
NEGATIVE EMOTIONS RECOGNITION USING

fNIRS BASED CLASSIFICATION

MUNEEB AHMED

01-249212-010

DR.SUMAIRA KAUSAR

A thesis submitted in fulfillment of the requirements for the award

of a degree of Masters of Science (Data Science)

Department of Computer Science

BAHRIA UNIVERSITY ISLAMABAD

OCTOBER 2023



Approval of Examination

Scholar Name: Muneeb Ahmed

Registration Number: 75942

Enrollment: 01-249212-010

Program of Study: MSDS

Thesis Title: NEGATIVE EMOTIONS RECOGNITION USING fNIRS

BASED CLASSIFICATION

It is to certify that the above scholar’s thesis has been completed to my satisfaction

and, to my belief, its standard is appropriate for submission for examination. I have

also conducted a plagiarism test for this thesis using HEC-prescribed software and

found a similarity index of 15 %. that is within the permissible limit set by the HEC

for the MS/M.Phil degree thesis. I have also found the thesis in a format recognized

by the BU for the MS/M.Phil thesis.

Principal Supervisor Name: Dr. Sumaira Kausar

Supervisor Signature:

Date:

i



Author’s Declaration

I, Muneeb Ahmed hereby state that my MS/M.Phil thesis titled NEGATIVE

EMOTIONS RECOGNITION USING fNIRS BASED CLASSIFICATION

is my own work and has not been submitted previously by me for taking any degree

from Bahria University or anywhere else in the country/world. At any time if my

statement is found to be incorrect even after my graduation, the University has the

right to withdraw/cancel my MS/M.Phil degree.

Name of Scholar: Muneeb Ahmed

Date: 07-09-2023

ii



Plagiarism Undertaking

I, solemnly declare that research work presented in the thesis titled NEGATIVE

EMOTIONS RECOGNITION USING fNIRS BASED CLASSIFICATION

is solely my research work with no significant contribution from any other person.

Small contribution / help wherever taken has been duly acknowledged and that

complete thesis has been written by me. I understand the zero tolerance policy of

the HEC and Bahria University towards plagiarism. Therefore I as an Author of

the above titled thesis declare that no portion of my thesis has been plagiarized and

any material used as reference is properly referred / cited.

I undertake that if I am found guilty of any formal plagiarism in the above

titled thesis even after award of MS/M.Phil degree, the university reserves the right

to withdraw / revoke my MS/M.Phil degree and that HEC and the University has

the right to publish my name on the HEC / University website on which names of

scholars are placed who submitted plagiarized thesis.

Name of Scholar: Muneeb Ahmed

Date: 07-09-2023

iii



Dedication

”In the name of Allah, the Most Gracious, the Most Merciful”

I dedicate this thesis to Allah, the ultimate source of all knowledge, wisdom,

and guidance. In every step of my academic journey, His divine light has been a

beacon, illuminating the path of understanding and discovery.

”Allah is the Best of Planners”(Quran 8:30)

To Allah, I offer my heartfelt gratitude for the countless blessings He has

bestowed upon me. It is by His mercy that I have had the privilege to pursue higher

education, delve into the depths of knowledge, and engage in the pursuit of truth.

This work is dedicated to Allah as an expression of my unwavering faith and

trust in His divine wisdom. It is a humble acknowledgment that every achievement,

no matter how great or small, is a result of His grace.

I pray that Allah continues to bless me with His guidance and inspiration,

allowing me to contribute positively to the world through the knowledge and insights

gained during this academic journey. May His wisdom continue to be the driving

force behind my endeavors.

As I embark on this path of lifelong learning, I place my trust in Allah, knowing

that He is the Best of Planners, and that with faith, perseverance, and His guidance,

I can overcome any challenge that lies ahead.

”To Allah we belong, and to Him we shall return.” (Quran 2:156)

iv



Acknowledgements

”In the name of Allah the most Merciful and Beneficent”

Firstly thanks and praise to Allah, the Almighty, Due to His blessings I am

able to complete my thesis successfully.

