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Abstract

The classification of land cover and crop types through the anal-

ysis of satellite imagery is a fundamental task with wide-ranging

implications in the fields of agriculture, environmental monitoring,

and urban planning. This research embarks on a comprehensive

journey to explore advanced methodologies for precise land cover

classification and crop type identification, utilizing high-resolution

satellite images as its primary data source. Leveraging the Eu-

roSat dataset as a valuable resource, we harness the potential of

cutting-edge deep learning models, with a focal point on DenseNet,

renowned for its capacity to extract intricate features from remote

sensing data. A meticulous data preprocessing pipeline is applied,

encompassing image resizing, normalization, and class aggregation,

to optimize the input data for superior model performance. The

outcomes of this study underscore the remarkable ability of mod-

ern neural networks to capture the nuanced characteristics of land

cover and crop types within satellite imagery, emphasizing their

effectiveness in addressing real-world challenges across diverse ap-

plications. Moreover, this research outlines promising avenues for

future exploration, including the development of fine-grained crop

classification techniques, temporal analysis methods, and the inte-

gration of multi-sensor data fusion, all aimed at further enhancing

the precision, adaptability, and practicality of land cover and crop

type classification models.
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CHAPTER 1

1 INTRODUCTION

The process of recognizing and classifying various types of land cover and

crops existing in a specific location is referred to as land cover and crop type

categorization. Aerial photography, satellite imaging, and ground surveys are

frequently used in this process. The improvement of the current systems for

gathering and developing agricultural maps and data sources relies heavily on

satellite and geographic information data. Remote sensing (RS), a popular

method for gathering required data, provides a practical method for obtain-

ing accurate information about the land cover that is affordable and practical.

RS has been employed extensively over the past few decades, particularly for

agricultural techniques to obtain sustainable agricultural goals [1]. The key

methods for estimating the degree of geographical diversity inhabited by dif-

ferent crops are crop identification and classification.

1.1 The Land Cover

In satellite images, the classification and identification of different types

of land on the Earth’s surface are known as Land Cover (LC). The presence

of water bodies, the type, and density of vegetation, as well as the extent of

human-made features such as roads, buildings, and houses, can be observed

with details in satellite data of the land cover. The spectral characteristics

of various surface features are often used to classify land cover [2]. Satellite

sensors can monitor the distinct spectral signature of each surface feature that

measures the reflected radiation from the surface of earth.

Environmental monitoring, disaster management, resource management, and

agriculture are just a few of the many uses for satellite-based land cover clas-

sification. Vegetation cover, determining locations that might be utilized for

crop production, and the estimation of natural disasters can be monitored by

using land cover classification. In general, understanding and monitoring the

Earth’s surface land cover classification is the best tool. Land cover classifica-

tion also supports a variety of applications that require information about the

different types of land[3].

1.1.1 Types of Land Cover

Several types of land cover can be recognized and divided into separate

groups using their spectral characteristics, including forest, grassland, farm-
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land, aquatic bodies, and urban regions. There are many types of land cover

but we are focusing on three major types as shown in Figure 1. The green

color represents grasslands, the yellow color represents cereal crops, and the

red color shows the unused area on Earth’s surface.

Figure 1: “Map of Land Cover Types” Wikipedia Commons.

The term “Land Cover” refers to both biological and physical features that

cover the surface of the earth. Three most prevalent types of land cover are

grasslands, cereal crops, and unused areas[4].

1.1.2 Grasslands

The large area of flat, open, or rolling ground that is covered by grasses

and non-woody plants is defined as grassland. Except for antarctica, they are

found on every continent. Grasslands can be divided into two main types:

tropical and temperate grasslands.

A. Tropical grasslands

Tropical grasslands have a distinct dry and rainy season as well as usually mild

temperatures. This is also sometimes called savannas. Wildebeest, zebra, and

giraffes are large feeding species and they live there along with carnivores like

jackals and lions. Tropical grasslands get 500 to 1500 mm of rain per year.

They have large expanses of grass and a few scattered trees.

B. Temperate grasslands

In comparison to tropical grasslands, temperate grasslands also referred to

2



as prairies, can be found in areas with lower temperatures and more moderate

rainfall. Along with wild animals like coyotes and wolves, they are home to

grazing animals like bison and antelope.

Grasslands are a crucial component of the ecosystem since they are utilized for

grazing, agriculture, and the sustenance of a diverse range of plant and animal

species. Yet, issues including overgrazing, climate change, and human growth

also pose a threat to them [5].

1.1.3 Cereal crops

A group of grasses cultivated largely for their edible seeds or grains are

known as cereal crops. Many crops are growing in the world but cereal crops

are some of the most important staple crops. These crops also contributed

significantly to the world’s food supply. Rye, maize, wheat, oats, barley, and

wheat are a few examples of cereal crops as shown in Figure 2.

Figure 2: “Examples of Cereal Crops, First image represents Corn, second

Rice, Third Wheat, Fourth Soybean, Fifth Potato” Data Source: Wikipedia[6],

Last access: 02/03/2023).

These crops are grown on farms in large quantities and can be used for many

purposes. These crops are also used for biofuels, and industrial applications,

as well as for animal feed and human consumption. Furthermore, cereal crops

are an important component of many national economies and this is also an

important source of income for farmers.
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Seasons of Cereal Crops

The planting and harvesting season of these crops is dependent on the specific

crop and the area in which it is grown. Typically, cereal crops are separated

into two types: winter cereals and spring cereals.

1) Winter Cereals

Winter cereals like barley, oats, and wheat are usually planted in the fall.

This is allowed to grow in all winter months. As I early discussed, these crops

are planted in the winter season but these crops can only survive the winter

months before maturing. These crops are harvested in the spring or early

summer.

2) Spring Cereals

These crops are planted in the spring when the risk of frost has passed, and

the soil h has warmed up. Corn and sorghum are examples of spring cereals.

Typically these crops flourish and are harvested at the end of summer.

Weather patterns, regional agricultural methods, and soil quality are only a

few examples of variables that may have an impact on the specific time period

of planting and harvesting cereal crops.

1.1.4 Unused Areas

The areas of land that are not currently being used for a specific purpose

or that are not being significantly managed are referred to as unused areas

in land cover. Deserted farmland, clear-cut woods, fallow fields, and regions

damaged by natural disasters like floods, degraded terrain, or wildfires are

examples of unused areas in land cover. Active management and restoration

techniques have the capability to be rehabilitated and restored these areas.

This can help to improve ecosystem services, soil quality, and biodiversity.

