, certain AVO responses are indicative of gas-bearing sands, which can be a 

target for drilling (Talib et al., 2020).  

In this  research two distinct methodologies employed for the computation of Vs, 

namely the Castagna equation and a machine learning-driven multi-regression technique. 

AVO modelling facilitates the evaluation and comparison of the Vs values acquired from 

both methods. Through the application of AVO modelling, synthetic seismic responses 

were generated using the Vs values derived from both approaches. Results, presented 

below, demonstrate that the Vs values obtained from the machine learning-based 

approach consistently provide better results compared to those from the Castagna 

equation. AVO modelling helps confirm this by demonstrating that the synthetic seismic 

responses generated using Vs values from the machine learning method exhibit more 

pronounced responses. validating the superiority of this approach. 

 

7.8.1 Amplitude Versus Angle (AVA) gathers  

Amplitude Versus Offset (AVO) gathers form as a result of variations in the 

reflection's amplitude of seismic waves at different incidence angles or offsets. In these 

gathers, each trace represents a seismic recording corresponding to a specific source-

receiver offset or angle. Through the analysis of amplitude variations within these traces, 

geophysicists can deduce the possible existence of hydrocarbons and subsequently 

determine strategic drilling locations for exploration or production wells. Certain 

subsurface conditions cause noticeable changes in the reflection coefficient or amplitudes 

with increasing offset. For instance, gas-bearing sands often lead to a significant AVO 

response. This is because the contrast in certain rock properties, like density and velocity, 

between gas-bearing and surrounding rocks is distinct. Gas-bearing sands often produce 

stronger reflectivity at far offsets compared to near offsets, which can be seen as a 

brightening or increase in amplitude with offset in the AVO gather. By integrating the 

predicted Vs into AVO analysis, one can enhance the ability to detect and characterize 

gas-bearing sands (An & Lu, 2018). 
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7.8.2 AVA Gathers-Castagna 

This research aims to assess the reliability of computed shear sonic data by 

incorporating Castagna-derived shear velocity (Vs) values into the Amplitude Versus 

Angle (AVA) model. The AVA analysis is a critical technique in the exploration of 

subsurface geology and reservoir characterization, relying on fundamental parameters 

such as compressional velocity (Vp), shear velocity (Vs), and density (RHOB) (Lu et al., 

2018). These logs were employed to create a synthetic AVA gather. As illustrated in 

Figure 7.5, there’s an observed amplitude dimming effect at higher offsets or higher 

angles. 

 

 

Figure 7.5  AVA Synthetic-gathers generated  from shear sonic (Vs) computed by 

Castagna equation, shows dimming effect highlighted by circles. 

 

As evident from the above Figure 7.5, when implementing AVO using the 

Castagna equation, a dimming effect becomes noticeable. This dimming effect could 

impact the interpretation of subsurface properties and potentially lead to 

mischaracterizations of reservoirs. Additionally, no AVO anomalies are detected at far 

angles or offsets. Further investigation is needed to understand the underlying causes of 

G Sand 

F Sand 

E Sand 
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this dimming effect and to determine if adjustments or corrections are necessary when 

utilizing Castagna-derived Vs values in AVA analysis. 

 

7.8.3 AVA Gathers-Machine Learning 

This research focuses on validating the accuracy of computed shear sonic values 

by integrating shear velocity (Vs) values derived from a ML-based multi regression 

algorithm into the Amplitude Versus Angle (AVA) synthetic gathers. The study aims to 

identify the presence of gas sands, particularly in the G, F, and E sand intervals, by 

analyzing AVA effects at steeper angles/offsets.. As illustrated in Figure 7.6, the 

amplitudes appear more pronounced at higher angles/offsets, and an AVO anomaly is 

clearly observed.  

 

 

Figure 7.6 AVA effect at steeper angles, highlighting the presence of G, F and E gas 

sands. 

 

Results 

Figure 7.6 shows the AVA effect at far angles, with red-highlighted circles 

indicating the presence of G, F, and E sand intervals, which have been chosen as the 

G Sand 

F Sand 

E Sand 
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horizons of interest for my research. Several convincing reasons lead to the presumption 

that these regions contain Gas Sands. 

 Firstly, prior petrophysical analyses and inversion results have also indicated the 

presence of gas sands in the area. Moreover, Kadanwari is a well-known Gas-rich field, 

lending further validity to this indication. Furthermore, Gas sands tend to exhibit 

distinctive seismic responses due to their lower density and higher compressibility 

compared to surrounding rock formations.  The selection of a far angle set at 60 degrees 

is significant as it yields the most optimal outcomes for detecting AVO anomalies 

associated with gas-bearing sands in this context. Gas-filled reservoirs typically manifest 

as conspicuous amplitude anomalies within seismic data at this specific angle due to their 

strong impedance contrast with adjacent rock formations (Lu et al., 2018). 

From the results of AVO modeling, we can identify the presence of gas sands. 

Furthermore, this modeling validates the shear sonic values computed through multi-

regression techniques. In contrast, shear sonic values calculated using Castagna's 

equation proved to be unreliable, as they did not produce any AVO anomalies. On the 

other hand, when employing machine learning algorithms to compute shear sonic values, 

we observed AVO anomalies, confirming their reliability. Therefore, shear sonic values 

derived from machine learning prove to be more reliable and yield superior results 

compared to those obtained from the Castagna equation. 

 

7.9 Facies Modeling 

           Facies modeling is a method for identifying and classifying various rock types or 

"facies" based on their geophysical features. Facies analysis based on cross-plots is a 

globally recognized and essential methodology for effectively characterizing 

hydrocarbon reservoirs and other lithologies based on their respective log responses 

(Rahimi & Riahi, 2022).  

This research utilizes three cross plots to delineate shale, shaly sand, and clean 

sands by analyzing log data obtained from the Kadanwari-03 well. The common 

techniques employed for facies modeling based on cross plots include establishing 

polygon boundaries and utilizing cluster analysis. In this investigation, the polygon 
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method based on clusters is employed for facies modeling. For this research, the facies 

modeling is carried out using the polygon clustering method by employing the kriging 

algorithm.  

• Polygon clustering method 

Kriging algorithm of machine learning is employed to estimate the value of a 

random field, such as facies, at a location where there are no direct observations, using 

data collected from nearby locations. This approach involves the identification of patterns 

or clusters representing various rock types through cross-plots. After recognizing patterns 

on the cross plots, polygons can be drawn around these clusters. Any data point located 

within a particular cluster is then categorized as belonging to the facies associated with 

that polygon. This essentially forms a boundary around data points that exhibit similar 

logging properties and are presumed to belong to the same rock type.  

When the polygon cluster method is combined with Kriging, it involves utilizing 

the polygons created on the cross plots as a reference for determining facies types. 

Subsequently, Kriging is applied to model the spatial distribution of these facies’ types 

within the reservoir. This integrated approach allows for a more comprehensive 

understanding of the facies distribution in the reservoir, enhancing the accuracy of 

predictions at unobserved locations. 

 

7.9.1 Vp versus Vs Cross plot 

In facies modeling, Vp and Vs curves derived from well logs or geophysical data 

play a pivotal role. These curves represent the variations in acoustic and shear wave 

velocities as a function of depth within the subsurface. Vp represents the velocity at which 

seismic compressional waves propagate through geological formations, while Vs 

signifies the speed of shear waves, which move perpendicular to the direction of wave 

propagation. The process typically involves creating a cross-plot by directly comparing 

the Vp and Vs curves. This allows for a direct visualization of how these velocities relate 

to each other, which can reveal distinct patterns or trends indicative of three geological 

facies as shown in Figure 7.7. 

 



111 

 

 

Figure 7.7 Crossplot of Vp vs. Vs from the Kadanwari-03 well within the depth interval 

of 3110 to 3400 meters. 

 

To construct the cross-plot (as illustrated in Figure 7.7), the Kriging algorithm is 

employed to identify clusters of data points. This algorithm's details are explained in a 

previous section. The Gamma Ray (GR) log is employed as a benchmark automatically 

to establish a baseline for distinguishing between sand (26-78 API), shaly sand (79- 179 

API) and shale (180-280API) by evaluating their responses in terms of Vp and Vs. 

