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ABSTRACT 

 

The study's primary goal is to identify the thin sands packages of B and C Intervals 

of Lower Goru Formation of Gambat Latif block, by using machine learning along with 

reservoir characterization by performing seismic interpretation, seismic inversion, 

petrophysics and seismic attributes. The Gambat-Latif region is situated within the Lower 

Indus Basin of Pakistan, and its geological setting is characterized by extensional tectonic 

processes. Following the completion of seismic interpretation, seismic inversion, and 

petrophysical analysis, the findings indicate that the C Interval of the Lower Goru Formation 

within the Gambat Latif block exhibits a more substantial hydrocarbon potential when 

contrasted with the B-Interval. Seismic attributes were employed to detect the presence of 

slender sand units, and it was noted that the Spectral Decomposition attribute produced the 

most reliable results. This attribute effectively delineated specific zones within both the B 

and C sands, and the thinner sand beds within the Lower Goru B and C intervals The thin 

sand beds within the Lower Goru B and C intervals in the Tajjal 02 well became more 

prominently evident as the frequency spectrum of the spectral decomposition attribute was 

increased Moreover, machine learning methodologies were utilized to calculate and validate 

the shear sonic values, both computed from the Castagna equation and those computed using 

machine learning techniques. It was noted that the Machine Learning-based computation of 

Vs demonstrated greater reliability and yielded better results when contrasted with the 

Castagna equation method. Machine Learning was also employed for facies analysis, 

resulting in the categorization of facies into three distinct lithological packages: sand, shale, 

and tight sand. The last encompassed the utilization of machine learning techniques for 

geomechanical analysis, during which several geomechanical parameters, such as 

overburden pressure, pore pressure, and fracture gradient, were computed. 
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CHAPTER 1 

 

INTROUDCITON 

 

 

1.1 Overview 

The study's primary goal is to identify the thin sands packages of Lower Goru 

Formation by using machine learning along with reservoir characterization by performing 

seismic interpretation, petrophysics, seismic attributes. To achieve this objective many 

methods are in use now a days. Out of these all, seismic inversion, attribute analysis and 

petrophysics are of much importance throughout the world. 

Seismic interpretation's primary goal is to precisely characterize the lithology and 

subterranean geological formations. Rocks that contain hydrocarbons can be distinguished 

from rocks that do not by using seismic data analysis (Ahmad et al., 2021). 

One of the widely used methods for characterization of the reservoir is seismic 

inversion. Seismic inversion aids in combining seismic and well data for predicting the 

characteristics of reservoir and these include information regarding fluid content of reservoir, 

type of lithology etc. throughout the seismic survey region. The identification of hydrocarbon 

sites and reservoirs can then be aided by these characteristics of rocks (Francis, 2014). 

Seismic inversion’s main objective is to convert seismic reflection data into a quantifiable 

rock property that describes the reservoir i.e., Acoustic impedance logs are computed at each 

CMP (Pendrel, 2001). 
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A seismic attribute is such a quantity which is derived or extracted from seismic data. 

By mathematical manipulation of original seismic data one can compute the seismic 

attributes. The seismic attributes can help in highlighting special physical, geological or other 

reservoir property feature., which then leads to a better geophysical or geological 

interpretation of the data used (Chopra and Marfurt, 2005). There are number of seismic 

attributes which are used some of these include, frequency, bandpass attributes , phase, 

amplitude, time, etc. (Masinde, 2017). 

By making use of seismic attributes interpreters are able to extract more information 

from original seismic data. If one uses seismic attributes for the purpose of stratigraphy 

analysis, seismic attributes can assist in understanding the environment of deposition. The 

presence of hydrocarbons in some cases gives rise to an anomalous attribute response which 

is then analyzed to see whether this anomalous amplitude is associated with the presence of 

oil or not (González et al., 2021). 

Petrophysics is the study of the characteristics of rocks and how they relate to the 

fluids they contain in both their static and flowing conditions. The characteristics of the pore 

system's fluid distribution and flow are highlighted by petrophysics. In order to evaluate and 

identify hydrocarbon reservoirs these properties and their relationships are used (Glover, 

1998). 

The chemical and physical characteristics of oil and gas deposits, as well as the 

surrounding rocks and soil, are studied and analysed by petrophysicists. They gather and 

analyse information on these reservoirs, such as pore pressure, electrical and acoustic 

characteristics of the rock, rock density, and radioactivity levels (Glover, 1998). 

The availability of shear sonic log(DT) is essential for lithology and fluid 

discrimination within the reservoirs. However, within the Lower Indus Basin there are only 

limited wells that have the availability of shear sonic log. This is where Machine Learning 

plays its part. With fewer input data sets, machine learning has lately become a reliable and 

optimized method for forecasting the exact shear sonic log(DTS)( Ahmed et al., 2022). 
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The study of mechanical behavior of geological materials is known as geomechanics. 

These studies, engineering components or applied geomechanics, describe how mining 

activities affect the geological environment (Ostad et al., 2018). 

Understanding the stability and integrity of the borehole while drilling is largely 

dependent on geo mechanics. The wellbore’s presence and drilling fluids’ pressure cause 

change in the rocks or the stress condition. Young modulus, bulk modulus, shear modulus 

and poisson’s ratio are examples of elastic and inelastic geomechanical properties (fracture 

gradient and formation strength) (Ostad et al., 2018). 

 

1.2 Introduction to Study Area 

Gambat Latif area is located in Khairpur district of Sindh province. In terms of 

geomorphology, the research region is situated between the southern desert and Chlistan 

desert(north) and geologically the Tajjal gas field (Gambat Block) is located in the lower 

Indus Basin. Nearly 3648.73 square kilometers make up the Gambat Block (Toqeer et al., 

2021). The coordiantes of the block are 68° 31’ E and at 27° 21' N. The 3D Gambat Latif 

concession is located in the northern region of the Sindh Province and is commonly referred 

to as the Nara Desert. The Nara Desert serves as an intermediate area, situated between the 

Cholistan Desert to the north and the Thar Desert to the south. 

The Tajjal gas field is a producing field of the Gambat Block. Geographically, the 

Tajjal Gas Field is situated in Pakistan's Sindh Province, approximately 120 kilometres (km) 

south-east of Sukkur. Tajjal Gas Field (Gambat Block) is situated geologically in the Lower 

Indus Basin, which is a recognised Geological Province in Pakistan (Khan et al., 2014). 
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Figure 1.1 Study Area in context of Pakistan 
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Figure 1.2 Gambat Latif Cube. 

 

1.3 Exploration History 

OMV announced the successful testing and discovery of gas in its Tajjal 1 

exploration well which is located in Gambat Exploration Block in northern Sindh 

province, Pakistan. OMV collaborated with Pakistan petroleum limited(PPL), Eni and 

Government Holdings Private Limited(GHPL) in their joint venture and OMV 

announced start of Tajjal-1 extended well test that later on led to the discovery of Tajjal 

gas field, which is situated approximately 120 kilometers to the southeast of Sukkur in 

the Sindh province of Southern Pakistan (TAJJAL gas field - PPL). 



6 

 

 

OMV (Pakistan) is the main operator in Gambat exploration license, and it has 

a 35% stake in the consortium, together with Pakistan Petroleum (30%),Eni (30%) and 

Government Holdings (private) Ltd. (5%). Tajjal-2 and Tajjal-3, the two appraisal wells 

were discarded because they turned out to be dry. Despite being initially designed and 

completed as a producer in May 2011. The Tajjal-4 eventually started to produce an 

excessive amount of sand-filled water (TAJJAL gas field - PPL). 

 

1.4 Objectives 

• Mapping Identification of structural style and faults present in study area with the 

help of seismic data interpretation. 

• The assessment of  most optimized seismic attribute on seismic data to validate 

structural and stratigraphic interpretations, with a particular focus on identifying thin 

beds. 

•  To characterize Lower Goru Sand intervals in the reservoir through the application 

of Model-Based Inversion. 

• Estimation of volume of shale, porosity, water resistivity and saturation of water and 

hydrocarbons with the help of petrophysical analysis. 

• Computation of shear sonic by using Machine Learning and validating the results by 

AVO. 

• Facies identification by Machine Learning. 

• Identification of thin beds of Lower Goru Formation by Machine Learning. 

• Calculation of various geomechanical properties such as vertical effective stress, pore 

pressure etc. by using Machine Learning. 

 

 

1.5 Available Data 

Two types of data were provided by LMKR after the approval of DGPC. 
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• 3-D data of Gambat Latif block covering an area of 12 squares kilometers in 

format of SEG-Y. 

• Tajjal field well data in the format of Las files 

 

Table 1.1 Data provided by LMKR. 

Seismic Data Well Data 

3D Seismic cube of Gambat Latif 

block 

well suits of Tajjal 1 and Tajjal 2 and 

Tajjal 3 

  

 

 

1.6 Software Used 

• IHS Kingdom software. 

• Geographix Software 

• Wavelet software. 

• HRS software. 

 

1.7 Literature review 

One of the widely used methods for characterization of the reservoir is seismic 

inversion. Seismic inversion aids in combining the seismic and well data for predicting the 

characteristics of reservoir (Wang et al., 2017). Reservoir characterization of mixed facies 

and tight sands in Central Indus Basin Pakistan was performed by (Toqeer et al., 2021) . By 

making use of seismic data and well log data as an input reservoir modeling, model based 

seismic inversion and post stack seismic inversion was done along with generation of cross 

plots of effective porosity and acoustic impedance. 



8 

 

 

By making use of seismic attributes interpreters are able to extract more information 

from original seismic data. By using 2D seismic data as input and by performing seismic 

attribute analysis, Goru Clastic of Indus Basin Pakistan were evaluated by (Tayyab et al., 

2017). 

2D and 3D seismic data was used for analyzing the reservoir potential of Southern 

Indus Basin, Pakistan by performing model based and Stochastic inversion and by making 

cross plots of neutron and density logs (Asim et al., 2016).  

By using 3D post stack seismic data as input dataset, spectral decomposition and 

coherence attribute were used by (Tayyab et al., 2017) in order to find fluvial sand reservoirs 

Southwest Pakistan's Indus Basin. 

Reservoir quality and petrophysical analysis of Lower Goru Formation was 

performed by (Qadri et al., 2019) by using well log data of number of wells including 

Mehrab-1, Kadanwari-4, Gajwaro-1, Kadanwari-3 and Nara-1. 

Artificial neural network and seismic inversion analysis were used by (Qiang et al., 2020) 

to predict the reservoir quality of Sawan Gas field, Pakistan. During this research cross plots 

of porosity and acoustic impedance were created and support vector machine was used. 

 

1.8 Purpose of research 

Although previous studies have made use of seismic interpretation, petrophysical 

analysis seismic attributes and inversion in order to evaluate the hydrocarbon potential of 

various areas of Southern Indus Basin. However, there is no work on making use of machine 

learning to identify the thin packages of sand in Lower Goru Formation of Gambat Latif 

block. 

Based on the above literature review it was revealed that there is no work on making 

use of machine learning to identify the thin packages of sand in Lower Goru Formation of 

Gambat Latif block. Along with that no research has been previously done for calculation of 

geomechanical parameters of wells in Gambat Latif block. 
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So, my research will focus on thin bed detection by seismic attributes. Cluster based 

facies identifications by making use of Machine Learning and neural network, computation, 

and validation of shear sonic using machine learning and facies analysis, geomechanical 

parameters calculation, and creation of cross plots such as Vp, Vs, density etc.  

 

1.9 Methodology 

The following methodology would be adopted to fulfill the objectives mentioned. 
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Figure 1.3 Workflow for methodology adopted during research. 
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CHAPTER 2 

 

REGIONAL GEOLOGY AND STRATIGRAPHY 

 

2.1 Introduction 

Geology deals with the study of the dynamics and physical history of the 

earth, the rocks that make up its surface, physical, chemical, and biological changes 

the earth has gone through or is currently undergoing at the moment. Gambat Latif 

area is located in Khairpur district of Sindh province. In terms of geomorphology, the 

research region is situated between the southern desert and Chlistan desert(north) and 

geologically the Tajjal gas field (Gambat Block) is located in the Lower Indus Basin. 

Nearly 3648.73 square kilometers make up the Gambat Block. Within the Gambat 

Block, the Tajjal gas field is a producing field with coordinates 26° 52' 50" N and 68° 

55' 60" E. Pannu Aqil Sub Basin, Kirthar Sub Basin, Indian Shield, and Kirthar Fold 

Belt form the northern, southern, eastern, and western boundaries of the region (Khan 

et al., 2016). 
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Figure 2.1 Study Area Location Map (Toqeer et al., 2021). 

 

2.2 Basins of Pakistan 

With an extent of over 83,000 square kilometers and including both onshore and 

offshore features, Pakistan is home to two significant sedimentary basins: Indus and 

Balochistan (Kazmi and Jan, 1997). 

The Indus Bain extends north-northeast into Afghanistan and east-southeast into India. 

However, the Balochistan basin is located west of the Indus basin and extends into 

Afghanistan to north and Iran to the west. The Murray Ridge and the left-lateral Belo Ornach 

Chaman transform faults zone, which has a north-south trend, separates these two basins 
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(Ahmad et al., 1994). According to the sedimentation history of the sedimentation and type 

of the Indus Basin is segmented in three sections including the Upper, Central, and the 

Southern Indus basins (Ahmad et al., 1994). 

 

2.2.1 Upper Indus basin 

In northern Pakistan Upper Indus Basin is located. Sargodha Highs separate the Upper 

Indus Basin from Lower Indus Basin. MBT lies in the north of the Upper Indus Basin whereas 

strike slip faults Jhelum and Kalabaugh are located in the east and west (Ahmed et al., 1994). 

Upper Indus Basin is further divided into Potwar and Kohat Provinces. 

 

2.2.2 Lower Indus Basin 

 The Lower Indus Basin is classified into the Central Indus Basin and the 

Southern Indus Basin. The study area Gambat Latif is located in the Lower Indus Basin 

(Ahmed et al., 1994). 

 

2.3 Regional tectonic setting 

The stratigraphic and structural characteristics of Indus Basin are all associated with 

the Indian’s plate northwards drift from the Paleozoic to the recent (Wandrey et al., 2004). 

During the Permian-Middle Jurassic, the Indian Plate was located in the Southern 

Hemisphere alongside some continents including Antarctica, Africa, and Australia (Powell, 

1979). The rifting started and during the Jurassic the Antarctica and Australian plates 

detached from the Indian plate (Ahmed et al., 2018). 

Structures that have developed in response to different tectonics are quite significant 

and also important for the hydrocarbon's accumulation. In hydrocarbon exploration, 

identifying the structural traps is very critical yet an important task. This is because a large 
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number of hydrocarbon resources in the world have been discovered on sites/locations where 

there is closure of the structural traps (Ahmed et al., 1994). 

On the western edge of the Indian Plate, the Southern Sindh Monocline is located, 

and during its tectonic history, the Indian Plate has undergone several episodes of extension, 

rifting from the Gondwanaland till it’s eventual welding to Asia (Ahmed et al., 2018). 

Many structures within the Sothern Sindh Monocline’s subsurface are distinguished 

by numerous tectonic occurrences of the Indian plate’s rifting when it rifted from the 

Gondwanaland, until its collision with Asia, along with the rifting from other plates at various 

geological periods (Ahmed et al., 2018). 

The structures in the examined area provided evidence for three major structural 

episodes, which are classified as: 

• The structures linked to the rifting of the Indian plate from Gondwanaland 

throughout the Late Jurassic to the Early Cretaceous. 

• The reactivation and modification of previously formed structures during the 

Middle Cretaceous when Madagascar rifted separation from Indian Plate. 

• When Indian Plate collided with Asia in the Early Eocene, the structures were 

reactivated and inverted (Ahmed et al., 2018) 

 

2.4 Structural Setting of Gambat-Latif Area 

A large number of structural styles and structures are associated with the extensional 

tectonic setting, and it is thus very challenging to understand how these structures have 

evolved. In numerous extensional basins around the world, researchers have looked at the 

evolution of structures discovered in extensional tectonic settings (Ahmed et al., 2018). 

The research area is situated on the eastern and southeastern sides of the regional 

Jacobabad-Khairpur high, which runs north to south. This high plays a significant role in 

creating structural traps in the study area, particularly in the Kadanwari, Sawan, and Tajjjal 

gas fields. The Jacobabad-Khairpur high underwent dome uplifting in the early Cretaceous 
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period, and subsequently, deep-seated faults developed in the Late Cretaceous (Khan et al., 

2016).  

The structural configuration of the study area is primarily influenced by thee 

significant tectonic events. First, there was an uplift and erosion during the late Cretaceous 

period (Khan et al., 2016). The second event involved late Paleocene right-lateral wrenching, 

and the third event was the Late Tertiary to Holocene uplift and inversion of Khairpur (Khan 

et al., 2016)high. Geologically the Tajjal gas field (Gambat Block) is located in the Lower 

Indus Basin(Southern Indus Basin) and as the study region is situated in the Lower Indus 

Basin and falls into an extensional tectonic regime there is presence of extensive Horst and 

Graben geometry which is considered a probable hydrocarbon bearing zones (Khan et al., 

2016). 