I want to express my profound and sincere appreciation to my supervisor, Dr.

Sumaira Kausar, for giving me a chance to work under her watch. Her auspicious

commitment, support, kindness, and profitable pieces of advice helped me shape my

work into its final structure.

Special thanks to my family, the ones towards whom expressing gratitude

would not be enough, for the overwhelming love and care they present to me. With-

out their appropriate direction, it would have been incomprehensible for me to finish

my study. Because of my parents for their consolation warmth, consideration, peti-

tions, and giving me genuine happiness at whatever point I am discouraged.

Last, but not least, I want to thank all my friends and colleagues especially

Dr. Zareena Kausar supported me during my worst times and gave me a quiet

environment during the entire course of my research work. The pieces of advice

they gave and their helpful criticism were indeed encouraging.

v



Abstract

The emotional wellness of a person includes one’s thoughts, emotions, and

ability to deal with life’s challenges. A sign of emotional wellness is having the

ability to talk with someone about your emotional concerns and share your feelings

with others. A psychotic patient is not emotionally well, and it is very important

to know to what extent the patient is unwell. To answer this question, this research

investigated the negative emotions of humans. The researchers have used electro

Enspheloraphy (EEG) method to find emotions, however, in this study, the use of

an emerging technology of the present, called fNIRS (functional near infra-red spec-

troscopy), is selected because the accuracy of correct detection of emotions using this

technology is proved by researchers. However, the detection of negative emotions

has not been studied yet. In this research data from 10 healthy patients is recorded

for three emotions: sad, angry, and neutral. To record emotions the fNIRS data

acquisition system was used. The data is filtered, features are extracted and then

data is classified for the three emotions mentioned above. One deep learning model

and five machine learning models named the LSTM (Long Short Term Memory),

Decision Tree, K-NN (K-Nearest Neighbours), Random Forest, SVM (Support Vec-

tor Machine), and Naive Bayes are applied to classify the data for three emotions.

The percentage maximum accuracy of the emotion detection out of these models

is 99% through LSTM, whereas, a minimum accuracy of 76% is achieved through

Naive Bayes. The remaining models gave accuracies of 98% through the Random

forest, the Decision tree, and the K-NN, and 88% through SVM. The accuracies

are found improved as compared to those achieved through EEG as per existing

literature. This verifies the efficacy of the methodology that acquires data through

fNIRS technology and is classified using different classifiers.
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CHAPTER 1

INTRODUCTION

Psychological disorder, defined in the American Psychiatric Association’s

diagnostic manual [1], is an illness that causes disturbance in behaviors, emo-

tions, and cognition. Emotions means how the patient feels in different sit-

uations, whereas, cognition refers to how he/she thinks. Among many psy-

chological disorder conditions anxiety and depression are the most commonly

experienced [2][3]. These disorders, anyway, create distress and affect the abil-

ities of the patient to perform functions in different life domains and therefore

need to be well treated by psychiatrists. A key to such treatments is the

accurate identification of the disorder type and hence the disturbing factors,

especially the emotions.

A person’s capacity to handle life’s hardships is a measure of their mental

health. The capacity to communicate with someone about your emotional dif-

ficulties and express your sentiments with others is a sign of emotional health.

Emotions play a vital role in human society in our daily lives. The complex

psycho-physiological processes of emotions are connected to a wide range of

internal and external actions. However, emotion recognition is the reproving

area in this era of high computation facilities which has been a fundamental

focus of researchers. The goal of effective computing, though, is to create arti-

ficial intelligence that can recognize, comprehend, and control emotional states

in humans.

Recently, scientists have developed an interest in using different models

to forecast the outcome of emotional states. This is supported by several

legal and technological experts. ML algorithms need pre-processed data which

increases the human effort but on the other hand deep learning algorithms are

also used for predicting emotional decisions. Artificial intelligence is easy to

use because data pre-processing effort is reduced while using these techniques.

