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Abstract

In the growing world of technology, the frequency and magnitude of cyber at-

tacks is increasing day by day. Most popular OS are most prone to these attacks.

Android OS is sharing a major share in OS market therefore facing the challenge

of frequent and sophisticated malware attacks. These malware are created in a way

to bypass network security systems. Major categories of malware remain the same

however small modifications in malware can make it act differently and hence chal-

lenging to identify. Various techniques and algorithms are used for the identification

and categorization of these variants to make better security and incidence responses.

Fuzzy hashes are used to calculate the similarity index between files to identify ma-

licious sections inside an appearing legitimate file. In this paper, research has been

conducted to evaluate and improve the working, accuracy, and reliability of fuzzy

hashes of static features of APK files in detecting Android malware and classifying

its variants. In contrast to conventional research methodologies, our study adopts a

distinctive static feature-based fuzzy hashing technique for the detection of malware

and its variants. This approach has enabled us to achieve promising results in our

experiments. We selected a dataset consisting of 2000 APK files, containing both

malicious and benign samples. For variant identification and family classification,

we’ve selected random malware families from six distinct categories: trojan, adware,

spyware, virus, downloader, and hacktool. Through rigorous experimentation, our

findings have demonstrated a significant improvement in key metrics such as preci-

sion, recall, and the F-Measure. These improvements collectively contribute to an

overall enhancement in the accuracy, reaching 96.67%, all without the dependence

on intricate machine learning or deep learning methods.
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CHAPTER 1

INTRODUCTION

In the realm of cybersecurity, Android malware has become a prevalent

and evolving threat. In this chapter, we delve into the multifaceted landscape

of Android malware and its variants, employing fuzzy or similarity hashes

as our primary tool for detection. We begin by exploring the various types of

Android malware, emphasizing the need for robust detection methods. We also

dissect the key components of an APK file, the fundamental unit of Android

apps. With a strong foundation in malware analysis and detection techniques,

we present the problem background and articulate the problem statement that

guides our research.

In market distributions of smartphone OS, the most dominant one is the

Android operating system. According to a report generated by StatCounter

GlobalStats, the market share ratio of Android OS is leading by 70.77% [2].

The increase in popularity and dependency on the Android platform is de-

manding an increase in security from malicious scripts and applications. How-

ever, with the advancement of technologies malware are also becoming sophis-

ticated and are difficult to detect. A report published by Statista Research

Department in July 2022 shows that from March 2020, new Android malware

samples reached the number of 482,579 per month. According to AV-Test,

Trojans were the most common type of malware affecting Android devices [3]

Malware (malicious software) are modified to generate its variants. Though
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the major section of the variant is similar to its parent malware however it is

difficult to identify its malware family from behavioral analysis of the variant.

Researchers are working on various dimensions to detect and identify Android

malware and variants. The main research areas that are being widely used

contain malware analysis using dynamic, static, and hybrid approaches [4].

Existing work on dynamic Android malware analysis shows that it provides

reliable and accurate results against obfuscated Android malware and vari-

ants, however, dynamic analysis requires an emulator to monitor the run-time

activities of an APK file to identify the abnormal and malicious behavior of

the file. However complex malware are programmed in a way that whenever

they detect these dummy environments they behave as normal or benign soft-

ware. Moreover, Dynamic analysis requires high consumption of resources and

latency rate [5]. On the other hand static analysis provides accuracy with

limited resources and optimum latency, as it extracts features such as permis-

sions, API calls, opcode sequences, and grey/colored images from APK files

to perform further analysis without running it on any emulator [5]. Therefore

static analysis requires fewer resources to analyze malware and goodware. In

Hybrid analysis, both static and dynamic analysis are combined to obtain bet-

ter accuracy and optimal results, however hybrid analysis also requires high

computational cost to incorporate dynamic features analysis. Research have

been conducted on various techniques including feature extraction via opcode

sequences, analyzing call graphs, performing comparison on files using cryptog-

raphy to detect malware variant. Our scope of research is to identify malware

variants within Android package files and to classify these variants into spe-

cific malware families by using the approach of static feature-based hashing on

APK files. To achieve this, we utilize cryptographic hashes for identification

and similarity hashes for classification of variant into malware family.

In recent works[6][7][8], identification and classification of malware and

its variants is performed using cryptographic techniques like fuzzy hash and
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cryptographic hash that are applied on file and its sections to compare the level

of mutation and similarity between PE files. A similar technique can be used

to identify Android malware and variants by comparing sections of APK files

with files present in Android malware database. The similarity ratio of both

files can be calculated to identify whether a given APK file is a malware variant

or benign software. Hence lightweight mechanism for malware detection and

variant classification can be achieved.

1.1 Types of Android Malware

Malware in the Android ecosystem encompasses a variety of malicious

software designed to compromise user data, device integrity, and privacy. The

following sections outline common categories of Android malware:

1.1.1 Adware

Adware, short for advertising-supported software, capitalizes on the de-

livery of intrusive advertisements to generate revenue for its creators. These

advertisements disrupt user experiences and often collect sensitive user data

for targeted ad delivery.

1.1.2 Riskware

Riskware refers to applications that may not exhibit outright malicious

behavior but carry potential risks due to vulnerabilities or intrusive data col-

lection practices. Such applications can inadvertently expose users to security

threats.

1.1.3 Spyware

Spyware covertly monitors and records user activities, including keystrokes,

browsing history, and multimedia interactions. This category poses severe
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threats to user privacy, as personal and sensitive information is harvested with-

out consent.

1.1.4 Banking Malware

Banking malware specifically targets users’ financial data and credentials.

By intercepting sensitive information, these malicious applications facilitate

unauthorized access to bank accounts, leading to financial loss and identity

theft.

1.1.5 SMS Malware

SMS malware, also known as SMS Trojans, manipulate devices to send

unauthorized premium SMS messages to premium-rate numbers. This results

in unexpected charges for users, financially benefiting attackers.

1.2 Components of Android Package File

An Android Package (APK) file is the fundamental unit of installation

for Android applications. It comprises various components that collectively

define an app’s behavior and appearance. Figure 1.1 provides an overview of

the composition of an APK file, offering insight into the primary components

and the main content and features encapsulated within each of them. Brief

detail of these components is given below:

1.2.1 Manifest.xml

The AndroidManifest.xml file is a critical component of the APK, pro-

viding vital metadata about the application. It outlines the app’s components,

permissions required, and hardware features necessary for proper functionality.
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Figure 1.1: Structure of an APK file with its major components

The manifest file plays a crucial role in the Android system’s management of

the application.

1.2.2 Classes.dex

The classes.dex file contains the compiled bytecode of the application’s

Java source code. This bytecode is executed by the Dalvik Virtual Machine

(pre-Android 5.0) or the Android Runtime (ART, Android 5.0 and later). The

efficient execution of bytecode enables app functionality and logic.

1.2.3 Resource Folder

The res folder holds essential resources that contribute to the applica-

tion’s user interface and functionality. These resources include XML layout

files, images, strings, and other assets that collectively define the app’s ap-
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pearance and user interaction.

1.2.4 Library Folder

The lib folder contains external libraries and dependencies utilized by the

application. These libraries enhance the app’s capabilities and provide access

to various features without having to reinvent the wheel. Integrating external

libraries streamlines development and ensures code quality.

1.2.5 Meta Inf

The META-INF folder contains metadata essential for verifying the in-

tegrity and authenticity of the APK. This metadata includes digital signatures

that assure users the app has not been tampered with and originates from a

trusted source.

1.3 Malware Analysis

To combat the growing threat of Android malware, researchers and cy-

bersecurity experts employ various analysis techniques to dissect and under-

stand the behavior of malicious applications. These analysis methods provide

insights into the inner workings of malware, aiding in the development of effec-

tive detection and prevention strategies.Figure 1.2 provides an in-depth explo-

ration of malware analysis techniques, highlighting the prevalent approaches

commonly employed within these methods. These primary approaches to mal-

ware analysis are:

1.3.1 Static Analysis

Static analysis involves examining an application’s code, resources, and

metadata without executing the app. This approach helps identify potential

vulnerabilities, malicious behaviors, and security risks. By scrutinizing the
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Figure 1.2: Taxonomy of Malware Analysis

app’s source code, permissions, and data flows, static analysis can highlight

instances of potential malware.

1.3.2 Dynamic Analysis

Dynamic analysis entails executing the application in a controlled en-

vironment to observe its behavior during runtime. This approach captures

runtime actions, such as network communication, file access, and system in-

teractions. Dynamic analysis provides insights into the actual behavior of the

app, including interactions with external servers and potential exploitation of

device resources.

1.3.3 Hybrid Analysis

Hybrid analysis combines aspects of both static and dynamic analysis to

provide a comprehensive view of an application’s behavior. By leveraging the

strengths of each approach, the hybrid analysis aims to overcome limitations

and gather a holistic understanding of the malware’s capabilities.
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1.4 Detection Techniques

As the threat landscape evolves, innovative techniques for detecting An-

droid malware emerge. Following are the prominent detection methodologies:

Image Processing for Malware Detection: Image processing techniques,

typically used in computer vision, are employed for detecting patterns and

anomalies within an application’s visual elements. By analyzing icons, images,

and user interface components, researchers aim to identify potential visual

indicators of malware presence.

Opcode Sequences and API Call Based Malware Detection: This ap-

proach delves into the executable aspect of applications by analyzing opcode

sequences and API calls. By studying the low-level machine instructions and

the high-level interface interactions, researchers aim to identify patterns indica-

tive of malicious behaviors. This method effectively bridges the gap between

static and dynamic analysis.

Malware Detection Using Cryptography: Cryptography-based methods

leverage the principles of secure communication and data integrity for malware

detection. This section explores two sub-methods within this category:

1.4.1 Cryptographic Hashes

Cryptographic hashes, such as MD5, SHA-1, and SHA-256, create unique

digital fingerprints of files. These hashes are used to verify the integrity of

files and identify any changes or tampering. Hashes of known good files are

compared with those of suspicious files to detect alterations.

