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Abstract

Over the preceding years, the proliferation of malware on PC platforms, partic-

ularly on Windows OS, has become notably more severe. To counter the propagation

of numerous malware variations, the implementation of ML classifiers for identifying

malicious PE files has been suggested, aiming for autonomous categorization. Re-

cent advancements in computer systems have transitioned human experiences from

the physical to virtual realms, a shift that has been accelerated by the Covid-19

pandemic. Similarly, the interest of cybercriminals has pivoted from real-world to

virtual environments. This transition is driven by the greater ease of committing

cybercrimes in the digital realm compared to the physical world. Cyber attackers of-

ten utilize malicious software (malware) to execute cyber assaults. The evolution of

malware variants continues through the utilization of sophisticated obfuscation and

packing techniques. Conventional artificial intelligence (AI), particularly traditional

ML algorithms, struggle to effectively identify novel and intricate malware variants.

Embracing a distinct paradigm from traditional ML algorithms, the deep learning

(DL) approach offers a promising avenue to address the challenge of detecting diverse

malware variants.

This study introduces an innovative deep learning architecture (LSTM) de-

signed to categorize malware variations based on features extracted from function

call graphs (FCGs). A particularly demanding task involves the selection of per-

tinent features from extensive datasets, ensuring that the classification model can

be constructed with enhanced efficiency and accuracy. This research serves a dual

purpose: first, to conduct a comprehensive overview of prevailing classification and

detection methodologies, secondly, to devise an automated system for the detec-

tion and categorization of malicious Portable Executable files. This classification

relies on function call graphs, emphasizing efficiency without sacrificing accuracy.

Additionally, an aspiration of this study is to extend its scope to encompass the

classification of malware families through the utilization of a deep learning model.
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CHAPTER 1

INTRODUCTION

Every day, data security companies receive tens of thousands of different

malicious executables for analysis. Automated identification, verification, and

classification systems are required to handle these massive amounts of sam-

ples in a timely manner. In practice, however, code obfuscation techniques

such as packed or encrypted executable code make automated identification of

malware difficult. Furthermore, cybercriminals are continually developing new

versions of their harmful software in order to avoid pattern-based detection by

antivirus programs. Due to the recent spike in the number of cybercrime and

security breaches throughout the world. According to an AV-TEST statistical

study [1], approximately 30 million malicious Portable Executable files were

registered in the first quater of 2019 [2]. Malware detection and categorization

are typically performed separately on each malicious PE file. To begin, if an

executable application has dangerous content, it must be detected using mal-

ware analysis tools.

Malware is a programme that is designed to interfere with normal system

processes, acquire crucial data, or authorize access to confidential systems.

Malware can take the shape of coding, scripts, active material, and so on. The

term ’malware’ refers to a wide range of hostile or intrusive software. Mal-

ware are problematic because they impose too many restrictions on disordered

PCs, such as disabling malware detectors or AV scanners that have been in-

stalled for security purposes. As we all know, malware is classified into three

generations: payload, enabling vulnerability, and transmission method. The

features of viruses that are replicated or propagated by some human actions,

such as emails and file sharing, are shared by first generation malware. In

the Second Generation malware, the traits of worms are hybrid in nature, in-

volving some features of virus and Trojans that are not duplicated by human

acts. As a result, Third Generation malware’s are geographically restricted or

organization-specific. Malware of this type typically targets security technolo-

gies and goods.Following malware detection, A malware-classification tech-
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nique places the executable programme in the most closely related family for

further analysis.

Focuses on both malware detection and categorization [3]. Two techniques

are used to detect malware’s [4]. Behavior-based techniques: Primary goal to

recognize the behavior of known or benign malware. The parameters of the

behavior-based technique include a number of criteria such as source/destination

address, types of attachments and other measurable statistical characteristics

of the malware. Signature-based techniques: This category includes most an-

tivirus detection methods. These signatures are generated by inspecting the

disassembled code. There are several disassemblers and debuggers to help you

disassemble portable executable. The result is parsed code and function load-

ing. As a result, these properties serve a crucial role in creation of a malware

family’s signature. These approaches been utilized to analyze malicious PE

files to extract characteristics useful for malware detection and categorization.

Static analysis often extracts content-driven traits such as API sequences, op-

codes instruction[5], and FCG [6, 7] from disassembled PE files as the inceptive

features for analysis. Static analysis easily collects structural and semantic

knowledge for detailed study, but it is prone to code concealment strategies

like as reduction and polymorphic/metamorphic transformation [8].

In most cases, dynamic analysis places malware samples in a simulated setting

that is then analysed using a debugging tool to determine their behaviour such

as network activity, system calls[9], file actions, and registry change records.

Code obfuscation strategies have less of an impact on dynamic analysis, al-

though virus execution takes far more time and resources than static analysis.

The number of cybercrime and security breaches has recently increased world-

wide. This usually happens after naive people are tricked into installing mal-

ware on their devices. To avoid this, a static analysis of Windows executables

is used to categorize them as malware or goodware. In static malware analy-

sis, the executable to be extracted is provided with static parameters, such as

function imports and API calls from the executable’s PE header file, and these

inputs are fed to a trained mathematical model that ultimately categorizes the

file as good-ware/malware.

1.1 Malware Analysis

Malicious software that infiltrates computers, servers, hosts or networks

is commonly referred to as malware. It encompasses a range of software de-

signed to exploit programmable systems, networks or services. There are risks

associated with malware including infections, worms, adware, spyware, Trojan

infections and ransomware.
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Figure 1.1: Types of Malware

Malware analysis involves comprehending the actions and intent of a

questionable file or URL. The insights gained from this examination contribute

to identifying and lessening potential risks. The primary advantage of engaging

in malware analysis lies in its support for incident responders and security

analysts. Malware analysis have been performed using these techniques that

are shown in Fig 1.2

Figure 1.2: Malware Analysis Approaches

1.2 Types

Two types of malware analysis will be discussed. The first method is

Static Analysis 1.3.1, second is the Dynamic analysis 1.3.2 [10].