However, according to Scientific American, there is a question that is one of

the key issues about the future of humanity and it is: Is it possible to detect

human emotions using wearable technology?
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The research on methodologies to find the emotions of human beings

using wearable technology is a hot topic of this decade. Many researchers[4],

have used electroencephalography (EEG) to find emotions to an acceptable

level of accuracy. However, in my study, I have proposed the use of one of

the emerging technologies of the present. This is called fNIRS ( functional

near infra-red spectroscopy)[5], the effectiveness of which over EEG is shown

by researchers[6] during this decade. The fNIRS is easier to use and more

comfortable and has high portability, fewer restrictions, low running cost, and

relative robustness against emotion and electrical artifacts. This advantage

may be especially crucial for emotion recognition research, as unwanted sig-

nals from device noises and claustrophobic environments are avoided, allowing

for a more natural emotional experience. fNIRS is particularly adept at as-

sessing prefrontal cortex (PFC) activity, a key region involved in emotional

processing, along with the frontopolar cortex and the front lateral PFC. An

increasingly popular neuroscientific research method is optical neuroimaging,

using functional near-infrared spectroscopy (fNIRS). Similar to fMRI, fNIRS

analyzes blood oxygenation changes without invasive procedures. It relies on

alterations in light absorption, typically between 750 and 1,200 nanometers,

detected by sensors and emitted by sources onto the skull’s surface. This

non-invasive technique allows the measurement of changes in tissue hemody-

namics (blood perfusion) and oxygenation in the human brain[7]. The level

of brain blood oxygenation is indeed reflected in hemodynamic responses. It’s

commonly recognized that brain electrical signals are indicative of underly-

ing hemodynamic processes. The founders of NIRx, Professors Randall L.

Barbour and Ray Aronson, introduced the idea of tomographic imaging —

multi-distance spectroscopic observations in densely dispersed media, in 1988.

This technique depends on diffusely scattered light. This method has now been

widely adopted and played a key role in the development of fNIRS tomogra-

phy in the present day. The fNIRS sensors can measure brain activity, which

gives the functional component its name. This is accomplished by assessing

hemodynamic responses and total hemoglobin changes in the cerebral cortex.

Additionally, fNIRS offers a non-invasive way to obtain a high-resolution brain

signal in real-time. An fNIRS signal is illustrated in Figure 1.1
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Figure 1.1: Raw fNIRS signals

EEG, often known as electroencephalography, is a non-invasive method

for tracking the electrical activity of the human brain.[8]. As said, it is a non-

invasive method that acquires electrophysiological intentions from the brain

surface using electrodes. EEG measures voltage variations as the result of

energy produced inside the neurons of the brain[9]. EEG, to put it simply,

is the process of capturing the normal electric activity of the brain over time

using several electrodes applied to the scalp. [8][11]. Analytical applications

usually focus either on event-related responses or by means of the spectral

content of EEG[10]. An EEG signal is shown in Figure 1.2[11].

Figure 1.2: Raw EEG signals
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To test the effectiveness of the suggested technique, trials for recognizing

the three emotions out of many: sadness, neutrality, and angerness are being

proposed for this research. The data will be filtered, features will be extracted

and then data will be classified for the three emotions. It is proposed to use

fNIRS’s complimentary features for emotion recognition. This includes the

use of signal mean, peak, and minimum values as features. Machine learning

models are proposed to classify the data for three emotions. The accuracy of

the classification of emotions is then determined and compared for different

classifiers. The classifying techniques proposed for this study include LSTM,

Decision tree, K-NN, Random forest, SVM, and Naive Bayes.

1.1 Motivation

The motivation behind this research is rooted in the belief that amidst the

shadows of depression, there exists a wellspring of hope and strength waiting to

be illuminated. Through our exploration, we aspire to offer a guiding light to

those who walk the path of depression, reminding them that they are not alone.

Welcome to this thesis journey where we’re exploring feelings, especially for

people who often feel really sad. The mission is like being a detective, looking

for clues to help people find happiness again. I am excited because I believe

that understanding these feelings can light up a path of hope for others. A

goal is to show that even when life gets tough, there’s a way to detect it and

make it better.