 

2.5 Stratigraphy of the study area 

In the Southern Indus basin, the oldest rocks are of Triassic age and the stratigraphy 

of the Southern Indus basin ranges from Wulgai Formation of Triassic age to the Siwaliks of 

Pleistocene age (Dar et al., 2021). 

There is an unconformity among the Jurassic carbonates and the lower most 

Cretaceous clastic sediments (Goru Formation) (Kadri, 1995). In the western and the northern 

parts of the Southern Indus Basin, the Sembar Formation is made up of silt, shale, and marl. 

Between 1955 and 1984, about 55 exploratory wells were drilled in the Southern Indus Basin. 

Onshore drilling in the Southern Indus Basin is not hindered by the post Eocene over 

pressured strata. However, with contemporary drilling techniques these issues can be easily 

overcome because in the offshore pressures are mostly determined by depth and only weekly 

by stratigraphy (Qadri, 1986). 
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Figure 2.2 Stratigraphy of Lower Indus basin (Abbasi et al., 2021). 

 

Different Nomenclatures are used by different industries to divide the Lower Goru Formation 

into different intervals. However, during my research I used thedivision by OMV which is as 

follows: 
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Figure 2.3 Nomenclature of Lower Goru by OMV and ENI. 

 

 2.6 Petroleum play 

The various geological or geochemical elements and processes that make up 

petroleum geology are referred collectively as the petroleum system. Oil and gas fields 

wouldn’t develop if any of these petroleum system’s elements are missing (Magoon et al., 

1991). To estimate the size of a petroleum system, the following methodology is often 

employed: 

 

• First, the discovered petroleum deposits are genetically categorized in accordance 

with stratigraphic features and geochemical characteristics. 

• Secondarily, petroleum-source correlation approaches are used to determine the 

source that gave rise to the specific petroleum occurrences (Magoon et al., 1991). 
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• Lastly the geographic extent of active source pod that gives rise to all of genetically 

related petroleum occurrences (Magoon et al., 1991). 

 

2.6.1 Source Rock 

Discoveries in the Lower Goru play are situated within the platform region of the 

Middle and Lower Indus Basin, spanning from the vicinity of the Mari High down to the 

Badin area. The reservoir sands in the Middle Indus Platform area were primarily charged by 

hydrocarbons migrating from the underlying Lower Cretaceous regionally established 

organic-rich shales, notably the Sembar Formation. Additionally, organic-rich shales within 

the Lower Goru Member, as observed in analogues such as the nearby Sawan, Miano, and 

Kadanwari gas fields, also contributed to the hydrocarbon charge. These shales are 

characterized by the presence of terrestrial organic material, exhibiting a total organic carbon 

(TOC) content ranging from 0.5% to 1.7%. They predominantly contain Type III kerogen 

and have been actively engaged in gas generation processes since the late Cretaceous to early 

Tertiary periods. A number of petroleum discoveries in the Southern Indus Basin have been 

confirmed to have originated from the Lower Cretaceous Sembar Formation (Aaadil et al., 

2014). Shale makes up the majority of the Sembar Formation, but it also contains limestone 

and other minor lithologies such as siltstone and sandstone (Aaadil et al., 2014). 

At the Sembar pass, the formation’s type locality, the formation has a total thickness 

of 133 meters, but at the Moghal Kot outcrop portion it has a thickness of 262 meters (Bender 

and Raza, 1995). In the south-east region of Southern’s Indus Basin the Sembar Formation 

thins out (Ahmed et al., 2013). 

 

2.6.2 Reservoir Rock 

In the Lower Indus Basin and Middle Indus Basin of Pakistan, the Early Cretaceous 

Lower Goru Formation exists as a conventional reservoir. The generation of reservoir 

heterogeneity within the Lower Goru Formation is primarily attributed to factors such as 
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depositional environments, diagenetic alterations, the presence of shale intercalations, and 

the distribution patterns of shale layers. The Lower Goru Formation is lithostratigraphically 

separated into two parts: the upper parts are primarily made of sandstone, siltstone, and thin 

interlayers of shale and limestone, while the bottom parts are mostly made of sandstone along 

with limestone and shale interlayers (Ahmed et al., 2018). 

The Lower Goru Formation's sandstone is further split into sand intervals A, B, C, 

and D based on the reservoir quality (Dar et al., 2021). Different nomenclatures are used by 

different companies to divide the Lower Goru Formation into different intervals. However, 

during my research I used the Nomenclature given by OMV. 

 

2.6.3 Seal Rock 

The primary seal rock for the Sembar-Goru petroleum play in the Southern Indus 

basin is shale from the Upper Goru Formation. The Sembar, Goru Shale, and Kirthar 

formations act as shale layers and have been verified as successful sealants in numerous 

wells, such as those in the Bhiit, Zamzama, Hallel, and Mehar fields (Dar et al., 2021). Within 

the producing fields the thin shale beds having variable thickness act as effective seals (Dar 

et al., 2021). The Paleocene and Eocene formations in the Northern Sulaiman ranges contain 

substantial shale layers, which have the potential to act as effective sealing horizons beneath 

formations such as the upper Ranikot and Ghazij (Dar et al., 2021). 

 

2.6.4 Trapping mechanism 

The Kirthar Fold Belt and a significant portion of the Lower Indus Basin have been 

characterized as structurally intricate. This complexity is primarily a result of extensive 

folding and the presence of positive flower structures, which can be traced back to the 

reversal or inversion of a prior system of normal faults (Dar et al., 2021). The Indus Basin’s 

major production is from structural traps. Tilted fault blocks, Anticlines and thrust faulted 
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anticlines are the various varieties of structural traps present in the study region. In the Lower 

Indus Basin titled fault traps are produced due to extensional tectonics (Dar et al., 2021).  
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CHAPTER 3 

 

SEISMIC DATA INTERPRETATION 

 

Seismic interpretation's primary goal is to precisely characterize the lithology and 

subterranean geological formations. Rocks that contain hydrocarbons can be 

distinguished from rocks that do not by using seismic data analysis (Ahmad et al., 2021). 

Seismic interpretation becomes quite challenging in areas of complex tectonics. 

Therefore, in such cases in order to carry out accurate interpretation it is necessary to 

make correct observations in both subsurface as well as surface data (Zamora et al., 

2022). 

The seismic record consists of two essential elements. The initial aspect involves the 

timing of the arrival of any reflection (or refraction) from a geological boundary, while 

the second is the shape of the reflection (Bouvier et al., 1991). The lithology and fluid 

content of the seismic reflector being studied are frequently deduced from the seismic 

data (Bouvier et al., 1991). 

Seismic interpretation is divided into structural interpretation and stratigraphic 

interpretation. The goal of structural seismic interpretation is to create structural maps of 

the subsurface using the observed three-dimensional configuration of the arrival times. A 

model of cyclic episodes of deposition relates to the pattern of reflection observed 

through seismic sequence stratigraphic interpretation (Bouvier et al., 1991). 

Digital representations of seismic data, recorded by each channel of the recording 

instrument, are expressed as time series. Processing algorithms are formulated and 
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utilized for either individual single-channel time series or multichannel time series 

(Yilmaz, 2001). The Fourier transform forms the fundamental basis for a substantial 

portion of the digital signal processing methods used in the examination of seismic data. 

Beyond the sections that address one- and two-dimensional Fourier transforms and their 

real-world applications, the core principles of signal processing also include a dedicated 

section that explores a diverse compilation of seismic data recorded from various regions 

worldwide (Yilmaz, 2001). Through reference to field data examples, interpreters analyze 

the type of seismic signals, including primary reflections from layer boundaries and 

various forms of noise, both random and coherent (Yilmaz, 2001). 

 

3.1 Seismic Interpretation’s Workflow 

In order to perform Seismic Interpretation, the following workflow is adopted. 
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Figure 3.1 Workflow adopted for seismic interpretation adopted during research. 

 

3.1.1 Loading of Seismic Data 

3D seismic data cube in SEGY format of Gambat Latif area was provided by DGPC. 

The data was loaded into IHS Kingdom software by using the SEG Y headers for cross line 

and inline loading. 

 

3.12 Base Map 
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After the completion of the seismic data loading, the base map of the provided cube 

is generated. The base map displays how the overall grid is oriented. There are two types of 

lines in a 3D cube: inlines and cross lines. The cross line lies between the numbers 390 and 

540, as illustrated in Figure 3.2, while the inline runs from 1310 to 1470. The Tajjal 01 is 

located on inline 1459 and cross line 520, Tajjal 02 is located on inline 1407 and crossline 

420. 

 

 

Figure 3.2 Base map of the study area showing the distribution of inlines and crossline 

along with type of well. 
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3.1.3 Synthetic Seismogram 

Synthetic seismogram serves as a "tie" in hydrocarbon exploration between seismic 

reflection data collected at the same location and changes in rock characteristics observed in 

a borehole (Helmberger et al., 1989). The wavelet derived from seismic data is convolved 

with the reflectivity derived from digitized acoustic and density logs to generate the synthetic 

seismogram. Interpretations of data can be improved by comparing the marker beds or other 

correlation points noted on the well logs with the notable reflections on the seismic section 

(Helmberger et al., 1989). 

Synthetic seismogram's ability to match depends on a variety of parameters and these 

are as follows: 

• How well seismic data is processed? 

• Quality of the well logs 

• Ability to extract a representative wavelet from seismic data (Helmberger et al., 

1989). 

Synthetic seismogram is essential to make a correlation between seismic data and the 

geological data which is in form of well logs. In order to make a synthetic seismogram 

following elements are needed: 

➢ Sonic log 

➢ Time Depth Charts 

➢ Density log 

➢ Reflection coefficient (RC) 

➢ Acoustic Impedance(Z) 

➢ Wavelet 

Once the synthetic seismogram is created its signature and the original seismic data’s 

signatures are compared. From the adjacent seismic trace in the vicinity of the wells, a 

seismic trace was taken for each well. This extracted trace represented the original seismic 

data to be used in the synthetic matching. After that the signature of the synthetic seismogram 

and seismic data were compared. Shift and stretch were then used to make alterations and 
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once the nature of seismic data and synthetic seismogram matched the well to seismic tie was 

completed (Kelly et al., 1976). 

A seismogram is necessary for a well-to-seismic tie. Therefore, density log and 

sonic log from the Tajjal 02 and Tajjal 01 along with gamma ray log is also used as a 

references log. 

 

 

Figure 3.3 Synthetic Seismogram of Tajjal-02. 

 

 

Figure 3.4 Synthetic Seismogram of Tajjal-02. 
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3.1.4 Horizon and fault marking 

Interpreting and marking various horizons on seismic data is the first and most 

fundamental step in seismic interpretation. Understanding the structure and stratigraphy of 

the research area is necessary for accurate interpretation. Two horizons are interpreted. 

namely C-Interval and B-Interval. These are the sand intervals of Lower Goru Formation. 

Faults are interpreted from seismic data whenever there is a specific break or 

discontinuity in the bedding. Two faults were marked named Fault 1 and Fault 2. Both are 

normal faults. 

Identifying the pattern of the faults becomes quite easy when one knows about the 

stress regimes that exist in the study area. Usually, the reverse faults are associated with 

compressional tectonics regimes and normal faults are dominant in the extensional tectonics 

(Freeman et al., 1991). The study area Gambat-Latif area lies in the extensional tectonic 

regime and thus there is presence of normal faults.  

The research area's fault extension is defined by fault correlation, which also 

delineates dip directions and specifies the throw which is actually vertical component of the 

separation and heave which is the horizonal component of slip. The fault correlation aids in 

defining the fault’s network. On seismic data the faults are interpreted when there appears a 

certain breakage on the seismic section (Freeman et al., 1991). 

 

• Interpreted sections conclusion: 

On the seismic section two horizons C-interval and B-interval were marked both lie 

within 2 to 5 seconds. Along with two horizons, two faults were also marked on the 

seismic section. Both of these faults are normal faults named F1 and F2. Both these faults 

cut the B-interval and C- interval. The trend of both faults is from NE to SW, and both 

are dipping towards NW. The nature of faults shows that this area is situated in 

extensional tectonic regime since these are normal faults and displacement along fault 1 

is also observed shown in Figure 3.6. Figure 3.4, 3.5 and 3.6 show interpreted horizons 

on different inlines. 
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Figure 3.5 Seismic section of Inline 1419 with well location of Tajjal- 02 along with the 

C and B Intervals with fault F1. 

 

… 

Figure 3.6 Seismic section of Inline 1393 with the C and B Intervals with faults F1 and 

F2. 
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Figure 3.7 Seismic section of Inline 1311 showing displacement of fault F1. 

 

3.1.5 Preparation of Contour Maps 

The creation of contour maps is the last stage of interpretation. Lines that connect 

points of the same depth, height, or time are called contours.  

TWT contour maps are initially created in the seismic interpretation, followed by 

depth contour maps. Seismic maps are another name for contour maps. The seismic map is 

typically the end result of seismic exploration, the one on which the success of the entire 

exploration’s operation depends. A map may be used to highlight specific areas during 

meetings with the management, but the map itself is crucial for deciding where and if to drill 

for oil (Caputo & Postpischl, 2010). 

Time and depth contour maps are the last stage of seismic interpretation. First, the 

time contour maps are created because the data is readily available in time and then using the 

velocity function to transform the time sections into depth section, depth contour maps are 
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created. Lower Goru’s C and B interval’s time and depth contour maps are created and 

explained.  

 

3.1.6 Interpretation of C-interval maps 

On the basis of seismic data seen in the time and depth maps of the C-interval horizon, 

two faults designated as F1 and F2, are interpreted in the C-interval horizon. Both of the 

mentioned faults are normal faults. From the time contour map of the C- interval, the strata 

on the western side are shallower than those on the eastern side. 

The trend of both faults is from NE to SW, and both are dipping towards NW. The 

nature of faults shows that this area is situated in extensional tectonic regime since these are 

normal faults. 

The time contour map of C interval is shown in Figure 3.7. The time ranges for this 

interval ranges from 2.208 to 2.288 seconds. Time contour values are on the higher side on 

eastern side of C interval map depicting that the horizon becomes relatively deeper in this 

area whereas the time contour vales are on smaller side on the western side which shows that 

in this part the horizon becomes shallow. The contour interval in the map is 0.0025 seconds. 

The horizon is trending from northwest to southeast. The strata exhibit a decreasing time 

range from east to west. Chances of hydrocarbon accumulation is in western side as 

hydrocarbons are present at shallow time.  

 



31 

 

 

 

Figure 3.8 Two-way travel time contour map of C-Interval 

 

As shown in Figure 3.8 depth contour map of C interval ranges from 3124 to 3234 m. 

The contour interval in this map is 10 m. The unit of the depth contour map is meters. The 

depth contour map of C-interval shows the same trend as C-interval time contour maps i.e., 

on the eastern side greater values lie, and the values become higher till 3234 m whereas on 

the western side contour values become smaller and decrease to 3124 m. The color bar depicts 

how the map’s contour varies. The strata exhibit a decreasing depth range from east to west. 

Chances of hydrocarbon accumulation is in western side as hydrocarbons are present at 

shallow depth.  
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Figure 3.9 Depth contour map of C-Interval. 

 

3.1.7 Interpretation of B-interval maps 

The time contour map of B-interval map ranges from 2.271 to 2.514 seconds. The 

contour interval is 0.0025 seconds. Time contour values are highest at the eastern side of B-

interval map depicting that the horizon becomes deeper in the eastern side whereas the time 

contour values are decreasing towards the west showing that at the western side the horizon 

becomes shallow. From east to west strata is relatively getting shallower i.e., showing less 

time which might be indicative of hydrocarbons. 
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Figure 3.10 Time contour map of B-Interval. 

 

As shown in Figure 3.10 the depth contour map of B-interval ranges from 3362.5 to 

3762.5 m. The contour interval in this map is 10 m. The unit of depth contour maps is meters. 

The depth contour map of B-interval shows the trend that on the eastern greater values lie, 

and the values become higher till 3762.5 m whereas on the western side, contour values 

become smaller and decrease to 3362.5 m. The color bar depicts how the map’s contours 

vary. 
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Figure 3.11 Depth contour map of B-Interval. 
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CHAPTER 4 

 

PETROPHYSICAL ANALYSIS 

 

4.1 Introduction 

Rock principles’ study and their interaction with fluids (such as water, gas, or oil) is 

called petrology (Rider, 2002). Measurements of well log are transformed into the reservoir 

parameters (such as porosity, permeability, saturation, mineral component volume, and Vcl) 

by making use of petrophysical interpretation (Bisht et al., 2013). 

The chemical and physical characteristics of oil and gas deposits, as well as the 

surrounding rocks and soil, are studied and analyzed by Petro physicists. Petro physicists 

gather and study information on these reservoirs, such as the rock's density, pore pressure, 

electrical and acoustic characteristics, and radioactivity level. The information they gather 

can be used to calculate the amount of oil and/or gas present, how permeable the rocks are, 

and whether it can be extracted (Bisht et al., 2013). 

Steps adopted to perform petrophysical analysis: 

➢ LAS files loading. 