Consequently, distinct colors are assigned to these lithologies based on the corresponding 

GR values, allowing for the color-coding of individual data points on the Vp vs. Vs cross 

plot. This color-coding provides a visual representation that helps identify and 

differentiate lithological variations and patterns. 

Results  

Figure 7.7 displays the Vp vs. Vs cross-plot, highlighting the presence of three 

distinct facies: clean sand (yellow), shale (purple), and shaly sand (cyan). These facies 

are recognized based on their unique clustering patterns within the cross-plot. 

1. Clean Sand: Clean sand facies, characterized by a relatively low clay content and 

higher porosity, cluster in an area of the plot where both Vp and Vs values are 

comparatively lower (Anderton, 1985). 
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2. Shale: Shale, known for its relatively high clay content, tends to cluster in the 

region of the plot characterized by high Vp values and Vs values. In this region, 

Vp (P-wave velocity) values are notably higher than Vs (S-wave velocity) values 

(Michelena et al., 2009).. 

3. Shaly Sand: Shaly sand, an intermediate lithology, clusters between shale and 

clean sands on the cross-plot due to its properties falling between those of shale 

and clean sand (El-Sayed, 2020). 

Vp vs. Vs cross plot offers a powerful tool for reservoir characterization by enabling the 

identification and spatial distribution modeling of various rock facies based on their 

seismic velocities. 

7.9.2 Vp & Density Cross plot 

In facies modeling, Vp and density curves derived from well logs or geophysical 

data play a key role. Different lithologies have different physical qualities, and their 

responses on a Vp vs. RHOB cross plot may help identify them, as seen in Figure 7.8 

below. As previously stated before, Vp is used to determine the propagation velocity of 

compressional waves (primary waves). It is affected by the compaction, fluid content, 

porosity, and rock lithology. Density, also known as RHOB, is a measurement that 

quantifies the bulk density or mass per unit volume of a rock. The rock's mineral 

composition, porosity, and the type of fluid filling the pores all have an influence on it. 
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Figure 7.8 Crossplot of Vp vs. RHOB from the Kadanwari-03 well within the depth 

interval of 3110 to 3400 meters. 

 

        To construct the cross-plot (as illustrated in Figure 7.8), the Kriging algorithm is 

employed to identify clusters of data points. This algorithm's details are explained in a 

previous section. The Gamma Ray (GR) log employed as a benchmark automatically to 

establish a baseline for distinguishing between sand (26-78 API), shaly sand (79- 179 

API) and shale (180-280API) by evaluating their responses in terms of Vp and RHOB. 

Consequently, distinct colors are assigned to these lithologies based on the corresponding 

GR values, allowing for the color-coding of individual data points on the Vp vs. RHOB 

cross plot. This color-coding provides a visual representation that helps identify and 

differentiate lithological variations and patterns. 

 

Results  

Figure 7.8 displays the Vp vs. Density  cross-plot, highlighting the presence of 

three distinct facies: clean sand (yellow), shale (purple), and shaly sand (cyan). These 

facies are recognized based on their unique clustering patterns within the cross-plot. 

1. Clean Sand: Clean sand facies appear in regions characterized by lower RHOB 

values and higher Vp values. These sands are typically water-saturated and exhibit 

these characteristics on the cross plot (Anderton, 1985). 

2. Shale: Shale facies cluster in regions with moderate to high RHOB values and 

relatively low Vp values. Shales are known for their higher density and lower 

compressional wave velocity, which are reflected in this plot (Michelena et al., 

2009).. 

3. Shaly Sand: Shaly sand facies, falling between clean sands and shales on the cross 

plot, exhibit intermediate density and Vp values. These formations are a mix of 

clean sand and shale and display this characteristic on the plot (El-Sayed, 2020). 

Understanding how various lithologies behave on a Vp vs. RHOB (bulk density) cross 

plot can be immensely valuable in the process of reservoir characterization. Over time, 
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and when combined with additional logs or data resources, enables geoscientists to detect 

lithological changes, pinpoint hydrocarbon-rich zones, and discern other essential 

reservoir features, improving reservoir assessment accuracy more correctly. Moreover, 

the Vp vs. RHOB cross plot serves as a means to validate and corroborate the outcomes 

derived from previous crossplot analyses, further bolstering the reliability of the findings. 

 

7.9.3 Vs & Density Cross plot 

           In facies modeling, Vs and density curves derived from well logs or geophysical 

data play a crucial role. The relationship between shear wave velocity (Vs) and bulk 

density (RHOB) in different rock types is an important factor to consider when 

interpreting lithology. Distinct trends can be observed on a Vs versus RHOB cross plot, 

aiding in their differentiation, as depicted in Figure 7.9 below. 

 

 

Figure 7.9. Crossplot of Vs vs. RHOB from the Kadanwari-03 well within the depth 

interval of 3110 to 3400 meters. 

 

              To construct the cross-plot (as illustrated in Figure 7.8), the Kriging algorithm is 

employed to identify clusters of data points. This algorithm's details are explained in a 

previous section. The Gamma Ray (GR) log is employed as a benchmark automatically 
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to establish a baseline for distinguishing between sand (26-78 API), shaly sand (79- 179 

API) and shale (180-280API) by evaluating their responses in terms of Vs and RHOB. 

Consequently, distinct colors are assigned to these lithologies based on the corresponding 

GR values, allowing for the color-coding of individual data points on the Vs and RHOB 

cross plot. This color-coding provides a visual representation that helps identify and 

differentiate lithological variations and patterns. 

 

Results  

Figure 7.9 displays the Vs vs. Density  cross-plot, highlighting the presence of 

three distinct facies: clean sand (yellow), shale (purple), and shaly sand (cyan). These 

facies are recognized based on their unique clustering patterns within the cross-plot. 

1 Clean Sand: . Clean, water-saturated sands will appear in regions with higher Vs 

and lower RHOB values. Gas-bearing sands will show a noticeable decrease in 

Vs, but RHOB may not drop as drastically as it does in the Vs vs. RHOB 

relationship (Anderton, 1985). 

2 Shale: Shale facies cluster in regions with moderate to high RHOB values and 

relatively low Vs values. Shales are known for their higher density and lower 

compressional wave velocity, which are reflected in this plot (Michelena et al., 

2009). 

3 Shaly Sand: Shaly sands exhibit Vs values that lie between the ranges observed 

for clean sands and shales, with their bulk density generally higher than clean 

sands but typically lower than pure shale. These shaly sands are positioned in an 

intermediate zone, falling between the defined regions for shales and clean sands 

(El-Sayed, 2020). 

The Vs (shear wave velocity) vs. RHOB (bulk density) cross plot is important in 

geophysics and petrophysics because it provides insight into rock characteristics, which 

aids in lithological differentiation and fluid content determination. 

 

7.10 Result and Discussion 
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In this research, a machine learning-based multi-regression approach was 

employed to calculate shear sonic velocity (Vs), resulting in significantly improved 

prediction accuracy compared to Vs values obtained through the Castagna equation. To 

validate the reliability of this approach, the AVA forward modeling algorithm was 

utilized with Vs values obtained from both methods. The study reveals the superiority of 

shear sonic values derived from machine learning techniques over those obtained from 

the Castagna equation. The presence of a dimming effect observed in the synthetic AVA 

gathers when using the Castagna equation suggests potential limitations in its accuracy. 

The research  article (Suleymanov et al., 2023) validates the results by employing 

machine learning to predict elastic parameters while integrating rock physics parameters. 

Furthermore, the research extends its findings by employing a machine learning-

based Kriging algorithm for facies modeling. The study conducted by Zare et al., 2020 

corroborated the findings by employing a machine learning-driven kriging algorithm to 

categorize the clusters into distinct facies. This modeling effort successfully categorizes 

the challenging-to-distinguish thin sand and shale layers within the Lower Goru 

Formation into three distinct groups: sand, shale, and shaly sand. The results validate that 

utilizing various cross-plots yields consistent classifications of facies. This validation is 

of paramount importance, as it refines drilling strategies, enhances insights into reservoir 

behavior, and improves hydrocarbon recovery processes. 