Motivation of Using fNIRS

fNIRS has many advantages over EEG, hence selected for brain signal

acquisition by researchers. Following are a few of these advantages that moti-

vated to find a research gap in this field:

• fNIRS provides more precise information of brain activity in comparison

to EEG which measures electrical activity on the scalp.

• fNIRS is less sensitive to artifacts like muscle movements, eye blinks, and

electrical interference. This makes data interpretation more robust for

studies with sensitive patients like Psychic.

• fNIRS provides extended continuous recording sessions compared to EEG.

The latter is prone to signal degradation over time due to factors like

electrode drift and impedance
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• fNIRS provides information from deeper cortical layers, even subcortical

regions, allowing for a broader range of brain activity monitoring.

Motivation of Using Negative Emotions

Negative emotions are a necessary part of human life. They serve sev-

eral purposes ranging from survival intuitions to self-awareness and personal

growth. Although knowledge of both positive and negative emotions is essen-

tial, negative emotions give more and more valued understanding and aware-

ness. They, in turn, provide opportunities for growth and flexibility in human

life. Negative emotions are also very pertinent to psychic patients.

Come along with me as I discover how feelings can be recognized, guid-

ing psychiatrists to brighter days for their patients. May my findings empower

individuals, families, and communities to embrace their emotions, foster re-

silience, and embark on a journey toward a brighter, more vibrant existence.

Let’s learn and grow together!

1.2 Research Gap

The literature review has revealed that negative emotions detection using

fNIRS is not researched yet, although it is very important in case of studies

with sensitive humans like psychic patients. This study is, therefore, designed

to overcome this gap.

1.3 Research Objectives

With a goal to measure negative emotions for the identification of unwell-

ness of psychiatric patients using fNIRS, the following objectives are designed

for this research:

1. Collect and pre-process the data on the negative emotions of healthy

patients.

2. Classify the emotions.

1.4 Research Scope & Limitation

The research scope is to use the fNIRS data acquisition technique for ac-

quiring data on emotions and classifying these emotions. However, the research

has the following limitations.
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1. The emotions will be related to the feelings of psychiatric patients. They

are usually negative or neutral emotions.

2. The number of emotions will be limited to three.

3. The data will be taken of selected emotions from healthy patients only.

1.5 Significance of the study

The main contribution of the study is an analysis of data of psychiatric

patients’ emotions taken using the emerging fNIRS technique. A significance

of this study is the outcome that will confirm if the new technique enhances

the accuracy of the classification of emotion recognition and will be helpful to

psychiatry in the identification of the type of psychological disorder.

1.6 Thesis Outline

In thesis layout, Chapter 1 describes the introduction, problem state-

ment, aims, objectives, Research Scope and limitations, and significance of

this research. Chapter 2 presents the literature review of existing works on

emotion classification, scientific perspectives on emotion, and BCI. Chapter

3 presents the functional near-infrared spectroscopy. It briefly describes the

component of fNIRS, nirs regions of interest, and Specialized Details of NIR-

Sport.

Chapter 4 details the methodologies of experiment conduction, data pre-

processing, and processing. In experiment conduction, the demographic infor-

mation of participants, the experiment paradigm, and the signal acquisition

methods are presented. The data pre-processing includes methods used to

filter data, channel selection, and calculation of change in light reduction at

a given wavelength. The processing method, however, highlights which data

classification techniques are selected and details the theoretical background

of selected classification methods. In Chapter 5, we explore a comprehensive

analysis of the performance of diverse machine learning models within the do-

main of emotion classification, exploiting brain wave data as the underlying

data set. We evaluated each model’s performance utilizing an array of critical

metrics, including precision, recall, F1-score, accuracy, and loss. Here’s an in-

depth summary of the findings for each model. Chapter 6 concludes the thesis

with a summary of the research and possible future work.
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CHAPTER 2

BACKGROUND

2.1 LITERATURE REVIEW

In previous studies, a lot of research aims have been undertaken to ex-

tract valuable characteristics from EEG data with the intention of facilitating

emotion recognition. Numerous prototypes aimed at perceiving and providing

feedback on emotions have been created and subjected to thorough testing in

previous research. For example, Ekman and Friesen [12] introduced the con-

cept of ‘root emotions’ which include fear, joy, anger, surprise, sadness, and

disgust.