➢ Marking Zone of Interest  

➢ Calculation of Vsh and Vclean 

➢ Porosity Estimation 

➢ Calculation of Rw 

➢ Water Saturation 
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➢  Hydrocarbon Saturation 

The initial step in log interpretation is the demarcation of the zone of interest. The 

well logs are used to estimate petrophysical characteristics such as porosity , shale volume 

(Vshl), fluid saturation (oil and water), resistivity of water (Rw), etc. 

 

 4.2 LAS files loading 

Las files of Tajjal 01 and Tajjal 02 were imported in the Geographix software using 

the Prizm utility. Well suites of these two wells were imported in the Prizm consisting of 

sonic(DT),PEF log curves, MSFL, LLS, LLD, caliper, neutron porosity( PHIN), bulk 

density( RHOB) and spontaneous potential (SP) curves. Porosity and resistivity tracks were 

adjusted in accordance with the correlation scales determined by the data at hand. The GR 

scales range from 0-150 API, the SP ranges from -100 to 50 mv, the caliper ranges from 6 to 

16 inches. MSFL, LLS and LLD range from 0.2-2000 Ohm-m. Bulk densities range from 2.0 

to 3 gm/cc and neutron porosity scale ranges from 0.45 to -0.15 v/v. In contrast to PEF log 

which has a scale of 1-10b/e, sonic DT log has a scale of 140-40 micro sec/feet. 

 

4.3 Marking Zone of Interest 

Given below is the list of criteria that are to be kept in mind while marking the zone 

of interest: 

1) Caliper log should be stable. 

2)  The Gamma log should display low values for low clay content. Less gamma 

ray value indicates the presence of clean lithology, which is a reservoir's 

defining feature (Ali et al., 2019). 

3) LLD>LLS>MSFL. The resistivity log suite is significant because it gives a 

picture of the subsurface based on electrical resistivity. The resistivity logs 

MSFL, LLS and LLD are three crucial ones. A zone of hydrocarbon exists if 
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there is a substantial difference between the MSFL and LLD curves. If there 

isn't a difference between them, water might be present there (Glover, 1998). 

4) There should be a crossover between Neutron and Density logs. Neutron and 

density curve values must decrease to reach crossover. Both neutron and 

density logs can be used to determine the reservoir's porosity. Neutron and 

density log values must fall for crossover to occur, which is a definite sign of 

a hydrocarbon zone (Abdulaziz et al., 2019). 

 

4.4 Calculation of Petrophysical Parameters 

The following petrophysical parameters were calculated throughout the study. 

 

4.4.1 Calculation of volume of shale 

Shale volume is determined by natural gamma ray log. By subtracting the gamma ray 

maximum(GRmax) from the gamma ray minimum(GRmin) values from the GR log, the 

volume of shale is determined (Rider, 1986). 

However, in the study area there is presence of hot sands (sands having high 

radioactivity) that is why the conventional formula for calculating the volume of shale was 

not used, the volume of shale was calculated by using neutron and density logs. 

The Lower Goru Formation’s sand intervals in the Sawan gas field and surrounding 

areas are extremely diverse and are regarded as hot sands since they reflect a high value of 

gamma ray and sonic logs, thus making it difficult to determine the reservoir zones with 

precision using traditional petrophysical studies (Mabrouk et al., 2011). The sand intervals 

of this formation are made-up of Quartz, feldspar, chloride, glauconite, volcanic rock 

fragments, and trace amounts of calcite (Mabrouk et al., 2011). When radioactive materials 

other than shale are present, the shale volume calculated using the naturally occurring gamma 

rays usually overestimates the shale volume (Mabrouk et al., 2011). 
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The formula used to calculate the volume of shale during this study is as follows: 

𝑉𝑆ℎ𝑙 =
(𝜌𝐵−𝜌𝑀+𝜑𝑁×(𝜌𝑀− 𝜌𝐹))

(𝜌𝑠ℎ𝑙−𝜌𝑀+𝐻𝐼𝑠ℎ𝑙×(𝜌𝑀−𝜌𝐹))
                                                                                  (4.1) 

Where: 

𝑉𝑆ℎ𝑙: Volume of shale 

𝜌𝐵: Bulk density log value 

𝜌𝑀: Density of the matrix(non-shale rock) 

𝜑𝑁: Neutron porosity log value 

𝜌𝐹:Density of the fluid(typically water)  

𝜌𝑠ℎ𝑙: Density of pure shale  

𝐻𝐼𝑠ℎ𝑙:Hydrogen index of the shale 

 

4.4.2 Calculation of Volume of clean 

The volume of clean can be calculated by using the formula given by (Rider, 1986). 

The formula is as follows: 

𝑉𝐶𝑙𝑒𝑎𝑛 = 1 − 𝑉𝑆ℎ𝑙                                                                                                               (4.2) 

 

4.4.3 Calculation of Density Porosity 

Using the values from the density log, density porosity is computed, and the resulting 

formula is as follows. 

Φ =
( ρma – ρb)

(ρma – ρf )
                                                                                                                    (4.3) 

 Where, 
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 ρma= Density of matrix for limestone/sandstone=2.71/2.65 g/cm3 

 ρb= Bulk density of the formation 

 ρf= Fluid’s density 

 Φ= Density porosity of rock 

 

4.4.4 Calculation of Average Neutron Density Porosity 

The rock’s porosity values are estimated using neutron log, also known as neutron 

porosity. A formation hydrogen index (HI) is estimated by neutron log. Since hydrogen is 

mostly present in reservoir rocks, neutron porosity logs primarily respond to the fraction of 

the pores. Average neutron density porosity is the weighted average of density and neutron 

porosity (Ward, 1984). The resulting formula is as follows:  

𝜑𝑎𝑣𝑔 =
(𝐷𝜑+𝑁𝜑)

2
                                                                                                                (4.3) 

 

where: ∅𝑎𝑣𝑔 = Average porosity, 

 𝐷𝜑 = Density porosity, 

 𝑁𝜑 = Neutron porosity 

 

4.4.5 Calculation of Effective Porosity 

Effective porosity is the percentage of a porous material’s total empty space that can 

transmit a fluid. The proportion of total void volume to total bulk volume is known as total 

porosity. Porosity ratios are typically stated as a percent after being multiplied by 100 

(Abdulaziz et al., 2019). 



40 

 

 

In a porous medium that is saturated with fluid, only the interconnected pores will 

allow fluid to pass through. Effective porosity, also known as interconnected porosity, is 

defined by interconnected pores (Koponen et al., 1997). The formula for effective porosity is 

as follows: 

𝜑𝑒𝑓𝑓 =  𝜑𝑎𝑣𝑔 × (1 − 𝑉𝑆ℎ𝑙)                                                                                                (4.4) 

where: 

∅𝑎𝑣𝑔 = Average porosity, 

∅𝑒𝑓𝑓 = Effective porosity,  

𝑉𝑆ℎ𝑙= Volume of shale 

 

4.4.6 Resistivity of Water Calculation 

The Pickett plot method is used to calculate the resistivity of water. The X and Y axis 

of the Pickett plot shows deep resistivity and porosity log, respectively which is built on the 

logarithmic of the Archie’s equation. On a straight line which has a negative slope of the 

volume of m, saturation point(Sw) will be plotted. Zones of water define the lowest line on 

the plot. 

Because SW=1, it is possible to determine the water resistivity from a location on the 

line. Once the water line is formed, further parallel lines with various SW can be drawn while 

assuming a constant n. Other data can afterwards be plotted and assessed in relation to Sw. 

The Pickett plot was used to calculate the resistivity of water in both the wells. Figure 4.1 

and Figure 4.2 are shown below. The resistivity of water in Tajjal 01 is 0.0265 and resistivity 

of water in Tajjal 02 is 0.027. 
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Figure 4.1 Resistivity of water for Tajjal 01 by Pickett plot method. 

 

 

 

Figure 4.2 Resistivity of water for Tajjal 02 by Pickett plot method. 

 

4.4.7 Calculation of Archie Water Saturation (Sw) 

The amount of water in a formation is referred to as water saturation (Ahmed, 2009). 

Archie presents the mathematical method that is used to calculate the water saturation and 

resistivity logs are used for this purpose. Using Archie’s equation, the reservoir zone’s water 

saturation was calculated. By making use of the formula mentioned below: 
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          𝑆𝑤 = {(
𝑎∗𝑅𝑤

𝑅𝑡∗𝜑𝐴
)𝑚}

1

𝑛                                                                                                     (4.5) 

Where, 

• 𝑆𝑤= water saturation,  

• 𝜑𝐴= average porosity,  

• a= lithological coefficient (taken as 1),  

• m= cementation factor (taken as 2),  

• n= saturation exponent (taken as 2).  

• 𝑅𝑡= True Resistivity 

• 𝑅𝑤= Water Resistivity 

 

4.4.8 Calculation of Hydrocarbon Saturation (Sh) 

Water saturation is the percentage of pore spaces that have water in it (Sw). 

Hydrocarbon saturation(Sh) is the remaining fraction containing oil or gas. The formula used 

to calculate hydrocarbons saturation is as follows: 

     𝑆ℎ = 1 − 𝑆𝑤                                                                                                                 (4.6) 

 

4.5 Petrophysical Interpretation of B interval 

Petrophysical analysis of B and C intervals of Lower Goru Formation was carried out 

in the zone of interest. 

 Petrophysical interpretation of Lower Goru Formation ( B interval) of Tajjal 01 and 

Tajjal 02 wells were carried out in the reservoir zones of interest. The procedure begun by 

loading the LAS files of both wells using the Prizm module of Geographix software. 

 Zones of interest were marked based on the criteria mentioned in 4.2. It was noticed 

that by keeping the criteria in mind two zones were marked in B interval of Tajjal 01 well 

and 1 zone was marked in B interval of Tajjal 02 well. 
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4.5.1 Petrophysical Interpretation of B Interval Tajjal 01 

 

Figure 4.3 Petrophysical analysis of Tajjal-1 on B-Interval of Lower Goru Formation. 

 

Two zones of interest were marked in the Lower Goru B- Interval of Tajjal 01 well. 

The first zone was observed at the depth of 3702-3705 m, and the second zone was observed 

at the depth of 3711 to 3713 m. 

Within both these zones the gamma ray value was on the lower side, separation 

between MSFL and LLD was observed. There was presence of gas effect i.e., neutron and 

density crossover was observed. And lastly the hydrocarbon saturation was also good. 
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4.5.2 Petrophysical Interpretation of B Interval Tajjal 02 

 

Figure 4.4 Petrophysical analysis of Tajjal-2 on B-Interval of Lower Goru Formation. 

 

1 zone was observed in the B Interval of Tajjal 02 well. This zone lies at the depths 

of 3555-3557 m. Since MSFL log is not available in this well the criteria to mark the zone of 

interest based on the separation between MSFL and LLD was ruled out. Within the area of 

study there is presence of radioactive sands which results in very high gamma ray values. 

This phenomenon is also observed in the case of this zone of interest. It was thus marked as 

zone of interest based on the presence of gas effect and high values of hydrocarbon’s 

saturation.  

Every wireline logging device is impacted in some way whenever shale is present in 

a formation. The gamma ray device will result in an excessively large shale volume due to 

the presence of radioactive minerals other than shale. This is especially true for dolomite and 

radioactive sands (Kamel et al., 2023). 
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4.6 Petrophysical interpretation of C interval 

Petrophysical interpretation of Lower Goru Formation( C interval) of Tajjal 01 and 

Tajjal 02 wells were carried out in the reservoir zones of interest. The procedure begun by 

loading the LAS files of both wells using the Prizm module of Geographix software. 

1 zone was marked in C interval of Tajjal 01 well and 3 zones were marked in C 

interval of Tajjal 02 well. 

 

4.6.1 Petrophysical Interpretation of C Interval Tajjal 01 

 

Figure 4.5 Petrophysical analysis of Tajjal-1 C-Interval of Lower Goru Formation. 
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A single zone of interest was marked in the Lower Goru C- Interval of Tajjal 01 well. 

The zone lies at the depth of 3570-3574 m.  

Within this zone the separation between MSFL and LLD was observed. There was 

presence of gas effect i.e., neutron and density crossover was observed. And lastly the 

hydrocarbon saturation was also good. The gamma ray values were on the higher sides due 

to presence of radioactive sands (Mabrouk et al., 2011). 

 

4.6.2 Petrophysical Interpretation of C Interval Tajjal 02 

 

 

Figure 4.6 Petrophysical analysis of Tajjal-2 C-Interval of Lower Goru Formation. 



47 

 

 

Three zones of interest were marked in the Lower Goru C-Interval of Tajjal 02 well. 

The first zone was observed at the depth of 3725-3728 m, the second zone was observed at 

depth of 3745-3748 m, and the third zone was observed at the depth of 3750 to 3754 m. 

Within the third zone the gamma ray value was on the lower side. Since MSFL log is 

not available in this well the criteria to mark the zone of interest based on the separation 

between MSFL and LLD was ruled out. However, within all the three zones there was 

presence of gas effect i.e., neutron and density crossover was observed. And lastly the 

hydrocarbon saturation was also good. 

 

4.7 Results of Petrophysical Interpretation 

 

Table 4.1 Result of petrophysical analysis of reservoir zones 

Well 

Name 

Hydrocarbon 

Zone 

Depth(m) Vshl 

% 

PHIA 

% 

PHIE 

% 

SwA 

% 

Sh 

% 

Tajjal 1 

C 

Interval 

Zone 1 3570-

3574 

 

0 28 28 14 86 

Tajjal 1 

B 

Interval 

 

Zone 1 3702-

3705 

0 11 11 61 39 

Zone 2 3711- 

3713 

9 10 9.1 69 31 

Tajjal 2 

C 

Interval 

Zone 1 3725-

3728 

1.9 21 17 22 78 

Zone 2 3745-

3748 

0 10 10 25 75 

Zone 3 3750- 

3754 

0.20 14 13.9 29 71 

Tajjal 2 

B 

Interval 

Zone 1 3555-

3557 

0.13 10 9.8 41 59 
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CHAPTER 5 

 

SEISMIC INVERSION AND ATTRIBUTES 

 

5.1 Introduction 

Seismic inversion, which is a subsurface geological modelling approach uses well 

data as a control and seismic data as an input. The seismic inversion is carried out by 

converting the data in amplitude form to the impedance form (Kianoush et al., 2023). 

Seismic inversion enhances interpretation by helping to identify the significant 

subsurface geological and petrophysical boundaries (Talib et al., 2022). Seismic inversion is 

one of the known methods for extracting valuable information from seismic data, interest in 

it has been growing steadily over the past few years. Seismic inversion also enhances the 

resolution of conventional seismic. Deterministic and probabilistic are the methods of 

inversion and the approaches are either pre or past stack (Veeken and Silva, 2004). 

The procedure of turning seismic reflection data into seismic impedance is called 

seismic inversion. Acoustic impedance is a layer property since it is related to the layers 

rather than interface and it is the product of density and velocity (Onajite, 2014). 

As acoustic impedance changes with lithology, porosity, fluid content, pressure, 

depth, temperature etc. Thus, it can be used as an indicator of lithology to precisely map flow 

unit, an indicator of porosity, an indicator of hydrocarbons and a tool for quantitative 

analysis. Thus, the result of inversion has a substantial impact on interpretation and ultimately 

decision making in the industry (Jain, 2013).  
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Earth’s properties are reconstructed by seismic inversion, and it is readily employed 

in the industries of oil and gas. For the prediction of porosity and lithology it combines well 

data and seismic data. These characteristics of rock may be applied for the identification of 

hydrocarbons and reservoirs (Kianoush et al., 2023). 

 

 

Figure 5.1 Generalized workflow of seismic inversion (Veeken and Silva, 2004). 

 

Pre-stack seismic data and post-stack seismic data are the two types of seismic data 

that the seismic inversion method deals with. Both pre-stack seismic and post-stack seismic 

data are used in seismic inversion methods (Kumar et al., 2016). Post-stack seismic data only 

produces P impedance, whereas pre-stack seismic data also generates P and S acoustic 

impedance as well as their derivatives, such as Vp/Vs, Lambda-rho, and Mu-rho, which can 
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be used to estimate fluid and lithology parameters from the subsurface (Barclay, 2008). 

However, post stack inversion is performed in this research. 

 

5.1.1 Seismic inversion's purpose 

The main objective of seismic inversion is to convert seismic reflection data into 

quantitative rocks properties that describe the reservoir. Acoustic impedance logs are 

calculated at each CMP in their most basic form (Barclay, 2008). Results using inversion 

improve resolution and support more precise interpretation as compared to working with 

seismic amplitude. This then makes it easier to estimate the reservoir characteristics like 

porosity and net pay (Pendrel, 2001). 

Other advantages of seismic inversion include: 

• Wavelets impacts within the seismic bandwidth are eliminated by using seismic 

inversion (Kianoush et al., 2023). 

• Overburden is separated from reservoir properties. 

• Impedance domains interpretation is typically simpler than seismic domain 

interpretation (Kianoush et al., 2023). 