The combined use of machine learning for Vs calculation and facies modeling, as 

demonstrated in this study, offers a comprehensive approach to subsurface 

characterization and reservoir exploration. Experts can effectively differentiate between 

different rock types and accurately determine the presence of hydrocarbons. This, in turn, 

significantly enhances overall reservoir management and production operations, 

emphasizing the critical role of advanced computational methods in improving the 

accuracy and reliability of geophysical data analysis and interpretation (An & Lu, 2018). 
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CHAPTER 8 

GEOMECHANICS WITH AUTOMATED PRE-CONDITIONING 

OF PETROPHYSICAL LOGS USING MACHINE LEARNING 

 

8.1 Geomechanics 

Geomechanics is the study of the investigation of how subsurface rock formations 

deform or experience structural failure due to variations in stress, pressure, and 

temperature and it is becoming more important in the industry of oil and gas exploration 

(Busetti, 2019). Geomechanics is the theoretical and practical study of how geological 

materials behave mechanically. Its application involves mitigating risks and maximizing 

benefits associated with the mechanical instability of reservoirs and nearby geological 

formations due to activities linked to oil and gas exploration and extraction. These 

activities encompass processes like well drilling, hydraulic fracturing, gas or water 

injection, and resource depletion. The primary objective is to anticipate the occurrence of 

such instabilities, ultimately leading to risk reduction (Haq, 2019).  

Reservoir geomechanical parameters are calculated to understand the mechanical 

behavior of subsurface rock formations, which is important for optimizing drilling, 

completion, and production strategies in the oil and gas sector. This information is used 

for stress analysis, hydraulic fracturing design, reservoir modeling, wellbore stability, 

subsidence prediction, environmental risk assessment, resource estimate, well location, 

and overall operational safety, assuring efficient and sustainable hydrocarbon production. 

 

8.2 Reservoir geomechanics parameters 

      Pore pressure refers to the pressure exerted on fluids within the pore spaces of 

a rock formation. Pore pressure information plays a crucial role in enhancing our 

understanding of various aspects during exploration activities. This includes gaining 
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insights into the shape of the basin, the durability of traps, the routes taken by 

hydrocarbons during migration, and how pressure is distributed across geological 

formations. In addition, pore pressure data is helpful in identifying faults that effectively 

seal and those that may have leaks. By utilizing this data, drilling risks can be reduced by 

applying appropriate mud weight and optimizing casing design, which ensures effective 

control of the wellbore (Khan et al., 2017). The pressure experienced at a certain depth, 

known as overburden or lithostatic pressure, or vector stress, results from the cumulative 

weight of both the layers of material above a specific stratigraphic level and the pore 

fluids contained within those layers. The force exerted on the solid rock structure is 

referred to as vertical effective stress. This effective stress determines the degree of 

compression inside rocks, and a reduction in this stress leads to the development of 

overpressure conditions. The fracture gradient refers to the minimum pressure needed 

to induce or propagate fractures in a rock at a particular depth.  It relies on factors such 

as rock strength, in-situ stress, and pore pressure. Pore pressure and fracture gradients 

have multiple applications in reservoir geomechanics, including maintaining wellbore 

stability, implementing hydraulic fracturing operations, and managing reservoir 

compaction (Tosaya, 1982; Khan et al., 2017). 

 

8.3 Artificial Neural Network (ANN) 

The Artificial Neural Network (ANN) is a machine-learning model or a 

computational system inspired by the functioning of neurons in the human brain. It 

consists of a vast number of neurons organized into different layers, each with specific 

functions (Shi et al., 2016). An ANN architecture generally comprises three fundamental 

layers: the input layer, hidden layers, and output layer. The ANN can be trained using 

various algorithms, but the back-propagation algorithm, often referred to as the BP 

algorithm, is the most frequently used. The objective of the backpropagation algorithm 

is to optimize the weights of a neural network to enable it to effectively learn the mapping 

of arbitrary inputs to corresponding outputs (Syed et al., 2022). I intend to utilize the 

backpropagation algorithm in machine learning to produce my outcomes.  The provided 

Figure 8.1 depicts a basic ANN: 
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Figure 8.1 Basic Artificial Neural Network procedure  

 

In the conventional approach, the input typically includes 4-5 logs: the gamma 

log, neutron porosity (NPHI), bulk density (RHOB), and compressional (DT) and shear 

(DTS) sonic logs. These logs are employed for the purpose of my analysis. The hidden 

layers utilize weight training sets to effectively train various algorithms. The output layer 

is responsible for providing the outcome. In my scenario, the objective is to identify and 

distinguish shale, sand, & tight sand, while also assessing the properties related to 

reservoir geomechanics. 

This chapter explores the integration of machine learning techniques to 

compute geomechanical properties through automated preconditioning of petrophysical 

logs. This chapter presents three distinct workflows aimed at using machine learning 

algorithms for the preprocessing and conditioning of well log data, which are 

subsequently used as inputs to evaluate critical geomechanical properties including 

overburden stress, overburden stress gradient, vertical effective stress, pore pressure, pore 

pressure gradient, and fracture gradient.  

 

8.4 Layer boundaries (1st Workflow) 

The layer boundaries (i.e., sand, shale) are delineated by the outcome of the initial 

workflow. The complete process of this initial workflow is illustrated in Figure 8.2.  
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Figure 8.2 First workflow to delineate Layer Boundaries. 

 

The first workflow focuses on employing machine learning models to accurately 

identify and classify the boundaries of sand and shale intervals within the logged section. 

This classification is essential for a comprehensive understanding of the stratigraphic 

heterogeneity and provides valuable insights for further evaluations of geomechanical 

properties. 

The script of this initial workflow is shown in Annexure A, and the results derived 

from this script are displayed in Figure 8.3. 
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Figure 8.3 Outcome of first workflow to delineate Layer Boundaries 

 

8.4.1 Methodology and Explanation  

      The first step is to take the single gamma ray log as an input log. Through the 

utilization of diverse algorithms, a range of modified logs is derived from this original 

GR log. The initial track named GR_EDTC features the original log-in marked by blue 

color. The name "GR_EDTC" is the original one instead of just "GR," because it was 

modified to eliminate glitches after its initial acquisition. The scale of the original GR log 

is 0 to 366. The first algorithm which is applied to the GR log is the Moving average on 

601 samples. This moving average is labeled in red color as “GR_ Ave601” and is 

superimposed on an original log with the same scale displayed in the 1st track. In the third 

track GR_ Ave601 is displayed independently in blue color. The scale limit has been 

reduced from 366 to 148 in order to enhance its visibility. In moving Average on 601 

samples means the neural network calculates the average of 300 samples both before and 

after the central value of 601. This resulting average is assigned to the central number. 

Afterward, it advances one step downward and this procedure is repeated until it 

computes the average of all the samples within the log. I have taken the average to 

somewhat smooth out the curve.  Even within GR_Ave601, there are still some 

fluctuations that persist in the log data. Hence, following the experimentation with various 

moving averages on distinct samples, I  decided to employ an iteration of moving 
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averages of 201 samples to the GR_Ave 601 log. Since it would be doing less smoothing, 

therefore, it would be applied 3 times to the original log. This moving average is denoted 

in red color as “GR_ Ave201*3”. Using the identical scale, it is superimposed onto the 

original log and depicted in the 2nd track. In the fourth track GR_ Ave201*3 is displayed 

independently in red color. The scale limit has been reduced from 366 to 148 to improve 

its visibility. 

The basic aim of this method is to pre-train the log data into the neural network. 