Types of Unused areas in land cover

There are several types of unused areas in land cover, including:

1) Fallow fields

The earth may recover and restock its nutrients because these fields have not

been planted for a period.
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2) Degraded land

Human activities like poor land management techniques, overgrazing, or min-

ing are the biggest reason for harming specific areas. These suffering areas are

known as degraded land.

3) Urban vacant lots

The areas that are not being used for any specific purpose are located within

urban areas like parks or buildings known as urban vacant lots.

4) Clear-cut forests

The areas of forest that have been fully cleared of trees, mainly for timber

or agriculture purposes.

5) Natural disaster sites

The areas are unsuitable for human activities because they have been damaged

by natural disasters like landslides, wildfires, or floods.

1.2 Introduction to Crop Classification

The process of identifying the different crops planted in a specific area

using satellite images is known as crop classification. It is one of the important

applications of remote sensing technology. It can provide useful information

for yield estimation, land-use planning, and crop management. This process

involves pre-processing the satellite data, then extracting features from the im-

age, and after that identifying the crop type by using classification algorithms.

Numerous techniques and approaches are used for crop classification, such as

object-based classification, and supervised and unsupervised classification[7].

It can be challenging due to a number of factors including cloud cover, sea-

sonal variations in vegetation cover, and mixed-crop regions. Moreover, recent

developments in remote sensing technologies have increased the accuracy and

effectiveness of crop classification.
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1.2.1 Approaches to Classifying Crop Types

Crop-type classification can be done by using multiple approaches and

these approaches provide meaningful information about crop selection, yield

optimization, land use planning, and agricultural planning and management.

Following are some typical methods for categorizing different types of crops.

1) Seasonal classification

The crops that are planted at a specific time of year are known as seasonal-

based classification. Kharif crops or Rabi crops are examples of seasonal based

classification.

Kharif crops

The crops planted in the rainy season and harvested in the fall are known

as kharif crops. This classification is frequently employed in those countries

that have monsoon climates. In these countries, the rainy season lasts from

june to september. Rice, maize, cotton, soybean, and sugarcane are some ex-

amples of kharif crop types.

Rabi crops

Crops known as rabi those are planted in winter season (between october

to december) and are harvested in the spring season (between february to

april). These crops are grown in those countries where the rainy season ends

by september or october, and the winter season is suitable for cultivation.

Wheat, mustard, peas, barley, and gram are the examples of rabi crops. These

crops dependent on irrigation facilities, and require less water compared to

kharif crops.

2) Agronomic classification

This classification based on cultural practices. Crops can grow on the bases of

cultural practices like fertilization, pest management, and irrigation.

3) Botanical classification

This method classifies crops on the bases of their taxonomic properties, like

genus, species and family.
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4) Commercial classification

In commercial classification, crops classify on the base of their end use or

market value, like industrial crops, food crops, and cash crops.

5) Climatic classification

Climatic classification classifies crops based on their adaptability to differ-

ent environmental conditions, such as arid crops, temperate crops, or tropical

crops.

Each of these methods offers a different viewpoint on various crop types and

can help with decisions about crop management and production. Researchers

and decision-makers can gain a more thorough understanding of crop produc-

tion and the variables affecting its performance by integrating several method-

ologies[8].

1.3 Applications of Land Cover and Crop Classification

Identifying potential dangers, keeping track of troop movements, and

identifying regions of interest are just a few examples of how Land Cover

Classification can be used in military applications.

1.3.1 Environmental monitoring

Land Cover Classification is a useful tool that can provide information

on the distribution and extent of natural resources, such as grasslands, water

bodies, and wetlands. This information is useful for environmental monitoring

and management purposes.

1.3.2 Urban Planning

In urban planning, Land Cover Classification can provide valuable infor-

mation about the distribution and extent of urban areas. This information is

very beneficial for disaster management, urban planning, and infrastructure

development.

1.3.3 Forestry

The classification of Land Cover can provide valuable information re-

garding the overall health of the forest, forest cover, and forest cover. This

7



information can prove beneficial for monitoring of reforestation and deforesta-

tion activities, management of forests, and conservation efforts.

1.3.4 Agriculture

In the agriculture field, crop type classification provides insights into

the type of crops. It also gives information about crop distribution. This

information is very useful for resource allocation, crop management, and yield

prediction.

1.3.5 Supply Chain Optimization

Classification assists in identifying regions with suitable conditions for

potato cultivation, aiding in procurement and supply chain management. Mon-

itoring crop types and land cover helps ensure a consistent supply of high-

quality potatoes for chip production.

1.3.6 Yield Prediction

Classification provides data for predicting wheat yields, helping govern-

ments and organizations prepare for potential shortages and plan import/export

strategies accordingly.

In Conclusion, Land Cover and Crop Classification can provide useful infor-

mation for different fields, like environmental monitoring, urban planning,

forestry, agriculture, military applications, and climate change.

1.4 Dataset Details

RS has been employed extensively over the past few decades, particularly

for agricultural techniques to obtain sustainable agricultural goals. Many re-

searchers and scientists have contributed to the development of LC and CC

techniques. According to my best knowledge, Anderson et al. in the 1970s first

contributed to the Land Cover and Crop classification system. Jensen in the

1980s contributed to the image processing approach for land cover mapping.

The development of machine learning algorithms for land cover classification

started in the 2000s[9].

Land Cover and Crop Classification is a challenging task for researchers due

to mixed pixels, crop variability, and spectral confusion. For several years,

land cover and crop type classification studies have been interested in Remote

Sensing.
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1.4.1 EuroSAT Dataset

In Paper [10] EuroSAT dataset was created by the Technical Univer-

sity of Munich in Germany, led by Johannes Schmidhuber. This dataset was

created using sentinel-2 satellite imagery which is operated by the European

Space Agency (ESA). The satellite can capture images in 13 spectral bands, in-

cluding visible and near-infrared wavelengths because the satellite is equipped

with Multi-Spectral Instrument (MSI).

The euroSAT dataset consists of 27,000 images, which is divided into 10 differ-

ent Land Cover Classes such as agricultural land, forest, urban areas, perma-

nent crops, industrial areas, pastures, water bodies, railway tracks, meadows,

and highways.The EuroSAT dataset is roughly balanced.

In EuroSat dataset Annual Crop and River Class contains 3000 labeled images,

Forest class contains 2300 images, Vegetation class has 3500 images, Residen-

tial class has 2900 images, SeaLake and Highway class contains 2500 images,

Industrial class has 1500 images, PermanentCrop has 2000 images and Pasture

class contains 3800 images. This information is also represented in Figure: 3.