1.2.1 Static Analysis

Static malware analysis involves detecting potential malicious intent within

files. This analysis focuses on the former, looking at static attributes such as

headers, metadata and integrated assets, etc. Doesn’t require an actively func-

tioning malware program; a basic static evaluation suffices. This technique is

4



beneficial for uncovering malevolent libraries, bundled files, or infrastructure.

Technical indicators like hashes, file names, strings such as IP addresses, file

header data, and domains are pinpointed during the malware investigation.

Through various tools like network analyzers and disassemblers, the malware

can be examined without actually executing it. These tools accumulate in-

sights into the malware’s operation. However, it’s worth noting that certain

advanced malware might display perilous run time behaviors that static mal-

ware analysis, due to its non-execution nature, might fail to detect.

Static malware analysis is examining a malware sample without running

it, obviating the requirement of an analyst at any stage of the procedure. This

method scrutinizes the sample’s behavior to determine its capabilities and

the extent of its potential harm to the system. Static analysis encompasses

the process of conducting signature analysis on a malware exe file. This exe

file carries distinctive identifier and dissected in reverse using disassembler

such as IDA, which converts the machine code into assembly language code.

Within this approach to malware analysis, several techniques come into play,

including virus scanning, detection of packers, file fingerprinting, debugging,

and memory dumping. Fig 1.3 shows how static analysis have been performed

for detection.

Figure 1.3: Static Analysis

Static analysis predominantly adopts a signature-driven methodology for

both malware identification and analysis. The specific identifier within mal-

ware manifests as a sequence of bytes. These signatures are examined based

on diverse patterns. However, antivirus programs that rely on signature-based

detection prove effective only against commonly encountered malware. They

exhibit limitations in tackling more intricate and sophisticated forms of mal-
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ware. This is where dynamic malware analysis takes center stage.

1.2.2 Dynamic Analysis

A sandbox is an environment used in dynamic malware analysis, where

harmful code is executed. It allows security professionals to closely monitor

the behavior of viruses without worrying about infecting their machines or

networks. Furthermore, autonomous the sandbox saves time that would oth-

erwise be spent on reverse engineering files to uncover code. However dynamic

analysis can be challenging when facing adversaries who anticipate the use of

sandboxes. These adversaries hide their code. Make it inactive until specific

conditions are met as a way to deceive.

Dynamic analysis enables you to observe the actions of malware as they

occur within a controlled environment. The use of machines (VMs) is crucial,

during analysis since there is a potential risk of the malware causing irreversible

damage to the host environment. Throughout the process we need to focus

on cues such, as how the malware interacts with network traffic its actions

concerning the file system and any changes made to the registry. Network

setup for the VM could look like this in below Fig 1.4

Figure 1.4: Isolated VM Network for Dynamic Analysis

A signature-based methodology is not used in the dynamic analysis. In-

stead, it makes this determination based on the behavior of the infection. It

entails looking at what the malware is doing.

1.3 Problem Motivation

The ever-evolving landscape of digital threats presents a formidable chal-

lenge for cybersecurity experts and organizations worldwide. Among these

threats, malware stands out as a persistent and ever-adapting adversary. De-

tecting and countering malware has become a critical imperative in the realm

of cybersecurity, but it remains an intricate and multifaceted problem.

Malware, by its very nature, is designed to be elusive and complex. This

complexity makes it a formidable foe, and traditional approaches to detection

often fall short. As noted in a previous study [1], one of the primary difficulties
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lies in the execution-based dynamic analysis of malware. While dynamic anal-

ysis is a valuable tool for understanding the behavior of malicious software,

it comes at a significant cost in terms of resources and implementation. The

need to execute potentially harmful code in a controlled environment intro-

duces inherent risks and resource-intensive requirements.

On the other hand, static analysis [11], which relies on the examina-

tion of malware signatures and executable file attributes, offers an alternative

approach. However, this method has faced increasing challenges in keeping

up with the ever-changing landscape of malware. Malicious actors continu-

ously modify and obfuscate their code, rendering traditional static analysis

techniques less effective. This inherent adaptability of malware necessitates a

reevaluation of our approaches to cybersecurity.

An integral aspect of combating malware is the classification of malware

families. Surprisingly, this area has received limited attention in research,

despite its pivotal role in cybersecurity. Categorizing malware into families

provides essential insights for defenders and researchers alike. It serves as a

foundation for understanding the evolving tactics and techniques employed

by malicious actors. Recognizing patterns and similarities among malware

variants aids in predicting forthcoming attacks, thus enabling proactive defense

strategies.

In response to these challenges, a new initiative has emerged – a repos-

itory dedicated to the comprehensive evaluation of malware and their respec-

tive families. This repository represents a valuable resource for researchers

and defense teams alike. It empowers them to conduct thorough assessments

of malware samples and facilitates the identification of common traits and be-

haviors within specific malware families. By fostering a deeper understanding

of these malicious entities, this repository equips the cybersecurity community

with a powerful tool for staying ahead of evolving threats.

1.4 Problem Statement

There are several methods for extracting features from static analysis in

order to use ML to identify malware. Foregoing research has retrieved char-

acteristics from printed strings[12] in malware binaries based on the length of

the disassembled file’s functions, n-gram instruction s [13], or a combination

of several non-graph features[1]. Finally, focuses on feature produced through

FCG [10]. The primary reason for this is that, when compared to n-gram fea-

tures, FCGs better maintain structural information in binaries. They contain

malicious code information in form of procedures [14], as well as information

about how the functions interact with one another.
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1.5 Research Objectives

Objective of this research is to construct a model able to conduct static

analysis on PE files to discover and categorize malware. This model will be

utilized for security purposes in various computer and IT fields.