 

5.2 Post Stack Inversion 

Post stack inversion procedures as the name implies pertain to a variety of methods 

used for transforming the stacked seismic data into quantifiable rock physics parameters. 

Porosity, saturation, shale content, and other reservoir properties are estimated using post-

stack seismic inversion (Abosalama, 2022). 

Acoustic impedance is often the product of post stack inversion’s product is the 

Acoustic Impedance however, both acoustic and shear impedance can be produced by pre 

stack inversion. With its simple assumptions seismic post-stack inversion is a reliable 
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approach. It uses two distinct approaches: band-limited and broad band inversion (Karim et 

al., 2016). 

 

5.3 Model Based Inversion 

In the geophysical community, model-based seismic inversion is very common 

because it provides quick and accurate estimations of acoustic impedance. In a model-based 

inversion, the wavelet is convolved with the simplistic initial acoustic impedance model to 

produce a synthetic response that is compared to the actual seismic trace (Kianoush et al., 

2023). 

To create a synthetic seismic trace, using this method, the seismic trace (initial model) 

is convolved with a wavelet. Next, until the difference between the initial trace and invented 

trace is decreased to a limit value, the image is subjected to numerous iterations (Russell, 

1988). 

The output is free of noise component that is nearly always present with the seismic 

data because the model-based inversion does not use raw seismic data. Since the seismic data 

is band limited and direct inversion methods cannot provide the precision and accuracy 

needed by the exploration sector, model-based inversion is effective for thin reservoirs 

(Russell, 1988). High frequency and low frequency components both are present in the model 

based seismic inversion thus providing detailed information on stereographic and physical 

properties (Russell, 1988). 

𝐽 =  𝑤𝑒𝑖𝑔ℎ𝑡 𝑎 x (𝑆 − 𝑊 ∗ 𝑅) + 𝑤𝑒𝑖𝑔ℎ𝑡 𝑏 x ( 𝑀 − 𝐻 ∗ 𝑅)                                             (5.1) 

The seismic trace is denoted by S in the equation, the wavelet recovered from seismic 

data is donated by W, the reflectivity series is denoted R, the initial model is donated by M 

and H is integration operator (Russell, 1988). 

Given the initial half of the equation is obviously modelled with seismic trace while 

the other part is modelled using an estimated initial model (Russell, 1988). Seismic trace was 
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modeled in the first quarter of equation and the estimated impedance was modelled in the 

second portion.  

 

5.4 Methodology adopted for Model Based Inversion 

The model-based algorithm of post stack inversion is performed by using Hampson 

and Russell software. The methodology adopted to perform the model Based seismic 

inversion consists of the following steps: 

1. Seismic and Well Data Loading 

2. Loading of horizons 

3. Extraction of Statistical Wavelet 

4. Seismic to Well correlation 

5. Initial Low Frequency Model 

6. Inversion Analysis 

7. Results of Model Based Inversion 

8. Slices 

 

5.4.1 Seismic and Well Data Loading 

The loading of seismic and well data into Hampson and Russell software is the first 

step in post-stack inversion. The 3D cube of Gambat Latif block is loaded into the software 

along with interpreted well data in Las format, following data loading the location of well is 

matched with seismic data for confirming the exact location of well in the seismic cube. 

 

5.4.2 Loading of Horizons 

The next step involves loading of horizons in the seismic section. The interpreted 

horizons are exported in time amplitude format from Kingdom Software. After that these 
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horizons are imported in HRS software. The horizons of B and C intervals of Lower Goru 

Formation were imported. 

 

5.4.3 Extraction of statistical wavelet 

One of the most important steps in quantitative interpretation is wavelet estimation. 

The outcomes of seismic inversion depend on the quality of the wavelet, which in turn 

determines the quality of the seismic correlation. The seismic wavelet is an essential link 

between seismic data and subsurface stratigraphy and rock characteristics (Cui et al., 2014). 

Figure 5.2 shows the statistical wavelet that was used in inversion analysis from a 

window spanning 2200-2700 ms, wavelength 200 ms, and tapper length 0.25 ms and the 

average phase of statistical wavelet is shown as dotted line in Figure 5.2. 

Wave phase is crucial for seismic interpretation and inversion technique; for the best 

results the wave phase should be zero. The results of inversion are significantly impacted by 

input phase shift. If the phase shift is more than the error, resultant impedance will be higher 

(Jain, 2013). 

 

 

Figure 5.2 Statistical wavelet used in inversion analysis for Tajjal-02. 
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5.4.4 Seismic to Well Correlation 

Tajjal-02 well is used for the purpose of correlation of well and seismic data with 

synthetic traces which were generated with the extracted wavelet. The well correlation is very 

crucial for seismic interpretation since it is the tie between the seismic and well data. The 

maximum coefficient of correlation for the Tajjal 02 is shown in Figure 5.3, which turned 

out to be 66%. 

 

 

Figure 5.3 Correlation of seismic data with Tajjal-02 well. 

 

5.4.5 Initial Low Frequency Model 

The initial low frequency model is estimated using acoustic impedance. The acoustic 

impedance is divided into 2 types namely relative and absolute acoustic impedance (Sams 

and Carter, 2017). It is not necessary to create a low frequency model to calculate the relative 

acoustic impedance. Because of the relative qualities of the strata, it is favorable for 

qualitative interpretation of seismic sections (Li et at., 2013). Integration of low frequency 

model during seismic inversion improves the qualitative and quantitative interpretations 

levels of seismic inversion results. Well data Information is required to build low frequency 
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model. The qualitative and quantitative interpretation gets enhanced by integrating low 

frequency model during the seismic inversion (Kumar et al., 2016). 

Increased resolution, conversion from an interface to a layer property, conversion to 

physical rock properties (impedances), removal of the wavelet, and reduced tuning are some 

of the well-known advantages of seismic inversion. All of these improve the seismic data’s 

interpretability both quantitatively and qualitatively (Latimer et al., 2000). 

The production of the absolute impedances requires the integration of an accurate low 

frequency model with band limited seismic data. For each property for which inversion is to 

be performed, low frequency models must be built (Sams and Carter, 2017). The properties 

vary depending on the inverted seismic data, but they are frequently some types of elastic 

property or a combination of elastic properties (Sams and Carter, 2017). 

To aid in the construction of low-frequency models, the following key sources of low 

frequency data can be used: seismic velocity data and well-log data. There may be 

measurements for all the necessary elastic characteristics in well log data, which cover the 

entire frequency range from zero to well above the highest seismic frequencies (P-sonic, S-

sonic, and density). A low frequency model is typically created by simply interpolating well 

data within a structural and stratigraphic framework (Sams and Carter, 2017). The Initial low 

frequency model must be added to the Model-based Inversion process.  

By using density and sonic log in the vicinity of the well, the initial low frequency 

model is generated. The estimated initial model of low frequency with Tajjal-02 is displayed 

in Figure 5.4. 
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Figure 5.4 Low Frequency model with well location of Tajjal-02 

 

5.4.6 Inversion Analysis 

At the Tajjal 02 well site, the given seismic cube information was analyzed for model 

base inversion. The wavelet that was extracted from the time window was between 2200 to 

2600 ms. The wavelet that was extracted seismically was adjusted by comparing the synthetic 

trace with the inverted trace at the well location. A good impedance model will be generated 

as a result of high correlation percentage. As seen in Figure 5.5 the black color represents the 

traces and synthetic traces are shown by red color. Tajjal-01 is having correlation coefficient 

of 99.76% with root mean square error between the seismic trace and synthetic is 7%. 

 

C Horizon 

B Horizon 
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Figure 5.5 Model based inversion analysis of Tajjal- 02. 

 

5.4.7 Results of Model Based Inversion 

Physical properties of rock and fluids from seismic data are extracted by seismic 

inversion (Krebs et al., 2009). The mapping, interpretation, and quantification of 

hydrocarbon bearing zones have become less challenging by using seismic post stack 

inversion (Ali et al., 2018). The post stack inversion with zero offset converts seismic 

data(amplitude) into volume of acoustic impedance contrast by using geological data, 

seismic, well logs etc. (Downton et al., 2005). 

Model-based inversion produces an acoustic impedance model that matches the entire 

frequency range of impedance by taking low frequency model and seismic data as inputs. 

The model-based inversion is more realistic and accurate, but an accurate initial model and 

computation is required for model-based inversion (Narayan et al., 2023). As can be seen in 

Figure 5.6 the impedance range lies between 10491 to 13194 g/cm3-m/s. And the B and C 

intervals of Lower Goru Formation are marked by the impedance of approximately 11673 
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and 12687 g/cm3-m/s respectively. Considerably lower impedance values are encountered 

along both the horizons. The low impedance at both the B and C intervals indicates that these 

are reservoir zones and might be having gas situation. 

Figure 5.6 Final Computed impedance model at Tajjal-02 Well location. 

 

5.4.8 Slices 

Slices were extracted for both the B and C intervals of Lower Goru Formation. Slices 

of both show the overall variation of P impedance. The C intervals impedance slice values 

lie between the impedances ranges of 11782 to 12196 g/cm3-m/s Along the Sand channel (C 

sand), a substantially lower impedance anomaly appears at the Tajjal 01 and Tajjal 02 

locations which could be an indicator of hydrocarbons (gas) accumulation. It can be seen in 

the Figure 5.7, that relatively higher impedance values are observed on the extreme west, 

relatively lower values exist in the central portion and at the well location of Tajjal 01 and 

Tajjal 02 the low values of impedance give clue about hydrocarbons accumulation. Low 

impedance values range between 11782 to 11937 g/cm3-m/s. Very low impedance values at 

the southernmost corner. 

 

C Horizon 

B Horizon 
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Figure 5.7 3D cube slice for C Interval showing variation for impedance. 
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Figure 5.8 3D cube slice for B Interval showing variation for impedance. 

 

The impedance slice of the B interval reveals variations in impedance, ranging from 

11586 to 11968 g/cm3-m/s. Lower impedance values are notably present in the north-western 

section, with some areas in the northeast and southeast showing higher impedance values. 

Low impedance value ranges from 11586 to 11714 g/cm3-m/s. Along the B sand channel, a 

significantly lower impedance anomaly is observed at Tajjal 01. In contrast, the remaining 

areas in the cube exhibit higher impedance values. 

 

5.5 Seismic Attributes 

Seismic attributes have become the most widely used and reliable interpretation tools 

since their development in the early 1970s. Previously, they were only considered a tool for 

management display. However, now they are readily used for interpretation and this 

viewpoint has shifted (Taner et al., 1994). 
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 Seismic attributes are described as the observation that aid in hydrocarbon exploration 

directly or indirectly and are extracted from seismic data. Attributes that can measure only 

one characteristic are known as “Primitive” attributes, or they can be merged using statistical, 

neural network, or known mathematical manipulation resulting in “Hybrid” attributes (Taner, 

2001). Numerous attributes have developed from a range of computational methods after the 

advent of Complex Trace attributes in the 1970s (Chambers et al., 2002). 

 The most often used approach for transforming post stack seismic traces into a set of 

instantaneous seismic attributes that can be applied to create a range of geological 

interpretations is known as the Complex trace analysis. The fundamental data of a seismic 

trace is time, amplitude, frequency, and attenuation. Since attributes quantify specific data 

characteristics they are thus representative of the total information (Khan and Akhter, 2015). 

Complex Seismic Trace Attributes have gained significant popularity since they were 

introduced in the early 1970s. At first, they were used as an appropriate format for 

visualization, but as they were combined with other measurements which were derived 

seismically, they became a reliable analytical means for lithology prediction and for 

characterizing the reservoir (Taner, 2001). 

Seismic attribute analysis and interpretation provide us with qualitative information 

about the geometrical and physical properties of the earth. The amplitude content of seismic 

data is the most important part in determining parameters such as velocities, absorption, 

reflection coefficients, acoustic impedance (Taner, 2001). 

 

5.5.1 Classification of Attributes 

The classification of attributes is as follows: 

One can compute attributes either from pre stack data or post stack data i.e., before migration 

or after migration. 

• Pre-Stack Attributes 
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In the case of Pre-Stack Attributes CDP or image gather traces are used as input data. 

This input dataset will have information related to offset along with direction (azimuth 

information). These computations create massive volumes of data thus making them 

impractical for preliminary research. Although they contain a significant amount of 

information that is directly related to orientation of fracture and fluid content (Taner et al., 

2001). 

• Post-Stack Attributes 

Removal of offset and azimuth information is done by an averaging process called 

stacking. The input data for post-stack attributes is CDP stacked or migrated. The post stack 

attributes are more convenient for monitoring enormous volumes of data in early 

reconnaissance studies. However, in-depth studies should be done by using pre stack 

attributes (Taner et al., 2001). 

 The seismic attributes can be further categorized based on their computational properties. 

• Instantaneous Attributes 

The computation of instantaneous attributes occurs on a sample-by-sample basis and 

these attributes indicate instantaneous variations of several parameters (White, 1992). From 

complex traces, the instantaneous values of attributes such as envelope, its derivatives, 

frequency, and phase can be calculated . The interpretative significance of the fundamental 

instantaneous attributes has been analyzed by ( Robert and Nogami, 1984).  

• Wavelet Attributes 

These consist of such instantaneous attributes which are computed at trace envelope’s 

peak. These attributes exhibit an absolute link with the Fourier transform of the wavelet in 

proximity to the envelope’s peak. These attributes can be subdivided based on their 

relationship with geology (Taner et al., 2001). 

• Physical Attributes 

The physical attributes related to the physical quantities and physical qualities. The 

trace envelope’s magnitude exhibits a direct relationship with the contrast in the acoustic 

impedance. Frequencies, on the other hand, are associated with bed thickness, wave 
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scattering and absorption. The average and instantaneous velocities are directly associated 

with the properties of rock. These attributes are thus primarily used for reservoir 

characterization as well as lithological classification (Taner et al., 2001). 

• Geometrical Attributes 

Geometrical attributes are used for describing the relationship among attributes in 

terms of temporal and spatial relationships. Since geometrical attributes specify the event 

characteristics and their spatial relationships thus they can be used for stratigraphic 

interpretation (Taner et al., 2001). 

However, during this research attributes are applied for thin bed identification. For 

this purpose, number of attributes were applied but three attributes gave reliable results and 

are discussed as follows: 

 

5.6 Attribute analysis of the study area 

For thin bed identification three attributes namely spectral decomposition, 

instantaneous phase and trace envelope were applied. 

 

5.6.1 Spectral Decomposition 

Through the use of mathematical techniques like the Discrete Fourier 

Transform(DFT), continuous Wavelet Transform (CWT) and others, spectral decomposition 

transforms seismic data into frequency domain (Othman et al., 2016). For seismic 

interpretation, spectral decomposition has proven to be a reliable method and it is also applied 

to map temporal bed thickness. Spectral decomposition can also help in delineating 

hydrocarbon distribution and for indicating stratigraphic traps (Castagna et al., 2003). 

When seismic data showed variations in response at different frequencies i.e., at 

higher frequency, shorter wavelength, thin channels were detected, this technique was 

developed. Since seismic data is spectrally whitened during processing, this spectral 
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component contains geological information with varied channel thickness and infills thus 

generating different responses at different frequencies (Koson et al., 2014). Spectral 

decomposition can be used do map and image the thickness of bed, deviation of channels, 

geological discontinuities along with considering DHI (Othman et al., 2016).  

The spectral decomposition attribute was applied on seismic line 1419. It was found 

that the frequency band width present in this data lies between 5 to 70 Hz. It can also be 

demonstrated from Figure 5.8 that amplitude stability lies within the range of 0.6 to 1. 

 

 

Figure 5.9 Amplitude and frequency spectra for seismic inline 1419. 

 

This attribute is most effective in resolving thin bed sand layers. Lower frequencies 

are better in resolving thicker beds, while thin beds are better resolved by higher frequencies. 

Since the study area has thin sand packages, this attribute is most suitable to resolve the thin 

sand packages of Lower Goru Formation. This attribute was applied to seismic line 1491. 

The seismic section of line 1491 was displayed at different frequencies to study the response 

at each specific frequency. It was observed that thinner sand beds of Lower Goru B and C 

sand in the Tajjal 02 well became visible as the frequencies increased step by step. The circle 

is highlighting the fault which was relatively difficult to interpret on normal seismic section 

shown in Figure 5.14. 
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Figure 5.10 Spectral Decomposition attribute of seismic line 1419 at 9 Hz frequency 

 

 

Figure 5.11 Spectral Decomposition attribute of seismic line 1419 at 14 Hz 

frequency 
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Figure 5.12. Spectral Decomposition attribute of seismic line 1419 at 21 Hz 

frequency 

 

 

Figure 5.13 Spectral Decomposition attribute of seismic line 1419 at 29 Hz 

frequency 

 



67 

 

 

 

Fig 5.14 Circles highlighting fault that was difficult to interpret on normal seismic section. 