Graphically EuroSat dataset is represented in Figure 3.

Figure 3: ”EuroSat Class Graph: Number of images shown in the correspond-

ing class”

Each image consists of a resolution of 64x64 pixels and is evenly balanced.

All images in the dataset are labeled with their corresponding class. It was

published in 2017 as part of the IEEE International Geoscience and Remote

9



Sensing Symposium (IGARSS) conference. This dataset can be used for land

cover classification and also for different machine learning and deep learning

applications like object detection, classification, and image segmentation. The

EuroSAT dataset has become a popular benchmark dataset in the field of

machine learning and remote sensing and has been used in many studies to

evaluate the performance of various classification algorithms and models. This

dataset can be accessed freely from the official website of the Technical Uni-

versity of Munich.

There are two versions of the EuroSAT dataset available: EuroSAT RGB

and EuroSAT NIR.

1.4.2 EuroSAT RGB dataset v1.0

The EuroSAT RGB version contains 27000 labeled images that covering

10 different land cover classes in Europe. Each image consists of a resolution

of 64x64 pixels and evenly balanced. Each image in the dataset is labeled with

the corresponding land cover class, and the dataset is evenly balanced across

all classes.

1.4.3 EuroSAT NIR dataset v2.0

In addition to the 13 bands of the RGB version, the Near-Infrared (NIR)

band is included in the EuroSAT NIR version. The NIR band is helpful for

monitoring vegetation since it can give information on the health and density

of the vegetation. The same 10 land use types from the RGB version are

covered by the 27,000 annotated photos in the EuroSAT NIR version. The

photos have the same spatial resolution and coverage area as the RGB version.

The EuroSAT datasets are both freely accessible for academic study and are

widely used as benchmark datasets in the fields of remote sensing and machine

learning.
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Figure 4: ”Sample image patches of EuroSAT Dataset”

Sample image shown in Fig: 4, patches of all ten classes covered in the

proposed EuroSAT dataset. The images measure 64 × 64 pixels. Each class

contains 2000–3000 images. In total, the dataset has 27,000 geo-referenced

images. (a) Industrial buildings. (b) Residential buildings. (c) Annual crop.

(d) Permanent crop. (e) River. (f) Sea and lake. (g) vegetation. (h) Highway.

(i) Pasture. (j) Forest.

1.4.4 Band Characteristics

The 13 spectral bands of the EuroSAT dataset, which is presented in Ta-

ble:1 offer a wealth of data for the classification of land use and other machine

learning applications. The reflectance of vegetation, water, and man-made

buildings are only a few examples of the various landscape characteristics that

each spectral band records and can be used to differentiate between various

land use classes.
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Table 1: All 13 bands covered by sentinel-2’s multispectral imager (MSI)

Bands Central-

Wavelength

(nm)

Resolution

(m)

Band 1(B1) —Coastal 443 60

Band 2(B2) — Blue 490 10

Band 3(B3) —Green 560 10

Band 4 (B4)— Red 665 10

Band 5(B5)—Vegetation Red

Edge

705 20

Band 6(B6)—Vegetation Red

Edge

740 20

Band 7(B7)—Vegetation Red

Edge

783 20

Band 8 (B8)— NIR 842 10

Band 8A (B8A)— Narrow NIR 865 20

Band 9 (B9)— Water Vapor 945 60

Band 10 (B10) — SWIR 1375 60

Band 11 (B11) —SWIR 1610 20

Band 12 (B12) — SWIR 2190 20

The EuroSAT dataset’s spectral bands typically offer a distinctive per-

spective of the environment that can be utilized to differentiate between various

land use groups. A more precise and thorough representation of the landscape

can be made by merging data from several bands. This representation can

then be utilized for a variety of purposes, including land use classification,

vegetation monitoring, and urban development planning[11].

1.5 Problem Statement

Current methods struggle to accurately classify Land Cover and Crop

types from satellite images, which are essential for applications like crop mon-

itoring and environmental assessment. However, Land Cover and Crop type

classification is a challenging task due to factors like mixed pixels, crop vari-

ability, and spectral confusion. Our current focus lies in utilizing deep learning

techniques to improve the accuracy of land cover and crop type classification

by effectively managing both the dataset and the model.
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1.6 Objectives of Research

The following are the study’s particular objectives:

1) The focus of the proposed work is to first perform land cover classifi-

cation by identifying fields from the surroundings.

2) The focus is to identify the area in which a particular crop is cultivated

based on its type.

3) A significant objective is to support companies like Lays in optimizing

their supply chains.

4) The goal is to establish a proper classification with a high degree of

accuracy.
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CHAPTER 2

2 RELATED WORK

In this section, we explore the studies that utilize conventional machine

learning algorithms, such as random forest, support vector machines (SVM),

and logistic regression. We will also explore the advancement into deep learn-

ing algorithms, specifically applied to data collection techniques and satellite

imagery.

2.1 Land Cover Classification

In this paper [12] H. Fahmi et.al explores computer vision for land cover

mapping, emphasizing patch-based change detection over pixels. Three CNN

architectures, LeNet-5, VGG-16, and ResNet-50 are compared for euroSAT

land cover classification. ResNet-50 achieves the highest validation accuracy

of 0.877 with reasonable training time. LeNet-5 is quick but inaccurate, while

VGG-16 has the longest training time with the highest test score of 0.878.

ResNet-50 is the recommended model for patch-based land cover classification

using EuroSAT data.

Debella-Gilo et.al presented in [13] seasonal agricultural land cover types using

deep learning on sentinel-2 image time series they used sentinel-2 satellite im-

age time series (SITS) over the land area of Norway to map three agricultural

land use classes: cereal crops, fodder crops (grass) and unused areas. The mul-

tilayer perceptron (MLP) and two variants of the convolutional neural network

(CNN) are implemented on SITS data of four different temporal resolutions.

The results obtained on held-out test data show up to 94% overall accuracy. It

is further observed that cereal is predicted with the highest accuracy, followed

by grass. Predicting the unused areas is difficult as there is no distinct surface

condition that is common for all unused areas.

Vittorio Mazzia et.al in [14] Proposed a novel architecture for Land Cover

and Crop Classification (LCCC). In this paper, they proposed a deep learning

model for pixel-based that is developed and implemented based on Recur-

rent Neural Networks (RNN) in combination with CNN using multi-temporal

sentinel-2 imagery of the central north part of Italy. They also tested widely

used traditional machine learning algorithms for comparisons such as support

vector machine SVM, random forest (RF), Kernal SVM, and gradient boosting

machine. The overall accuracy achieved by the proposed R-CNN was 96.5%,
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which showed considerable improvements in comparison with existing main-

stream methods.