The research stated goal is to accomplish the following features and benefits.

• To detect malware using machine learning approach.

• To classify into malware types and families

• To categorize malware into three classifications.

1. Binary Classification

2. Category Classification

3. Family Classification

• Windows user security at the organizational and individual levels.

1.6 Research Methodology

The following is the primary methodology of this study:

• An executable file will be given to the application.

• Application will extract features from the file.

1. Function Call Graph

2. APIs and Class Imports

• Application will generate the CSV file of features.

• From the CSV file, DL model will be trained and will be tested.

• DL model will detect and classify the malware.

1.7 Thesis Organization

The residue of thesis is organized as : Following chapter discusses existing

methodologies; Chapter 3 includes thorough research methodology; Chapter

4 includes analysis and outcomes of the research methodology; and the final

portion concludes with a conclusion and future research goals.
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CHAPTER 2

RELATED WORK

Within the current body literature, the task to identify and classify mal-

ware is addressed through a diverse range of methodologies, which can be

mainly categorized into two streams: static and dynamic analyses.

With each passing year, the proliferation of malware continues to rise.

Consequently, online activities are increasingly viewed with a sense of caution

and concern due to these ongoing malware threats. Researchers have been

actively involved in this domain since as early as 1995. However, the evolu-

tion of DL and ML techniques for the detection and classification remains an

ongoing endeavor. The evaluation of malware encompasses both dynamic and

static approaches. Realm of static analysis, code and script malware samples

undergo meticulous scrutiny, focusing on their functionality, behavior, and po-

tential consequences. Conversely, dynamic analysis involves delving deeper

into the code and executing systems within a controlled environment to assess

their real-time effects.

Figure 2.1 presents a comprehensive block diagram illustrating the spec-

trum of static analysis techniques employed for the detection of malware. In

the forthcoming sections, we will delve into each of these techniques, examin-

ing their historical usage and contributions to the malware identification and

categorization.

2.1 Static Analysis Techniques

Are used to analyze and assess software (e.g., executable files, scripts)

without executing them. These techniques help identify characteristics, pat-

terns, or code structures that are indicative of malware behavior or potential

security threats. Here are some static analysis techniques commonly employed

in malware detection:

9



Figure 2.1: Static Analysis Techniques

a) Signature Based Detection

Signature-based detection entails the search for particular specimen or

signatures within a program’s binary code. These signatures are pre-

defined and represent known malware or malicious behaviors. Effective

for detecting well-known malware; relatively fast. Ineffective against

zero-day threats and polymorphic malware, as it relies on predefined sig-

natures.

In the realm of malware analysis, a function call graph emerges as a

remarkably resilient and enduring representation of a program, especially

when compared to traditional byte or hash signature techniques. This

research [8] venture boldly positions the FCG as central trademark of

a program. It harnesses the power of two distinct graph isomorphism

methods to discern between known malware and its myriad variations.

The outcomes of the experiments conducted firmly validate the effec-

tiveness and efficiency of this pioneering approach. It excels in the

identification of well-established strains of malware and select variants,

demonstrating its potential to be a cornerstone in the task of indexing

and identifying a vast repository of malware specimens. Furthermore, it

exhibits promise in the classification of malware into discrete families,

promising a holistic solution in the field of malware analysis.

10



b) Heuristic-Based Detection

Heuristic analysis looks for patterns or behaviors that are indicative of

malware but may not be explicitly defined in signatures. It often involves

identifying suspicious characteristics like code obfuscation or unusual

API calls. Can detect variants of known malware and previously unseen

threats. May produce false positives due to its reliance on heuristics.

The significance of this contribution [6] lies in its adaptability and versa-

tility. Instead of being limited to a single domain, this innovative repre-

sentation proves its potential across diverse applications where Function

Call Graphs (FCGs) are crucial. Whether in cybersecurity, software anal-

ysis, or any field dealing with intricate program structures, this paper

promotes more effective and precise data representation, thereby advanc-

ing the state of the art in this domain.

c) Control Flow Graphs

Control flow analysis is a fundamental static analysis technique used

in the context of malware detection. It focuses on examining how the

program’s instructions and statements are structured, connected, and

executed. This analysis can help identify anomalies, suspicious behavior,

or patterns indicative of malware. Example of control flow graph in figure

2.2

Figure 2.2: control flow graph
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As society increasingly relies on computer systems, the threat of mali-

cious software becomes more severe. While machine learning methods

like GBDT and deep neural networks can handle cyber threats, most rely

on statistical information from PE files. To address this, study [15] in-

troduces a malware classification system on Control-Flow Graphs (CFG)

and Graph Isomorphism Networks (GIN).

CFG basic block feature vectors are generated using MiniLM, benefit-

ing GIN for compression and classification via multi-layer perceptron.

Evaluation on the Malware Geometric Binary Dataset (MGD-BINARY)

demonstrates high accuracy (0.99160) and AUC (0.99148) results.

d) Function Call Graph

FCG analysis, a technique used in software engineering and malware

analysis to create and analyze a graph that shows the hierarchy between

functions or methods within program. This analysis provides insights

into how different functions or methods call one another, their depen-

dencies, and the flow of control and data through the program. In the

context of malware analysis, function call graph analysis helps identify

suspicious or malicious behavior by examining the function calls within

a program or binary.

Figure 2.3: Function Call Graph

Detail literature review have been discussed in this section regarding

12



FCG’s.