1.4.2 Similarity (Fuzzy) Hashes

Similarity hashes, often referred to as fuzzy hashes, calculate a similar-

ity index between files. This approach is particularly valuable for identifying

subtle variations in files that might indicate malicious alterations. Notable
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similarity hash algorithms include:

(a) Ssdeep: It calculates a fuzzy hash based on contextual data, such as byte

sequences and block sizes. Ssdeep provides a measure of similarity that

can highlight malicious code hidden within legitimate files.

(b) Sdhash: This method computes hash values for sequences of data blocks,

allowing it to identify similar content even in the presence of slight mod-

ifications.

(c) MvHASH-B: A variant of the Multivariable Hash (MvHASH) algorithm,

MvHASH-B creates hashes using multiple features of files, aiding in the

identification of common patterns among potentially malicious files.

(d) TLSH: TLSH is a locality-sensitive hash that’s particularly effective in

identifying similarities in binary data. It’s used for comparing binary files

and is commonly employed in malware analysis. TLSH generates hash

values that represent the structural characteristics of binary data, making

it useful for detecting similar code patterns within malware samples.

1.5 Problem Background

Since the popularity of the Android platform is increasing with the pas-

sage of time, it is therefore becoming one of the major targets for threat actors.

To bypass security mechanisms, malware is modified by attackers to get its

variant. Though, the working behavior of malware gets completely changed,

yet a major portion of the file remains unchanged. To identify and analyze the

properties of malware and variants, dynamic analysis has been widely used.

The dynamic analysis provides high accuracy in malware detection and classi-

fication and provides less rate of false positive detection. However, a limitation

of this approach is that it requires an emulatory dummy environment to ana-

lyze the working behavior of malware. This procedure is time-consuming and
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it requires a high cost of implementation. Moreover, advanced malware are de-

signed to act like benign software whenever they detect a virtual environment

and, therefore can easily bypass the system. This makes the dynamic analysis

less reliable.

In static analysis, the most popular approach to detect malware is to

extract features from a targeted file without actually running it. Then these

features are fed as an input to any machine learning model to construct clas-

sifiers that provide accuracy in results. However, results can be fabricated

or modified using adversarial machine learning, creating a backdoor in the

training set, or other techniques like training set poisoning, model theft, etc.

Another major technique that is being used to detect and classify mal-

ware and variants detection is the use of cryptography or hashing techniques.

Import hashing is used to find the hash of imported libraries, functions, and

API which is further useful for detecting malware variants that share similar

libraries or functions. Cryptographic hashes are efficient most to performing

binary detection. However, it fails on variant detection because of the cryp-

tographic diffusion property. Fuzzy hashes are used to identify similarities

between the files. It provides a lightweight and efficient solution to classify

variants using targeted files and malicious software.

In the comparison of malware and its variant, though the working be-

havior of both files may not have any similarity, yet major portion of both files

remain similar. Fuzzy hashing algorithms can be used to identify these simi-

larities. Fuzzy hashes are compression functions that use various techniques to

identify similarities between files. It uses algorithms to hash a file in sections.

Afterward, it compares the similarity of sections and calculates the similarity

ratio. Moreover, by further analysis, both changed and unchanged sections of

the APK file can be identified. This file-level and section-level analysis and

can be used to identify the class of malware.
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1.6 Problem Statement

Android Operating Systems are being used widely, they are more vul-

nerable to being attacked. In addition to complex malware, threat actors also

mutate existing malware to form its variants. To ensure the security of the

platform, an efficient and lightweight framework is required, that can perform

detection and classification of malicious APK files. Fuzzy hashes can detect

effectively satisfying the above criteria yet accuracy needs to be improved to

detect and classify sophisticated malware and variants.

1.7 Research Objectives

The objectives of the Research include the following.

(a) Construct a malware detection framework capable of binary classifica-

tion, family classification, and variant detection within Android Package

files.

(b) Employ similarity digests and algorithms like ssdeep to dissect and assess

specific sections of APK files for similarity with known malware.

(c) Determine the effectiveness of specific APK features and their impact on

Similarity Hash-Based Malware Detection.

(d) To explore Noise-Inducing Features in Result Analysis and their impacts

on false positive.

1.8 Thesis Organization

The organization of this thesis is as follows: Chapter 2 provides an

overview of the existing body of work pertaining to approaches utilized in

identifying malware and variants. Chapter 3 offers an in-depth exploration

of the methodology, encompassing dataset and malware family details, envi-

ronment creation, and details on extracted features. Subsequently, Chapter 4

11



highlights the analysis and findings of the research, while Chapter 5 presents

the conclusion and highlights the areas for future research.

12



CHAPTER 2

RELATED WORK

Our journey through the literature reveals various approaches to malware

detection. In this chapter we explore methods that leverage API calls and op-

code sequences, shedding light on how these techniques have been instrumental

in uncovering malicious behavior. Additionally, we delve into the techniques

of detection through colored and gray-scale image processing, highlighting its

potential in identifying malware. Furthermore, we scrutinize cryptographic

and similarity hashes, enhancing their efficiency in classifying malware vari-

ants. This comprehensive review forms the bedrock upon which our research

methodology is built.

Research is progressing day by day to get optimum solutions and tools

that will secure the system and network from complex and novel malware. for

malware detection using static analysis, various approaches are being used. A

major approach is to extract relevant features using API call graphs, Dalvik

codes, opcode sequences, and system calls, etc. These features are used to

train machine learning models to perform detection. Another approach is to

identify malware by processing grey-scaled or colored image files of malware

and benign software. Classifiers are used to perform binary and family classi-

fication. Furthermore, various hashing techniques and algorithms are used to

compare files with those present in a database of known malware.

Our literature review has been organized into three distinct domains:
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detection via API feature selection, detection using image processing, and

detection utilizing cryptographic and similarity hashes. Figure 2.1 visually

represents the research papers cited in our study, categorizing them based on

these specific areas.

Figure 2.1: Major Malware Detection Approaches

2.0.1 Detection using API Feature Selection

In [9] malware detection is performed by extracting features from APK

files and calculating respective weights to identify important features in An-

droid malware. Machine learning models are used to calculate weights and

evolution algorithms are used to further optimize the results. A lightweight

model was proposed to detect Android malware variants by extracting relevant

features from a graph of Dalvik opcodes and pruning non-important edges to

minimize complexity. The programs are then compared with pre-labeled ma-

licious files to check whether a program is a malware variant or not. The

framework provides an accuracy of 94% and a latency rate of 0.01s for de-

tecting a malicious APK [10]. [11] analyzed all execution paths of instruction

call graphs dataset of benign and malicious APK files to improve deep neural

learning. Another proposed work detects malware variants by integrating deep

learning with image enhancement, global average pooling layer, and Rasnet.
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Experimental results showed an accuracy of 96.35% and 94.55% for unobfus-

cated and obfuscated malware samples respectively. Moreover, accuracy in

classification after obfuscation is up to 89.96% [12]. In [13] research work iden-

tified detailed characteristics by collecting fine-grained opcode bi-graph and

high-level API frequencies from disassembled benign and malicious executa-

bles. CNN and BPNN are used to train these opcode and API features. These

features are then embedded in the softmax classifier for family classification of

malware and variant detection. The model achieved 95% accuracy in malware

detection and 90% accuracy in malware family classification. The study in

[14] addresses the escalating concerns of malware and piracy in the burgeon-

ing Android app market. It introduces a permission-based malware detection

system, which evaluates applications based on their requested permissions. Ad-

ditionally, the research re-implements Juxtapp, a tool for detecting malware

and piracy, focusing on the underlying opcodes of applications. Evaluation in-

volves a substantial dataset, including original, pirated, and malware-infected

apps from AndroZoo and KuafuDet. Findings reveal that permission-based

malware detection generally outperforms the opcode-based approach. Further-

more, Juxtapp proves effective for detecting software piracy. These combined

approaches enhance security and authenticity in the Android app ecosystem.

Table 2.1 presented in the literature review highlights research endeavors in

the domain of malware detection employing API call graphs. It categorizes

these research efforts based on their focus, encompassing binary and family

classification as well as variant detection.
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Table 2.1: Summary of related works on malware detection and variant clas-

sification using API Features and Call Graphs

NO Technique Dataset File Type
Malware Families

or Categories

Variant

Identification

Classification

Type
Accuracy

[10] Opcode Analysis
GooglePlay

Drebin
Android

Fake Installer

DroidKungfu

Opfake

Yes Binary & Family 94%

[13]

Opcode Sequences

Api Frequency

Analysis

VxHeaven Windows

Backdoor

Trojan Droper

Trojan Banker

Worm

yes Binary & Family 90%

[11]

Feature Extraction

Via Instruction Call

Graph

AndroZoo

The Argus Group

Android By

Argus Group
Undefined No Binary & Family 91.42%

[9]
Feature Weighting

Function (KNN)

Drebin

AMD

GooglePlay

Android Undefined No Binary & Family Improved

[12]
Opcodes Feature

Extraction
Drebin Android

Opfake

FakeDoc

FakeRun

Yes Binary & Family 94.55%

2.0.2 Detection using Image Processing

Work proposed in [15] presented a method that converts android mal-

ware dex file into colored image and extracts relevant features using CNN to

detect and classify android malware and its variants. To perform classification

SVM and RF algorithms are used and results showed an accuracy of 100% in

binary, and 92.19% in 5-class classification. However, this method is not re-

silient against adversarial attacks performed on ML and DL. [16] implemented

a visual analysis technique to analyze binary executable files after converting

them into a 2D grey-scale image. The proposed model, with reduced complex-

ity, gives accurate results on even unknown, zero-day, and obfuscated malware

of trained families but can give false predictions on the malware of untrained

families. In [17], malware detection and family identification are performed by

converting binary files into colored images. Experimental results showed that

colored images give more accurate results than grey-scale images. The model is

also trained to detect hidden code and obfuscated malware with a lower latency
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rate. Research in [18] proposed a framework that uses colored label boxes to

highlight different sections of malware in PE files. To perform malware classi-

fication they created a model that uses image processing, VGG16, and SVM

techniques that produce accuracy up to 96.59% and 98.94% on two databases.