In this study [15] J. Pan et.al investigates the application of joint ICESat-

2 and Landsat 8 OLI data for land cover classification in Yunnan province,

China. The proposed method, which employs random forest, achieves greater

accuracy for both five and four types of land cover, with further enhancements

from feature selection. The researchers emphasize the importance of terrain

factors, canopy photon count, and solar conditions in land cover classification

in complex terrain areas. The findings suggest the potential of photon count-

ing data in land cover classification.

In this research [16] Y. Cao et al investigate a two-step ensemble protocol

for LULC classification proposed using a grayscale-spatial-based Genatic Al-

gorithm (GA) model. Fuzzy c-means is used in the first ensemble framework

to classify pixels into easy and difficult clusters, reducing the search space for

evolutionary computation. The second ensemble framework uses neighborhood

windows as heuristic information to adaptively modify the GA objective func-

tion and mutation probability, improving discrimination and decision-making.

The proposed method achieves rapid convergence, reduces noise, and maintains

image details in three research areas in Dangyang, China, with an overall ac-

curacy of 88.72%, outperforming reference methods. Accurate LULC maps

have potential applications in urban planning and precision agriculture.

2.2 Crop type Classification

Zhiwei Yi et.al presented in [17] crop classification in the shiyang river

basin of China using multi-temporal sentinel-2 data. Multi-temporal sentinel

2 data were applied to the random forest algorithm to generate the crop clas-

sification map at 10 m spatial resolution. Four experiments with different

combinations of feature sets were carried out to explore which sentinel-2 infor-

mation was more effective for higher crop classification accuracy. The results

showed that the augment of multi-spectral and multi-temporal information of

Sentinel-2 improved the accuracy of crop classification. Compared with other

bands, red-edge band 1 (RE-1) and shortwave-infrared band 1 (SWIR-1) of

sentinel-2 showed a higher competence in crop classification. A relatively ac-

curate classification (overall accuracy = 0.94) was obtained by utilizing the

pivotal spectral bands and dates of the image.

Hongwei Zhao et.al presented in [18] five deep learning models for crop type

mapping using sentinel-2 time series images with missing information. In this

paper, they explored the performance of five deep learning models (i.e., the
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1D CNN, LSTM, GRU, LSTM-CNN, and GRU-CNN) for crop type mapping

using sentinel-2 time series data (TSD) with missing information. The results

show that although the total missing rate of the sample TSD was approxi-

mately 43.5%, the 1D CNN, LSTM-CNN, and GRU-CNN all achieved accept-

able classification accuracy (above 76%). Moreover, when compared with using

filled TSD, they recalled more samples on crop types with small parcels than

when using unfilled TSD. Although LSTM and GRU did not attain accuracies

as high as the other three models using unfilled TSD, their results were almost

close to those with filled TSD.

Teimouri N et.al presented in [19] a novel spatiotemporal fully convolutional

network and a long short-term memory (FCN-LSTM) network for recognizing

various crop types using multi-temporal radar images. Radar sensors are ca-

pable of imaging earth’s surface independently. In this research, they proposed

a novel network structure for combining an FCN and a ConvLSTM network.

The proposed network can be trained by using c-band radar images and can

extract spatiotemporal features from them. The average pixel-based accuracy

and IoU of the proposed network were 86% and 0.64, respectively. The errors

were mostly located at field boundaries. One of the main advantages of the

proposed network is the detection of fields that are likely annotated incorrectly

in the reference images. One of the important but complex classes in this re-

search is the background, which includes extensive regions including lakes, sea

areas, forests, buildings, and roads. The pixel-wise accuracy in this class was

88% despite the complexity of the class.

K. Kenduiywo et.al [20] present an approach to enhance crop classification

by utilizing expert knowledge and TerraSAR-X multitemporal images. The

method employs dynamic conditional random fields (DCRFs) with duplicated

structures to encode phenology information from both image-based and expert-

based sources. The results show that higher-order DCRFs (HDCRFs) offer the

best accuracy, and the ensemble method outperforms conventional techniques.

This approach has the potential to provide more accurate land cover informa-

tion, which can aid in agricultural management and monitoring.

In this paper [21] Hengbin Wang et.al proposes the CC-SSL framework, a

self-supervised learning crop classification method that can classify crops with

few or no labeled samples. It incorporates the Sim-SCAN algorithm, a tensor

transformation module, and a sample processing module to maintain sample

balance. The experimental results indicate that richer tensor forms improve

accuracy and better characterize crop growth patterns. Additionally, main-

taining sample balance through data augmentation improves performance and
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produces classification results that exceed supervised learning. Even with re-

duced labeled samples, the CC-SSL framework can achieve comparable clas-

sification performance and robustness to supervised learning. Overall, this

approach has the potential to reduce resource consumption while improv-

ing crop classification accuracy for agricultural management and monitoring.
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Table 2: The land cover and crop classification summary of the related work.

In this table the acronyms are used; DCNN: Deep Convolutional Neural

Network;U-Net; R-CNN: Recurrent – Convolutional Neural Network

Authors Year Sensor Technique No

of

Class

Main Findings

Y. Cao et

al (1)

2023 EuroSAT Genetic Algo-

rithm

6 Two-step ensemble-based

genetic algorithm achieved

overall good results

S. Ghosh

et.al (2)

2022 EuroSAT ResNet-50,

LeNet-5,

VGG-16

10 ResNet-50, achieve 0.777,

LeNet-5 trains quickest but

with low accuracy, VGG-16

has highest test score

J.Pan

et.al (3)

2022 ICESat-

2

Random For-

est

7 hybrid classification

achieves good result as

compared to single

Vittorio

Mazzia

et.al (4)

2020 Sentinel-

2

R-CNN 5 Incorporating temporal fea-

tures from Sentinel-2 time-

series data improved

DebellaGil

et.al (5)

2021 Sentinel-

2

U-Net 4 showed improved results

with image time series data

Zhiwei Yi

et.al (6)

2022 Sentinel-

2

Random For-

est classifier

and SVM

4 Random Forest classifier

achieved a good result as

compared to SVM

Hengbin

Wang

et.al (7)

2022 Landsat

8 OLI

CC-SSL 11 This approach has the po-

tential to reduce resource

consumption while improv-

ing crop classification accu-

racy for agricultural man-

agement and monitoring.