 

• Results and discussions 

By using the spectral decomposition attribute the seismic data is resolved into 

individual frequency components which lie within the seismic bandwidth, allowing the same 

underlying geology to be seen at different frequencies (Naseer et al., 2017). The spectral 

decomposition attribute which is useful for resolving the thin beds was applied on seismic 

line 1419 at different frequencies. The procedure begun by applying this attribute with 9 Hz 

frequency. At this frequency the thin beds were not identified. After that the frequency was 

slightly increased and the attribute was applied at 14 Hz frequency, at this frequency the beds 

were not completely resolved but they were better indicated by 14 Hz as compared to 9 Hz. 

After that the frequency was increased to 21 Hz, at this frequency the spectral decomposition 

attribute resolved the thin beds quite accurately and a fault also begun to appear which was 

not resolved at previous frequencies. This fault was also marked while performing seismic 

interpretation shown in Figure 5.4. 

Lastly, the attribute was applied at 29 Hz, at this frequency the thin beds were 

completely resolved, and the presence of fault was also confirmed which was relatively 

difficult to mark on normal seismic section Thicker beds or features are tuned and have 

greater amplitude at lower frequencies whereas thin beds are tuned and have higher amplitude 

at higher frequencies (Naseer et al., 2017). After applying spectral decomposition attribute 

on various frequencies, it was observed that thinner sand beds of Lower Goru B and C sand 

in the Tajjal 02 well became visible as the frequencies increased step by step. The beds were 

best resolved by frequency of 29 Hz. 
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5.6.2 Instantaneous Phase 

Wave fronts are defined as lines of constant phase, hence the phase attribute, which 

is also a physical property, can be utilized as a discriminator for classification of geometrical 

shapes. Instantaneous phase, which refers to the phase component of wave propagation and 

lacks amplitude information, is the best marker for lateral continuity because it represents all 

the events (Taner et al., 2001). 

The instantaneous phase is a reliable indicator of lateral continuity, it can also aid in 

computing the phase velocity. Since there is no information of amplitude in the instantaneous 

phase thus all the events are represented. The stratigraphic elements can be seen in detail 

using the instantaneous phase (Taner et al., 2001). 

The instantaneous phase provides information about seismic trace without amplitude 

contrast because it lacks information about amplitudes (Barnes, 2007). The instantaneous 

phase attribute is also very useful for identifying bed geometries in reservoir weak zones. 

This attribute along with other attributes can be utilized as hydrocarbon indicator because 

hydrocarbons are linked to phase transition events (Chen and Sidney, 1997). 

The instantaneous phase values are related to the apparent position of cosinusoids i.e., 

the peak of the seismic trace represents 0°, the trough has maximum phase, downward zero 

crossings have a phase of 90°, and upward zero crossing have a phase of -90° (Barnes, 2007). 

Figure 6.5 shows the instantaneous phase attribute which changes from -105 ° to +105 °. The 

interpreted horizons lie over the maximum phase regions indicated by violet color.  
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Figure 5.15 instantaneous phase attribute calculated for seismic line 1419. 

 

5.6.3 Trace envelope 

The trace envelope attribute is also called reflection strength and instantaneous 

energy. The trace envelope or reflection strength reveals zones of strong acoustic 

events(bright) on both positive and negative events, this attribute represents the signals 

instantaneous energy and is proportional in magnitude to the reflection coefficient (Koson et 

al., 2014). This attribute is useful when examining amplitude packages. This attribute is 

extremely beneficial to seismic interpreters since it does not employ original seismic trace 

values that are dependent on the phase or polarity of seismic data, both of which change the 

apparent brightness of a reflection (Koson et al., 2014). Because of the acoustic impedance 

contrast, the bright spot provides information about sandy lithology and channel bodies 

(Koson et al., 2014). This attribute contains information regarding lithology change, bright 

spots, and thin bed tuning effects. Instantaneous attributes are calculated at any point in 

seismic segment and are independent of any interpretation (Radovich and Oliveros, 1998).  
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Figure 5.16 Instantaneous Amplitude (Trace envelope) applied on seismic line 1419. 

The envelope of a trace, also known as the reflection strength, is a measure of 

complex trace’s total instantaneous energy that is independent of phase. The envelope is 

directly related to the contrast in acoustic impedance. According to the bandwidth of seismic, 

it may indicate the individual interface contrast or more commonly the combined response 

of numerous interfaces (Koson et al., 2014). 

This trace envelope attribute is computed for seismic line 1419. The thick (yellow) 

package indicates maximum reflection strength. This attribute also highlights the presence of 

sandy bodies (Koson et al., 2014). The results of trace envelope attribute suggests that high 

energy area i.e., C interval of Lower Goru Formation could be having presence of 

hydrocarbons. The results of petrophysical analysis also reveal that C interval is hydrocarbon 

bearing. 

Because of the acoustic impedance contrast, bright spots reveal information about 

channel bodies or sandy lithology, it provides information on lithology variation, thin bed 

tuning effects, bright spots (gas presence) etc. When playing with direct hydrocarbon 

indicators, the interpreter should be quite careful because bright spots are not necessarily 

associated with zones that are hydrocarbon bearing (Brown, 2001). 
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CHAPTER 06 

 

COMPUTATION AND VALIDATION OF SHEER SONIC USING MACHINE 

LEARNING AND FACIES ANALYSIS 

  

6.1 Introduction 

Significant challenges confronting our society necessitate solutions to geophysical 

problems such as anticipating the effects of climate change and measuring air pollution, 

forecasting infrastructure risks by natural calamities such as hurricanes, and forecasting 

future availability and the use of water food, and mineral resources along with determining 

the causes of earthquake, landslides, and other natural disasters such as volcanoes and floods. 

As the influx of big data continues to impact virtually every commercial and scientific field, 

geosciences have also undergone a fundamental transformation from a data poor to a data 

rich field (Karpatne et al., 2018). 

As a result, there is a significant opportunity for machine learning researchers to work 

closely with geoscientists and merge ideas across disciplines to advance the frontiers of 

machine learning as well as geosciences (Karpatne et al., 2018). Machine Learning(ML) has 

appeared as a revolutionary development in geosciences with the arrival of computer science 

algorithms because of its ability for highlighting relationships for the purpose of predicting 

the needed output (Gupta et al., 2021). 

The availability of sheer Sonic log(DT) is essential for lithology and fluid 

discrimination within the reservoirs. However, within the Lower Indus Basin there are only 

limited wells that have the availability of shear Sonic log. This is where Machine Learning 
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plays its part. With fewer input data sets, machine learning has lately become a reliable and 

optimized method for forecasting the exact shear Sonic log(DTS)( Ahmed et al., 2022). 

The interpretation of elastic properties’ interpretation including Sonic(DTP), DTS, 

and density(RHOB), is critical because they are significantly related to reservoirs properties 

which are measured by seismic (Munyithya et al., 2019). DTS can help in identifying litho-

fluid types and distinguishing between wet and gas sands when combined with Vp/Vs ratio, 

the λρ and μρ relationship is used to enhance fluid and lithology deviation, which also give 

clue of the gas sand zone and is greatly reliant on accurate shear sonic (Young and Tatham, 

2007). 

 Since Machine Learning has proved to be quite reliable for predicting the shear sonic 

log this research used the same approach for prediction of the shear sonic log along with 

confirming reliability of machine learning calculated shear sonic by applying it to pinpoint 

the AVO anomaly. The procedure is mentioned in the workflow below. Along with machine 

learning based facies analysis. 
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Figure 6.1 Workflow adopted for computation of shear sonic computed by ML and it’s 

validation by mapping AVO anomaly. 

 

Number of steps were adopted during the workflow their detail is as follows: 

 

6.2 Data Review 

Initially Las data was loaded and after that it was viewed for quality control and initial 

conditioning was performed to refine the data which involved deglitching, trimming etc. 

The first step consists of reviewing the data as well as editing and conditioning. The 

well Tajjal-03 was selected, and the depth intervals selected for analysis are 3300 to 3800 m. 
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Both B and C intervals of Lower Goru Formation are lying within these depth intervals. After 

conditioning the final logs that would be used for computation purposes are shown in Figure 

6.2. 

 

 

Figure 6.2 Initial Input Data set for C and B interval ranging from 3300-3800 m in Tajjal-

03. 

After initial conditioning from the refined data three parameters were computed 

• Rock Physics computation: Bulk shear modulus etc. 

• Volume of shale calculation 

• Porosity computation 

 

6.3 Rock Physics Computation 

The physical qualities of a reservoir rock, such as porosity, rigidity, and 

compressibility, are described by rock physics. These properties determine what would be 

the response of seismic waves while travelling through the rocks. The calculation of various 

elastic moduli such as bulk, shear etc. falls in the domain of rock physics (Dewar et al., 2001). 
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In linking elastic parameters such as impedances and velocities to reservoir properties 

including fluids, porosity, lithologies rock physics plays a vital role (Bosch et al., 2010). 

Before using neural network, all rock physics parameters were computed which 

include various elastic moduli including bulk modulus, shear modulus, young modulus, p 

wave modulus, Lamé constant etc. as shown in Figure 6.3. 

 

 

Figure 6.3 Rock Physics Properties computed including various moduli for C and B interval 

ranging from 3310-3800 m in Tajjal-03. 

 

6.4 Calculation of shale volume 

 Gamma ray log is used for calculating the volume of shale. This calculated volume 

of shale was then fed to the machine learning based regression to compute the shear wave. 

 

6.5 Porosity Computation 
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 After calculating the shale volume, the next step was to compute the porosity. The 

porosity was computed using neutron log and sonic log.  

All these (initial logs, rock physics computation, volume of shale calculation, porosity 

computation) were then fed into machine learning regression-based analysis. After grouping 

them in different classes it computes different regression for them. Within this neural network 

sort, the data based on volume of shale, porosity and other parameters and divides them in 

different classes in my case it divided into three packages/classes: 

• Pure clean sand. 

• Tight sand. 

• Shale. 

After grouping them in different classes it computes different regression for them. 

 

6.6 Multi regression 

Multi regression is one of the statistical techniques used for studying the link among 

a single independent variable and various other variables which are independent. The purpose 

of multiple regression analysis is the usage of known independent variables for predicting 

the value dependent single variable (Moore et al., 2006). 

Neural network sorted the data based on volume of shale, porosity and other 

parameters divided in different classes i.e., pure clean sand, tight sand, and shale. After 

grouping them in different classes it computes different regression for them. Wireline log 

data of 5 to 6 wells in the surrounding of study area were used for training the model. 

Since unlike North (Upper Indus Basin) where thick lithology is present my study 

area lies in Lower Indus Basin where there are thin sand/shale packages so manually it is 

very difficult to separate these packages and thus machine learning has been used to identify 

each of these packages and then to sort them out in different classes and lastly to apply 

regression analysis to compute their respective shear wave equations i.e., Vp to Vs 

computation equations. 
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Figure 6.4 Multi Regression-ML applied on depth intervals ranging from 3310-3800 m for 

C and B intervals of Tajjal-03. 

 

Here, as we can see in Figure 6.4, Vp is displayed by blue color in first track and Vs 

is displayed in second track by green color. As seen in Figure 6.4 and cross plots machine 

learning has identified three packages. Sand, shale, and tight sand. Wherever sand is present 

is has been highlighted by green color, tight sand by pink and shale has been highlighted by 

yellow color. 

ML along with identifying the sand, shale and tight sand has also computed different 

equations for each lithological package. And the respective equations for each package are 

also displayed in the Figure 6.4 

 

Table 6.1 Multi regression Equations 

Lithology Respective Equation 

Sand Vs= -542.838+0.71596 Vp 

Tight sand Vs= 1118.698+0.39619 Vp 

Shale Vs= -544.535+0.70486 Vp 
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This separation based on the classes is behind the scenes done by using input data 

which includes gamma ray log, porosity, different moduli, and porosity and all these are fed 

to the neural network and then it is separating the packages. And the packages are divided 

into three groups/classes including sand, shale, and tight sand. 

Later on, if multi regression is applied to a well where the shear sonic is not present 

then it will automatically apply equation according to the package. For clean sand a different 

equation would be used, for tight sand another and for shale packages the equation would be 

different. However, in my case I am applying regression analysis to the well where shear 

sonic is already present. 

 

6.7 Comparison of Vs computed from Castagna, and Vs computed by ML. 
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Figure 6.5 Comparison of Vs (Vs provided), Vs’( Vs-Castagna), Vs-ML (Vs 

computed by ML) for C and B interval. 

 

Figure 6.5 shows the comparison of shear sonic which was already given in well data, 

shear sonic computed by Castagna, and shear sonic computed by ML.  

The legend shows that Vs is displayed by red color, which was already provided, Vs’ 

is computed from Castagna and Vs-ML represented by green color is Vs computed by ML. 

As it can be seen from the Figure 6.5 that the red and green i.e., Vs already present and Vs 

computed by ML are overlapping at most of the places however, blue i.e., Vs computed by 

Castagna is quite outside the range which brings us to the conclusion that that shear sonic 

computed from Castagna is not reliable and hence cannot be used for advanced purposes such 

as AVO. 

Vs 

Vs` 

Vs-ML 
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6.8 AVO Modeling 

The AVO (amplitude variation with offset) also known as amplitude variation with 

angle (AVA) technique, evaluates changes in seismic reflection amplitude as the distance 

between shot location and receiver changes. Geophysicists can use AVO analysis to better 

estimate the reservoir rock properties such as the content of fluids, porosity, density, and 

lithology (Feng et al., 2006). 

The AVO method is a very effective method for characterization of reservoirs. The 

success of AVO analysis depends not only on the level of quality of the seismic data that was 

acquired but it also depends upon data processing and knowledge of physical characteristics 

of the rock (Li et al., 2003). 

During my research work I used two approaches to calculate the shear wave velocity. 

Wireline log data of 5 to 6wells in the surrounding of study area were used for training the 

model. The first approach was to use the Castagna equation to calculate the Vs and the second 

approach made use of Machine Learning for computing the Vs. After computing the Vs from 

both approaches their validity was checked by AVA modelling. AVA modelling was 

performed by using Vs computed from both approaches and it was observed that upon 

performing AVA by using Castagna equation no AVA anomaly is observed however, gas 

sands were observed from shear sonic computed by multi regression.  

 

6.8.1 AVO modeling using shear sonic computed by Castagna Equation 
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Figure 6.6 AVO modeling using shear sonic computed by Castagna Equation for C and B 

intervals of Tajjal-03. 

 

Explanation: 

On the left most side depth intervals are displayed and in the first track Vp is 

displayed, Rhob is displayed in second track and although shear sonic is not given here it is 

automatically built in the software and the software will automatically compute it by 

Castagna equation. 

As we can see in Figure 6.6 if we perform AVA by using Castagna equation then 

dimming effect is observed. And no AVO anomaly is observed which brings us to the 

conclusion that if shear sonic is missing and we compute it by Castagna then it is not reliable 

and no AVO anomaly is observed and there is amplitude dimming effect at far offsets as 

shown in Figure 6.6. 

 

6.8.2 AVO modeling using shear sonic computed by ML 
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Figure 6.7 AVO modeling using shear sonic computed by ML for C and B intervals of 

Tajjal-03. 

 

Explanation: 

On the left most side depth intervals are displayed and in the first track Vp is 

displayed, Rhob is displayed in second track and shear sonic computed in this case is 

computed by Machine Learning. After computing the shear sonic from ML AVO is 

performed and gas sands are observed in this case as shown in (Figure 6.7). 

 

6.8.3 Validation of shear sonic computed from multi regression 

Gas Sands were observed from shear sonic computed by multi regression which 

brings us to the conclusion that in any well if shear sonic is not available then we can use this 

technique to compute shear sonic by ML by switching between different equations and then 

AVO effect would be visible. 
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Significance of AVO modelling 

By using AVO gas sands were observed facilitating in interpretation. AVO modelling 

proves validity of shear sonic computed from multi regression. And shear sonic computed 

from Castagna is not useful. 

 

6.9 Facies Analysis 

Facies are defined as a formation’s part that contrasts in its features regarding 

lithology from other rock bodies. Facies analysis is a key sedimentological tool for 

characterizing bodies of rocks that have distinct physical, biological, and lithological 

properties in comparison to all adjacent deposits (Imamverdiyev et al., 2019). Facies 

recognition using well log is a useful tool for analyzing an area’s depositional setting. Well 

logs include a wealth of information regarding sediments and sedimentary processes. The 

gamma ray log is employed in petrophysical analysis for the purpose of identifying shale 

(Yemets et al., 2021). 

Facies modeling is crucial for reducing uncertainty in drilling operation as well as for 

analyzing hydrocarbon reservoirs (Wang et al., 2017). One of the most crucial pieces of 

information for reservoir modeling is facies modeling. Well logs can be used for recognizing 

the number of facies, provide a description of the facies , reservoir lithotypes, and the 

correlation of facies between wells in facies classification study (Yemets et al., 2021). 

The conventional wireline data used in facies modeling includes neutron 

porosity(NPHI), compression Sonic(DT), density(RHOB), etc. These methods for modeling 

the reservoir facies have been applied in several investigations. Numeral studies on facies 

models and the influence of facies determination on reservoir development have been done 

worldwide (Abdolahi et al., 2022). 

 

6.9.1 Cross plots between Vp and Vs 
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Figure 6.8 Cross plots between Vp and Vs of C and B intervals in depth interval ranging 

from 3310 to 3800 m of Tajjal-03. 