A semi-supervised method is introduced in [19] for the detection of obfus-

cated malware. This approach combines deep learning, feature engineering,

and image processing techniques. It was compared to traditional gray-scale

image-based classification methods, and experiments were conducted to vali-

date its effectiveness. The proposed approach claims to achieve an accuracy

rate of 99.12% in detecting obfuscated malware. Another approach to mal-

ware detection called Orthogonal Malware Detection (OMD) is introduced in

[20]. OMD combines various types of features, including audio descriptors, im-

age similarity descriptors, and static/statistical features, to effectively identify

malware. The study demonstrates the effectiveness of audio descriptors in clas-

sifying malware families when representing malware binaries as audio signals.

It also shows that predictions based on audio descriptors are independent of

predictions made using image similarity descriptors and other static features.

The paper introduces a framework for assessing the orthogonality of new fea-

ture sets compared to existing ones, enabling the integration of new features

and detection methods. Experimental results on malware datasets claim the

robustness of this approach. Table 2.2 highlights research efforts in the do-

main of malware detection utilizing image processing providing an overview of

studies focused on binary and family classification, as well as variant detection

within this field.
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Table 2.2: Summary of related works on malware detection and variant clas-

sification using Image Processing

NO Technique Dataset File Type Malware Families
Variant

Identification

Classification

Type
Accuracy

[17]
2D Image

Processing

Maligm

Microsoft

Malevis

Windows

Agent-fyi

Injector

Neshta

Yes Binary 98.65%

[16]

API Calls

Opcode N- Gram Strings

Control Flow Graphs

Maligm

IOT Android

Mobile Datase

Android

Agent.FYI

Rbot!gen

Allaple.L

Yes
Binary &

Family
97.85%

[15]
Image

Processing
Malnet Android

Adsware

Clicker+

Trojan

spyware

Yes Binary 92.29%

[18]
Colored Image

Processing

Vxheaven, 2010

Virusshare, 2010

Microsoft, 2015

PE - Yes
Binary &

Family
96.59%

[19]

Feature Extraction

Via Opcodes

sequences

Microsoft Big

2015
exe - Yes

Binary &

Family
99.12%

2.0.3 Detection using Cryptographic Hashes

Using cryptography in malware detection and variant classification also

plays a vital role in giving lightweight and accurate solutions. In [21] a frame-

work is proposed that integrates cryptography, machine learning, natural lan-

guage, and image processing to give a cloud-based solution for Android mal-

ware detection with an accuracy of more than 98.5%. The model proposed

in [7] uses similarity digests of opcode sequences taken from Dalvik code to

identify similarity in analyzing and malicious APK file. Similarity digests are

created from fuzzy hash based on ssdeep. The results are further analyzed by

N-gram tokenization. The results help in identifying malware variants, how-

ever, their accuracy is compromised when malware are packed with the same

packer, therefore improvement is required in this field. Androsimilar [8] is a

framework that uses signatures of robust features for malware detection and

identifying unknown malware variants. The approach also deals against code

obfuscation and repackaging. To improve accuracy results it used syntactic
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similarity of the whole application rather than using DEX file only. By giving

a lightweight solution this model detects malware variants and obfuscated and

repacked software with an accuracy of more than 76%. In [6] comparison is

done between the hash of a file section with the hash stored in a database

of malware to identify whether testing PE is a malware variant or not. This

technique uses ssdeep algorithm to create a hash of each section of the PE file

and uses fuzzy hashes to identify the level of similarity in both files and gives

an accuracy of 98.16% in malware variant detection. This proposed method

gives a high false negative rate on section-level hashing that needs to be im-

proved. In this proposal, the fuzzy hash technique will be implemented on

sections of APK file. the detailed sections of APK file are shown in Figure 1.1.

These sections will be used for further analysis to identify whether the file is

goodware or malware.

In [22], a comprehensive and advanced approach for investigating varia-

tions in Android malware has been presented. The authors have introduced

a novel fingerprinting technique called APK-DNA, which goes beyond tradi-

tional fuzzy hashing methods by capturing not only the binary code of the

APK file but also its structural and semantic characteristics. This unique fin-

gerprinting method ensures high resistance to changes in the app, making it

highly effective in identifying different versions of malware. Furthermore, the

researchers have utilized the APK-DNA fingerprint to develop a cutting-edge

framework named ROAR, which aims at detecting Android malware through

two distinct approaches: family fingerprinting and peer-matching. By lever-

aging this framework, not only can malware variations be identified, but the

specific family to which the detected malware belongs can also be attributed.

The evaluation of the ROAR framework has yielded highly promising out-

comes, demonstrating exceptional accuracy in terms of both malware detection

and family attribution. Recent experiments conducted in this study demon-

strate that the proposed fingerprinting technique and the implemented ROAR

19



system achieve an impressive precision rate of 95%. These impressive results

highlight the effectiveness and robustness of the proposed approach, making it

a valuable contribution to the field of Android malware analysis and detection.

Rather than comparing API call sequences, FUMVar [23] takes into ac-

count the similarity in API calls when comparing malware variants with their

original samples. By utilizing ssdeep and the Jaccard distance, we can ef-

fectively assess the similarity and dissimilarity, respectively, between these

elements. This approach enhances the ability to analyze and understand the

characteristics and behavior of malware variants in a comprehensive manner.

Ibrahim et al. [24] introduce a novel approach involving static analysis

and comprehensive feature extraction from Android applications. The method

incorporates two newly proposed features and feeds them into a functional

API deep learning model developed for the purpose. The approach is applied

to a freshly curated dataset comprising 14,079 samples encompassing both

malware and benign applications. The malware samples are further catego-

rized into four distinct classes. Two key experiments are conducted using this

dataset. The first experiment involves binary classification for malware de-

tection, where samples are categorized as either malware or benign. In this

scenario, the model achieves an exceptional F1-score of 99.5%, surpassing the

performance of similar approaches. The second experiment extends to multi-

class classification, encompassing all five classes of the dataset. Remarkably,

the model still achieves a high level of accuracy, yielding an F1-score of 97%

for malware detection and classification.

[25] investigates to assess the efficacy of hash values in malware detection.

Initially, Deep Learning (DL) techniques are applied to analyze the surface in-

formation of Portable Executable (PE) files, in conjunction with hash values,

to assess their effectiveness in identifying malware. Notably, remarkable per-

formance gains are observed when incorporating PE surface information with

impfuzzy hash values. These findings underscore the potency of DL as a po-
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tent tool for static property analysis logs. Furthermore, this paper extends its

research to encompass data characterized by concept drift properties—a phe-

nomenon often encountered in dynamic malware environments. Here, impfuzzy

demonstrates notable effectiveness in handling such data types. Intriguingly,

an experiment is devised in which hash values and PE surface information

are synergistically combined. The outcome is the attainment of significantly

enhanced performance compared to using PE surface information in isolation.

For instance, relying solely on PE surface information yields a classification

accuracy of 0.9148. In contrast, when the PE surface information is com-

plemented with hash values, the highest classification accuracy surges to an

impressive 0.9198. These results compellingly advocate for the utility of incor-

porating hash values in the arsenal of techniques for the detection of previously

undiscovered malware.

Choi et al. addressed challenges in malware detection using Artificial

Intelligence (AI) and similarity hash-based methods [26]. In their research, an

introduction is provided regarding a k-nearest-neighbor (kNN) classification

approach coupled with a vantage-point (VP) tree utilizing a similarity hash.

The methodology significantly enhances detection efficiency. Specifically, the

research highlights a 67% reduction in detection time compared to previous

methods, in addition to a noteworthy 25% increase in detection rates. Fur-

thermore, the utilization of a VP tree in conjunction with a similarity hash

results in a remarkable 20% reduction in search time for similarity hashes.
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Table 2.3: Comparison Table Literature Review

NO Technique Dataset File Type Malware Families
Variant

Identification

Classification

Type
Limitation Accuracy

[8]
Fuzzy Hash And

Clustering Algorithm

Google Play &

Third Party

Applications

Android

Droid kungfu

Anserver bot

Cruise win

yes Binary Less Accuracy 70%

[6]
Section Level

Fuzzy Hashing

Windows 32 EXE And

DLL PE File

Malware Collection

PE

Virut, Wabot,

Virlock &

Coinminer

Yes Family
High rate of

false Negtive
81%

[7]

Fuzzy Hash

And

N-Gram

Undefined Android Undefined yes Binary

Samples are incorrectly clustered

when they are packed

with the same packer

Undefined

[21]

Fuzzy Hash

Image Processing

N-Gram

- Android Undefined No Binary - 98.5%

[27]

Malware Variant

Generation Using

Genatic Algorithm

The Zoo Android
Ares

Radium
Yes

Binary &

family

limited malware

families are used
-

[28]
Similarity Hash

based scoring

From Repository Of

Nettitude Ltd,

UK

PE

Trojan

Adware

Worm

Downloader

No
Binary &

family

scope is limited

to IoTs only
90%

[29]
Fuzzy And

Import Hashing

Hybrid Analysis &

Malshare
PE

Wanna cry

Locky

Cerber

Cryptowall

Yes Binary
no significant

improvements
-

[30]
Fuzzy Hashing &

YARA Rules

Hybrid Analysis &

Malshare
PE

Wanna cry

Locky

Cerber

Cryptowall

Yes
Binary &

family
Undefined Improved

[22]

Section based

hashing using

reverse engineering

& ngram

Android Malware

Genome Project
Android

Anserver Bot

Droid KungFu4

Droid KungFu3

KMin

Yes
Binary &

family
- 94%

[31] introduces the need for an efficient method to detect obfuscated mal-

ware in Android-based smartphones. While existing approaches for Android

malware classification exist, they lack the ability to detect obfuscated malware

effectively and adaptively improve their detection rules. The paper proposes

an evolving hybrid neuro-fuzzy classifier (EHNFC) based on soft computing

systems. This EHNFC not only detects obfuscated malware using fuzzy rules

but also evolves by learning new malware detection rules to enhance its accu-

racy. The research modifies an evolving clustering method to incorporate an

adaptive process for updating clustered permission-based features’ radii and

centers. This modification improves cluster convergence and generates rules

better suited to input data, thereby enhancing the EHNFC’s classification ac-

curacy. Experimental results show that the proposed EHNFC outperforms

22



state-of-the-art obfuscated malware classification methods in terms of false

negative and false positive rates (0.05) and achieves a superior accuracy of

90% compared to other neuro-fuzzy systems.