Hongwei

Zhao

et.al (8)

2021 Sentinel-

2 satel-

lite

CNN, LSTM,

GRU, RNN,

LSTM-CNN

7 Models able to classify crop

types accurately even with

missing data

Teimouri

N et.al

(9)

2019 Radar

Images

FCM-LSTM 6 FCN-LSTM achieved high

accuracy for crop recogni-

tion using multi-temporal

radar images.

K.

Kenduiywo

et.al (10)

2017 Radar

images

HDCRFs 4 crop classification using

expert knowledge and

TerraSAR-X multitemporal

images
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2.3 Analysis of Related Work

A literature review of land cover and crop type classification would likely

summarize the current state of research and development in this field. It would

likely include studies on the various techniques used for analyzing land cover

and crop images, including pixel-based, patch-based, and object-based tech-

niques as well as the accuracy and reliability of these methods.

According to this literature review, Land cover and crop classification are still

challenging tasks. Although there is a lot of work done before but there are

still some gaps in accuracy that we can meet using the EuroSAT dataset. Some

authors also used this data set and achieve good results, but we can improve

it more with data preprocessing and filling in the missing information in the

dataset. A lot of work is done before using machine learning and deep learn-

ing approaches but, for a more accurate land cover and crop classification, we

need to handle the dataset and deep learning model by filling in the missing

information.

The first research objective aligns with the identified gap by focusing on land

cover classification, specifically by isolating fields from their surroundings. This

step addresses the challenge of mixed pixels and contributes to refining the clas-

sification process. The second objective directly addresses the complexity of

crop type classification by aiming to identify the specific areas where a par-

ticular crop is cultivated based on its type. This addresses the challenge of

crop variability, contributing to more precise and detailed classifications. The

third objective links the research to practical applications by highlighting the

goal of supporting companies like Lays in optimizing their supply chains. This

connection between research and real-world applications emphasizes the signif-

icance of accurate land cover and crop type classification in industries reliant

on agricultural products. The fourth objective reinforces the overarching aim

of the research, emphasizing the establishment of a proper classification with a

high degree of accuracy. This aligns with the broader research gap of improv-

ing the accuracy of land cover and crop type classification through effective

management of both the dataset and the model.
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CHAPTER 3

3 Methodology

Deep Learning (DL) is a branch of artificial intelligence concentrating

on instructing neural networks to extract information from immense quan-

tities of information and make smart choices. It includes developing deep

neural networks with several layers that are capable of autonomously pick-

ing up characteristics or interpretations that are structured from unprocessed

data. Deep learning models can acquire these characteristics by analyzing the

data, as compared to typical machine learning techniques, which depend on

manually creating attributes. Deep learning works in a number of renowned

fields, including bioinformatics, natural language processing (NLP), robotics

and control, cybersecurity, processing medical data, remote sensing, and many

others [22]. Health care, visual identification, fraud detection, self-driving cars,

automatic handwriting production, language translation, and deep dreaming

are a few examples of applications for deep learning. A simple pipeline is

shown in the following figure: 5 for LC and CC.

Figure 5: A simplified overview of Land Cover and Crop Classification process

shown in this diagram

The classification of crop types and land cover also depends extensively on DL.

Because of their capacity for handling extremely large and complicated infor-

mation, DL models tend to be appropriate for tasks involving the classification

of crop and land cover types. They are capable of successfully extracting and
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learning characteristics at different degrees of conceptualization, enabling the

identification of local as well as global structures in pictures. Deep learning

models are flexible and useful in many remote sensing applications because

they can deal with variations of satellite sensor properties along with infor-

mation resources. Deep learning has made major strides in the classification

of crop types and land cover, allowing for more precise and effective tracking

and mapping of farming practices and land resources. These developments

have consequences in numerous fields, particularly agricultural precision, sus-

tainable development, and managing land, and they allow for better resource

allocation and making choices.

Input Image: Input image describes either pre-processed or raw imagery

from a satellite. It is used as the input of the algorithm for classifying crop

types and land cover by representing visual information obtained by satellite

sensors.

Image Pre-Processing: Different processes are applied to the input image

during image pre-processing to improve the input picture’s quality and prepare

it for analysis. Improve the breadth of the training data, it might involve scal-

ing the image to maintain a constant size, normalizing pixel values, minimizing

noise, and performing methods for data augmentation such as rotations and

flips.

Feature Extraction: In feature extraction, the pre-processed image is used

to extract significant and useful features. For this objective, deep learning ap-

proaches are frequently employed. The model acquires the ability to identify

hierarchical attributes at various degrees of abstraction, starting with basic

features (e.g., boundaries and patterns) and gradually working up to more

complicated and esoteric features.

Classification: A classification technique is then used to categorize the input

image into a particular category of land cover or crop type after the relevant

features have been retrieved. Deep learning and machine learning algorithms

are typically employed for this.

3.1 Feature Extraction

The process of converting unprocessed data into a collection of repre-

sentative features that successfully capture important details and patterns is

known as feature extraction, and it is a critical stage in both machine learning

and pattern recognition. A subset of relevant features is chosen from the raw

data, and then they are changed into a more appropriate format. The overall

dimension of data is reduced by eliminating unnecessary or redundant features.

Approaches like statistical calculations, and techniques based on deep learning

can all be used for feature extraction. Techniques for feature encoding are used

to transform some non-numerical data types into numerical representations.
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The amount of dimension is decreased through feature extraction, and the re-

trieved features offer a more accurate visualization of the data. The efficiency,

accuracy, and generalization performance of machine learning algorithms are

then enhanced by using these features as input.

3.2 DenseNet

DenseNet is another cutting-edge deep neural network architecture that

is designed for computer vision tasks and image classification. DenseNet, short

for ”Densely Connected Convolutional Networks”. It was first presented by

Gao Huang and colleagues in their article titled ”Densely Connected CNN”

in 2017. DenseNet overcomes several of the drawbacks that plague traditional

convolutional neural networks, including information flow, effectiveness of pa-

rameter usage and vanishing gradients. Each layer receives input from all pre-

vious layers within the same block and this is the core idea behind DenseNet

is to create densely connected blocks of layers [23]. This dense connectivity

improves feature reuse and information spread through the network, which

improves potentially resolving the vanishing gradient issue and gradient flow.

Due to the concatenation (.) function used by DenseNet; the output of feature

map must contain the input that is used to produce that output.