This is essential because the original log exhibits significant fluctuations. By employing 

moving averages, it becomes relatively more manageable for the neural network to 

address these fluctuations to a certain degree. In simple words, I tried to simplify the log 

data before training it in machine learning. In the fifth track, the moving average of 601 

(GR_ Ave601) and moving average of 201 (GR_ Ave201*3), are superimposed on each 

other within the same track. The blue one is a moving average of 601 and the red one is 

a moving average of 201. As we can see in the track, specifically within a depth range of 

1600 to 2000, the log response of GR_Ave601 exhibits more pronounced oscillations or 

minute vibrations, implying a substantial presence of noise. This leads to the loss of 

distinct layer signatures. Whereas, within the same interval, the moving average of 201*3 

retains the layer signatures in the form of vibrations or oscillations. From the comparison, 

it can be inferred that the moving average of 201 (GR_ Ave201*3) is a much better choice 

to be used as an input into the neural network. Moving forward, I proceed to compute the 

first-order derivative of GR_ Ave201*3, denoted as "DRV1". In the sixth track, DRV1 is 

represented in green color with a scale of -2 to 2 along with GR_Ave201*3 in red. This 

first-order derivative, DRV1, functions as an edge detector operator. Additionally, I also 

computed a second-order derivative of GR_ Ave201*3 designated as "DRV2" displayed 

in the seventh track, represented by an olive-green color. However, it was observed that 

the second derivative exhibited an excessive amount of noise or fluctuations. 

Consequently, upon evaluating the results, the decision was made to utilize the DRV1 

instead. Whenever lithology or formation changes, naturally log trend also changes. In 

such instances, the first-order derivative (DRV1) will interpret this alteration as a 

boundary change, producing a peak in its output. When there is a significant change in 

the GR_ Ave201*3 value, DRV1 will exhibit a more pronounced peak in its output. 

Conversely, if the GR_ Ave201*3 log parameter is decreasing, DRV1 will generate a 

negative peak in its output. Next, I applied a moving average of 601 on the first-order 
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derivative (DRV1) to smoothen the curve. This curve is labeled as “DRV1_Ave601” in 

the same sixth track distinguished by pink color. 

Sometimes within the layer, there are minor variations and when a derivative is 

applied to such regions, these subtle changes are slightly magnified. As a result, the 

derivative might misinterpret these enhanced changes as variations in lithology, which 

may not be the case. To address this issue, two threshold lines are drawn on the first-order 

derivate (DRV1). These threshold lines are determined based on 5% to 10% of the 

maximum and minimum values of DRV1. Values falling below this 10% threshold line 

are filtered out, while those exceeding this threshold are interpreted as indications of 

variation or change. These lines will serve as a reference for the implementation of the 

minimum filter, the details of which will be explained in the following discussion. In the 

eighth track, the difference between DRV1 and its moving average, DRV1_Ave601 and 

presented as "DRV1_Diff," which is distinguished by pink shade. DRV1_Diff is overlaid 

on DRV1 within the same track. Notably, DRV1 exhibits pronounced peaks, while its 

difference from its moving average DRV1_Diff represents comparatively lower values 

than DRV1. This difference is calculated to mitigate the heightened peaks to a certain 

degree. Next, a difference filter is applied on DRV1_Diff and labeled in red color as 

“DRV1_DFlt” and displayed in the ninth track. GR_ Ave201*3 log is displayed in the 

same track just for reference.  Within the DRV1_Diff log, a specific value range is 

defined, which is based on the 5-10% of the minimum and maximum values of the log. 

The difference filter diminishes all values of DRV1_Diff that lie within this defined range 

to zero. Values exceeding this defined range are interpreted as peaks and troughs. In the 

same track, the spiking operator, which is named “SPK_DFlt”, is applied to the difference 

filter. The spiking operator scans this difference filter trace. Whenever the non-zero 

values are encountered, it attempts to identify the location of the highest sample in the 

case of a peak, marked this specific sample, and rest of the values are set to zero. 

Similarly, when dealing with a trough, the spiking operator locates the position of the 

lowest value, marks that particular sample, and resets the remaining values to zero. As a 

result of this process, the presence of a maximum or minimum value is indicated by the 

appearance of a spike in the results. 

Since the difference filter (DRV1_DFlt) picks unnecessary information especially 

minor changes arising from various factors. To address this concern, a minimum filter is 

introduced and applied directly to DRV1. The Minimum filter is displayed as 
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“DRV1_MFlt” highlighted in green, in the tenth track along with GR_ Ave201*3 log as 

a reference. As previously discussed, two threshold lines are drawn on the first-order 

derivative (DRV1) in the sixth track. These lines are generated using the range of 5% to 

10% of the maximum and minimum values within DRV1. Values that are lower than this 

10% threshold line or values that fluctuate between these reference lines are set to zero, 

whereas values exceeding this threshold are detected as peaks. As the minimum filter 

operates much better than the difference filter, it has been chosen for further utilization.  

The spiking operator was then applied to the minimum filter, which is shown as 

"SPK_MFlt" in the same 10th track, as indicated by green. The spiking operator examines 

the minimum filter trace. When it finds a non-zero value, it keeps it until the next zero 

value occurs. The operator chooses the highest non-zero number and marks it as a single 

peak spike while setting all other values to zero. On the other hand, in cases when values 

decrease, the spiking operator identifies the lowest non-zero value and classifies it as a 

trough spike, subsequently resetting all other values to zero. The minimum filter and the 

spiking operator have also been implemented on the first-order derivative moving average 

(DRV1_Ave601) as well, as evident in the 11th track. Here, “DRV1_MAFlt” is 

represented in purple and “SPK_MAFlt” in green. However, it is noticeable that this 

approach results in an additional smoothing curve, causing the loss of the distinct layer 

variation signature. As a result, it is decided not to proceed with this approach. As the 

spiking operator applied to the minimum filter yields better results, therefore spiking 

minimum operator along with the moving average of GR 201*3 have been displayed in 

the 12th track, ensuring clear differentiation of lithological contrasts. All these spikes 

symbolize boundary points where there are transitions between layers or where lithology 

has been changing. Positive spikes signify an increase in log values, whereas negative 

spikes indicate a decrease in log values. 

 

8.4.2  Result & Discussion 

Finally, all these logs have been fed to the neural network, which gives us results 

in the form of markers that distinguish boundaries between different geological layers. In 

the final log, the GR moving average of 201*3 is displayed. Over this moving average 

curve, spikes have been designated as markers, signifying the interfaces between distinct 

layers. Within each interval, the block average of gamma-ray symbolized as 



125 

 

“GR_BkAve”, has been carried out, illustrating the block-like response of the GR 

between interfaces. 

The Boundary Identification Workflow employs machine learning models to 

precisely identify and classify sand and shale boundaries within logged sections. This aids 

in comprehending stratigraphic heterogeneity and offers insights for further 

geomechanical property assessments. 

All this script is written in Python using the K-tron GeoStudio Petrolib library. The source 

code of this script is given in Annexure A. 

 

8.5 Volume of shale (2nd Workflow) 

          The color-based block average of the shale volume is established based on the 

results derived from the second workflow. The procedure of this secondary workflow is 

shown in Figure 8.4.  

 

 

 

 

 

 

 

 

Figure 8.4 Second workflow for computation of block averages for the volume of shale. 

 

The aim of the previous workflow is to mark boundaries. The second workflow is 

focused on the computation of block averages for the volume of shale, a key parameter 

in the characterization of rock formations. By employing artificial neural networks or 
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machine learning techniques, we can automatically classify or interpret sand, shale, and 

intermediate layers.  

This workflow has been developed using the K-tron Petrolib library and the script 

of this source code has been shown in annexure B and the results derived from this script 

are displayed in Figure 8.5. 

 

 

Figure 8.5 Second workflow for computation of block averages for the volume of shale.  

 

 

8.5.1 Methodology and Explanation 

      In the concluding stage of the previous workflow, the interfaces demarcating the 

boundaries between the geological layers have been identified through the utilization of 

machine learning techniques. The initial five log tracks remain consistent with those 
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utilized in the previous workflow. In the very first track, the original GR_EDTC log is 

displayed along with GR_Ave201*3 which is superimposed on it. Both have a scale limit 

from 0 to 366. Moving to the second track, GR_Ave2013 is presented in red, accompanied 

by the first-order derivative DRV1 in green. On the third track, GR_Ave201*3 is shown 

in blue with a scale range of 0 to 148, the first-order derivative's minimum filter, 

DRV1_MFlt, is represented in pink, and the spiking operator overlaid on this minimum 

filter, SPK_MFlt, is displayed in green. The fourth track depicts GR_Ave2013 with a 

scale reduced from 0 to 148 and SPK_MFlt displayed separately. Moving on to the fifth 

track, it presents the block average of GR (GR_BlkAve) together with GR_Ave2013 for 

reference.  As we previously discussed, the neural network identified interface 

boundaries, and within these boundaries, a block average has been carried out. With these 

layer markers, neural network computes the volume of shale from the gamma-ray. 