 

Explanation: 

Cross plots between Vp and Vs were computed. Gamma ray is used as a benchmark 

for color coding between sand and shale. And for color variation between sand and shale. As 

seen in Figure 6.8, three distinct packages are plotted namely sand, shale, and sandy shale. 

The gamma ray values for sand lie between 24.941-72.09, sandy shale depicted by cyan color 

lie between 72.07-166.327, and shale depicted by purple color lie between 166.327-260.585. 

This separation between three facies on the basis of gamma ray is behind the scenes done by 

neural networks automatically. The neural network scans the trend of data and then classifies 

it into distinct facies. Lower values of gamma ray correspond to clean lithology i.e., sand, 

and higher values of gamma ray are indicative of shale and in between the sand and shale, 

sandy shale lies at an intermediate gamma ray value.  

After the construction of cross plots between Vp and Vs polygons are constructed. 

Polygons are drawn around clusters of data points as shown in the cross plot which help in 

marking the boundaries of the three lithologies i.e., sand, sandy shale, and shale. These 
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polygons are quite useful since they help identify various facies and the transition between 

them. 

 

6.9.2 Cross plots between Vp and Density 

 

 

Figure 6.9 Cross plots between Vp and Density of C and B intervals in depth interval 

ranging from 3310 to 3800 m of Tajjal-03. 

 

Explanation: 

 Cross plots between Vp and density were computed. Gamma ray is used as a 

benchmark for color coding between sand and shale. And for color variation between sand 

and shale. As seen in Figure 6.9, three distinct packages are plotted namely sand, shale, and 

sandy shale. The gamma ray values for sand lie between 24.941-72.09, sandy shale depicted 

by cyan color lie between 72.07-166.327, and shale depicted by purple color lie between 

166.327-260.585. This separation between three facies on the basis of gamma ray is behind 

the scenes done by neural networks automatically. The neural network scans the trend of data 
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and then classifies it into distinct facies. Lower values of gamma ray correspond to clean 

lithology i.e., sand, and higher values of gamma ray are indicative of shale and in between 

the sand and shale, sandy shale lies at an intermediate gamma ray value. 

After the construction of cross plots between Vp and Vs polygons are constructed. 

Polygons are drawn around clusters of data points as shown in the cross plot which help in 

marking the boundaries of the three lithologies i.e., sand, sandy shale, and shale. These 

polygons are quite useful since they help identify various facies and the transition between 

them. 

 

6.9.3 Cross plots between Vs and Density 

 

 

Figure 6.10 Cross plots between Vs and Density of C and B intervals in depth intervals 

ranging from 3310 to 3800 m of Tajjal-03. 

 

Explanation: 
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Cross plots between Vs and density were computed. Gamma ray is used as a 

benchmark for color coding between sand and shale. And for color variation between sand 

and shale. As seen in Figure 6.10, three distinct packages are plotted namely sand, shale, and 

sandy shale. The gamma ray values for sand lie between 24.941-72.09, sandy shale depicted 

by cyan color lie between 72.07-166.327, and shale depicted by purple color lie between 

166.327-260.585. This separation between three facies on the basis of gamma ray is behind 

the scenes done by neural networks automatically. The neural network scans the trend of data 

and then classifies it into distinct facies. Lower values of gamma ray correspond to clean 

lithology i.e., sand, and higher values of gamma ray are indicative of shale and in between 

the sand and shale, sandy shale lies at an intermediate gamma ray value. 

After the construction of cross plots between Vp and Vs polygons are constructed. 

Polygons are drawn around clusters of data points as shown in the cross plot which help in 

marking the boundaries of the three lithologies i.e., sand, sandy shale, and shale. These 

polygons are quite useful since they help identify various facies and the transition between 

them. 

Gamma ray logs have been used by a number of researchers for facies analysis. 

However, those studies used the trend and shape of gamma ray log to predict various 

sedimentary facies. The same approach was used by (Nazeer et al., 2016) to predict various 

types of facies and the facies were predicted according to the trend and shape of the gamma 

ray log. Since gamma ray log serves as an indicator of lithology/ facies classification, five 

facies namely shale, siltstone, argillaceous limestone, marl, and limestone were identified by 

(Nazeer et al., 2016) on the basis of shape of gamma ray log motif. However, during my 

research the facies were not classified according to the shape of the gamma ray log but rather 

the separation between the facies on the basis of gamma ray is behind the scenes done by 

neural networks, neural network scans the trend of data and then classifies into different 

facies. The facies are classified in a manner that low gamma ray values correspond to sand, 

high indicate shale and the intermediate values of gamma ray log are indicative of sandy 

shale. In future will employ the usage of 3D cross plots for facies classification. 
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CHAPTER 07 

 

Machine Learning Based Geomechanics 

 

7.1 Introduction 

The study of mechanical behavior of geological materials is known as geomechanics. 

These studies, engineering components or applied geomechanics, describe how mining 

activities affect the geological environment (Ostad et al., 2018). 

Understanding the stability and integrity of the borehole while drilling is largely 

dependent on geomechanics. The wellbore’s presence and drilling fluids’ pressure cause 

change in the rocks or the stress condition. Young modulus, bulk modulus, shear modulus 

and poisson’s ratio are examples of elastic and inelastic geomechanical properties (fracture 

gradient and formation strength) (Ostad et al., 2018). 

Young modulus is often referred to as the modulus of elasticity. Young modulus is 

defined as the ability of the material to mechanically withstand compression or elongation 

relative to its length. When the volume is involved in three-dimensional deformation, the 

ratio of applied stress to volumetric strain is referred to as the bulk modulus. Shear modulus, 

which is commonly referred to as the modulus of rigidity, is the measurement of body's 

rigidity that is determined by the relationship between shear stress and shear strain. The 

poisson’s ratio is the proportion of a material’s change in length in width per unit width to its 

change in length per unit length due to strain (Wang, 2001). 

The pore fluid pressure in a reservoir decreases when hydrocarbons are produced 

from it(unless particular measures are taken to prevent that). Reduced pore pressure indicates 

that the reservoir is shrinking, and the effective stress is increasing. The stress path, which is 
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mostly determined by the response of the surrounding reservoir, determines how the 

reservoirs actually deform (Ostad et al., 2018). 

During my research in terms of geomechanics analysis I will be calculating vertical 

effective stress, overburden gradient, pore pressure and fracture pressure.   

• Overburden pressure: The weight of the rocks and the earth above the formation 

exerts a pressure on the rock, which is known as overburden pressure. When the 

overburden pressure is greater than the fluid pressure in the pore spaces the formation 

becomes more compacted (Baker et al., 2015).  

• Vertical effective stress: The pressure acted on the solid rock framework is known 

as vertical effective stress. The compaction in rocks is controlled by effective stress 

and reducing the effective stress results in the over pressure exploration (Khan et al., 

2017) 

• Pore pressure: Pore pressure is the pressure that is exerted on fluid in a formation’s 

pore space. Estimates of subsurface pressure regimes are crucial for lowering drilling 

related risks and uncertainty, and an awareness of pore pressure is helpful throughout 

the whole exploration and development process. Pore pressure information can help 

with knowing basin geometry, integrity of trap, the division of pressure regard to 

structure, and the detection of sealing and leaking of faults during exploration (Khan 

et al., 2017). 

• Pore pressure gradient: At any given depth the pore pressure gradient is calculated 

by dividing the pore pressure by the true vertical depth (Khan et al., 2017). 

• Fracture Gradient: The formation undergoes tensile failure at the practical pressure. 

As a result, the predicted fractured gradient represents the maximum possible mud 

weight without causing mud loss within the formation (Khan et al., 2017). 

During the course of this research the following three workflows were adopted to 

perform geomechanics analysis. 

 

7.2  Description of first workflow 
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Figure 7.1 First Workflow adopted for delineation of layer boundaries in Tajjal-03. 
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Figure 7.2 Output generated by adapting the first workflow for delineation of layer 

boundaries in Tajjal-03. 

 

In this first workflow artificial intelligence or neural networks are used to identify 

and mark boundaries between different layers. Wireline log data of 5 to 6 wells in the 

surrounding of study area were used for training the model. Curve analytic techniques are 

used in the machine learning model which include various types of regressions, moving 

averaging techniques as well as various orders of derivatives. The model selects an optimum 

level of moving average operator in order to remove localized variations from the data while 

the derivatives identifies the boundary. In this first workflow a single log is used instead of 

using combination of logs. Gamma ray is used as an input log and after applying different 

algorithms on the gamma ray log we derived variants of gamma ray log from this single log. 

So, among them the very first log is moving average of 601 samples, and it has been 

superimposed on the first log in the first column and it has been independently shown in the 

third track in addition to that a moving average of 201 samples is also applied since 201 

averages would be doing less moving, so it has been applied thrice so in the second track it 

has been displayed along with the original log. The 201*3 is independently displayed in the 

fourth track and in the fifth track both the moving average of 601 and 201*3 are being 

displayed. The moving average of 601 is represented by blue color and moving average of 

201*3 is represented by red color. 

After observing my own log, I concluded that the moving average of 201*3 is a better 

choice to be used as an input fed to the neural networks this is because the moving average 

of 601 has more ringing that is vibration, and the layer information is also lost. However, in 

the case of 201*3-layer information is preserved this affect can be clearly seen in Figure 7.2 

within depth of 1600 till 2000 m. 

After calculating the moving average, the first and second derivative of the smooth 

version i.e., moving average of 201*3 was computed. The first derivative (DRV1) is shown 

in track 6 Figure 7.2 represented by green color and the second derivative (DRV2) is shown 

in track 7 Figure 7.2 represented by green color. As can be seen in Figure 7.2, the second 
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derivative shows many fluctuations and is quite noisy that's why further only the first 

derivative would be used. Now further a moving average of 601 is again applied to the first 

derivative and the output is shown in track 6 (DRV1_Ave601) by pink color. 

Now based on minimum and maximum values we have plotted 2 reference lines in 

track 6 shown by green color which can be 5 to 10% of the maximum values. The basic idea 

is that any change smaller than this would be neglected and any change greater than these 

reference lines would be used. 

Now in track 8 we are just plotting first derivative(DRV1) along with the difference 

of the first derivative and its smooth version shown in pink color (DRV1_Diff) so the peaks 

would get reduced. 

And then we applied a difference filter. In track 9 the curve shown by blue color is 

moving average of 201*3 of gamma ray log (GR_Ave201x3). And the red color shows the 

output of the difference filter (DRV1_DF1t).. The difference filter was applied on the 

difference of the first derivative and it’s moving average. As seen in Figure 7.2 difference 

filter is also picking unnecessary information it is also picking small changes and shows 

unnecessary peaks, so an alternate approach is to use minimum filter. 

Now in track 10 the output of the minimum filter is shown by pink color 

(DRV1_MFlt). The aim of the minimum filter is we specify based on the maximum and 

minimum value some percentage like 10% of those values we define minimum and maximum 

reference value(lines). Any value within these maximum and minimum line will be 0 and 

values greater than these lines would be passed out. And the minimum reference line and 

maximum reference lines are shown in track 6 by green color.  

And now on this filter we have applied a spiking operator. It scans minimum 

difference trace and whenever the value is nonzero it can be greater than zero for a peak and 

it can be less than zero in case of trough. So, it scans all the non-zero samples and in case of 

positive samples it scans them and finds the location of the highest sample. It then marks that 

sample and assigns the zero value to the rest of the samples and similarly for a negative or 

trough cycle it again scans all the samples and marks the minimum value and resets the rest 

of the samples as zero and as a result we get this spiking output shown in track 10. 
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In track 11 an attempt has also been made to apply spike operator on the moving 

average but as it can be seen in Figure 7.2, that this curve is quite smooth and shows almost 

negligible variations thus it is of no significance. 

In the 12th track moving average of gamma ray 201*3 is being displayed by blue 

color( GR_Ave201x3) along with the spike minimum filter output (SPK_MFlt). (Spike has 

been applied on the minimum filter) is displayed by red color. All the spikes in this log 

indicate that these are the points which are boundaries where the layer is changing. A positive 

value indicates that the log value is increasing, and a negative spike indicates that the log 

value is decreasing. Secondly, if the peak is much higher it indicates that the log value is 

increasing at a higher rate and vice versa.  

Finally, we cancel out either it is a positive peak or negative peak or whatever is the 

amplitude we just pick the depth points as markers and just draw straight lines. In the last 

track gamma ray log moving average is being displayed by blue color and all these spikes 

are now marked as markers which is the interface between layers and finally within these the 

spikes are used to mark the depth intervals which are the interface between various layers. 

And within each interval gamma ray intervals block average is also being carried out shown 

by red color (GR_BlkAve). The code for this workflow has been taken from fellow research 

student (Amber Latif, 2023). 

 

7.3 Description of second workflow 
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Figure 7.3 Second Workflow for calculating the block averages for shale volume in 

Tajjal-03. 
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Figure 7.4 Output generated by adapting the second workflow calculating the block 

averages for shale volume in Tajjal-03. 

 

In the previous workflow using the neural network the interface between layers was 

identified.  

The second workflow utilizes the previous workflow in identifying the layer 

boundary and then by using these layer boundaries it computes the volume of shale from 

gamma ray and within these boundaries it applies a block average to the volume of shale. 

As seen in Figure 7.4 gamma ray log (GR_EDTC) is displayed by blue color along with 

its block average 201*3 (GR_Ave201x3) by red color in the first track. In the second track 

block average 201*3 (GR_Ave201x3) is displayed in red color along with the first derivative 

(DRV1) by green color. The third tracks show the outputs of block average 201x3 
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(GR_Ave201x3) by blue color, the output of the minimum filter is shown by pink color 

(DRV1_MFlt) along with the output of spiking filter applied on moving average shown by 

green color (SPK_MFlt). 

In the fourth track gamma ray block average 201*3 (GR_Ave201x3) is displayed by blue 

color along with the spike minimum filter output (SPK_MFlt).(spike has been applied on the 

minimum filter) is displayed by red color. 

In the fifth track gamma ray block average 201x3 (GR_Ave201x3) is displayed by blue 

color along with the gamma ray intervals block average being carried out in each interval is 

shown by red color (GR_BlkAve). 

The second workflow utilizes the previous workflow in identifying the layer boundaries 

and then by using these layer boundaries it's computes the volume of shale from gamma ray 

and within these boundaries it applies a block average to the volume of shale as shown in 

track 6. Afterwards, it applies a color spectrum to it. The light blue color indicates sand and 

gradually when it becomes darker shale component is being added and finally red means pure 

shale as shown in track 7. So, from the color spectrum it is automatically classifying which 

one is clean sand, pure sand shale, intermediate etc. The code for this workflow has been 

taken from fellow research student (Amber Latif, 2023). 

The aim of previous workflow was to mark the boundaries however in this workflow we 

are taking previous inputs that is the boundaries along with computing the volume of shale 

and doing the block average and then through the neural network we are automatically 

classifying between sand, shale and various variants and gradual changes between them 

through the color.  

 

7.4 Description of third workflow 
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Figure 7.5 Third Workflow for computation of geomechanical parameters for Tajjal-03. 

 

  

Figure 7.6 Output generated by adapting the third workflow for computation of 

geomechanical parameters for Tajjal-03. 
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The third workflow begins from the volume of shale then there is block average of 

volume of shale. Yellowish is sand and brown is shale. 

In the previous work flow the volume has been characterized between sand and shale 

and now using the same markers VP is computed from DT and again its block average is 

computed and displayed in second track. Similarly using the shear sonic log, the block 

average shear velocity is computed and displayed in the third track and finally the RHOB 

density log is used, and its block average is computed within the interval and displayed in the 

fourth track. 

Now using these three logs all rock physics parameters are computed in the block 

average form which include: 

BM means bulk modulus displayed in track five, shear modulus is displayed in track 

six, young modulus is displayed in track seven and poison ratio is displayed in track eight. 

Track nine shows porosity which can be calculated from the density log. 

Now we have all these parameters ready, now using the density log overburden 

pressure is computed for each interval displayed in track ten. Obpi which means overburden 

pressure for every interval. The overburden pressure is calculated from the formula given by 

(Bryant, 1986). Overburden pressure is also called vertical stress and lithostatic pressure. 

After that the overburden pressure from top to bottom along with the depth stacked 

gives the total overburden pressure displayed in track eleven. It can be seen that it is 

continuously increasing and then from the overburden pressure we are computing overburden 

gradient which means rate of change it is displayed in track thirteen. Now in addition to 

overburden gradient there is another parameter which is vertical effective stress which can 

be computed in two ways. It can be computed from interval velocity using the equation given 

by (Bowers, 1994). 

The pore pressure is also computed shown in track fourteen and it is calculated by 

calculating the difference between overburden pressure and vertical effective stress ( 

Terzaghi, 1943). The rate of change of pore pressure is called pore pressure gradient. It is 



99 

 

 

displayed in track fifteen. And finally fracture gradient is calculated by (Eaton, 1969) using 

pore pressure gradient, overburden gradient and poison ratio and displayed in last track. 