3.2.1 DenseNet Architecture

The fundamental unit of the DenseNet design is referred to as a ”Dense

Block.” A Dense Block is made up of a collection of layers. Each layer within

a block receives as input the concatenated feature maps from all preceding

layers Figure: 6 shows the architecture of DenseNet. This design offers the

following notable advantages:

Feature Reuse: In dense architecture each layer has access to the fea-

tures of all preceding layers. This connectivity enables feature reuse. By doing

this, the network can use the input data to learn more discriminative features.

Gradient Flow: The vanishing gradient problem is mitigated by the

dense connections within the network, which enable gradient signals to prop-

agate through shorter paths during backpropagation. This characteristic sig-

nificantly contributes to easing the challenges associated with training.

Parameter Efficiency: Dense connectivity promotes parameter shar-

ing by allowing each layer to receive input from preceding layers, leading to a

reduced total parameter count compared to traditional architectures.
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DenseNet models are commonly identified by their depth and growth

rate. The growth rate specifies the number of features generated by each

layer in a dense block. Meanwhile, the network’s depth is defined by the

quantity of dense blocks and the layers they contain. Diverse versions of

DenseNet, including DenseNet-121, DenseNet-169, and DenseNet-201, have

been developed, each with distinct configurations. These architectures have

demonstrated exceptional performance on multiple image classification bench-

marks. Their strength lies in a fusion of skip connections and feature reuse,

culminating in networks that are both efficient and remarkably expressive. Like

other modern architectures, DenseNets are also available as pre-implemented

models in popular deep-learning frameworks.

3.2.2 DenseNet Architecture layers

The DenseNet architecture comprises essential elements: dense blocks,

transition layers, and auxiliary layers. Let’s explore each component’s intrica-

cies.

Convolutional Layer (Initial Convolution): This layer functions

as the initial access point of the network and is tasked with processing the

input image. It encompasses a collection of convolutional filters that adeptly

acquire low-level features from the provided image.

Dense Block: The central element of the DenseNet architecture is

the dense block, a group of layers organized in a densely connected manner.

Each layer in this block receives input from all prior layers within the same

block, encouraging the sharing of features and information propagation. The

outputs of these layers are concatenated along the channel dimension, forming

a composite feature map that is information-rich. Each layer in a dense block

typically encompasses operations like convolution, batch normalization, and

activation, often ReLU. The growth rate parameter dictates the number of

new feature maps produced by each layer, influencing the model’s complexity

and expressive capabilities.

Transition Layer: Transition layers regulate the spatial dimensions

(height and width) of feature maps during their traversal through the network.

These layers commonly incorporate a blend of 1x1 convolutional layers and

down-sampling methods like average pooling, aimed at diminishing the spatial

dimensions. Moreover, transition layers play a role in curbing the quantity of

feature maps, effectively addressing the computational intricacy of the network.
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Figure 6: DenseNet: The orange block shows the convolution layers, yellow

block show the pooling layer and Green block show the classification and there

are three dense block
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Global Average Pooling Layer: Towards the conclusion of the

DenseNet architecture, following the final dense block, a common practice

involves the implementation of a global average pooling layer. This step aims

to transform the feature maps into a standardized representation of fixed di-

mensions. The procedure entails calculating the mean value for each channel

across the spatial dimensions of the feature map. This strategic pooling oper-

ation accomplishes two objectives: capturing the holistic global context of the

data and downsizing the spatial dimensions to a consistent size.

Fully Connected Layer (Output): The global average pooled fea-

tures are typically linked to one or more fully connected layers, ultimately

generating the network’s output. In image classification scenarios, the last

fully connected layer’s neuron count aligns with the dataset’s class number.

This output is then processed through a SoftMax function to yield class prob-

abilities.

In brief, the DenseNet architecture comprises linked dense blocks, with

each block incorporating densely connected layers. These dense blocks are

interwoven with transition layers that manage spatial dimensions and feature

map scales. This design fosters feature reuse, tackles gradient vanishing con-

cerns, and optimizes parameter utilization. DenseNets have showcased effec-

tiveness across diverse computer vision tasks and have displayed remarkable

performance on image classification benchmarks.

3.3 EfficientNet:

EfficientNet, an innovative convolutional neural network architecture,

adeptly balances performance and computational efficiency. Proposed by Mingx-

ing Tan and Quoc V. Le in their 2019 paper ”EfficientNet: Rethinking Model

Scaling for Convolutional Neural Networks,” this framework introduces a new

paradigm for scaling neural networks [24]. Central to its effectiveness is com-

pound scaling, which uniformly adjusts the network’s depth, width, and res-

olution using a single scaling parameter. This holistic methodology ensures

a harmonious growth across all dimensions, sidestepping the limitations of

singular dimension focus.

3.3.1 EfficientNet Architecture:

Architecture employs depthwise separable convolutions to reduce com-

putation while preserving essential features. Additionally, inverted residual
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blocks combine expansion layers, depthwise convolutions, and projection lay-

ers for efficient information processing. EfficientNet employs the Swish activa-

tion function for enhanced training, features global average pooling for context

capture, and includes fully connected layers for classification. With variants

denoted as EfficientNet-Bphi, the architecture adapts to diverse computational

resources, excelling in various computer vision tasks. In essence, EfficientNet

embodies a balance between precision and efficiency, reshaping deep learning

model design.

3.4 ResNet

ResNet is a deep learning model that was unveiled in 2015 by the re-

searchers at Microsoft research. It was created to tackle the issue of disap-

pearing gradients in very deep neural networks, which may affect their efficacy

and make training challenging. The utilization of residual blocks is the core

concept of ResNet. The residual block performs as a network module that

connects every layer of the network model. ResNet employs the summation

method (+), which accepts input and output, with the first layer’s output

serving as the third layer’s input. ResNet has been widely used for a variety

of computer vision applications, including image segmentation, image classifi-

cation, and object detection. It has attained outstanding results on numerous

standard datasets [25].

3.4.1 ResNet Architecture

ResNet-50 or Residual Neural Network is a cutting-edge deep learning

model. In the network architecture, ResNet (Residual Neural Network) intro-

duces skip connections or shortcuts. In order to resolve the vanishing gradient

issue and enabling the training of very deep networks, these skip connections

allow the network to train the residual (difference) mapping of the output

and input of a block. The residual block serves as the fundamental idea

in ResNet. Following batch normalization and activation functions (usually

ReLU), a residual block is based on several convolutional layers having smaller

filter sizes. The skip connection, which connects the block’s input and out-

put immediately, is the most important new feature. The skip connections

enable the gradient to flow directly through the block’s input to its output be-

cause it allows the network to skip one or more convolutional layers. It shows

that the block can learn the residual mapping, which is the difference between

the various block’s input and output. The block’s output can be calculated

mathematically as follows:

Output = Activation (Convolution (Input)) + Input
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The operations that are performed within the block are represented by the

Convolution and Activation. The addition of the Input to the transformed

output ensures that the network can learn to adjust the input by adding or

subtracting the residual mapping. In deeper networks, specifically, this residual

learning is more effective than learning the entire mapping from scratch.