The authors [6] present an innovative methodology that creates vector

presentation of the linear FCG through feature cluster. This approach

is remarkable for its capacity to significantly improve performance, re-

sulting in substantial gains in classification accuracy. It’s not confined to

theory; the paper provides empirical evidence demonstrating the seam-

less integration of this representation with non-graph elements.

This study [3] seeks to boost the classification accuracy of a ML model

utilizing function call graph Vectors (FCGV) by combining non-graph

and graph features. It proposes Random Forest classification model us-

ing FCGV and Statistical Features (SF) from Portable Executable (PE)

files. It acknowledges that hashing in FCGV may lose vital PE file prop-

erties. To address this, six non-graph features like metadata, register,

data definition, symbol, section, and operation code are integrated into

a unified vector. This comprehensive approach aims to enhance model

accuracy by considering both graph and non-graph PE file characteris-

tics.

GEMAL [16] introduces an innovative approach to malware analysis us-

ing function call graphs (FCGs) and a graph embedding network. FCGs

store critical structural details about binary files, which have proven valu-

able in prior malware research. In this method, instructions are likened

to words, while functions are likened to sentences, facilitating the auto-

matic extraction of semantic features.

To generate embedding vectors for malware, streamlining the analysis

process, we utilize a graph embedding network featuring an attention

mechanism. This network effectively merges both structural and seman-

tic characteristics, thereby enhancing our overall analytical capabilities.

e) API

Examining sequence and frequency of API calls made by program can

reveal patterns associated with malware behavior. It often involves cre-

ating API call graphs. Useful for detecting malicious behavior that relies

on specific API calls. Limited to the analysis of API calls and may miss

other aspects of malware behavior.

13



Figure 2.4: API Call Analysis

Traditional approaches in malware analysis heavily relied on gathering

Application Programming Interface (API) data through dynamic analy-

sis. However, the effectiveness of this approach was limited due to the

diverse evasion techniques employed by malware creators. Consequently,

API invocation data often failed to provide an accurate depiction of ma-

licious software actions.

In response to this challenge, the paper’s author [17] introduces an inno-

vative malware classification method that places a central focus on byte-

level information. This cutting-edge approach utilizes a deep learning

algorithm to convert malware byte data into images, effectively encapsu-

lating the malware’s behavioral context. These resultant images undergo

further analysis using a convolutional neural network-based phrase anal-

ysis technique.

APIs form the basis of common malware detection techniques, primarily

relying on statistical API features. Yet, malware creators evade these

methods by changing API call sequences or parameters. Existing detec-

tors either overlook arguments or demand extensive resources for their

analysis. This study [18] introduces a lightweight API-based dynamic

feature extraction method using machine learning, enabling malware de-

tection and classification without the need for expertise in API argu-

ments. Evaluation on dataset spanning ten malware types yields impres-

sive results, with the malware detection module outperforming state-of-

the-art API-based detectors in accuracy.
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We have reviewed other existing analyses that have aided our understand-

ing of areas that have not been fully researched or thoroughly experimented.

The article [11] delves into the importance of static malware analysis

and detection in the context of addressing security issues. It specifically under-

scores the challenge of dealing with imbalanced datasets within static analysis.

The paper puts forth a model designed to proficiently construct a attribute set

from dataset to identify PE files. However, rather than concentrating solely on

model development, the research places a strong emphasis on the significance

of feature extraction. The study illustrates that well-extracted features, when

fed into neural networks with a limited number of layers, significantly enhance

overall results. In essence, the paper offers valuable insights for advancing

static malware analysis by emphasizing the crucial role of feature extraction.

A commonly used technique in surface analysis involves extracting print-

able characters from portable executable (PE) files. Recent advancements in

NLP has enabled the swift detection of malicious PE files. In this study [12],

the authors evaluated this approach by applying it to the latest FFRI dataset.

This research is noteworthy as it is the first to encompass both malicious and

benign time series data in its investigation.

Table 1 contain some commonly employed techniques utilized to perform

detection and classification using static analysis.
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Table 2.1: Deep Learning Models

YearRef Objectives Ext

Source

Dataset Acc Limitation

DL

Model

2022 [11] Detection

and Clas-

sification

Using

Multi-

layer Deep

Learning

Binaries EndGame

Inc

97.52 Time

complexity

2021 [19] An innova-

tive hybrid

method

that com-

bines deep

learning is

applied for

malware

classification

Image

Files

Malimg,

BIG

2015,

Male Vis

97.7 Didn’t test

the adver-

sary’s at-

tacks with

crafted

inputs

2021 [20] Malware

Classifica-

tion Using

LSTM

OP

codes

Malicia,

Virus

Share

81 Combined

family clas-

sification

degrades

accuracy

2020 [21] LSTM

based

Malware

Classification

Wins

API

Calls

Self

created

95 Dataset not

correctly

labelled

2020 [22] Multimodal

deep learn-

ing frame-

work for

malware

classification

API’s,

Bytes,

OP

codes

MS BIG

2015

0.99 Pretrain

each com-

ponent

to avoid

overfitting
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Table 2.2: Machine learning Models

YearRef Objectives Ext

Source

Dataset Acc Limitation

ML

2022 [16] Detection

and Clas-

sification

Using NLP

FCG WUFCG 99.16 False Posi-

tive Rates

are higher

2022 [12] Malware

detection

using ML

and NLP

model

Printable

Characters

FFRI 0.981 Samples

are not

distributed

2020 [3] Classifying

malware

using call

graph vec-

torization

and ML

FCG,

System

call

MS BIG

2015

0.99 Only mal-

ware sam-

ple used

2020 [18] Malware

detection

and classi-

fication on

advanced

Windows

methods

API

Calls

Malshare 98 Dataset is

small due

to system

resources

2019 [23] Using the

ML ap-

proach,

achieve

high-fidelity

detection

in reduced

time frame

PE

Headers

Virus

Share

99.68 Training

time is not

feasible
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Table 2.3: Function Call Graphs Models