In another similar research, Windows API call sequences were used to

capture the behavior of malicious applications [32]. The Detours library by

Microsoft was used to hook these Win-API call sequences. To simplify the anal-

ysis, related Win-APIs were grouped into 26 categories (A. . . Z). The behavior

of five classes of malware (Worm, Trojan-Downloader, Trojan-Spy, Trojan-

Dropper, and Backdoor) was studied using 400 samples for each class, totaling

2000 samples for training. Additionally, 120 samples for each class were used

for testing. Fuzzy hashing with ssdeep generated signatures, which were then

matched to identify similarities in API call sequences between test and training

samples. This approach yielded promising results in classifying samples into

the five malware categories. N-gram analysis was also conducted to extract

distinct API call sequence patterns for each category.

Li et al. explored in their research the similarity analysis of Control Flow

Graph (CFG), which is a crucial technique for security tasks like malware de-

tection and clustering [33]. Current CFG similarity methods face challenges in

efficiency, accuracy, and user-friendliness. To address these issues, a new fuzzy

hashing method named topology-aware hashing (TAH) is introduced. TAH

works by extracting blended n-gram graphical features from CFGs, converting

these features into numeric vectors (graph signatures), and then measuring

graph similarity by comparing these signatures. Additionally, fuzzy hashing

is used to transform numeric graph signatures into compact fuzzy hash sig-

natures, making similarity calculations more efficient. Extensive evaluations

indicate that TAH outperforms existing CFG comparison techniques in terms

of both effectiveness and efficiency. To showcase TAH’s practical use in secu-

rity analysis, a binary similarity analysis tool based on TAH is developed and

tested. The results demonstrate that this tool surpasses existing similarity
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analysis tools, particularly in the context of malware clustering.

A new technique called APK-DNA, inspired by fuzzy hashing, is intro-

duced for fingerprinting Android apps, with a focus on identifying malicious

ones [34]. APK-DNA computation is efficient and quick for suspicious apps.

Building on the concept that very similar apps might belong to the same

malware family, a cybersecurity framework named Cypider (Cyber-Spider for

Android malware detection) is proposed. Cypider combines various techniques

to address Android malware issues, including clustering and fingerprinting. It

can detect repackaged malware (malware families) and identify new malware

apps automatically and without prior knowledge. The core idea behind Cypi-

der is to create a similarity network based on fuzzy fingerprints of the apps’

static content. From this network, it extracts highly connected sub-graphs,

called communities, which are likely to contain malicious apps.

[35] introduces an innovative approach for enhancing ransomware triag-

ing, involving the integration of augmented YARA rules with fuzzy hashing

techniques. Initially, the study employed ransomware triaging through a com-

bination of fuzzy hashing, import hashing, and standard YARA rules. Specif-

ically, it utilized three distinct fuzzy hashing methods: SSDEEP, SDHASH,

and mvHASH-B, along with the import hashing method IMPHASH, and tradi-

tional YARA rules. The triaging results revealed that the fuzzy hashing meth-

ods consistently outperformed YARA rules and IMPHASH, showcasing their

effectiveness in specific scenarios where YARA rules fell short. Consequently,

augmented YARA rules combined with fuzzy hashing were devised, yielding su-

perior results when compared to individual triaging techniques. Furthermore,

the study assessed the performance efficiency of the fused rules in contrast

to standard YARA rules. The findings indicated that combining YARA rules

with the SSDEEP fuzzy hashing method could achieve nearly equivalent per-

formance efficiency as standard YARA rules. However, it was noted that the

other two fuzzy hashing methods, SDHASH and mvHASH-B, while effective,
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might entail slightly higher performance overheads. The proposed fused YARA

rules exhibited strong performance within the context of the WannaCry cor-

pus and implementation. Future research will involve testing these fused rules

with larger sample sizes and more diverse sets of ransomware and malware,

further assessing their applicability and efficacy.

The research in [36] introduces a novel framework designed to detect ma-

licious Android applications, specifically focusing on those containing repack-

aged malicious code. The framework employs a meticulous process of feature

extraction from Android applications, utilizing their source code. These ex-

tracted features are subsequently compared to existing malware signatures,

allowing for the identification of repackaged malicious Android applications.

To validate the framework’s efficacy, extensive experiments were conducted

using a dataset comprising 3,490 samples of Android-based malware, spanning

21 distinct malware families. The research established a crucial threshold for

categorizing malware, employing fuzzy logic. According to this threshold, if

the fuzzy comparison match exceeds 40%, the application is deemed malicious.

In cases where the match falls between 10% and 40%, the application is la-

beled as suspicious; otherwise, it is considered benign. Remarkably, the results

obtained from the proposed framework showcase its effectiveness. Specifically,

it successfully identifies approximately 74% of repackaged malware instances,

outperforming other similar approaches in this critical domain of cybersecu-

rity. This research offers a promising avenue for enhancing Android malware

detection by targeting the insidious issue of repackaged malicious code, thereby

fortifying the security of Android users.

Sarantinos et al. [37] conducted research centered on evaluating the effi-

cacy and efficiency of fuzzy hashing algorithms within the domain of Malware

Analysis. More specifically, it seeks to highlight the advantages of incorpo-

rating fuzzy hashing techniques like ssdeep, sdhash, mvHash, and mrsh v2 in

the identification of similarities among malware instances. These results will

25



be contrasted with the traditional cryptographic hash functions, such as MD5,

SHA-1, and SHA-256, to provide a comprehensive assessment of their capabili-

ties. Furthermore, this study underlines the strengths and weaknesses inherent

in both fuzzy and cryptographic hashing approaches, along with their practi-

cal utilization in real-world applications. The implementation of fuzzy hashing

emerges as notably successful in pinpointing and correlating similarities among

various malware, including emerging strains within distinct families. This suc-

cess critically relies on two pivotal factors: the selection of the appropriate

fuzzy (SPH) algorithm for similarity detection and the availability of a hash

sample extracted from one or more malware specimens. Collectively, these

elements empower researchers to harness fuzzy hashing as a potent tool for

malware analysis, shedding light on its potential significance in enhancing cy-

bersecurity by bolstering malware detection and facilitating the identification

of emerging threats.

In the landscape of recent cyber threats, there is a noticeable trend where

attackers deploy malware variants that undergo significant updates to their ex-

isting functionalities while introducing new features. These modern malware

strains are not only functionally enhanced but also exhibit improved stealth at-

tributes, employing tactics like obfuscation, encryption, and adaptive behavior

adjustments based on their runtime environment. However, the availability of

skilled malware analysts is limited, which poses a challenge in effectively com-

bating the ever-growing volume of malware instances. Consequently, there is

a growing interest in developing methods that can reduce the costly manual

analysis efforts required to address this proliferation of malicious software. [38]

introduces an innovative approach that integrates dynamic traffic analysis with

static program analysis to tackle this challenge. Similar to traditional tech-

niques, the dynamic analysis segment focuses on feature extraction, clustering,

and labeling to distill traffic data into a sequence of characters. Meanwhile, the

static analysis component leverages Fuzzy Hashing, a method adept at effec-
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tively representing identical partial sections within malware programs. Three

integration patterns are evaluated: prioritizing results from dynamic analysis,

prioritizing those from static analysis, and utilizing the mean of both analy-

ses. Through extensive experimentation involving 340 malware samples and

their associated traffic data, the proposed method demonstrates an impressive

ability to correctly identify 61.1% of the malware instances, showcasing its

potential in automating and enhancing the malware analysis process.

The study [39] delves into an extensive analysis of three prominent An-

droid malware datasets, aiming to quantify the prevalence of repackaged mal-

ware using package name-based similarity assessments. The datasets examined

include 5,560 apps from Drebin, 24,533 from AMD, and a staggering 695,470

from AndroZoo. Results reveal alarming statistics, with 52.3% of Drebin apps,

29.8% of AMD apps, and 42.3% of AndroZoo apps identified as repackaged

malware. Furthermore, this research introduces AndroMalPack, an Android

malware detection system trained on clone-free datasets and fine-tuned us-

ing Nature-inspired algorithms. Despite being trained on reduced datasets,

AndroMalPack demonstrates exceptional detection accuracy of up to 98.2%

and minimal false-positive rates. The study also provides a dataset containing

cloned apps from Drebin, AMD, and AndroZoo, aimed at fostering research in

repackaged malware analysis.

The practice of assigning family labels to malicious Android apps has

long been used to group apps with similar behavior patterns. However, re-

cent studies have unveiled a significant inconsistency in this approach. Apps

bearing the same family label may exhibit distinct behavior, with variations

in functionality. Conversely, apps labeled under different families might dis-

play remarkably similar behavior. To address this issue, the paper introduces

AndrEnsemble [40], a novel characterization system for Android malware fam-

ilies. AndrEnsemble relies on ensembles of sensitive API calls extracted from

aggregated call graphs representing different malware families. This method
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offers several advantages compared to existing approaches, including a superior

reduction ratio in relation to original call graphs, resilience against transfor-

mation attacks, and adaptability for application at various granularity levels.

Through experimental validation and examination of specific use cases, in-

cluding mobile ransomware, SMS Trojans, and banking Trojans, noteworthy

findings emerged. Firstly, these malware types do not consistently employ

multiple sensitive API calls in unison to execute malicious operations. Sec-

ondly, SMS Trojans tend to possess larger ensembles of API calls compared

to other types. Lastly, instances were identified where different malware fam-

ilies shared identical API call ensembles despite being categorized separately.