Furthermore, within these same boundaries, a block-averaging algorithm is applied to the 

shale volume. In the sixth track, the shale volume, represented as "Vsh," is highlighted in 

red with a scale range of 0.2 to 1.  

 

8.5.2 Result & Discussion 

In the concluding phase, machine learning uses a color spectrum to visualize this 

block average of shale volume (Vsh_BlkAve), to clearly identify the layers of shale, sand, 

and tight sand. This color representation is demonstrated in the seventh and final track. A 

blue shade indicates sand, transitioning to a darker blue as the shale component increases. 

A pink color designates shale. 

The Volume of Shale Computation Workflow concentrates on calculating block averages 

for the volume of shale, a critical parameter for characterizing rock formations. It relies 

on artificial neural networks or machine learning techniques to automatically categorize 

sand, shale, and intermediate layers. These computed values then serve as inputs for 

evaluating reservoir geomechanical properties. 

All this script is written in Python using the K-tron GeoStudio Petrolib library. The source 

code of this script is given in Annexure B. 
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8.6 Reservoir Geomechanics Properties (3rd Workflow) 

            Geomechanical parameters are derived through the utilization of the third 

workflow procedure, as illustrated in Figure 8.6. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.6 Final workflow to derive Geomechanical parameters. 

 

This workflow focuses on the computation of essential rock physics parameters, 

which are subsequently used as inputs into machine learning to evaluate reservoir 

geomechanical properties, including overburden stress, overburden stress gradient, pore 

pressure, pore pressure gradient, and fracture gradient. These outputs, generated through 

systematic and automated workflows, provide a robust and streamlined approach to 

geomechanical evaluation, enabling more efficient decisions in various applications, such 

as wellbore stability analysis, hydraulic fracturing design, and reservoir management.  

The script of this workflow has been designed by a fellow research student, Saman 

Fatima (2023), and I am utilizing this framework to produce results of geomechanical 

properties for Kadanwari-03 well, as shown in Figure 8.7. 
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Figure 8.7 Results of final workflow to derive Geomechanical parameters. 

 

8.6.1 Methodology and Explanation 

    In this third and final procedure, the layer boundaries derived from the conclusion 

of the first workflow are used, together with the color spectrum-based representation of 

the block average Volume of shale from the second workflow, taking these as inputs into 

machine learning or artificial neural network that initiates the third workflow. In the first 

track, the volume of the shale (Vsh) log is illustrated with a color gradient changing from 

skin to light brown, indicating a transition from sand to a more shaley composition, and 

dark brown indicates the presence of shale. This color gradient visually aids in 

distinguishing between sand and shale formations in the log. Utilizing identical markers, 

the compressional velocity (Vp) is computed from the sonic log (DTP). Subsequently, its 

block average within each interval is calculated and exhibited in the second track, 

employing a rainbow color spectrum. Similarly, the shear velocity (Vs) is determined 

from the shear sonic log (DTS).  Its block average within each interval is calculated and 

presented in the third track, using the same rainbow color spectrum as before. In the fourth 

track, the average density log (RHOB_Ave) is calculated using Gardner's equation 
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(Gardner, 1974). After computing its block average, the data is visually represented using 

a color spectrum that transitions from blue to pink and red. 

Next, some rock physics parameters in the block average form have been 

computed from these three logs (Vp, Vs, RHOB). The very first one is the Bulk Modulus 

(BM) which is displayed in the fifth track with a color gradient spanning from white to 

red. The next one is the Shear Modulus (SM), which is displayed in the sixth track with 

a color spectrum ranging from white to green. Subsequently, the Young Modulus (YM) 

is displayed in the seventh section, featuring a color spectrum that spans from white to 

blue. Moving on, the Poisson Ratio (PR) is presented in the eighth track, employing a 

color spectrum that varies from white to pink. If the NPHI log is accessible, the mean 

block average of the Porosity log (POR) is calculated and exhibited in the ninth track 

using a color range that transitions from white to brown. If the NPHI log is unavailable, 

this porosity log can also be computed using the density log. At this point, all the 

necessary parameters for the computation of reservoir geomechanical properties have 

been determined. 

• Computed Geomechanical parameters 

The first geomechanical parameter is Overburden pressure (OBPI), also referred 

to as vertical stress or lithological pressure, which is determined using the density log 

through the application of the Bryant & Bell method (Bryant, 1986). Subsequently, the 

block average of overburden pressure is computed for each interval and displayed in the 

tenth track using a color spectrum that transitions from white to yellow. Overburden 

pressure refers to the stress exerted on a rock due to the load of the rock and soil layers 

above it. When this overburden pressure becomes greater than the pressure of fluids 

within the rock's pore spaces, it leads to the compression of the formation (Richard, 2015). 

Moving to the eleventh track, stacked overburden pressure with depth (OBP) from top to 

bottom is computed and displayed by using 6 color spectra. As evident in the provided 

Figure 6.6, there's a continuous increase in the stacked overburden pressure from the top 

layer to the bottom, signifying that the pressure is increasing as more layers are added. 

 In the subsequent twelfth track, the overburden gradient (OBG) has been derived from 

the stacked overburden pressure. The gradient represents the rate of change.  The resulting 

overburden gradient is then displayed using a color spectrum consisting of five distinct 

colors. In the 13th track, the vertical effective stress (VES) has been calculated for each 
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interval using the Bowers method (Bowers, 1994), based on the interval velocity. The 

resulting blocky average of VES values is visually represented in the 13th track using a 

color spectrum comprising five distinct colors: blue, green, yellow, red, and pink. There 

are two prevalent methods for computing vertical effective stress (VES) 

• The Bowers method (Bowers.1994). 

• The Athy method (Athy,1930). 

In the Athy method, vertical effective stress (VES) is derived with the assistance 

of porosity, whereas in the Bowers method, interval velocity is utilized. In my scenario, 

I employed the Bowers method. In the next track another geomechanics parameter, Pore 

Pressure (PP) has been computed from an over-pressure gradient by using the Terzaghi 

method (Terzaghi,1943), and its blocky average is illustrated in the 14th track, utilizing a 

color spectrum comprising five distinct colors: blue, green, yellow, red, and pink. The 

rate of change of pore pressure is called the Pore Pressure Gradient (PPG). The block-

averaged curve of the pore pressure gradient is visualized in the 15th track using the same 

color spectrum of five colors. In the final track, the last component of geomechanics, the 

Fracture gradient (FG) has been computed from the Eaton method (Eaton,1969). Fracture 

gradient is computed with the help of the overburden gradient, Poisson's ratio, and pore 

pressure gradient. The graphical representation of the fracture gradient curve is illustrated 

in the last track, employing the consistent 5-color spectrum as before. 

 

8.6.2 Result & Discussion 

 The Geomechanical Property Evaluation Workflow utilizes machine learning, 

drawing on inputs from the previous workflow, to assess vital geomechanical properties, 

including overburden stress, overburden stress gradient, vertical effective stress, pore 

pressure, pore pressure gradient, and fracture gradient. These properties are fundamental 

in assessing the mechanical behavior of subsurface formations and are indispensable for 

ensuring the safety and stability of drilling operations and reservoir management. While 

conducting drilling operations, it is essential to establish the appropriate mud weight. Pore 

pressure gradient determines the lowest weight limitations in mud designs, whereas 

fracture gradient defines the maximum weight limits. Mud weight at any given depth 

should be greater than the pore pressure but less than the Fracture pressure/gradient. 
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Pore pressure gradient determines the lowest weight limitations in mud designs, 

whereas fracture gradient defines the maximum weight limits. Pressure is exerted on the 

borehole wall by formation fluids. In order to prevent fluid intrusion and wellbore failure 

it is imperative that the mud weight is consistently maintained at a level higher than the 

pore pressure. In contrast, when the mud weight exceeds the fracture gradient of the 

formation, it results in the fracturing of the wellbore, thereby causing the release of mud 

into the formation (Khan, 2017). 