YearRef Objectives Ext

Source

Dataset Acc Limitation

FCG

2021 [24] Coarsening

technique

to construct

multi-

level static

call graph

representations

FCG’s — — Graph pre-

sented in

static for-

mat, which

is hard to

understand

2019 [8] Isomorphism

Algorithm

used to

identify

mal-

ware and

variants

FC

Graph

VX

Heaven

99.2 Cannot

identify

Unknown

Malware

2017 [6] Classifying

malware

using

call graph

vectorization

FCG’s,

OP

codes

MS BIG

2015

0.98 Only mal-

ware sam-

ple used

2013 [10] Obfuscated

malware

detection

based on

FCG sim-

ilarity

metric

FCG’s VX

Heaven

90 FCG’s

aren’t

complete

2016 [9] Detection

and clas-

sification

using ScD

Graphs and

Similarity

graphs

System

call

graph

Virus

Total

94.7 Loss of

Information
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CHAPTER 3

METHODOLOGY

The proliferation of malware instances has rendered manual analysis by

human experts increasingly challenging. Consequently, machine learning ap-

proaches have emerged as a powerful strategy to combat this surge in mal-

ware. Machine learning algorithms, such as Naive Bayes [17], Support Vector

Machine, Random Forest Tree [3], and others, facilitate the classification, re-

gression, and clustering of malware by subjecting input data to statistical

analysis or established algorithms. DL, a subset of ML, builds upon artifi-

cial neural networks and learns from specimen. This innovative method finds

broad application in fields like image processing, autonomous vehicles, and

voice recognition. Unlike traditional machine learning algorithms, deep learn-

ing [1]derives intricate features from vast datasets, thus reducing the reliance

on domain expertise for feature extraction. Consequently, recent years have

witnessed the widespread adoption of DL in the field of malware analysis.

Graphs serve as versatile data structures capable of effectively capturing

relationships among diverse entities. They have gained significant traction in

recent times, leading to the emergence of graph-centric approaches. For exam-

ple, Li et al [25] introduced a DL framework for android detection, leveraging

embedding of API graphs. Similarly, Zhang et al [26] developed a multi-

attribute heterogeneous graph convolutional network for robust bot activity

identification. Furthermore, the innovation of HGDom introduced a diverse

graph convolutional network adept at detecting hostile domains. Beyond the

realm of malware detection, graph-based techniques have proven effective in

various domains [27]. For instance, industrial control systems have employed

graph-based methodologies to estimate suspicious communication patterns.

Figure 3.1 illustrate the overall flow of our model. Decompiling exe files to

generating FCG’s then convert them onto adjacent list. Creating a database
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Figure 3.1: Overview of Model Architecture

and generate labelled dataset. Apply pre-processing techniques on dataset

to remove unnecessary features and atlast implement the LSTM model on

dataset. All these steps have been described below with detail.

3.1 RETDEC Tool

RETDEC is retargetable machine-code decompiler based on LLVM. It

provides call graph of PE file in the form of .dot (Graphviz) file, which can be

visualize through different tools.

Features:

1. Examination of executable files through static analysis with comprehen-

sive details.

2. Recreation of functions, data types, and higher-level structure

3. Output provided in C and python languages

4. Generation of FCG’s and CFG’s
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3.2 Graph Analysis and Database

a) Develop a script to convert the .dot file generated by retdec into a graph

structure.

b) Implement algorithms to extract the main or entry graph from a collec-

tion of multiple graphs.

c) Test the graph extraction process on various PE files to ensure accuracy

and reliability.

d) Optimize the graph extraction algorithms for efficiency and performance.

The objective of this milestone was to enhance the analysis and visual-

ization of disassembled code by transforming the generated .dot files into a

structured graph representation shown in Fig 3.2

Figure 3.2: Generated Function Call Graph

In the initial phase, we developed a script capable of efficiently handling

the .dot files provided by RETDEC, leveraging the Networkx and PyGraphviz

libraries. These libraries enabled us to interpret the intricate relationships and

dependencies present in the disassembled code, presenting them in a graph for-

mat that aids in comprehension. The subsequent step entailed implementing
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algorithms specifically designed to extract the primary or entry graph from a

multitude of charts. This step was crucial in isolating the fundamental logic

within the analyzed executable files, providing a clear depiction of their func-

tional flow. By concentrating on the entry graph, our objective was to distill

the most relevant information and comprehend the core program execution

paths.

To validate the precision and reliability of the graph extraction process,

we subjected a diverse range of Portable Executable (PE) files to our analysis

pipeline. This systematic evaluation allowed us to scrutinize how the graphs

were generated from the call structures within the disassembled code. This

critical assessment helped us ascertain the accuracy of the graph extraction

process, ensuring that the visual representation accurately reflected the intri-

cate calling relationships within the code.

Furthermore, we optimized the graph extraction algorithms to enhance

efficiency and overall performance. One of the key optimization strategies

employed involved integrating a thread pool mechanism, facilitating concurrent

processing of multiple files. This approach effectively reduced the time required

for graph extraction, contributing to a more streamlined and expedited analysis

process.

3.3 Dataset Generation

For the generation of dataset, we follow those steps.

a) Set up a SQLite database to store the extracted graphs’ adjacency lists.

b) Design a database schema to efficiently store and retrieve graph data.

c) Develop functionality to convert the main or entry point graph into an

adjacency list representation.

d) Implement the storage of the adjacency list as a string in the SQLite

database.

e) Perform extensive testing to ensure the correctness of data storage and

retrieval operations.