3.5 Classification

Classification, within the realms of machine learning and remote sensing,

entails categorizing input data into separate classes or categories based on their

distinct attributes. This procedure entails training a model on a dataset that

is annotated with labels corresponding to specific classes. Once the model has

been trained, it can subsequently predict the class affiliations of new, previously

unseen data points. In the context of land cover and crop type classification,

this methodology is employed to discern the types of land and crops featured

within satellite images. The accuracy of these classifications is determined by

assessing their correctness across different geographical regions. The process

involves segmenting large-scale satellite images into distinct classes, a step

undertaken to facilitate the computation of accuracy.

3.5.1 How is Classification done?

Classification using architectures like ResNet, DenseNet, and Efficient-

Net involves leveraging their deep and intricate structures. In these models,

the input data, often images, are processed through multiple layers that cap-

ture increasingly abstract features. Each architecture’s unique design, such

as ResNet’s residual blocks, DenseNet’s dense connectivity, and EfficientNet’s

compound scaling, enhances feature extraction. After processing, global aver-

age pooling and fully connected layers produce the final class predictions. Dur-

ing training, these networks learn to differentiate features of different classes,

allowing them to classify new data based on learned patterns, resulting in ac-

curate and robust classification outcomes.
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CHAPTER 4

4 EXPERIMENTAL PROTOCOL AND EVAL-

UATIONS

The Experimental Protocol and Evaluations chapter includes the outlines

of the methodology used to carry out the study, including details about the

participants, materials, procedures, and measures used to collect and analyze

data. The key elements included in this chapter are as description of the

sample size, eligibility criteria, and demographics of the participants involved

in the study. The goal of the Experimental Protocol and Evaluations chapter

is to provide enough information for other researchers to be able to replicate

the study. It is written in clear, concise, and detailed language to ensure that

the methods are easily understood.

4.1 Testing data and Methodology

The EuroSat dataset is derived from data captured by the Sentinel-2.

Specific images from the Sentinel-2 mission are selected for inclusion in the

EuroSat dataset. EuroSat contains 10 different classes named AnnualCrop,

Forest, Vegetation, Highway, Industrial, Pasture, PermanentCrop, Residential,

River, and SeaLake. All classes encompass the testing data available. In

this dataset, we do not have crop classes. EuroSat dataset is appropriate for

land cover classification, but crop classification is a challenging task with this

dataset. As we know, the EuroSat dataset consists of 10 land cover classes.

All classes are purely labeled. We can consider the “Vegetation” category as a

parent or SuperCategory. This category represents all types of vegetation land

cover, which includes both natural vegetation and cultivated crops. Within the

”Vegetation” category, define subclasses or subcategories to represent specific

crop types. These subclasses include different types of crops such as wheat,

corn, rice, soybeans, potato etc. Assign each image to one of the crop-type

subclasses within the ”Vegetation” parent category. By doing this, now we

have 10 superclasses and 5 subclasses. Now we will compute the accuracy of

all classes collectively by applying different models such as DenseNet, ResNet,

and Efficient Net. The DenseNet performs outstanding to compute the overall

accuracy so we will apply the DenseNet for all the classes [15].

4.2 Accuracy

Accuracy is the number of samples accurately predicted from all the

datasets. More precisely, divided by the number of true positives, true neg-
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atives, false positives and false negatives, it is known as the number of true

positives and true negatives.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

4.2.1 Precision

Precision is a metric used in binary and multiclass classification to eval-

uate the accuracy of the positive predictions made by a model. It is defined as

the ratio of true positive predictions to the total number of instances predicted

as positive (sum of true positives and false positives). Precision is expressed

by the formula: [6].

Precision =
TruePositives

TruePositive+ FalsePositive
(2)

4.2.2 F1 Score

The F1 score is a metric used in binary and multiclass classification that

combines both precision and recall into a single value. It is the harmonic mean

of precision and recall and is particularly useful when there is an uneven class

distribution. The formula for the F1 score is:

F1Score =
2 ∗ Precision ∗Recall

Precision+Recall
(3)

4.2.3 Recall

Recall, also known as Sensitivity or True Positive Rate, is a metric used

in binary and multiclass classification to evaluate the ability of a model to

correctly identify all relevant instances from the total number of actual positive

instances. It is defined as the ratio of true positive predictions to the sum of

true positives and false negatives. The formula for recall is:

Recall =
TruePositive

TruePositive+ FalsePositive
(4)

4.3 Confusion Matrix

A confusion matrix is a measurement that is used to solve classification

problems. This measurement can be applied for multi-class problems and

binary classes. It represents the number of actual values and predicted values.

The output of the “TN” shows that a negative number of classes classified as

correctly, TN stands for True Negative. Similar to the case of true positive

(TP) which indicates the number of classes that are true are classified correctly.
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The false positive term is used when the negative class is classified as positive.

While performing classification this is one of the most commonly used metrics.

The following formula is used to compute the accuracy of the model (through

the confusion matrix).

Dice =
TN + TP

TN + FP + FN + TP
(5)

4.3.1 Tensorflow

Tensorflow is a free and open-source framework that is used to solve

supervised, and unsupervised reinforcement learning problems. This library

is used for machine learning, NLP, and deep learning such as neural network

and LSTM[18]. This library is based on tensor computation. It is one of the

popular libraries that is written in C++, Python, and Cuda.

4.3.2 Keras

Keras is one of the open-source libraries that is run above the tensor-

flow and theano. It is written in Python language. Keras is used for fast

experimental computations and analysis of deep learning models.

4.3.3 Numpy

It is an open-source library for Python programming. It is used to ma-

nipulate Multidimensional arrays and matrices along with mathematical oper-

ations to operate on arrays.

4.3.4 Pandas

The Pandas is a library of Python used for data manipulating data and

analysis. It is also written in Python and C language in practice it is mostly

used for DS and time series.

4.3.5 Matplotlib

Matplotlib is a library of Python that is used to create a graphical rep-

resentation as a 2D graph. It contains the module pyplot which makes things

easy to plot by giving the feature, it also controls the style, font properties,

and formatting.