This research highlights the complexity and variability in Android malware

behavior, emphasizing the need for more precise and nuanced classification

methods.

In recent times, there has been a notable increase in state-sponsored mal-

ware activities. Advanced Persistent Threat groups (APTs) have engaged in

covert cyber conflicts, often avoiding consequences due to the secretive nature

of these operations. To address this issue and potentially impose sanctions, it’s

crucial to attribute the malware used in these attacks. Malware attribution

is a pivotal step in understanding the methods employed by APT attackers,

especially their exploitation of known vulnerabilities to gain access to tar-

get networks. Previous efforts in automated attack attribution have utilized

behavior reports from sandbox environments as inputs for machine learning

algorithms. While this approach is generally reliable, it has limitations. Some

APT files can detect sandbox environments and alter their behavior, leading

to erroneous or inconclusive attributions. Therefore, there’s a need for an al-

ternative technique to extract features for attack attribution. The research by

Kida et al. [41] introduces an innovative framework for lightweight and auto-

mated attack attribution. It leverages fuzzy hashes as natural language input

for machine learning classifiers, enabling the attribution of attacks. Experi-
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mental results indicate that this framework achieves an average accuracy of

89% and an F1-score of 87.5% for both country and APT group classification.

Furthermore, the proposed approach offers a quicker and more efficient method

for attack attribution, enhances in-depth analysis of malware samples, and de-

livers competitive performance compared to state-of-the-art dynamic analysis

attribution tools.

This study in [42] delves into the application of similarity digests, with a

focus on TLSH, in security tasks such as malware identification. TLSH, known

for its robustness against evasion tactics compared to counterparts like ssdeep

and sdhash, emerges as a powerful tool. The research addresses the challenges

of searching and clustering vast amounts of malware and goodware data ef-

ficiently. It introduces innovative techniques that enable rapid search and

clustering of TLSH hash digests. Leveraging efficient nearest-neighbor search

methods and a tree-based index, the proposed threshold-based Hierarchical

Agglomerative Clustering (HAC-T) algorithm exhibits remarkable scalability.

Empirical evaluations against standard clustering methods highlight its supe-

rior performance. Notably, it achieves high purity scores, ranging from 0.97 to

0.98, using data from VirusTotal, showcasing its effectiveness in practice. This

approach promises to significantly enhance the speed and precision of mal-

ware analysis and clustering tasks, making it a valuable addition to security

operations.

Fake IoT applications pose an escalating threat to IoT security due to

their low development costs and high profitability. MSimDroid [43] intro-

duces a pioneering method for detecting fake IoT apps based on multidimen-

sional similarity. MSimDroid concentrates on scrutinizing distribution chan-

nels, such as app markets, using a multifaceted approach encompassing whole

app, resource, and code similarity, supported by a specialized algorithm. A

joint strategy optimally balances accuracy and efficiency. Experiments confirm

MSimDroid’s effectiveness, achieving over 99.31% accuracy on a ground-truth
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dataset and 97.43% in real-world scenarios. Analysis of IoT apps from various

markets reveals that about 14.66% are fake, with malicious behavior detected

in around 0.58% of IoT apps.

Securing cloud platforms and ensuring their resilience is a pressing chal-

lenge, given the multitude of diverse applications sharing resources. Detecting

malware and threats within the cloud is crucial. While machine learning-based

malware analysis has been explored, it often suffers from computational com-

plexity and limited accuracy. Kumar et al. [44] address these limitations and

propose a novel malware detection system by combining clustering and trend

micro locality sensitive hashing (TLSH). The system leverages the Cuckoo

sandbox for dynamic analysis reports, executing files within an isolated en-

vironment. The feature extraction algorithm is applied to extract essential

data from Cuckoo sandbox malware reports. Key features are then selected

through methods like principal component analysis (PCA), random forest, and

Chi-square feature selection. Experimental results are obtained for both clus-

tering and non-clustering approaches using Decision Tree, Random Forest, and

Logistic Regression classifiers. This novel model exhibits enhanced classifica-

tion accuracy and a reduced false positive rate (FPR) compared to existing

methods, all while significantly reducing computational costs.

The proliferation of Android usage in recent years has brought forth a

corresponding increase in security threats, primarily stemming from code reuse

in various applications. In response, Akram et al. [45] introduce DroidSD,

a clone detection tool tailored for Android applications. DroidSD is designed

to identify different types of code clones within APK source code effectively.

This tool can accurately detect Type-1, Type-2, and Type-3 (near-miss) clones

at the source code level, marking a substantial improvement over previous

Android similarity detection techniques. DroidSD is capable of discerning

full and partial similarities among applications and demonstrates impressive

Recall and Precision rates when tested against real-world datasets, solidifying
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its efficacy in Android app code clone detection.

The paper [46] introduces DroidMD, a scalable self-improvement tool de-

signed to detect malicious Android applications at the source code level. This

tool aims to address the increasing threat of Android malware that poses risks

to users and the Android marketplace. DroidMD utilizes an auto-optimization

approach for its signature set, enhancing its ability to identify malware in ap-

plications. The researchers conducted evaluations on a substantial dataset,

consisting of approximately 30,000 applications, including 27,000 benign and

3,670 malware applications. DroidMD excels in detecting malware at both

partial and full levels within applications. Importantly, it analyzes only the ap-

plication’s code, increasing its reliability. The results of the evaluation demon-

strate DroidMD’s effectiveness, achieving a high accuracy rate of 95.5%. This

research contributes to improving the security of Android markets by provid-

ing a robust tool for identifying and mitigating the threat of malware-infected

applications. Table 2.3 presented in the literature review showcases research

endeavors employing cryptographic and similarity hashes for the detection of

Android malware and its variants. This table offers a summary of studies

concentrating on binary and family classification, as well as variant detection,

while also shedding light on the limitations identified within these research

works.
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CHAPTER 3

METHODOLOGY

This chapter covers the details and practical implementation of how fuzzy

or similarity hashes are efficient to perform variant detection and family clas-

sification. Through a systematic and structured approach, we unveil the inner

workings of our methodology, empowering the reader with insights into our

research process. The problem at hand revolves around the detection and

categorization of Android malware and its variants, a critical issue in the

realm of mobile device security. With the proliferation of Android applica-

tions, the risk of encountering malicious software has escalated significantly.

Traditional signature-based detection methods are no longer sufficient to com-

bat the evolving landscape of Android malware, which frequently mutates to

evade detection. Thus, a pressing need exists for a sophisticated approach that

leverages the power of hash values and similarity analysis to identify Android

malware and variants effectively.In this paper we introduced an approach to

detect Android malware using static analysis. The method leverages the ex-

traction of essential features from Android applications to identify potential

malware variants. Similarity hashes are calculated and further processed to

perform binary and family classification of testing apk.

The block diagram displayed in Figure3.1 elucidates the underlying method-

ology upon which our framework operates. This visual representation details

the process of hash calculation, storage, and subsequent comparison following
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the decompilation of APK files and the extraction of features.

Figure 3.1: Working Model of Proposed Framework for Android Malware and

Variant Detection

3.1 Dataset

The dataset utilized in our research was sourced from Drebin [2]. This

dataset is extensive, containing a substantial number of entries, including

123,453 benign and 5,560 malicious Android applications. For the purposes

of our research, we carefully narrowed down the dataset to select 500 benign

applications and 1500 malicious applications, ensuring a representative sample

for our study.

It includes static attributes such as api-call, resource names, features,

methods, and manifest permissions, etc. that are extracted from the APK

files of dataset.
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3.2 Experimental environment

The research experiments were conducted using custom Python appli-

cation programs running on an Ubuntu 21.10 LTS operating system. These

applications were tailored to meet the specific research needs efficiently. The

research environment was hosted on a VMware Workstation 16 virtual ma-

chine, equipped with 8 GB of RAM 4 core processors with hyperthreading,

and a 1.5 TB disk. This setup provided the necessary computational resources

for conducting the experiments effectively. provides a comprehensive break-

down of the external libraries and utilities that were incorporated into the

research framework. Table 3.1 provides a list of external libraries and utilities

that have been used in the development of the experimental environment and

the execution of experiments.

Table 3.1: External Libraries & Utilities

Name Description

apktool A tool used for APK reverse engineering

dex2jar to convert the classes. dex file to classes. jar or vice versa

ssdeep A tool used to generate similarity hashes of files

Virus Total Malware Labelling tool

Malware Bazaar Malware Labelling tool

pymongo Database Library

3.3 Malware Categories and Family Classification

In our study, we have chosen to work with six most popular Android

malware families. Therefore, we have divided our dataset into six primary

categories: trojan, adware, spyware, virus, hacktool and downloader, with each

category containing various malware families. Table 3.2 offers a comprehensive

overview of the malware families that have been integrated into our research.
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The number of malware samples within each family varies randomly, creating

a diverse dataset.

Table 3.2: Malware Categories and Included Families

Malware

Category

Malware

Families

Trojan

droidrooter, smsflood, rooter, fakeplayer, smssend, fakemobi,

droidsms, droidkungfu, opfake, fakeinst, ginmaster, gmaster,

gapev, kungfu, andr, legana, plankton, plangton

Adware
plankton, plangton, leadbolt, kungfu, droidkungfu, andr, startapp,

ginmaster, gingermaster, gmaster, apperhand

Spyware
droidsnake, mobilespy, flexispy, fspy, smsrep, replicator, gpsspy,

smsreplicator, gpspy, tapesnake

Virus Ginmaster, gingermaster, gmaster

Downloader ddlight, lightdd, dordrae, ozotshielder, kmin

Hacktool hacktool, lotoor

To ensure the accuracy and consistency of our categorization, we adopted

the malware classifications and family information from Malware Bazaar and

VirusTotal. This approach ensures that our dataset aligns with widely recog-

nized malware taxonomies, enhancing its reliability for research and analysis.