Initially, we targeted the main function or entry point function within

the disassembled code as discussed in section 3.2. By parsing the code and
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identifying these essential components, we constructed an adjacent list that

outlined the code’s structural connections and dependencies. This adjacent

list provided a concise representation of how functions within the codebase

interacted, capturing the underlying logic of the program’s execution flow. Fig

3.2 shows adjacency list that represent graph where nodes are connected to

each other based on relationships specified in the lists.

Figure 3.3: Adjacent List

Subsequently, we transformed the generated adjacent list into a coherent

string format. This string encapsulated the intricate relationships between

different functions, encapsulating the essence of the code’s functional structure.

These string representations were then stored within a dedicated database,

accompanied by labels that denoted the nature of the code as either ”Benign”

(label 0) or ”Malicious” (label 1). This labeling facilitated the classification of

code instances for machine learning or deep learning purposes, contributing to

subsequent analysis and modeling efforts.

To facilitate further processing and model application, we exported the

amassed dataset from the database in CSV format. This exportation trans-

formed the structured data into a more accessible form, enabling seamless in-

tegration with a wide range of machine learning or deep learning frameworks.

The CSV files served as a crucial resource for training, validating, and test-
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ing predictive models, thus amplifying the potential for our project’s broader

impact.

3.4 Dataset Pre-Processing

1. Remove data columns, metadata, and features that are unnecessary or

redundant to the malware detection activity.

2. Clean the dataset to retain only relevant information.

3. Each sample in the dataset is correctly labeled with its corresponding

malware class or benign label.

4. Data labeling significantly improves and impact model performance.

5. Split our dataset into training, validation, and test sets.

6. Convert the textual data, such as function call sequences, into numerical

vectors.

3.5 Long Short Term Memory

We initiated a comprehensive examination of numerous ML and DL mod-

els in order to enhance our grasp of function call graphs and their inherent

characteristics. Throughout our analysis journey, we applied multiple models,

each meticulously tailored to address specific facets of the function call graph’s

representation and behavior.

A prominent model in our arsenal was the LSTMmodel. In order to make

the most of LSTM’s expertise in handling sequences, initially transformed the

adjacent list obtained from the function call graph into a structured input

format. This transformation was achieved through the utilization of a tok-

enizer, which translated the intricate relationships between functions into a

format conducive to effective analysis by LSTM. LSTM uses three layers: one

Bidirectional layer, 2 dense layers. This adaptation allowed us to capture tem-

poral dependencies within the code’s execution flow, thereby enhancing our

predictive capabilities.
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Algorithm

Data: Windows Executables (.exe) Files

Result: File is Malicious or Benign

files - Exe files from the selected directory;

foreach file in files do

Dot File ← retdec(file);

Graph ← nx(DotF ile);

SubGraph ← Graph(Node−Main);

adjList ← GraphToAdjList(SubGraph);

Store AdjList (adjList):

token ← Tokenize(adjList);

token ← sequence, adding(token);

token ← wordindering(token)result− LSTM(token);

Show(result)end
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CHAPTER 4

ANALYSIS & RESULTS

This chapter represents implementation detail along with result analysis.

4.1 Implementation of Proposed Framework

The architecture of system our system consist of two section. The first

section contain brief detail of feature extraction process; How FCG’s have been

extracted.

The second section defines how dataset have been created then pre-

processing of the dataset and after that the implementation of LSTM model.

4.1.1 Feature Extraction

In feature extraction section, retdec tool is used to decompile the exe

file. During decompilation process, various files have been opted. Retdec tool

provide us function call graph of exe file in the form of .dot (Graphviz) file

which later converted into graph structure.

4.1.2 LSTM Model

The model architecture in this part includes an embedding layer for rep-

resenting words as dense vectors, a bidirectional LSTM layer for capturing

sequence information, and two dense layers for classification. For multi-class

text classification, the model is trained using categorical cross-entropy loss and

the Adam optimizer.
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# Build and train

model = tf.keras.Sequential

([

tf.keras.layers.Embedding(input dim=len(tokenizer.word index) + 1, out

put dim=100, input length=max seq length),

tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64)),

tf.keras.layers.Dense(64, activation=’relu’),

tf.keras.layers.Dense(labels.shape[1], activation=’softmax’)

])

model.compile(loss=’categorical crossentropy’, optimizer=’adam’, metrics=[’accuracy’])

# Training

history = model.fit(X train, y train, epochs=20, node size=32,

validation data=(X test, y test))

The provided code defines and trains a neural network model for text clas-

sification using TensorFlow and Keras. Let’s break down the architecture step

by step:

a) Sequential Model

The ‘tf.keras.Sequential‘ function is employed to construct a layers of

linear stack. Each layer is added sequentially, one after the other.

b) Embedding Layer

• Input Dimension (‘input dim‘): This is set to the length of ‘to-

kenizer.word index‘ + 1. It represents the terminology size, and the

”+1” accounts for an index reserved for out-of-vocabulary (OOV)

words.

• Output Dimension (‘output dim‘): The output of the embed-

ding layer for each word is a vector of length 100. This means

that each word in the vocabulary will be represented as a 100-

dimensional vector.
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• Input Length (‘input length‘): This is set to ‘max seq length‘,

which indicate greatest feasible length of input sequence. It ensures

that input sequences of different lengths are padded or truncated

to this length.

c) Bidirectional Layer

• With 64 nodes, this layer involves Long Short-TermMemory (LSTM)

layer. The LSTM is a sort of recurrent neural network, also known

as an RNN, that works well with sequence data.