 

8.7 Conclusion & Discussion 

The findings of Sacrey and Sierra (2020) involve the estimation of potential 

reservoir quantities using geobodies that have been analyzed through unsupervised 

machine learning classifications. Another study conducted by Nath and colleagues in 

2022 utilized advanced machine learning techniques, including Bi-directional Long 

Short-Term Memory (Bi-LSTM) and Random Forest (RF) algorithms, to forecast the 

sonic characteristics of rock. The primary objective was to estimate and assess the 

geomechanical attributes of the prospective unconventional formation located in the 

Permian Basin of West Texas. To fill the gap thiis chapter delves into the utilization of 

supervised machine learning (SML) methodologies to calculate geomechanical 

characteristics by automating the conditioning of petrophysical logs. It presents three 

distinct procedural frameworks that uses machine learning algorithms to preprocess and 

refine well log data, which are subsequently utilized as inputs to assess critical 

geomechanical attributes. 

The first boundary identification workflow focuses on the precise identification 

and classification of sand and shale boundaries within the logged section, facilitated by 

SM learning models. This classification is vital for gaining a comprehensive 

understanding of stratigraphic heterogeneity and provides valuable insights for further 

geomechanical property evaluations. The second volume of shale computation workflow 

concentrates on computing block averages for shale volume, a critical parameter in rock 

formation characterization. By employing artificial neural networks or supervised  

machine learning techniques, it becomes possible to automatically classify or interpret 

sand, shale, and intermediate layers. The geomechanical properties evaluation workflow 

revolves around the computation of essential rock physics parameters, which are 
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subsequently fed into machine learning models to evaluate reservoir geomechanical 

properties, including overburden stress, overburden stress gradient, vertical effective 

stress, pore pressure, pore pressure gradient, and fracture gradient. 

A comprehensive understanding of geomechanical characteristics is required to 

accurately predict the distribution of stress inside a reservoir. The acquisition of these 

parameters is crucial for the investigation of wellbore stability, the planning of hydraulic 

fracturing operations, and the modelling of reservoir behavior. It aids in the prevention of 

problems including subsidence, casing failure, and wellbore collapse.  
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CONCLUSIONS 

 

The study area was analyzed using geophysical methods and techniques such as 

seismic interpretation, petrophysical evaluation, seismic attribute assessment, seismic 

inversion, machine learning-driven Vs prediction, and its subsequent validation, facies 

examination, and geomechanics. The outcomes from these techniques are as follows: 

 

1. The 3D Seismic Structural Interpretation of the Kadanwari area reveals an 

extensional regime dominated with horst and graben structures. Time & Depth 

Contour mapping of the G, F, and E sands of the Lower Goru Formation shows 

that the G and E sands possess shallower time and depth regions compared to the 

F sand. This suggests that the G and E sands have a higher potential for 

hydrocarbon accumulation. Moreover, the central zone between the two major 

faults has been pinpointed as a promising location for future drilling. 

 

2. Petrophysical studies of wells Kadanwari-10 and Kadanwari-11 show distinct 

reservoirs in the Lower Goru's G, F, and E sands. Hydrocarbon saturations are 

highest in E Sand (85-95%), followed by G Sand (60-75%) and F sand (up to 

50%). Thus, E and G sands are notably more productive than F sand in the 

Kadanwari Gas field  

 

3. The Model-Based Inversion technique has been applied to analyze the 3D seismic 

cube of the Kadanwari area, focusing on the variations in impedance. The P-

impedance inverted model indicates that the G and E sand formations exhibit 

lower impedance values compared to the F sand. These results align with findings 

from petrophysical analysis and seismic interpretation, verifying their precision. 

Thus, the G and E sand formations are identified as producing reservoirs. 

 

4. Seismic attributes, especially Spectral Decomposition, aid in detecting thin bed 

strata of G, F, and E sands, by increasing frequency sub-bands. The pronounced 
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reflection strength from the broad red areas on the sections signifies amplitude 

anomalies, which further validates the boundary delineation provided by the 

Instantaneous Amplitude attribute for the Lower Goru G and E sands. This 

suggests that these sands could be potential reservoir formations in the Kadanwari 

region. The Instantaneous Phase attribute effectively identifies disruptions from 

faults and showcases the lateral continuity of the Lower Goru Sands. 

 

5. A machine learning-driven multi-regression method is utilized for the 

computation of shear sonic velocity (Vs), significantly enhancing predictive 

accuracy when contrasted with Vs values derived from the Castagna equation. To 

evaluate the reliability of this approach, the AVO forward modeling algorithm 

was applied to Vs values obtained from both methodologies. The outcomes 

demonstrated that the Vs calculations derived from the machine learning approach 

consistently outperformed those obtained from the Castagna equation, particularly 

in detecting gas anomalies at higher angles. In the Lower Indus Basin, thin sand 

and shale layers are hard to distinguish manually, so machine learning was used 

for facies modeling to classify them into three distinct groups and compute 

separate equations for them. 

 

6. Machine learning techniques are used to compute geomechanical properties 

through automated preconditioning of petrophysical logs by using three 

specialized workflows. The first workflow focuses on employing machine 

learning models to accurately identify and classify the boundaries of sand and 

shale intervals. The second workflow is devoted to the computation of block 

averages for the volume of shale. The third and final workflow delves into the 

calculation of essential rock physics & other fundamental parameters, which serve 

as inputs to evaluate vital reservoir geomechanical properties (including 

overburden stress, overburden stress gradient, pore pressure, pore pressure 

gradient, and fracture gradient) distinguished by unique color spectrums. 
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ANNEXURE A 

 

 

picMain.Cls 

 

DoEvents 

pl.ReadLAS App.Path & "\Kadanwari-19.las" 

ds# = pl.GetDepthStart() 

de# = pl.GetDepthStop() 

 

ss& = pl.GetSampleIndex(ds) 

es& = pl.GetSampleIndex(de) 

es& = pl.GetSampleIndex(3400) 'Forced Depth End 

de# = pl.GetDepth(es) 'Forced Depth End 

 

Xo% = 80 

Xw# = 150 

pl.DrawDepthScale picMain, 10, 150, 60, 750, ds, de, 50, 200, QBColor(7), QBColor(8), QBColor(0) 

pl.DrawDepthGrid picMain, Xo, 150, 1340, 750, ds, de, 50, 200 

 

gri% = pl.GetLogIndex("GR_EDTC") 

pl.PutLogUnit gri, "API" 

 

'--------------------Algo#1: Ave 601 

pl.AllocateLogMemory "GRave1" 

gra% = pl.GetLogIndex("GRave1") 

pl.PutLogMin gra, pl.GetLogMin(gri) 

pl.PutLogMax gra, pl.GetLogMax(gri) 

pl.MovingAverage gri, gra, ss, es, 101 

 

pl.AllocateLogMemory "GRave2" 

gra% = pl.GetLogIndex("GRave2") 

pl.PutLogMin gra, pl.GetLogMin(gri) 

pl.PutLogMax gra, pl.GetLogMax(gri) 

pl.MovingAverage gri, gra, ss, es, 301 

 

pl.AllocateLogMemory "GR_Ave601" 

gra% = pl.GetLogIndex("GR_Ave601") 
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pl.LogsMinMax 

pl.PutLogMin gra, pl.GetLogMin(gra3) 

pl.PutLogMax gra, pl.GetLogMax(gra3) 

pl.DrawHeader picMain, Xo, 10, Xw, 130, 20, "GR_Ave601", QBColor(9), 3, 0 

pl.DrawLog picMain, Xo, 150, Xw, 750, "GR_Ave601", ss, es, QBColor(9), 1, 0 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

Xo% = Xo + Xw 

Xw# = 135 

pl.DrawHeader picMain, Xo, 10, Xw, 130, 20, "GR_Ave201x3", QBColor(12), 3, 0 

pl.DrawLog picMain, Xo, 150, Xw, 750, "GR_Ave201x3", ss, es, QBColor(12), 1, 0 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