To facilitate efficient data management and retrieval, we stored this catego-

rized data, along with the SHA256 hash of each APK file, into a centralized

database. This structured database allows us to organize, query, and analyze

the dataset effectively.

3.4 Selection of Fuzzy Hashes

We opted for ssdeep in our research due to its remarkable efficiency

and accuracy in identifying similarities when compared to alternative hash-
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ing methods. A research conducted by Baba et al. evaluates the performance

of nine different fuzzy hashing techniques. The results shown in Table 3.3

determines which hash function outperforms the rest in terms of efficiency.

Additionally, the overview presented by Botacin et al. [47] highlights

that among the recently published works, ssdeep emerges as the most widely

adopted similarity hash function for detecting similarities between two files.

This preference is indicative of its reliability as an approach. Moreover, the

comparative analysis presented by Naik et al. [48] conclusively demonstrates

that the SSDEEP fuzzy hashing method outperforms the other two methods,

SDHASH and mvHASH-B, in the context of similarity detection.

Table 3.3: Performance of Fuzzy hashes [1]

Accuracy Precision Recall

impfuzzy 0.8871 0.8869 0.8874

ssdeep 0.6993 0.6996 0.6979

TLSH 0.6187 0.6187 0.6189

imphash 0.7284 0.7284 0.7277

totalhash 0.6705 0.6704 0.6704

endgame 0.6701 0.6698 0.6680

anymaster 0.6959 0.6959 0.6959

crits 0.6238 0.6237 0.6242

pehashng 0.6836 0.6836 0.6833

3.5 Feature extraction & selection

Optimizing accuracy in Android malware detection necessitates a crucial

step: feature selection post-feature extraction. Our extensive research and

detailed analysis on components of Android applications, has led us to pinpoint

the most effective features for this purpose.
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3.5.1 APK file Size

Android malware often disguises itself in compact applications to evade

detection and facilitate quick downloads. It is observed that malware samples

tend to have considerably smaller file sizes compared to benign apps. Typically,

benign applications are approximately three times, or even more, the size of

their malware counterparts [49]. By monitoring and comparing the sizes of

Android applications extracted from APK files, we can identify unusually small

apps, which may indicate the presence of malware.

3.5.2 Permissions

Malicious applications frequently request excessive or suspicious permis-

sions to gain unauthorized access to sensitive data or device functions. Ana-

lyzing app permissions extracted from the Manifest.xml file is critical. It helps

identify apps that seek permissions beyond what is necessary for their legit-

imate functionality. Fuzzy hashes can be employed to identify similarities in

permission patterns among apps. This aids in detecting apps with suspicious

permission profiles.

3.5.3 Fuzzy Hash

Fuzzy hashing is employed to identify similarities between files, even

when they undergo slight modifications. Comparing fuzzy hash values com-

puted from the content of Android apps can help detect variations of known

malware and previously unseen threats.

3.5.4 Features

The AndroidManifest.xml file contains essential information about the

app’s components and their functionalities. Malware may hide malicious be-

haviors in the manifest. Extracting manifest features aids in understanding an

app’s declared functionalities. Anomalies or discrepancies in the manifest can
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indicate malicious intent. Fuzzy hashing can highlight these discrepancies or

similarities in manifest features among apps, assisting in the identification of

hidden malicious intents.

3.5.5 Activities

Activities can be extracted from the AndroidManifest.xml file within the

APK, where they are declared along with their associated attributes. Activi-

ties and actions define how an app interacts with users and other components.

Malicious apps might exploit these components to carry out harmful actions.

Monitoring activity and action usage helps pinpoint apps attempting to per-

form malicious activities through deceptive interfaces or unexpected actions.

Fuzzy hashing can help identify apps that share similar activity and action

patterns, indicating potential malicious behavior.

3.5.6 Services

Services are declared in the AndroidManifest.xml file, similar to activi-

ties. Examining this file reveals the services defined within the APK. Services

are background processes in Android that perform tasks independently of the

user interface. They are often used for long-running operations such as down-

loading files or playing music in the background. Services are often used by

malware to run malicious operations discreetly. Analyzing services can help

identify hidden, potentially harmful background activities.

3.5.7 Intent

Intents are typically defined in Java code and XML files. By examining an

app’s source code, you can identify the intents it uses or registers. Intents are a

messaging mechanism used for communication between components within an

app or between different apps. They can request actions or pass data between

components. Suspicious or malicious intents can be monitored to identify apps
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trying to communicate with or manipulate other apps in unauthorized ways,

which may indicate malware activity.

3.5.8 Content Providers

Content providers can be extracted from the AndroidManifest.xml file,

which lists the providers and their permissions. They are also identified by

their Uniform Resource Identifier (URI) in code. Content providers manage

access to structured data, allowing data sharing between different apps. They

provide a structured interface to interact with data stores, like databases or

files. Examining content providers is crucial for identifying unauthorized data

access, which could be indicative of data theft or misuse by malware.

3.5.9 Broadcast Receivers

Broadcast receivers are declared in the AndroidManifest.xml file and as-

sociated with specific events or messages they can receive and respond to.

Broadcast receivers listen for system-wide events or messages, such as device

booting or incoming SMS messages. They can respond to these events or trig-

ger specific actions in response. Malicious apps may use broadcast receivers to

intercept sensitive data or execute unauthorized actions when certain events

occur. Monitoring these receivers is crucial for detecting suspicious behavior.

3.5.10 Source Class Package and Method Name

It can be extracted from classes.dex file of an APK. The source class

package provides insights into the origin of code within the app. It reveals

potential third-party or obfuscated code. Examining the source class package

assists in identifying suspicious code origins. Malware often incorporates code

from untrusted sources. fuzzy hashes can assist in comparing source class

packages and method names across apps, making it easier to spot code reuse

and obfuscation techniques.
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3.5.11 API Calls

API calls can be extracted by decompiling APK using tools like ’apktool’

and ’dex2jar’. These are a set of protocols and tools that allow different

software applications to communicate with each other. In simpler terms, API

calls are like a language that software uses to interact with other software,

enabling them to perform various tasks and functions. Malware belonging to

the same family often exhibits common imported API functions, allowing for

their recognition through similarity hashes like impfuzzy hash.

3.5.12 Certificate Owner

Certificates used to sign apps provide information about their legitimacy.

Applications with similar functionalities can use similar certificates. Fuzzy

hashes can be used to identify malware variants by spotting similar certificates

used by parent malware.

3.6 Data collection and formation of Hashes

Data collection involved the utilization of two Python programs. The

initial program was designed to create and archive ssdeep similarity hashes

corresponding to the extracted features of identified APK files. The subsequent

program was responsible for evaluating the feature hashes of a selected APK

file by comparing them to the entries stored within the database, thereby

deducing potential family associations.

3.7 Variant Identification & Family Classification

Traditional cryptographic hash functions, such as MD5 and SHA1, are

celebrated for their security applications. However, they exhibit a significant

drawback: even the slightest alteration in input data, differing by just one bit,

yields entirely distinct hash values. While this property is invaluable for data
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integrity and security verification, it falls short when handling samples that

closely resemble known malware.

This is where similarity hash functions come into play. In our research,

we categorized our dataset into various malware categories, as previously men-

tioned in Table 3.2. Unlike some other studies [22], where the entire file or

folder’s fuzzy hash is used for malware detection, we took a different approach.

We gathered fuzzy hashes from features extracted specifically from APK files

to assess accuracy in both malware categorization and family classification.

Figure 3.2: Foundational Architecture of Proposed Framework for Android

Malware and Variant Detection

The results of our experiments across different malware categories are
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presented in Tables 4.2, 4.3, 4.4, and 4.5 in the results section. This approach

allowed us to focus on the specific attributes that matter most for accurate

malware categorization and family classification, offering a nuanced and effec-

tive method for enhancing Android malware detection.

Algorithm 1 Calculating & Storing ssdeep Hash to DB

0: procedure func Hash(input, db)

0: hash← calculateSsdeepHash(input)

0: SaveHashToDB(hash, db)

0: end procedure

0: function func Hash(input)

0: hash← ssdeep.hash(input)

0: return hash

0: end function

0: procedure SaveHashToDB(hash, db)

0: ConnectToDB(db)

0: InsertHashIntoDB(hash)

0: CloseDBConnection()

0: end procedure

=0

3.8 Detailed Explanation of proposed method

Our primary objective was to establish a comprehensive database en-

riched with cryptographic and similarity hashes, derived from the extracted

static features of well-known malware APK files. Figure 3.2 provides an il-

lustrative overview of the fundamental operations of our proposed framework

designed for the detection of Android malware and its variants. To accom-

plish this foundational task, we initiated the development of a Python script,

designed to obtain SHA256 hashes. These hashes not only helped in the iden-
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tification of known malicious applications, but also in linking features and

sub-features with their parent APK files.

To address the complex task of variant detection, we integrated a robust

tool named ssdeep into our program. Ssdeep is renowned for its proficiency in

calculating fuzzy or similarity hashes, a crucial technique that would enable

us to detect Android malware variants with greater similarity. This inclusion

helped our methodology to not only identify malware but also distinguish

between different variants of the same malicious application. The pseudocode,

as depicted in Algorithm 1, elucidates the process by which the calculation is

performed to obtain fuzzy hashes and how stored in the database.

Algorithm 2 Calculate Similarity Index

0: for each record d in db do

0: reference value← GetSHA256valuefrominput apk

0: for each feature in d1 do

0: if key not in keys to skip then

0: similarity index ← Compare the values of features in d1 and d2

using ssdeep

0: OUTPUT feature+ ” : ” +match score

0: Net similarity index ← add similarity indexes with the same

reference value

0: if similarity index < 40 then

0: OUTPUT ”APK with SHA256” +reference value+ ”is benign”

0: else

0: OUTPUT ”APK with SHA256” +reference value+ ”is Mali-

cious”

0: end if

0: end if

0: end for

0: end for=0
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In another process shown in Algorithm 2 we initiated by obtaining the

SHA256 hash of the testing APK, preserving it for later use. Subsequently,

the same APK underwent decompilation using tools like apktool and dex2jar,

enabling us to extract the necessary features. We then computed fuzzy hashes

for these extracted features, facilitating comparison with the hashes stored in

our reference database.