• The ”Bidirectional” wrapper generates two distinct LSTM layers,

with one processing the input sequence from left to right, and the

other from right to left. This bidirectional approach enables the

model to capture dependencies in both forward and reverse direc-

tions, enhancing its ability to understand sequential patterns.

d) Dense Layers

• There are two dense layers in the model.

• The first layer has 64 nodes and uses the ReLU (Rectified Linear

Unit) activation function.

• The second dense layer has the same number of units as the num-

ber of unique labels in your classification task (represented by ‘la-

bels.shape[1]‘). It uses the softmax function, which commonly used

for multi-class classification problems.

e) Model Compilation

• The ‘model.compile‘ method used to configure the training process.

• Loss Function: The loss function employed in this context is cate-

gorical cross-entropy (categorical crossentropy), which is well-suited

for multi-class classification.

• Optimizer: The Adam optimizer is chosen as the optimization

algorithm.

• Metrics: The model will track accuracy as a metric during training.

f) Training
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• The ‘model.fit‘ method is used to train the model.

• ’X train’ and ’y train’ are the simulated data and tags.

• The training process will run for 20 epochs (iterations over the entire

training dataset).

• With a group size of 32, the variables of the model are altered after

processing.

• Validation data denoted as ‘(X test, y test)‘ is provided to monitor

model’s performance on a separate dataset during training.

4.2 Result & Analysis

The detection and classification framework discussed in this thesis has

been used to analyse FCG and extract vital information. This section examines

these results to demonstrate that the method suggested in this study is capable

of accurately detecting and classifying malware. Our system extract FCG’s

from exe files and using those call graphs we implement our LSTM model.In

prior work, detection [18]of malware and classification is also used.

4.2.1 Experiment Evaluation

In this section, we delve into our malware detection, which are conducted

using dataset. However, before delving into the assessment of experimental

outcomes, we provide an overview of the datasets and implementation par-

ticulars. Notably, all experiments within this section are assessed using exe

files.

4.2.2 Dataset

We have curated a proprietary dataset comprising a total of 1194 sam-

ples, drawn from diverse sources such as Virus Share and Malware Bazzar.

This dataset encompasses a spectrum of malicious software specimens, span-

ning six distinct categories: Trojan, Worms, spyware, virus, fileless malware,

and ransomware. To ensure the dataset’s integrity and balance, each of these

categories consists of precisely 200 samples. This meticulous curation process

results in a well-balanced dataset that serves as a robust foundation for clas-
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sification tasks and research endeavors.

Figure 4.1 shows the count of total and labelled samples in dataset.

Figure 4.1: Dataset

4.2.3 Training & Validation

The study encompasses two distinct datasets, partitioned into two core

segments: training and testing. Notably, 20% of the datasets are earmarked

for testing purposes. During the training phase, the models are supplied with

Function call sequences to predict the corresponding malware family class.

Given the inherent challenge of handling highly imbalanced datasets, a pivotal

step involves preserving the distribution of classes. To address this, the process

of data splitting adheres to a stratified methodology. Furthermore, for each

dataset, a Stratified 5-Fold approach is employed on the training data.

Figure 4.2 and 4.3 shows accuracy and loss while training and validation.

Increasing in the epoche shows that accuracy increases while loss decrease on

training and validation data.

Accuracy: During the initial training phases, the accuracy curve re-

mains relatively stable. Both the training and validation curves achieve nearly

99 percent accuracy by the 5th epoch and then maintain a steady, oscillatory

pattern until the 18th epoch. Throughout this period, there is a consistent
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Figure 4.2: LSTM Model Accuracy/Loss

difference of 0.005 in the oscillation between the two curves. This persistent

accuracy across consecutive epochs underscores the model’s high classification

efficiency.

Loss: Loss is computed to assess the model’s performance after each

optimization iteration. Initially, the loss is quite high, but it experiences a

sharp decline after the 4th epoch. Beyond the 7th epoch, the loss for the

validation set continues to decrease at a gradual pace and eventually stabilizes

at a value less than 0.02. This remarkably low loss value indicates that the

model’s weights are being optimized very effectively after each epoch.

4.2.4 ROC-AC

The goal is to categorize data points into one of two classes, often referred

to as ”positive” and ”negative.”

1. True Positive (TP) and True Negative (TN):

• True Positive (TP): Instances that the model accurately defines

as positive.

• True Negative (TN): Instances that the model effectively detects

as negative.
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2. False Positive (FP) and False Negative (FN):

• False Positive (FP): Cases that are labelled as positive when they

are actually negative.

• False Negative (FN): Events that are categorised as negative

when they are, in fact, positive.

3. Sensitivity (True Positive Rate): Examines the model’s ability to

effectively identify positive instances.

TPR=TP / (TP + FN)

4. Specificity (True Negative Rate): The model’s ability to accurately

identify negative cases is evaluated by the following calculation:

TN / (TN + FP)

5. ROC Curve: The ROC curve is an illustration of how well a model

performed at various decision points. For various threshold values, it

compares the TPR vs FPR. Formula to calculate FPR

FPR=FP / (FP + TN)

An AUC-ROC curve has been generated, with sensitivity represented

on y-axis and specificity on x-axis. Figure 4.3, it is evident that the LSTM

achieves a notably high AUC value of around 0.98. This indicates a 98 per-

cent probability of accurately classifying calls as either malware or goodware.

Consequently, it can be inferred that the LSTM model demonstrates enhanced

classification efficiency, surpassing the performance of the other deep learning

algorithms that were employed.

4.2.5 Confusion Matrix-F1 Score

A confusion matrix with the six classes. The confusion matrix will have

six rows and six columns, representing the actual and predicted class labels.