Xo% = Xo + Xw 

Xw# = 135 

pl.DrawHeader picMain, Xo, 10, Xw, 130, 20, "GR_Ave601", QBColor(9), 3, 0 

pl.DrawLog picMain, Xo, 150, Xw, 750, "GR_Ave601", ss, es, QBColor(9), 1, 0 

pl.DrawLog picMain, Xo, 150, Xw, 750, "GR_Ave201x3", ss, es, QBColor(12), 1, 0 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

'--------------------Slope Computation 

'----1st Derivative 

Xo% = Xo + Xw 

Xw# = 135 

pl.DrawHeader picMain, Xo, 10, Xw, 130, 20, "GR_Ave201x3", QBColor(12), 3, 0 

pl.DrawLog picMain, Xo, 150, Xw, 750, "GR_Ave201x3", ss, es, QBColor(12), 1, 0 

 

pl.AllocateLogMemory "DRV1" 

pl.Slope gra3, drv1, ss, es 

pl.LogsMinMax 

'pl.PutLogMin drv1, -4 'Forced Log Min 

 

pl.DrawHeader picMain, Xo, 10, Xw, 130, 50, "DRV1", QBColor(3), 3, 0 

pl.DrawLog picMain, Xo, 150, Xw, 750, "DRV1", ss, es, QBColor(3), 1, 0 

'----1st Derivative-Average 

pl.AllocateLogMemory "DRV1_Ave601" 

drv1a% = pl.GetLogIndex("DRV1_Ave601") 

pl.MovingAverage drv1, drv1a, ss, es, 601 

pl.LogsMinMax 
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pl.PutLogMin drv1a, pl.GetLogMin(drv1) 

pl.PutLogMax drv1a, pl.GetLogMax(drv1) 

 

pl.DrawHeader picMain, Xo, 10, Xw, 130, 80, "DRV1_Ave601", QBColor(13), 3, 0 

pl.DrawLog picMain, Xo, 150, Xw, 750, "DRV1_Ave601", ss, es, QBColor(13), 1, 0 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

xs! = pl.GetLogMin(drv1) 

xe! = pl.GetLogMax(drv1) 

PR! = 0.15 

pl.SetGraphicsContext picMain, Xo, 150, Xw, 750, xs, xe, CSng(ds), CSng(de) 

pl.DrawLine xe * PR, ds, xe * PR, de, QBColor(10), 1 

pl.DrawLine xs * PR, ds, xs * PR, de, QBColor(10), 1 

DoEvents 

 

'----2nd Derivative 

pl.AllocateLogMemory "DRV2" 

drv2% = pl.GetLogIndex("DRV2") 

pl.Slope drv1, drv2, ss, es 

pl.LogsMinMax 

pl.PutLogMin drv2, -0.1 'Forced Log Min 

pl.PutLogMax drv2, 0.1 'Forced Log Min 

 

Xo% = Xo + Xw 

Xw# = 70 

pl.DrawHeader picMain, Xo, 10, Xw, 130, 20, "DRV2", QBColor(6), 3, 0, , 1, 2.6 

pl.DrawLog picMain, Xo, 150, Xw, 750, "DRV2", ss, es, QBColor(6), 1, 0 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

'----1st Derivative-Average Difference 

pl.AllocateLogMemory "DRV1_Diff" 

drv1d% = pl.GetLogIndex("DRV1_Diff") 

pl.LogMinMax "DRV1_Diff", ss, es 

pl.PutLogMin drv1d, xs 

pl.PutLogMax drv1d, xe 

 

Xo% = Xo + Xw 

Xw# = 100 

pl.DrawHeader picMain, Xo, 10, Xw, 130, 20, "DRV1", QBColor(3), 3, 0 
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pl.DrawLog picMain, Xo, 150, Xw, 750, "DRV1", ss, es, QBColor(3), 1, 0 

pl.DrawHeader picMain, Xo, 10, Xw, 130, 50, "DRV1_Diff", QBColor(13), 3, 0 

pl.DrawLog picMain, Xo, 150, Xw, 750, "DRV1_Diff", ss, es, QBColor(13), 1, 0 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

'----1st Derivative-Difference Filter 

pl.AllocateLogMemory "DRV1_DFlt" 

drv1f% = pl.GetLogIndex("DRV1_DFlt") 

pl.FilterDifference drv1a, drv1, drv1f, ss, es, xs * 0.12, xe * 0.12 

pl.PutLogMin drv1f, xs 

pl.PutLogMax drv1f, xe 

 

pl.AllocateLogMemory "SPK_DFlt" 

spk1f% = pl.GetLogIndex("SPK_DFlt") 

pl.Spike drv1f, spk1f, ss, es 

pl.PutLogMin spk1f, xs 

pl.PutLogMax spk1f, xe 

 

Xo% = Xo + Xw 

Xw# = 110 

pl.DrawHeader picMain, Xo, 10, Xw, 130, 20, "GR_Ave201x3", QBColor(9), 3, 0, , , 2.6 

pl.DrawLog picMain, Xo, 150, Xw, 750, "GR_Ave201x3", ss, es, QBColor(9), 1, 0 

pl.DrawHeader picMain, Xo, 10, Xw, 130, 80, "SPK_DFlt", QBColor(3), 3, 0, , , 2.6 

pl.DrawLog picMain, Xo, 150, Xw, 750, "SPK_DFlt", ss, es, QBColor(3), 1, 0 

pl.DrawHeader picMain, Xo, 10, Xw, 130, 50, "DRV1_DFlt", QBColor(12), 3, 0, , , 2.6 

pl.DrawLog picMain, Xo, 150, Xw, 750, "DRV1_DFlt", ss, es, QBColor(12), 1, 0 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

'----1st Derivative-Minimum Filter 

pl.AllocateLogMemory "DRV1_MFlt" 

drv1m% = pl.GetLogIndex("DRV1_MFlt") 

pl.FilterMinimum drv1, drv1m, ss, es, xs * 0.12, xe * 0.12 

pl.PutLogMin drv1m, xs 

pl.PutLogMax drv1m, xe 

 

pl.AllocateLogMemory "SPK_MFlt" 

spk1m% = pl.GetLogIndex("SPK_MFlt") 

pl.Spike drv1m, spk1m, ss, es 

pl.PutLogMin spk1m, xs 
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pl.PutLogMax spk1m, xe 

 

pl.AllocateLogMemory "DRV1_MAFlt" 

drv1ma% = pl.GetLogIndex("DRV1_MAFlt") 

pl.FilterMinimum drv1a, drv1ma, ss, es, xs * 0.12, xe * 0.12 

pl.PutLogMin drv1ma, xs 

pl.PutLogMax drv1ma, xe 

 

Xo% = Xo + Xw 

Xw# = 110 

pl.DrawHeader picMain, Xo, 10, Xw, 130, 20, "GR_Ave201x3", QBColor(9), 3, 0, , , 2.6 

pl.DrawLog picMain, Xo, 150, Xw, 750, "GR_Ave201x3", ss, es, QBColor(9), 1, 0 

pl.DrawHeader picMain, Xo, 10, Xw, 130, 80, "SPK_MFlt", QBColor(3), 3, 0, , , 2.6 

pl.DrawLog picMain, Xo, 150, Xw, 750, "SPK_MFlt", ss, es, QBColor(3), 1, 0 

pl.DrawHeader picMain, Xo, 10, Xw, 130, 50, "DRV1_MFlt", QBColor(13), 3, 0, , , 2.6 

pl.DrawLog picMain, Xo, 150, Xw, 750, "DRV1_MFlt", ss, es, QBColor(13), 1, 0 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

ReDim GRave!(NI), dp!(NI) 

pl.BlockAverage gri, di(), NI, GRave() 

pl.DrawFreeHeader picMain, Xo, 10, Xw, 130, 50, "GR_BlkAve", "API", pl.GetLogMin(gra3), pl.GetLogMax(gra3), QBColor(12), 

3, , , , 2.6 

pl.SetGraphicsContext picMain, Xo, 150, Xw, 750, pl.GetLogMin(gra3), pl.GetLogMax(gra3), CSng(ds), CSng(de) 

For i& = 1 To NI 

  dp(i) = pl.GetDepth(di(i)) 