A visual representation of the same process can be derived by referring to

Figure3.3, which illustrates a block diagram depicting the calculation of fuzzy

hashes and the subsequent computation of similarity indices. This figure pro-

vides an indepth overview of the entire process, enhancing the understanding

of how fuzzy hashes are calculated and similarity indices are determined.

3.8.1 Setting Threshold Value

To set threshold values, our methodology drew insights from existing

research conducted by Shiel et al. [6], Lee et al. [7], and Ali et al. [36]. The

similarity index generated by ssdeep spans from 0 to 100, where 0 signifies

dissimilarity, and 100 indicates similarity between files. To categorize the

testing APK, we instituted a threshold. If the similarity index yield by ssdeep

falls below the threshold value, the APK is classified as benign. Conversely, if it

surpasses the threshold value, the APK is identified as suspicious or potentially

malicious. Existing research presented by Lee et al. [7]and Ali et al. [36]

states that threshold values typically range between 0-10 for benign, 10-40 for

suspicious, and 40 or above for malicious applications. Taking into account

the findings from prior research, we established a threshold at the value of 40.

This thresholding process ensures precise classification of Android applications,

enhancing our malware detection and variant identification capabilities.
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Figure 3.3: Detailed Architecture of Proposed Framework

3.8.2 Performance metrics

In the context of malware detection, there are four possible outcomes

named as True Positive/False Positive, True Negative/False Negative. The

45



detail of these outcomes has been described in Table3.4

Table 3.4: Possible Outcomes in Malware Detection domain

Output Description

True Positive (TP)

A true positive occurs when the

detection system correctly

identifies a sample as malware.

True Negative (TN)

A true negative happens when the

detection system correctly identifies

a sample as benign (not malware).

False Positive (FP)

A false positive takes place when the

detection system incorrectly flags a sample

as malware when it is actually benign.

False Negative (FN)

A false negative occurs when the

detection system mistakenly categorizes

a sample as benign when it is actually malware.

In 2015, Upchurch and Zhou introduced a framework called ”Variant” [50]

for testing programs that detect malware variants using similarity comparisons.

They also introduced key performance metrics that depend upon true/false

outcomes that are discussed above. These key metrics are:

Precision: Measures the accuracy of correctly classified samples. It is the

ratio of correct positive to all positive (correct & incorrect) diagnoses.

Precision = TP/(TP + FP ) (3.1)

Recall: Evaluate the algorithm’s ability to find relevant instances. It is

the ratio of correct positive diagnoses to correct positive and incorrect negative

diagnoses (when the inputs are all malware)

Recall = TP/(TP + FN) (3.2)
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F-Measure: A harmonic mean that considers both Precision and Recall,

providing an overall measure of performance.

F −Measure = 2 ∗ (Precision ∗Recall)/(Precision+Recall) (3.3)
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CHAPTER 4

ANALYSIS & RESULTS

This chapter gives the evaluation of this work. We compute and eval-

uate recall, precision, and accuracy metrics to gauge the effectiveness of our

framework and finally, we discuss the experimental results for the proposed

approach. This empirical assessment forms the basis for drawing meaningful

conclusions regarding the capabilities of our malware detection approach.

4.0.1 Testing Setup and Experimentations

The experiments were designed to assess the detection system’s perfor-

mance. To achieve this, we partitioned the malicious dataset, consisting of 2000

files, into two segments: 80% (1600 files) were utilized to build a database with

their corresponding hashes, while the remaining 20% (400 malicious) were re-

served for testing purposes. In our subsequent experiments, we introduced an

additional dataset comprising 500 benign APK files. This addition served the

purpose of assessing the accuracy of our binary classification model, allowing

us to evaluate its performance comprehensively.

In the database creation phase, we employed a hashing mechanism to

generate fuzzy hashes for features of the 1600 malicious files, storing these

hashes with SHA256 of APK in a MongoDB database. These fuzzy hashes

serve as reference points for comparison during the testing phase.
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Table 4.1: Similarity Index & Feature Analysis for Binary Classification

Api

call
Perm. Url Provider Feature Intent Activity Call

Srvc

rcvr

Real

perm.
Net SI

SI w/o

PFI

1 0 0 0 100 12 100 0 0 0 30 24.2% 3%

2 0 0 0 100 26 40 0 0 0 0 16.6% 0%

3 54 19 100 100 26 100 0 0 100 30 52.9% 30.3%

4 0 0 0 0 26 36 0 0 0 0 62% 0%

5 0 0 0 100 22 100 0 0 0 0 22.2% 0%

6 0 0 0 0 26 0 0 0 100 0 12.6% 10%

7 0 0 0 100 26 40 0 0 0 0 16.6% 0%

8 0 0 0 0 21 40 0 0 0 0 6.1% 0%

9 0 0 100 100 21 40 0 0 0 0 26.1% 10%

10 0 0 0 0 26 40 0 0 0 0 6.6% 0%

During testing, we subjected individual APK files to the detection sys-

tem. To ensure a robust assessment, we configured the system with a base

threshold value of 40. This threshold value plays a critical role in determining

the outcomes of the testing phase.

Table 4.2: Similarity Index for Variant Identification & Family Calssification:

Spyware

Api

call
Perm. Url Provider Feature Intent Activity Call

Srvc

rcvr

Real

perm.
Net SI

1 0 0 0 100 62 57 0 0 0 40 25.9%

2 100 100 0 100 54 100 0 100 100 36 69%

3 0 50 0 100 12 62 0 0 0 0 32.4%

4 0 0 0 0 62 620 0 0 0 11 13.5%

5 0 0 0 100 24 40 0 0 0 0 16.4%

6 0 0 0 0 62 52 0 0 0 40 15.4%

7 0 31 0 100 12 40 0 0 0 30 21.3%

8 35 35 0 0 24 20 0 0 0 0 11.4%

9 32 0 0 100 12 40 0 0 0 0 18.4%

10 29 50 0 0 31 40 0 0 0 32 18.2%

The recorded outcomes of the testing phase are categorized as follows:

(a) True Positive: This outcome signifies that the detection tool accurately
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predicted the malware family to which the input APK file belonged. In

other words, it correctly identified the family of the input file.

(b) False Negative: In contrast, a false negative result indicates that the tool

erroneously predicted a different malware family than the actual one. It

incorrectly attributed the input APK file to a different family.

(c) True Negative: When the detection tool accurately predicted that the

input APK file did not belong to the family being examined, it falls into

the category of true negatives. It correctly identified files that were not

part of the family under scrutiny.

(d) False Positive: Conversely, a false positive result suggests that the tool

made an incorrect prediction by associating the input APK file with the

family being analyzed when, in reality, it did not belong to that family.

Table 4.3: Similarity Index for Variant Identification & Family Calssification:

Adware

Api

call
Perm. Url Provider Feature Intent Activity Call

Srvc

rcvr

Real

perm.
Net SI

1 0 0 0 100 12 40 0 35 0 0 18.7%

2 38 0 0 0 21 54 0 33 0 0 13.6%

3 0 0 0 100 21 63 0 0 0 0 18.4%

4 0 0 0 0 31 50 0 35 0 0 11.6%

5 0 0 0 0 21 13 0 0 0 0 3.4%

6 0 0 0 0 57 63 0 0 0 0 12%

7 36 0 0 100 12 64 0 0 0 0 21.2%

8 0 0 0 100 19 40 0 27 0 0 18.6%

9 85 63 0 100 62 44 0 25 68 86 53.3%

10 85 72 74 100 62 100 100 44 80 93 81%

Initially, we calculated the Similarity Index of benign applications with

malicious applications to identify the performance of our framework. After

manual feature analysis of static attributes of APK files, we also calculated the
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net Similarity Index excluding features that caused more false positives. The

experiment results are presented and analyzed in a Tables 4.1, 4.2, 4.3, 4.4,

4.5. The data contained within these tables provide valuable insights into

the computation of True Positives (TP), False Positives (FP), True Negatives

(TN), and False Negatives (FN). In our analysis, we computed the net simi-

larity index of an application both with and without the inclusion of columns

labeled as provider, feature, and intent. Our findings revealed that these spe-

cific features significantly contributed to a higher false positive rate, introduc-

ing unwanted noise in malware detection. Consequently, the exclusion of these

features resulted in clearer and more precise outcomes. Table 4.1 exhibits sim-

ilarity indices for benign applications in relation to various malicious samples

along with feature analysis.

Table 4.4: Similarity Index for Variant Identification & Family Calssification:

Trojan

Api

call
Perm. Url Provider Feature Intent Activity Call

Srvc

rcvr

Real

perm.
Net SI

1 0 0 100 0 2 40 0 0 0 0 16.4%

2 0 53 0 17 24 64 0 0 0 0 13.8%

3 0 0 0 0 12 40 0 0 0 11 6.3%

4 0 0 0 0 31 100 0 0 0 0 13.1%

5 100 83 100 100 100 100 0 100 0 100 78.3%

6 0 0 0 0 54 62 0 0 0 11 12.7%

7 0 0 0 0 46 64 0 0 0 0 11%

8 0 0 0 0 57 63 0 0 0 0 12%

9 100 100 100 100 100 100 100 100 100 100 100%

10 100 100 100 100 100 100 100 100 100 100 100%

On the other hand, we conducted an analysis of randomly selected ma-

licious samples from all considered categories to examine their similarity with

malware hashes stored in the database. During comparison, the sample gener-

ates a net similarity score against each malware hash. If this score equaled or

exceeded our set threshold value (in this case, 40), we categorized the testing
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sample as belonging to a particular malware family. Results are documented

in Tables 4.2, 4.3, 4.4, and 4.5, providing a structured presentation of our re-

search findings. For a more visual representation, Figures 4.1, 4.2, 4.3, and 4.4

are used to graphically depict the data from these tables, enhancing the clar-

ity of our results. Subsequently, we computed critical performance metrics,

including precision, recall, and F1 Score. Moreover, we assessed the overall

accuracy of our framework.