4.3.6 Sklearn

Sklearn is a library that is used for statistical analysis including regression

clustering, classification, and dimensionality reduction in Python. Basically, it
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is open-source software and is also used for the ML models to predict accuracy,

loss, precision, and f1-score and recall.
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4.4 DenseNet

In the following experiment, we perform preprocessing on the dataset

because the dataset has (64*64) image size, we convert it into (224*224*3)

before any analysis. Then converting an image to an array for training a

model based on the features of an image. For training and testing the model

we use a dataset named “EuroSat v1.0”. This dataset has 10 classes containing

the Land Cover and Crop images. The dataset is divided into 70% training,

15% validation, and 15% test sets to compute the accuracy of the model. This

division allows for model training, hyperparameter tuning, and performance

evaluation. We used different models to compute the accuracy as a whole

like DenseNet, ResNet and Efficient Net. For computing the accuracy of the

model, we trained the model on 70% dataset, and the accuracy was found 79%

in the case of ResNet and 82% in the case of Efficient Net. But when we run

the DenseNet model for the same data we get 84% to 87% accuracy. After

checking performance, we apply Dense for all the classes as results shown in

Confusion Matrix in fig.11.
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Figure 7: ”Dense-Net Model accuracy and loss graph”
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Figure 8: Confussion Matrix for all Land Cover Classes from 1 to 10

34



Figure 9: Confussion Matrix for all Crop Type Classes from 1 to 5
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Figure 10: Confussion Matrix for all the Land Cover and Crop Type Classes

from 1 to 14

4.5 Results Discussion

The misclassification between the ”Vegetation” and ”Pasture” classes in

the confusion matrix can be attributed to the inherent visual similarity be-

tween these land cover types. Both classes involve green, vegetated areas, and

distinguishing them may be challenging due to subtle differences in the compo-

sition of the vegetation. ”Industrial” and ”Residential” classes also give us high
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similarity value shown in Figure :9. Industrial areas and residential zones of-

ten exhibit comparable man-made structures, infrastructure, and built-up fea-

tures, making it challenging for deep learning models to distinguish between

them accurately. The high misclassification between the ”PermanentCrop”

and ”Forest” classes in Figure :9 can be attributed to the visual similarity and

spectral overlap between these land cover types. Both permanent crops and

forests may exhibit similar patterns in satellite imagery due to their vegetation

characteristics, which can include dense and structured canopies.

High misclassification between different classes in a confusion matrix often oc-

curs due to the inherent complexities and similarities in the spectral patterns of

distinct land cover types. For example, classes with similar visual characteris-

tics, such as ”PermanentCrop” and ”Forest,” might share common features like

dense vegetation, making it challenging for algorithms to distinguish between

them accurately. Environmental factors, such as seasonal changes and varying

growth stages, can further contribute to the spectral ambiguity. Additionally,

limitations in the resolution and quality of satellite imagery may impact the

ability to capture fine-grained details essential for precise classification.

The model is trained on labeled data, using classes that represent different

land cover types, including potato fields. The training process involves op-

timizing model parameters to enhance accuracy. Once trained, the model is

validated and tested on separate datasets to assess its generalization capabili-

ties. Applicability in the context of a potato chip company involves deploying

the trained model for real-world scenarios. The model can be integrated into

monitoring systems to identify potato crops, predict yields, assess crop health,

and detect potential issues early on. This information empowers the company

to make informed decisions in sourcing, quality control, and supply chain man-

agement, ultimately contributing to more efficient and sustainable potato chip

production.
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Figure 11: Class Prediction
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4.6 Results Comparison

For image classification, there are three most popular deep learning mod-

els DenseNet, EfficientNet, and ResNet. Each of these models has its own

unique architecture and training methodology resulting in varying accuracy

and computational efficiency. If we consider in terms of accuracy DenseNet

has been found to outperform both EfficientNet and ResNet on our case Land

Cover and Crop classification dataset. The EfficientNet gives 82% and ResNet

79% accuracy. However, the DenseNet performed well and gave 85% to 89.9%

accuracy. Then we apply the DenseNet for all the classes and compute the

results as shown in the confusion matrix in Fig. 9. ResNet has been found to

be more computationally efficient than DenseNet and EfficientNet, especially

in terms of memory usage. ResNet achieves this by using skip connections

that allow for deeper networks without causing vanishing gradients, resulting

in faster training and less memory usage. The training and validation results

of the model are shown in fig-9 which tells us how well the model will perform

during training. The objective is to minimize both the training and valida-

tion losses simultaneously to create a model that can accurately generalize the

data.

In summary, the enhancement of land cover and crop classification accuracy is

achievable through several key factors. These include access to high-resolution

multispectral satellite data, the adoption of advanced deep-learning models,

and the incorporation of temporal data for ongoing monitoring. The com-

bined influence of these factors serves to elevate the precision and depend-

ability of classification results, rendering them indispensable tools in diverse

applications spanning agriculture, environmental monitoring, and urban plan-

ning. However, ongoing research is focused on developing new techniques and

methods to improve the accuracy of Land Cover and Crop classification using

satellite images.
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CHAPTER 5

5 CONCLUSIONS AND FEATURE WORK

In this paper, we work on Land Cover and Crop Classification. Types

of land on the Earth’s surface is known as Land Cover (LC), and identifying

the different crops planted in a specific area using satellite images is known

as crop classification. Land cover and crop type classification is a challenging

task due to the vast diversity of land cover types, requiring high spatial and

spectral resolution satellite imagery, the presence of mixed land cover and crop

types in a single image, Limited Labeled data availability, etc. In this work,

we use the “EuroSat v1.0” dataset, which consists of 10 different land cover

classes. We consider the “Vegetation” category as a parent and wheat, corn,

rice, potatoes, and soybeans as subclasses. At first, we trained and tested

the model by using the complete dataset as it is but, the results were not

efficient for crop types. Then we train the model on an expanded dataset

that contains 10 superclasses and 4 subclasses. We compute the results using

different models such as EfficientNet, ResNet, and DenseNet. The DenseNet

performed well rather to other models. The EfficientNet gives 82% and ResNet

79% accuracy. However, the DenseNet performed well and gave 84% to 87%

accuracy. Then we apply the DenseNet for all the classes and compute the

results as shown in the confusion matrix in fig.11.

The EuroSat dataset which is used in this work is good for Land Cover but

If we get more data for crop types then the results can be improved. AI-

driven data augmentation methods tailored specifically for land cover and crop

type classification can help mitigate the challenges of limited labeled data and

enhance model generalization.
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