Next 

pl.DrawFlatLines pl.GetLogMin(gra3), pl.GetLogMax(gra3), dp(), NI, QBColor(10), 1 

pl.DrawBlockGraph GRave(), dp(), NI, QBColor(12), 1 'Block Graph at Depth 3200 shoot out as it have been averaged on original 

GR while the scale used is of GRave201x3 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

'----Selected Spike 

Xo% = Xo + Xw 

Xw# = 110 

pl.DrawHeader picMain, Xo, 10, Xw, 130, 20, "GR_Ave201x3", QBColor(9), 3, 0, , , 2.6 

pl.DrawLog picMain, Xo, 150, Xw, 750, "GR_Ave201x3", ss, es, QBColor(9), 1, 0 

pl.DrawHeader picMain, Xo, 10, Xw, 130, 80, "SPK_MFlt", QBColor(12), 3, 0, , , 2.6 

pl.DrawLog picMain, Xo, 150, Xw, 750, "SPK_MFlt", ss, es, QBColor(12), 1, 0 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 
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ANNEXURE B 

picMain.Cls 

picMain.CurrentX = 15 

picMain.CurrentY = 50 

picMain.Print "Depth" 

picMain.CurrentX = 15 

picMain.CurrentY = 70 

picMain.Print "(Meters)" 

 

DoEvents 

pl.ReadLAS App.Path & "\Kadanwari-19.las" 

ds# = pl.GetDepthStart() 

de# = pl.GetDepthStop() 

 

ss& = pl.GetSampleIndex(ds) 

es& = pl.GetSampleIndex(de) 

es& = pl.GetSampleIndex(3400) 'Forced Depth End 

de# = pl.GetDepth(es) 'Forced Depth End 

 

Xo% = 80 

Xw# = 150 

pl.DrawDepthScale picMain, 10, 150, 60, 750, ds, de, 50, 200, QBColor(7), QBColor(8), QBColor(0) 

pl.DrawDepthGrid picMain, Xo, 150, 845, 750, ds, de, 50, 200 

 

gri% = pl.GetLogIndex("GR_EDTC") 

pl.PutLogUnit gri, "API" 

 

'--------------------Ave 201x3 

pl.AllocateLogMemory "GRave1" 

pl.AllocateLogMemory "GRave2" 

gra1% = pl.GetLogIndex("GRave1") 
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pl.PutLogMin gra1, pl.GetLogMin(gri) 

pl.PutLogMax gra1, pl.GetLogMax(gri) 

pl.PutLogMin gra2, pl.GetLogMin(gri) 

pl.PutLogMax gra3, pl.GetLogMax(gri) 

pl.MovingAverage gra2, gra3, ss, es, 201 

 

pl.DrawHeader picMain, Xo, 10, Xw, 130, 20, "GR_EDTC", QBColor(9), 3, 0 

pl.DrawLog picMain, Xo, 150, Xw, 750, "GR_Ave201x3", ss, es, QBColor(12), 1, 0 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

DoEvents 

 

'--------------------Slope Computation 

'----1st Derivative 

Xo% = Xo + Xw 

Xw# = 135 

pl.DrawHeader picMain, Xo, 10, Xw, 130, 20, "GR_Ave201x3", QBColor(12), 3, 0 

pl.DrawLog picMain, Xo, 150, Xw, 750, "GR_Ave201x3", ss, es, QBColor(12), 1, 0 

 

pl.AllocateLogMemory "DRV1" 

drv1% = pl.GetLogIndex("DRV1") 

pl.Slope gra3, drv1, ss, es 

pl.LogsMinMax 

pl.DrawHeader picMain, Xo, 10, Xw, 130, 50, "DRV1", QBColor(3), 3, 0 

750, 1 

xs! = pl.GetLogMin(drv1) 

xe! = pl.GetLogMax(drv1) 

 

'----1st Derivative-Minimum Filter 

drv1m% = pl.GetLogIndex("DRV1_MFlt") 

pl.FilterMinimum drv1, drv1m, ss, es, xs * 0.12, xe * 0.12 

pl.PutLogMin drv1m, xs 

pl.PutLogMax drv1m, xe 
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'----1st Derivative-Minimum Filter-Spike 

pl.PutLogMax spk1m, xe 

 

Xo% = Xo + Xw 

Xw# = 140 

pl.DrawLog picMain, Xo, 150, Xw, 750, "SPK_MFlt", ss, es, QBColor(3), 1, 0 

pl.DrawLog picMain, Xo, 150, Xw, 750, "DRV1_MFlt", ss, es, QBColor(13), 1, 0 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

'----Selected Spike 

Xo% = Xo + Xw 

Xw# = 140 

pl.DrawLog picMain, Xo, 150, Xw, 750, "GR_Ave201x3", ss, es, QBColor(9), 1, 0 

pl.DrawHeader picMain, Xo, 10, Xw, 130, 80, "SPK_MFlt", QBColor(12), 3, 0 

pl.DrawLog picMain, Xo, 150, Xw, 750, "SPK_MFlt", ss, es, QBColor(12), 1, 0 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

'----Depth Intervals 

Dim di&(), NI& 

pl.DepthIntervals spk1m, ss, es, di(), NI& 

Xo% = Xo + Xw 

Xw# = 140 

pl.DrawHeader picMain, Xo, 10, Xw, 130, 20, "GR_Ave201x3", QBColor(9), 3, 0 

pl.DrawLog picMain, Xo, 150, Xw, 750, "GR_Ave201x3", ss, es, QBColor(9), 1, 0 

 

'----Block Average GR 

pl.MaxClipFilter gri, ss, es, 220 

pl.PutLogMax gri, 220 

 

ReDim GRave!(NI), dp!(NI) 

pl.BlockAverage gri, di(), NI, GRave() 
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pl.DrawFreeHeader picMain, Xo, 10, Xw, 130, 50, "GR_BlkAve", "API", pl.GetLogMin(gra3), pl.GetLogMax(gra3), QBColor(12), 

3 

pl.SetGraphicsContext picMain, Xo, 150, Xw, 750, pl.GetLogMin(gra3), pl.GetLogMax(gra3), CSng(ds), CSng(de) 

For i& = 1 To NI 

  dp(i) = pl.GetDepth(di(i)) 

Next 

pl.DrawFlatLines pl.GetLogMin(gra3), pl.GetLogMax(gra3), dp(), NI, QBColor(10), 1 

pl.DrawBlockGraph GRave(), dp(), NI, QBColor(12), 1 'Block Graph at Depth 3200 shoot out as it have been averaged on original 

GR while the scale used is of GRave201x3 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

pl.SetGR100 pl.GetLogMax(gri) 

pl.GammaRayIndex gri, Vs, ss, es 

pl.LogMinMax "Vsh", ss, es 

 

Xo% = Xo + Xw 

Xw# = 140 

pl.DrawHeader picMain, Xo, 10, Xw, 130, 20, "Vsh", QBColor(12), 3, 0, , 2 

pl.DrawLog picMain, Xo, 150, Xw, 750, "Vsh", ss, es, QBColor(12), 1, 0 

ReDim VSave!(NI) 

pl.BlockAverage Vs, di(), NI, VSave() 

pl.DrawFreeHeader picMain, Xo, 10, Xw, 130, 50, "Vsh_BlkAve", "%", pl.GetLogMin(Vs), pl.GetLogMax(Vs), QBColor(14), 3, , , 

2 

pl.SetGraphicsContext picMain, Xo, 150, Xw, 750, pl.GetLogMin(Vs), pl.GetLogMax(Vs), CSng(ds), CSng(de) 

pl.DrawBlockGraph VSave(), dp(), NI, QBColor(14), 1 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

Xo% = Xo + Xw 

Xw# = 140 

pl.ReadColorSpectrum "C:\K-tron\Templates\ColorSpectrum\KCS\BlueRed.kcs" 

'pl.ReadColorSpectrum "C:\K-tron\Templates\ColorSpectrum\KCS\Color-V-CLR.kcs" 

 (Vs), VSave(), dp(), NI 

pl.DrawBlockGraph VSave(), dp(), NI, QBColor(14), 1 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 