In this final workflow we are calculating geo mechanical properties from the logs, in 

the first stage artificial intelligence used markers computed the volume of shale and using 

the same markers we have taken sonic log and computed block average p wave velocity, 

similarly shear sonic is used to compute block average shear velocity. RHOB log is used to 

compute density block average and finally using these three parameters all rock physics 

parameters like bulk modulus, shear modulus, young modulus and poison ratio are computed 

in the block average form. Similarly, porosity log is also blocked averaged. 

And now using the density we have computed the overburden pressure for each 

interval and now staking all these individuals overburden pressure for each interval stacking 

them together we get the total overburden pressure at a given depth show in track 11. And 

finally using vertical effective stress equation (Bowers, 1994) we have computed vertical 

effective stress from the interval velocity. 

After that the pore pressure is also computed and it is calculated from the equation 

given by (Terzaghi, 1923). The rate of change of pore pressure is called pore pressure 

gradient. It is displayed in track fifteen. And finally fracture gradient is calculated by (Eaton, 

1969) using pore pressure gradient, overburden gradient, and poison ratio and displayed in 

last track. The source code for this workflow is given in annexure A. 

 

7.5 Results and discussions 

Identifying and demarking the thin beds plays an important role during the 

exploration, appraisal and development phases during the oil and gas exploration. Identifying 

these thin beds is challenging because of resolution problems associated with seismic 

methods (Lu, 2019). Thin beds could be only a few meters wide or even less and thus the 

minor effect produced by these beds cannot be distinguished and taken into consideration by 

using the conventional seismic method (Nizarul et al., 2016). Number of approaches have 
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been used in the past to resolve the thin beds and thus certain seismic attributes have been 

applied by various researchers for demarking the thin beds. In order to predict the thin beds 

(Zhao et al., 2021) developed a frequency-dependent attribute. Several attributes were used 

by (Hossain, 2019) for identifying the thin beds. However, during the course of my research 

I did not use the conventional seismic data for demarking the layer boundaries but rather used 

well data owing to its better resolution as compared to seismic method. Afterwards ML was 

used to demarking the thin beds by using well data as an input. 

The second task was to calculate the geoemechanical parameters. Calculating these 

parameters is essential because understanding the stability and integrity of the borehole while 

drilling is largely dependent on geomechanics. One of the most crucial variables needed for 

precise geomechanical analysis to reduce well bore stability issues is pore pressure 

prediction. Accurate pore pressure prediction and geomechanical analysis is very important 

for safe well drilling and well planning (Satti, 2018). Though, pore pressure prediction is not 

simple and easy in over-pressured clastic rocks, it becomes even more complicated in 

complex geology where clastic (sandstone, shale) and non-clastic (limestone) rocks are inter-

bedded (Satti, 2018). The majority of deep sedimentary formations have pore pressures that 

are over pressured and even higher than the higher static pressures disasters and thus 

blowouts and mud volcanoes may occur if the anomalous pressures are not adequately 

forecasted before drilling (Zhang, 2011). Various methods have been applied by previous 

researchers to compute the pore pressure by using seismic and well log data, but my study 

mainly focuses on using ML to compute pore pressure, fracture pressure, pore pressure 

gradient, fracture gradient etc. The pore pressure was calculated by calculating the difference 

between overburden pressure and vertical effective stress (Terzaghi, 1943). At relatively 

shallow depths, relatively those less than 2000 m, pore pressure remains hydrostatic (Zhang, 

2011). This suggests that a continuous column of pore fluid, extending from the surface to 

this depth exists. Beyond this depth, usually over pressure starts, and as the depth increases, 

the pore pressure rises noticeably (Zhang, 2011). The pore pressure reaches a point that is 

quite near to the overburden stress value at depths greater than 3800 m or more and this is 

called “hard overpressure” (Zhang, 2011). Similar trend is apparent in my study as shown in 

Figure 7.6, the pore pressure is increasing at a less rate at shallow depths till 2000 m, but it 

increases rapidly after 2000 m and at the depth of 3800 m it has begun to increase at a very 
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higher rate. Pore pressure gradients are more commonly used in drilling engineering because 

they provide a more convenient way to measure mud weight and mud density (Zhang, 2011). 

The pore pressure gradient is the rate of change of pore pressure and is shown in track 16 in 

Figure 7.6. The fracture gradient is calculated by (Eaton, 1969) using pore pressure gradient, 

overburden gradient, and poison ratio and displayed in the last track in Figure 7.6.  

The pressure gradient at which the formation fractures or breaks is known as fracture 

gradient. Prior to starting a hydraulic fracturing operation, determining the predicted bottom 

hole treatment pressure (BHTP) requires an understanding of the fracture gradient (Belyadi 

et al., 2019). The pore pressure gradient and fracture gradient both follow a similar trend. 

Both have a smooth, non-fluctuating trend within the depth intervals of 400 m till 1700 m 

and then their values decrease rapidly at depth of 3000 m as shown in Figure 7.6. At the depth 

of 3500 m, their values reach the minimum value and beyond the depth of 3500 m an 

increasing trend is being followed shown in Figure 7.6. 
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CONCLUSIONS 

 

• 3D seismic interpretation has revealed that the study area is located in an extensional 

tectonic setting, characterized by the presence of two clearly defined normal faults on 

the seismic section. Additionally, when examining the time and depth contour maps, 

it becomes evident that the C interval exhibits a more pronounced behavior in terms 

of hydrocarbon presence compared to the B interval. 

 

• The petrophysical analysis of both Tajjal 01 and Tajjal 02 wells has identified distinct 

zones within the Lower Goru B and C Sands levels in both wells. In the C interval, 

hydrocarbon saturation (Sh) falls within the range of 71% to 86%, while in the B 

interval, Sh ranges from 30% to 50%. These findings suggest that the C interval 

possesses a greater potential for hydrocarbon accumulation. 

 

• Seismic inversion analyzed impedance changes in C and B intervals of the Lower 

Goru Formation. It identified a significant impedance drop at Tajjal 01 and Tajjal 02 

along the C sand channel, suggesting possible hydrocarbon accumulation. In contrast, 

the B sand channel showed lower impedance only at Tajjal 01, indicating higher 

hydrocarbon potential in the C interval. 

 

• Seismic attributes were utilized to detect thin sand units. The Spectral Decomposition 

technique highlights distinct zones within the B and C sand Formation. It was 

observed that thinner sand beds of Lower Goru B and C sand in the Tajjal 02 well 

became visible as the frequencies increased. The instantaneous phase is a reliable 

indicator of lateral continuity. When applied, the Instantaneous phase attribute 

changed from -105 ° to +105 ° . The interpreted horizons lie over the maximum phase 
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regions indicated by violet color in the instantaneous phase attribute. The results of 

trace envelope attribute suggest that high energy area i.e., C interval of lower Guru 

Formation could be having presence of hydrocarbons. The results of petrophysical 

analysis also reveal that C interval is hydrocarbon bearing. 

 

• Vs (shear velocity) was determined through two methods and validated through AVA 

(amplitude versus angle) modeling. The first method utilized the Castagna equation, 

while the second employed Machine Learning for Vs calculation. When AVA 

modeling was conducted using Vs computed via the Castagna equation, no AVA 

anomaly was detected, and there was an observed amplitude dimming effect at far 

offsets. However, the shear sonic data computed through multiple regression, 

particularly from Machine Learning, revealed the presence of gas sands. This leads 

to the conclusion that Vs computed through Machine Learning is more reliable and 

yields better results compared to the Castagna equation method. 

 

• Machine learning facilitated facies analysis, categorizing them into three distinct 

lithological packages: sand, shale, and tight sand. It additionally computed specific 

equations for each of these lithological packages. 

 

• Machine learning was applied in three sequential steps to calculate various 

geomechanical parameters. In the first step, artificial intelligence or neural networks 

were employed to identify and delineate boundaries between different geological 

layers using the gamma ray log as input. In the second step, the identified layer 

boundaries were utilized to compute the volume of shale from the gamma ray log, 

and a block averaging technique was applied within these boundaries. Finally, in the 

third step, leveraging input from the previous workflows, essential rock physics 

parameters such as bulk and young shear modulus were computed, alongside critical 

geomechanical parameters like vertical effective stress, pore pressure, and fracture 

gradient.  
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ANNEXURE A 

 

picMain.Cls 

picMain.CurrentX = 15 

picMain.CurrentY = 50 

picMain.Print "Depth" 

picMain.CurrentX = 15 

picMain.CurrentY = 70 

picMain.Print "(Meters)" 

 

DoEvents 

pl.ReadLAS App.Path & "\Tajjal-02.las" 

ds# = pl.GetDepthStart() 

de# = pl.GetDepthStop() 

 

ss& = pl.GetSampleIndex(ds) 

es& = pl.GetSampleIndex(de) 

ss& = pl.GetSampleIndex(100)  'Forced Depth Start 

es& = pl.GetSampleIndex(3800) 'Forced Depth End 

ds# = pl.GetDepth(ss) 'Forced Depth Start 

de# = pl.GetDepth(es) 'Forced Depth End 

 

Xo% = 80 

Xw# = 80 

pl.DrawDepthScale picMain, 10, 150, 60, 750, ds, de, 50, 200, QBColor(7), QBColor(8), QBColor(0) 



117 

 

 

pl.DrawDepthGrid picMain, Xo, 150, 845, 750, ds, de, 50, 200 

 

gri% = pl.GetLogIndex("GR_EDTC") 

pl.PutLogUnit gri, "API" 

 

'--------------------1. Ave 201x3 

pl.AllocateLogMemory "GRave1"             '1st Ave: gra1/GRave1 

gra1% = pl.GetLogIndex("GRave1") 

pl.PutLogMin gra1, pl.GetLogMin(gri) 

pl.PutLogMax gra1, pl.GetLogMax(gri) 

pl.MovingAverage gri, gra1, ss, es, 201 

pl.AllocateLogMemory "GRave2"             '2nd Ave: gra2/GRave2 

gra2% = pl.GetLogIndex("GRave2") 

pl.PutLogMin gra2, pl.GetLogMin(gri) 

pl.PutLogMax gra2, pl.GetLogMax(gri) 

pl.MovingAverage gra1, gra2, ss, es, 201 

pl.AllocateLogMemory "GRave201x3"         '3rd Ave: gra3/GRave202x3 

gra3% = pl.GetLogIndex("GRave201x3") 

pl.PutLogMin gra3, pl.GetLogMin(gri) 

pl.PutLogMax gra3, pl.GetLogMax(gri) 

pl.MovingAverage gra2, gra3, ss, es, 201 

 

‘---------------------2. Slope Computation: 1st Derivative: drv1/DRV1 

pl.AllocateLogMemory "DRV1" 

drv1% = pl.GetLogIndex("DRV1") 

pl.Slope gra3, drv1, ss, es 

pl.LogsMinMax 

xs! = pl.GetLogMin(drv1) 

xe! = pl.GetLogMax(drv1) 

 



118 

 

 

'--------------------3. 1st Derivative-Minimum Filter: drv1m/DRV1_MFlt 

pl.AllocateLogMemory "DRV1_MFlt" 

drv1m% = pl.GetLogIndex("DRV1_MFlt") 

pl.FilterMinimum drv1, drv1m, ss, es, xs * 0.12, xe * 0.12 

pl.PutLogMin drv1m, xs 

pl.PutLogMax drv1m, xe 

 

'--------------------4. 1st Derivative-Minimum Filter-Spike: spk1m/SPK_MFlt 

pl.AllocateLogMemory "SPK_MFlt" 

spk1m% = pl.GetLogIndex("SPK_MFlt") 

pl.Spike drv1m, spk1m, ss, es 

pl.PutLogMin spk1m, xs 

pl.PutLogMax spk1m, xe 

 

'--------------------5. Depth Intervals: di()..NI 

Dim di&(), NI& 

pl.DepthIntervals spk1m, ss, es, di(), NI& 

 

'--------------------6. Clip Filter & Block Average GR: GRave(), DP() 

ReDim GRave!(NI), dp!(NI) 

pl.MaxClipFilter gri, ss, es, 220 

pl.PutLogMax gri, 220 

 

pl.BlockAverage gri, di(), NI, GRave() 

For i& = 1 To NI 

  dp(i) = pl.GetDepth(di(i)) 

Next 

 

'--------------------7. Compute Volume of Shale 

ReDim VSave!(NI) 
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pl.AllocateLogMemory "Vsh" 

Vs% = pl.GetLogIndex("Vsh") 

pl.SetGR0 pl.GetLogMin(gri) 

pl.SetGR100 pl.GetLogMax(gri) 

pl.GammaRayIndex gri, Vs, ss, es 

pl.LogMinMax "Vsh", ss, es 

pl.BlockAverage Vs, di(), NI, VSave() 

 

pl.ReadColorSpectrum "C:\K-tron\Templates\ColorSpectrum\PAL-IP\Brown.pal" 

pl.DrawFreeHeader picMain, Xo, 10, Xw, 130, 20, "Vsh", "%", pl.GetLogMin(Vs), pl.GetLogMax(Vs), QBColor(12), 3, , , 2, 2.5 

pl.DrawHeaderSpectrum picMain, Xo, 10, Xw, 130, 50, "Vsh", 6, , 2, 2.5 

pl.DrawFreeHeaderText picMain, Xo, 10, Xw, 130, 1, 65, "Sand", QBColor(0), , 0 

pl.DrawFreeHeaderText picMain, Xo, 10, Xw, 130, 85, 65, "Shale", QBColor(0), , 2 

pl.SetGraphicsContext picMain, Xo, 150, Xw, 750, pl.GetLogMin(Vs), pl.GetLogMax(Vs), CSng(ds), CSng(de) 

pl.DrawBlockFill pl.GetLogMin(Vs), pl.GetLogMax(Vs), VSave(), dp(), NI 

pl.DrawBlockGraph VSave(), dp(), NI, QBColor(12), 3 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

 

'--------------------8. Compute Vp 

ReDim VPave!(NI) 

dtp% = pl.GetLogIndex("DT4P") 

pl.AllocateLogMemory "Vp" 

Vp% = pl.GetLogIndex("Vp") 

pl.DT2Velocity dtp, Vp, ss, es 

pl.MinClipFilter Vp, ss, es, 900 

'pl.LogMinMax "Vp", ss, es 

pl.PutLogMin Vp, 900 

pl.PutLogMax Vp, 5000 

pl.SetDisplayScale "Vp", 900, 5000 
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pl.BlockAverage Vp, di(), NI, VPave() 

PreSetPVals1 VPave() 

 

Xo% = Xo + Xw + 10 

Xw# = 80 

pl.ReadColorSpectrum "C:\K-tron\Templates\ColorSpectrum\KCS\Color-V-CLR.kcs" 

pl.DrawFreeHeader picMain, Xo, 10, Xw, 130, 20, "VPave", "M/sec", pl.GetLogMin(Vp), pl.GetLogMax(Vp), QBColor(5), 3, , , , 2.5 

pl.DrawHeaderSpectrum picMain, Xo, 10, Xw, 130, 50, "Vp", 6, , , 2.5 

pl.SetGraphicsContext picMain, Xo, 150, Xw, 750, pl.GetLogMin(Vp), pl.GetLogMax(Vp), CSng(ds), CSng(de) 

pl.DrawBlockFill pl.GetLogMin(Vp), pl.GetLogMax(Vp), VPave(), dp(), NI 

pl.DrawBlockGraph VPave(), dp(), NI, QBColor(5), 3 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

'--------------------9. Compute Vs 

ReDim VSave!(NI) 

dts% = pl.GetLogIndex("DT4S") 

pl.AllocateLogMemory "Vs" 

vss% = pl.GetLogIndex("Vs") 

pl.DT2Velocity dts, vss, ss, es 

pl.MinClipFilter vss, ss, es, 400 

pl.LogMinMax "Vs", ss, es 

pl.PutLogMin vss, 400 

pl.PutLogMax vss, 4000 

pl.SetDisplayScale "Vs", 400, 4000 

pl.BlockAverage vss, di(), NI, VSave() 

PreSetSVals1 VSave() 

 

Xo% = Xo + Xw + 10 

Xw# = 80 

pl.ReadColorSpectrum "C:\K-tron\Templates\ColorSpectrum\KCS\Color-V-CLR.kcs" 
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pl.DrawFreeHeader picMain, Xo, 10, Xw, 130, 20, "VSave", "M/sec", pl.GetLogMin(vss), pl.GetLogMax(vss), QBColor(13), 3, , , , 2.5 

pl.DrawHeaderSpectrum picMain, Xo, 10, Xw, 130, 50, "Vs", 6, , , 2.5 

pl.SetGraphicsContext picMain, Xo, 150, Xw, 750, pl.GetLogMin(vss), pl.GetLogMax(vss), CSng(ds), CSng(de) 

pl.DrawBlockFill pl.GetLogMin(vss), pl.GetLogMax(vss), VSave(), dp(), NI 

pl.DrawBlockGraph VSave(), dp(), NI, QBColor(13), 3 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

 