The inclining elements of the matrix represent the number of correct classifi-

cations for each class.
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Figure 4.3: LSTM ROC-AUC

Figure 4.4 displays a comprehensive confusion matrix. Utilizing this

matrix, we can calculate various metrics for each class, including accuracy,

precision, recall, and F-1 score.

Using above values in the confusion matrix, we can calculate various

performance metrics to assess the model’s classification accuracy, such as:

Accuracy:

(TP + TN) / (TP + TN + FP + FN)

Precision:

TP / (TP + FP)

Recall (Sensitivity):

TP / (TP + FN)
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Figure 4.4: LSTM Confusion Matrix

F1-Score:

2 * (Precision * Recall) / (Precision + Recall)

4.2.6 BenchMarking of Models

Bench-marking employs two distinct models, encompassing a diverse

range. First one is Graph neural Network. Additionally, the ensemble cat-

egory is represented by two models XGBoost and HGBoost. Introducing the

realm of neural networks, we have Long Short-Term Memory (LSTM), which

leverages specialized units in recurrent architecture.

Ensemble Model

Ensemble learning offers a structured methodology for harnessing the

predictive power of multiple learning models. It leads to the creation of a

unified model that synthesizes results from a multitude of individual models.

34



Figure 4.5: F1-Score

Two notable ensemble machine learning algorithms, XGBoost and HGBoost,

are based on decision trees. These algorithms operate within a gradient boost-

ing framework, which has gained popularity due to its remarkable effectiveness

in diverse application domains and its efficient model management practices.

Accuracy: Initially, during the early stages of training, the accuracy

curve remains relatively constant. However, the model demonstrates an im-

pressive initial accuracy of approximately 93% at the outset. As training pro-

gresses, there is a gradual improvement in accuracy. The graphical represen-

tation implies that the model achieves an accuracy of around 96%, signifying

that it accurately classifies approximately 96% of the calls as either malware or

goodware. Moreover, the validation curve closely mirrors the training curve,

indicating that the data points selected in the training dataset provide a rep-

resentative sample of the overall dataset.

Loss: In the initial 20 epochs, it shows that the loss values have nearly

stabilized, with a minimal gap between the two curves. This indicates a good

fit for the model. However, it’s important to note that training a well-fitted
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Figure 4.6: Ensemble Model Accuracy/Loss

model for an extended number of epochs can sometimes lead to over-fitting.

In this case, the model is trained for a substantial number of epochs, and as a

result, the loss value continues to decrease, indicating ongoing improvements

in the classification model.
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Figure 4.7: Ensemble Confussion Matrix

Graph Neural Network

Graph Neural Networks (GNNs) are a potent approach for training mod-

els in malware analysis. They excel in representing malware as a graph, with

nodes denoting components (e.g., functions, APIs, system calls) and edges rep-

resenting their relationships. GNNs are tailored for processing graph data, en-

abling them to capture the intricate dependencies in malware behavior. Their

capacity to model complex interactions and hierarchies, generalize to new sam-

ples, makes them invaluable in malware analysis.
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Figure 4.8: GNN Model Accuracy/Loss

The outcomes of the analysis shown in Table 4.1 reveals that, LSTM

model outperformed all the other models in terms of F1-score, ROC across

both versions of the VirusShare dataset. Shifting focus to the VirusSample

dataset, distinct patterns emerged. In the case of the imbalanced version,

LSTM emerged as the frontrunner with the highest F1-score.

Table 4.1: Dataset BenchMark

Model F1-Score
(Original)

ROC Score
(Original)

F1-Score
(Balanced)

ROC Score
(Balanced)

XGBoost 0.71 0.96 0.75 0.95

HGBoost 0.69 0.95 0.74 0.94

GNN 0.69 0.92 0.72 0.90

LSTM 0.90 0.96 0.93 0.98

38



CHAPTER 5

CONCLUSION & FUTURE WORK

5.1 Conclusion

In conclusion, our project’s analysis has illuminated the intricate nature

of the complex data we’ve been handling. Notably, it has become evident

that distinguishing between graphs belonging to different classes presents a

formidable challenge, often with only minor variations of two or three nodes

among hundreds. In response to this challenge, we propose a comprehensive

approach to bolster our outcomes.

Our primary recommendation involves the adoption of a multi-model

strategy, capitalizing on the unique strengths of diverse machine learning tech-

niques. Firstly, we advocate for the implementation of separate models tailored

to address specific aspects of the task at hand. To facilitate effective feature

extraction, we endorse the use of GraphSAGE and Node2Vec models. These

methods have consistently demonstrated their prowess in capturing intricate

graph structures while preserving vital information during feature generation.

Furthermore, we propose the deployment of either GCN (Graph Con-

volutional Network) or LSTM (Long Short-Term Memory) models for the

prediction and classification phase. These models have been proven to ex-

cel in tasks concerning graph data and sequential patterns, respectively. GCN

leverages graph connectivity to enhance classification accuracy, while LSTM’s

proficiency in recognizing temporal dependencies offers significant advantages

in certain contexts.

By seamlessly integrating these components, our approach aims to tackle

the data complexity head-on and amplify the distinguishability between dif-

ferent graph classes. Through the combination of specialized feature extrac-

tion and precise prediction models, we anticipate achieving superior results
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and gaining deeper insights into the underlying patterns embedded within the

data. This multifaceted strategy promises to enhance the overall efficacy of

our project, addressing the intricacies of our dataset and advancing our un-

derstanding of its intricate patterns.

5.2 Furure Work

Due to limited computational resources, we use a small dataset and and

features related to the file. In future work, we can add resources and explore

different techniques to enhance the scalability and work on large dataset. Due

to this, we can efficiently test our model how it can bare the complex scenarios.
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