Table 4.5: Similarity Index for Variant Identification & Family Calssification:

Hacktool

Api

call
Perm. Url Provider Feature Intent Activity Call

Srvc

rcvr

Real

perm.
Net SI

1 39 0 0 100 12 100 0 38 0 30 31.9%

2 0 50 0 100 31 40 0 0 0 32 25.3%

3 100 46 100 100 100 100 100 48 100 100 89.4%

4 0 0 100 100 0 0 0 0 100 0 30%

5 0 0 0 100 31 40 0 54 0 0 12.5%

6 46 100 100 0 100 100 100 100 100 100 84.6%

7 0 0 0 100 31 40 0 44 0 0 21.5%

8 0 50 0 100 31 40 0 0 0 31 25.2%

9 0 50 0 100 31 40 0 0 0 31 25.2%

10 0 40 0 100 12 40 0 32 0 50 27.4%

To provide a comprehensive overview of the binary classification results,

we thoughtfully recorded values for True Positives (TP), True Negatives (TN),

False Positives (FP), and False Negatives (FN). Furthermore, for a more de-

tailed assessment, we compiled Tables 4.6 and 4.7, which outline the recall,

precision, and accuracy metrics for both binary and family classifications, re-

spectively. These tables serve as valuable references for understanding the

effectiveness and reliability of our classification methods.
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Figure 4.1: Graphical representation of Family Classification: Spyware

Figure 4.2: Graphical representation of Family Classification: Adware
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Figure 4.3: Graphical representation of Family Classification: Trojan

Figure 4.4: Graphical representation of Family Classification: Hacktool

The final segment of our research entails a comprehensive comparative

analysis of existing studies. We have visualized this comparison through the

use of graphical representations, specifically in the form of bar charts and line

graphs, presented in Figure4.5 and Figure4.6. These visuals provide a clear and
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illustrative depiction of the data, facilitating a more in-depth understanding

of the comparative findings.

Table 4.6: Results for Binary Classification of APK files

Method TP FP FN TN Recall Precision F1 Score Accuracy

With PFI 1.2% 3% 1.8% 94% 1.26% 28% 2.41% 95.2%

Without PFI 1.2% 2.4% 2.4% 95.18% 1.24% 33% 2.39% 96.4%

Table 4.7: Comparison Results for Family Classification and Variant Detection

Method TP FP FN TN Accuracy Precision Recall F1 Score

Karbab et al. [22]

Base Paper I
- - - - - 89% 84% 86%

Shiel et al. [6]

Base Paper II
40.25% 9.75% 9.75% 40.25% 80.5% & 94% 81% 81% 81%

Proposed Framework 13% 1.6% 1.6% 83% 96.67% 88% 88% 89.7%

Figure 4.5: Bar Graph of Proposed Methodology with Existing Research
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Figure 4.6: Line Graph of Proposed Methodology with Existing Research
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CHAPTER 5

CONCLUSION & FUTURE WORK

The primary objective of this research was to enhance the detection of

Android malware and its variants. Through the utilization of fuzzy hashes

derived from the static features of APK files and their subsequent compari-

son with malware feature hashes, a substantial improvement in detection rates

and accuracy was achieved. Similarity hash functions prove highly effective for

malware detection without requiring the execution of files. While earlier ap-

proaches mainly focused on generating similarity hashes for entire executable

files or specific file sections like files and directories, our approach is distinc-

tive. We implemented a similarity hash algorithm on the static attributes of

decompiled APK files. We then compared these hashes with those of known

malicious APKs to calculate similarity scores. This approach enabled us to

determine whether a test app is malicious and, if so, to classify it into the ap-

propriate malware family. What makes our work remarkable is that it achieved

a remarkable 96.67% accuracy improvement without relying on complex ma-

chine learning or deep learning techniques. The outcomes were encouraging,

surpassing other state-of-the-art methods by a significant 2.67% margin.

Moreover, we conducted an in-depth analysis of APK file features to pin-

point which ones contribute effectively to detection and which ones introduce

unnecessary noise. By reducing the use of inefficient features, we significantly

enhanced the accuracy of classifying benign applications. In essence, our re-
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search not only presents a novel approach but also optimizes the detection

process by focusing on the most relevant APK features. In today’s rapidly

evolving technological landscape, the sophistication of malware continues to

advance. To ensure the continued success and relevance of our research, it be-

comes imperative to enrich malware repositories and databases with a broad

spectrum of up-to-date malware hashes. This will enable our framework to

adapt and thrive in the face of evolving threats.

The ever-evolving nature of malware necessitates a commitment to ongo-

ing research and development. To further augment our research and enhance

its practical applicability, future work should focus on enriching databases with

up-to-date malware apk files and more analyzed features. The integration of a

threat intelligence platform can also mark a significant step toward enhancing

malware detection. By integrating such a platform, our system can dynami-

cally extract and incorporate the latest information and intelligence related to

emerging malware threats. This integration would play a pivotal role in con-

tinually populating our database with the most current and relevant malware

hashes.
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APPENDIX A

import ssdeep

import json

# Define the list of dictionaries to compare against

with open(’fuzzy_HASHES.json’, ’r’) as file1:

data1 = json.load(file1)

# Define the dictionary to compare against the list

input_dict = {

"sha256": "4bf0f0cb2b10c9bad568eec092e600

f51bff60670103e91431e3bf6e92d4777b",

"api_call": "3:KyRMjKTA5rlRVmJ9jiBXXBwK17vPg/

9B5TRh6ibBA

plrNCi9BIAsmEs0RM:EKMplRMJ9j0XBwCvY/9B/AKmzrsgBIjc",

"permission": "3:icAIDkRgR6hFcaMBIDkRgR6T/

cRcaMBIDs6bgxFi9BIDy31X

BID3jgSyq3Tcxkn:icAxRgIWaMBxRgO/cyaMB5a0Fi9BnZBQ",

"url": "3:5OGKs0F30F30F30F30n:TKlMMMk",

"provider": "3::",

"feature": "3:icAnDRKQahAKgBnDJKTRMXHLhXBnDJ

KTRMR1HBnDJKTRMvSM

O:icANK0pBVKTWL9BVKTyHBVKTJMO",

"intent": "3:icAGRAlwGxvR3Tcxk6BGRAlwGxgkpKMBGRAlyQKGn

:icAGewGxvR3QRBGewGxhpKMBGeyQKGn",

"activity": "3:1ORZcn:Ocn",

"call": "3:nzjN2nE:n8E",

"service_receiver": "3:5LORTn:5LORT",

"real_permission": "3:icAIDkRgR6hFcaMBIDy31XBIDs6bgxn

:icAxRgIWaMBnZB5a0n"

}

# Define keys to skip during comparison
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keys_to_skip = ["sha256", "submission_date", "label"]

# Function to compare dictionaries using ssdeep

def compare_dicts(dict1 , dict2):

match_scores = {}

sha256_value = dict2["sha256"]

for key in dict1:

if key not in keys_to_skip:

match_score = ssdeep.compare(dict1[key], dict2[key]

)

match_scores[key] = match_score

return sha256_value , match_scores

output_file = "result6.txt"

with open(output_file , "w") as f:

# Compare the input_dict with each dictionary in the

list_of_dicts

for other_dict in data1:

sha256_value , match_scores = compare_dicts(input_dict ,

other_dict)

print(f"Comparison with sha256 value ’{sha256_value} ’:"

, file=f)

for key , score in match_scores.items():

print(f"{key}: {score}", file=f)

print("", file=f)

# Data sample for malware category and family classes

[{"sha256": "a2b4f6918034895

fd3948123ec18bb46fcd1d91468f

5c7d829e3b220e680d280",

"malware_category": ["trojan","adware"],

"malware_family": ["airpush", "plangton", "plankton"]},

{"sha256": "5d7ba82561d1c161c16f9d5a719894

b8784c8d1af3faac3f127410751e7cc80e",

"malware_category": ["trojan","adware"],

67



"malware_family": ["airpush", "plangton", "plankton"]},

{"sha256": "ac3561b823fc0aaa9c3b15fb8e1e710e79899479653a

71b74644ab9aa201e197", "malware_category": ["trojan","

adware"],

"malware_family": ["airpush", "plangton", "plankton"]},

{"sha256": "763e46727b29a0fd994b9fbb1ea9

346b03c31a54d19ffcde66e4d15498e49a11",

"malware_category": ["trojan","adware"],

"malware_family": ["airpush", "plangton", "plankton"]},

{"sha256": "2c745f3ae79d2e078e7e38c21cb12a

ecd7be09a30fc7f9ad02dd5344e1015b6e",

"malware_category": ["trojan","adware"],

"malware_family": ["airpush", "plangton", "plankton"]},

{"sha256": "666b9646e8bf8b3610dc72ae10e38a2c5c

16c836336960ab64ab6c748f788126",

"malware_category": ["trojan","adware"],

"malware_family": ["airpush", "plangton", "plankton"]},

{"sha256": "85eb6c81ccc7fc19e20c55e0aea5a

5afbe3d45d8ac502de1ea72376303965aea",

"malware_category": ["trojan","adware"],

"malware_family": ["airpush", "plangton", "plankton"]},

{"sha256": "d521b8787d8641993c14f4feb103

d1b4114eb6bce5184f04409c800ba898f9d9",

"malware_category": ["trojan", "virus", "adware"],

"malware_family": ["ginmaster", "gingermaster", "gmaster"]}

,

{"sha256": "e321f789d60e11f39f8d73a4f2c2dd45

d90975d8bc6bd7504d06d8aa6a270e84", "malware_category": "

trojan ",

"malware_family": ["plankton", "plangton", "andr"]}

]
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