'--------------------10. Density Process 

ReDim RHOave!(NI) 

rh% = pl.GetLogIndex("RHOM") 

pl.PutLogCode rh, "RHOB" 

pl.MinClipFilter rh, ss, es, 2 

'pl.LogMinMax "Vs", ss, es 

pl.PutLogMin rh, 2 

pl.PutLogMax rh, 3 

'pl.SetDisplayScale "Vs", 400, 4000 

pl.BlockAverage rh, di(), NI, RHOave() 

PreSetRVals1 RHOave() 

 

Xo% = Xo + Xw + 10 

Xw# = 80 

pl.ReadColorSpectrum "C:\K-tron\Templates\ColorSpectrum\KCS\BlueRed.kcs" 

pl.DrawFreeHeader picMain, Xo, 10, Xw, 130, 20, "RHOave", "g/cc", pl.GetLogMin(rh), pl.GetLogMax(rh), QBColor(14), 3, , , , 2.5 

pl.DrawHeaderSpectrum picMain, Xo, 10, Xw, 130, 50, "RHOB", 6, , , 2.5 

pl.SetGraphicsContext picMain, Xo, 150, Xw, 750, pl.GetLogMin(rh), pl.GetLogMax(rh), CSng(ds), CSng(de) 

pl.DrawBlockFill pl.GetLogMin(rh), pl.GetLogMax(rh), RHOave(), dp(), NI 

pl.DrawBlockGraph RHOave(), dp(), NI, QBColor(14), 3 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 
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'--------------------11. Rock Physics 

ReDim BMave!(NI), SMave!(NI), YMave!(NI), PRave!(NI), PORave!(NI) 

BMmin! = 9999: BMmax! = -9999 

SMmin! = 9999: SMmax! = -9999 

YMmin! = 9999: YMmax! = -9999 

PRmin! = 9999: PRmax! = -9999 

POmin! = 9999: POmax! = -9999 

For i = 1 To NI - 1 

  BulkModulus VPave(i), VSave(i), RHOave(i), BMave(i) 

  ShearModulus VSave(i), RHOave(i), SMave(i) 

  YoungsModulus BMave(i), SMave(i), YMave(i) 

  PoissonsRatio VPave(i), VSave(i), PRave(i) 

  Porosity RHOave(i), PORave(i) 

   

  If PRave(i) < 0 Then PRave(i) = 0.01  'Check Filter 

   

  If BMave(i) < BMmin Then BMmin = BMave(i) 

  If BMave(i) > BMmax Then BMmax = BMave(i) 

  If SMave(i) < SMmin Then SMmin = SMave(i) 

  If SMave(i) > SMmax Then SMmax = SMave(i) 

  If YMave(i) < YMmin Then YMmin = YMave(i) 

  If YMave(i) > YMmax Then YMmax = YMave(i) 

  If PRave(i) < PRmin Then PRmin = PRave(i) 

  If PRave(i) > PRmax Then PRmax = PRave(i) 

  If PORave(i) < POmin Then POmin = PORave(i) 

  If PORave(i) > POmax Then POmax = PORave(i) 

Next 

 

pl.AllocateLogMemory "BM" 
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md% = pl.GetLogIndex("BM") 

 

Xo% = Xo + Xw + 10 

Xw# = 80 

pl.PutLogMin md, BMmin 

pl.PutLogMax md, BMmax 

pl.ReadColorSpectrum "C:\K-tron\Templates\ColorSpectrum\CLR-Surfer\WhiteRed.clr" 

pl.DrawFreeHeader picMain, Xo, 10, Xw, 130, 20, "BM", "Gpa", BMmin, BMmax, QBColor(1), 3, , , 2, 2.5 

pl.DrawHeaderSpectrum picMain, Xo, 10, Xw, 130, 50, "BM", 6, , 2, 2.5 

pl.SetGraphicsContext picMain, Xo, 150, Xw, 750, BMmin, BMmax, CSng(ds), CSng(de) 

pl.DrawBlockFill BMmin, BMmax, BMave(), dp(), NI 

pl.DrawBlockGraph BMave(), dp(), NI, QBColor(1), 3 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

Xo% = Xo + Xw + 10 

Xw# = 80 

pl.PutLogCode md, "SM" 

pl.PutLogMin md, SMmin 

pl.PutLogMax md, SMmax 

pl.ReadColorSpectrum "C:\K-tron\Templates\ColorSpectrum\CLR-Surfer\WhiteGreen.clr" 

pl.DrawFreeHeader picMain, Xo, 10, Xw, 130, 20, "SM", "Gpa", SMmin, SMmax, QBColor(12), 3, , , 2, 2.5 

pl.DrawHeaderSpectrum picMain, Xo, 10, Xw, 130, 50, "SM", 6, , 2, 2.5 

pl.SetGraphicsContext picMain, Xo, 150, Xw, 750, SMmin, SMmax, CSng(ds), CSng(de) 

pl.DrawBlockFill SMmin, SMmax, SMave(), dp(), NI 

pl.DrawBlockGraph SMave(), dp(), NI, QBColor(12), 3 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

Xo% = Xo + Xw + 10 

Xw# = 80 

pl.PutLogCode md, "YM" 
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pl.PutLogMin md, YMmin 

pl.PutLogMax md, YMmax 

pl.ReadColorSpectrum "C:\K-tron\Templates\ColorSpectrum\CLR-Surfer\WhiteBlue.clr" 

pl.DrawFreeHeader picMain, Xo, 10, Xw, 130, 20, "YM", "Gpa", YMmin, YMmax, QBColor(13), 3, , , 2, 2.5 

pl.DrawHeaderSpectrum picMain, Xo, 10, Xw, 130, 50, "YM", 6, , 2, 2.5 

pl.SetGraphicsContext picMain, Xo, 150, Xw, 750, YMmin, YMmax, CSng(ds), CSng(de) 

pl.DrawBlockFill YMmin, YMmax, YMave(), dp(), NI 

pl.DrawBlockGraph YMave(), dp(), NI, QBColor(13), 3 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

Xo% = Xo + Xw + 10 

Xw# = 80 

pl.PutLogCode md, "PR" 

pl.PutLogMin md, PRmin 

pl.PutLogMax md, PRmax 

pl.ReadColorSpectrum "C:\K-tron\Templates\ColorSpectrum\CLR-Surfer\WhitePink.clr" 

pl.DrawFreeHeader picMain, Xo, 10, Xw, 130, 20, "PR", "Gpa", PRmin, PRmax, QBColor(5), 3, , , , 2.5 

pl.DrawHeaderSpectrum picMain, Xo, 10, Xw, 130, 50, "PR", 6, , 2, 2.5 

pl.SetGraphicsContext picMain, Xo, 150, Xw, 750, PRmin, PRmax, CSng(ds), CSng(de) 

pl.DrawBlockFill PRmin, PRmax, PRave(), dp(), NI 

pl.DrawBlockGraph PRave(), dp(), NI, QBColor(5), 3 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

Xo% = Xo + Xw + 10 

Xw# = 80 

pl.PutLogCode md, "POR" 

pl.PutLogMin md, POmin 

pl.PutLogMax md, POmax 

pl.ReadColorSpectrum "C:\K-tron\Templates\ColorSpectrum\CLR-Surfer\WhiteOrange.clr" 

pl.DrawFreeHeader picMain, Xo, 10, Xw, 130, 20, "POR", "%", POmin, POmax, QBColor(6), 3, , , 2, 2.5 
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pl.DrawHeaderSpectrum picMain, Xo, 10, Xw, 130, 50, "POR", 6, , 2, 2.5 

pl.SetGraphicsContext picMain, Xo, 150, Xw, 750, POmin, POmax, CSng(ds), CSng(de) 

pl.DrawBlockFill POmin, POmax, PORave(), dp(), NI 

pl.DrawBlockGraph PORave(), dp(), NI, QBColor(6), 3 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

 

'--------------------12. Geomechanics 

ReDim OBPi!(NI), OBPt!(NI), OBG!(NI), VES!(NI), PP!(NI), PPG!(NI), FG!(NI) 

OBPimin! = 9999: OBPimax! = -9999 

OBPtmin! = 9999: OBPtmax! = -9999 

OBGmin! = 9999: OBGmax! = -9999 

VESmin! = 9999: VESmax! = -9999 

PPmin! = 9999: PPmax! = -9999 

PPGmin! = 9999: PPGmax! = -9999 

FGmin! = 9999: FGmax! = -9999 

For i = 1 To NI - 1 

  OverburdenPressure_Density RHOave(i), dp(i) - dp(i - 1), , OBPi(i) 

  OBPt(i) = OBPt(i - 1) + OBPi(i) 

  OverburdenGradient dp(i), OBPt(i), OBG(i) 

   

  Vpt! = VPave(i): If Vpt < 1550 Then Vpt = 1550 'Check Filter 

  'VerticalEffectiveStress_IntVelocity Vpt, VES(i) 

  VerticalEffectiveStress_Porosity PORave(i), VES(i) 

  '''If VES(i) < 0 Then VES(i) = 200 'Check Filter 

  PorePressure OBPt(i), VES(i), PP(i) 

  If PP(i) < 0 Then 

    PP(i) = Abs(PP(i)) / 2 

  End If 

  PressureToGradient dp(i), PP(i), PPG(i) 
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  FractureGradient PPG(i), OBG(i), PRave(i), FG(i) 

     

  If OBPi(i) < OBPimin Then OBPimin = OBPi(i) 

  If OBPi(i) > OBPimax Then OBPimax = OBPi(i) 

  If OBPt(i) < OBPtmin Then OBPtmin = OBPt(i) 

  If OBPt(i) > OBPtmax Then OBPtmax = OBPt(i) 

  If OBG(i) < OBGmin Then OBGmin = OBG(i) 

  If OBG(i) > OBGmax Then OBGmax = OBG(i) 

  If VES(i) < VESmin Then VESmin = VES(i) 

  If VES(i) > VESmax Then VESmax = VES(i) 

  If PP(i) < PPmin Then PPmin = PP(i) 

  If PP(i) > PPmax Then PPmax = PP(i) 

  If PPG(i) < PPGmin Then PPGmin = PPG(i) 

  If PPG(i) > PPGmax Then PPGmax = PPG(i) 

  If FG(i) < FGmin Then FGmin = FG(i) 

  If FG(i) > FGmax Then FGmax = FG(i) 

Next 

 

Xo% = Xo + Xw + 10              'OBP Interval 

Xw# = 80 

pl.PutLogCode md, "OBPi" 

pl.PutLogMin md, OBPimin 

pl.PutLogMax md, OBPimax 

pl.ReadColorSpectrum "C:\K-tron\Templates\ColorSpectrum\CLR-Surfer\WhiteYellow.clr" 

pl.DrawFreeHeader picMain, Xo, 10, Xw, 130, 20, "OBPi", "psi", OBPimin, OBPimax, QBColor(6), 3, , , , 2.5 

pl.DrawHeaderSpectrum picMain, Xo, 10, Xw, 130, 50, "OBPi", 6, , , 2.5 

pl.SetGraphicsContext picMain, Xo, 150, Xw, 750, OBPimin, OBPimax, CSng(ds), CSng(de) 

pl.DrawBlockFill OBPimin, OBPimax, OBPi(), dp(), NI 

pl.DrawBlockGraph OBPi(), dp(), NI, QBColor(6), 3 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 
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Xo% = Xo + Xw + 10              'OBP Total 

Xw# = 95 

pl.PutLogCode md, "OBPt" 

pl.PutLogMin md, OBPtmin 

pl.PutLogMax md, OBPtmax 

pl.ReadColorSpectrum "C:\K-tron\Templates\ColorSpectrum\CLR-Surfer\ChromaDepth.clr" 

pl.DrawFreeHeader picMain, Xo, 10, Xw, 130, 20, "OBP", "psi", OBPtmin, OBPtmax, QBColor(12), 3, , , , 2.5 

pl.DrawHeaderSpectrum picMain, Xo, 10, Xw, 130, 50, "OBP", 6, , , 2.5 

pl.SetGraphicsContext picMain, Xo, 150, Xw, 750, OBPtmin, OBPtmax, CSng(ds), CSng(de) 

pl.DrawBlockFill OBPtmin, OBPtmax, OBPt(), dp(), NI 

pl.DrawBlockGraph OBPt(), dp(), NI, QBColor(12), 3 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

Xo% = Xo + Xw + 10              'OBG 

Xw# = 85 

pl.PutLogCode md, "OBG" 

pl.PutLogMin md, OBGmin 

pl.PutLogMax md, OBGmax 

pl.ReadColorSpectrum "C:\K-tron\Templates\ColorSpectrum\CLR-Surfer\FiveShades.clr" 

pl.DrawFreeHeader picMain, Xo, 10, Xw, 130, 20, "OBG", "psi/ft", OBGmin, OBGmax, QBColor(1), 3, , , 2, 2.5 

pl.DrawHeaderSpectrum picMain, Xo, 10, Xw, 130, 50, "OBG", 6, , 2, 2.5 

pl.SetGraphicsContext picMain, Xo, 150, Xw, 750, OBGmin, OBGmax, CSng(ds), CSng(de) 

pl.DrawBlockFill OBGmin, OBGmax, OBG(), dp(), NI 

pl.DrawBlockGraph OBG(), dp(), NI, QBColor(1), 3 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

Xo% = Xo + Xw + 10              'VES 

Xw# = 95 

pl.PutLogCode md, "VES" 
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pl.PutLogMin md, VESmin 

pl.PutLogMin md, Abs(VESmin) 'Check Filter Adjustment: Abs() 

pl.ReadColorSpectrum "C:\K-tron\Templates\ColorSpectrum\CLR-Surfer\FiveShades.clr" 

pl.DrawFreeHeader picMain, Xo, 10, Xw, 130, 20, "VES", "psi", Abs(VESmin), VESmax, QBColor(1), 3, , , , 2.4 

pl.DrawHeaderSpectrum picMain, Xo, 10, Xw, 130, 50, "VES", 6, , , 2.4 

pl.SetGraphicsContext picMain, Xo, 150, Xw, 750, VESmin, VESmax, CSng(ds), CSng(de) 

pl.PutLogMin md, VESmin 'Check Filter Adjustment 

pl.DrawBlockFill VESmin, VESmax, VES(), dp(), NI 

pl.DrawBlockGraph VES(), dp(), NI, QBColor(1), 3 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

Xo% = Xo + Xw + 10              'PP 

Xw# = 85 

pl.PutLogCode md, "PP" 

pl.PutLogMin md, PPmin 

pl.PutLogMax md, PPmax 

pl.ReadColorSpectrum "C:\K-tron\Templates\ColorSpectrum\CLR-Surfer\FiveShades.clr" 

pl.DrawFreeHeader picMain, Xo, 10, Xw, 130, 20, "PP", "psi", PPmin, PPmax, QBColor(1), 3, , , , 2.4 

pl.DrawHeaderSpectrum picMain, Xo, 10, Xw, 130, 50, "PP", 6, , , 2.4 

pl.SetGraphicsContext picMain, Xo, 150, Xw, 750, PPmin, PPmax, CSng(ds), CSng(de) 

pl.DrawBlockFill PPmin, PPmax, PP(), dp(), NI 

pl.DrawBlockGraph PP(), dp(), NI, QBColor(1), 3 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

Xo% = Xo + Xw + 10              'PPG 

Xw# = 85 

pl.PutLogCode md, "PPG" 

pl.PutLogMin md, PPGmin 

pl.PutLogMax md, PPGmax 

pl.ReadColorSpectrum "C:\K-tron\Templates\ColorSpectrum\CLR-Surfer\FiveShades.clr" 
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pl.DrawFreeHeader picMain, Xo, 10, Xw, 130, 20, "PPG", "psi", PPGmin, PPGmax, QBColor(1), 3, , , 2, 2.4 

pl.DrawHeaderSpectrum picMain, Xo, 10, Xw, 130, 50, "PPG", 6, , 2, 2.4 

pl.SetGraphicsContext picMain, Xo, 150, Xw, 750, PPGmin, PPGmax, CSng(ds), CSng(de) 

pl.DrawBlockFill PPGmin, PPGmax, PPG(), dp(), NI 

pl.DrawBlockGraph PPG(), dp(), NI, QBColor(1), 3 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

Xo% = Xo + Xw + 10              'FG 

Xw# = 85 

pl.PutLogCode md, "FG" 

pl.PutLogMin md, FGmin 

pl.PutLogMax md, FGmax 

pl.ReadColorSpectrum "C:\K-tron\Templates\ColorSpectrum\CLR-Surfer\FiveShades.clr" 

pl.DrawFreeHeader picMain, Xo, 10, Xw, 130, 20, "FG", "psi", FGmin, FGmax, QBColor(1), 3, , , 2, 2.4 

pl.DrawHeaderSpectrum picMain, Xo, 10, Xw, 130, 50, "FG", 6, , 2, 2.4 

pl.SetGraphicsContext picMain, Xo, 150, Xw, 750, FGmin, FGmax, CSng(ds), CSng(de) 

pl.DrawBlockFill FGmin, FGmax, FG(), dp(), NI 

pl.DrawBlockGraph FG(), dp(), NI, QBColor(1), 3 

pl.DrawTrackFrame picMain, Xo, 150, Xw, 750, 1 

 

 

 

 

 

 

 

 

 