D. Jude Hemanth et al. [13] used Kohonen neural networks for human

emotion analysis. The DEAP Database’s EEG waves are utilized as input for

ANN to recognize human emotions. Kohonen Neural Networks classify emo-

tions as angry, happy, sad, and relaxed. Recently, Shashank Joshi et al. [14]

describe an emotion classification located on EEG signals. In this project, au-

thors employed techniques of recurrent neural network and k-nearest neighbor.

They attained maximum classification accuracy of 94.844 percent and 93.438

percent, respectively. A. Chatchinarat et al. [15] proposed using Fuzzy C-

Mean (FCM) to derive fuzzy rules for use in the fuzzy inference system (FIS)

for categorization. The approach used EEG data to learn and generate rules.

The findings showed that the method outperformed fuzzy classification using

fixed rules and Support Vector Machine (SVM), with accuracy values of 55.77

percent, 49.62 percent, and 54 percent, respectively.

Muzaffer Aslan [16] GoogLeNet-based deep learning method was em-

ployed to perceive emotions using (EEG) waves. With the use of the Contin-

uous Wavelet Transform (CWT), which is more conscious of Time-Frequency

fluctuations in EEG waves, EEG waves were transformed into EEG pictures. In

this research, the researcher used the GAMEEMO dataset and (k-NN),(SVM),

and the Extreme Learning Machine (ELM) classifiers for emotion classifica-

tion. They gained 98.78 percent, 98.53 percent, and 98.41 percent accuracy
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in classifiers. Zeynab Mohammadi et al.[17] proposed an emotion recogni-

tion system based on wavelet using an Electroencephalogram. EEG data were

divided into frequency bands using discrete wavelet transformations, and sub-

sequently, numerous characteristics were recovered. To detect emotional states

from retrieved features, the KNN and SVM classifiers were utilized. Kitsuchart

Pasupa et al.[18] established a method for anticipating how people will react to

abstract graphics by employing eye-tracking technology and image attributes.

An enhanced prediction algorithm that used the user’s eye movement as im-

plicit feedback while gazing at the image. Using both eye movement informa-

tion and an image feature to detect a user’s sentiment yielded more accurate

predictions than using only the image feature.

Multimodal and wearable devices have also been used for human emotion

recognition in the past. Wei-Long Zheng et al.[19] proposed Recognizing Hu-

man Emotions Using a Multimodal Framework that incorporates both brain

waves and eye movements. They integrated EEG and eye movements to inte-

grate users’ internal cognitive processes with external subconscious behaviors

in order to increase human emotion recognition accuracy. They applied a

principal component analysis (PCA)-based method for preprocessing, power

spectral density, and differential entropy for feature extraction and Support

vector machine classifier. Chunting Wan et al. [20] proposed a Multimodal

biosignal system using wearable sensors in emotion recognition and virtual re-

ality (VR) as a stimulus source. A wearable forehead bio-signals acquisition

pad and Head-Mounted Displays (HMD) are attached. This system recognized

human emotions in virtual reality environments. Yongrui Huang et al. [21]

proposed a multimodel system. Electroencephalogram and facial expression

are the input signals. A neural network classifier detects emotional moods

(happiness, neutrality, sadness, and fear) for facial expression identification.

Two support vector machine (SVM) classifiers recognize emotion moods and

emotion intensity levels (strong, ordinary, and weak) for EEG detection. Two

decision-level fusion approaches use a sum rule or a production rule to detect

both EEG and facial expressions. The researchers have used electroencephalog-

raphy (EEG) to find emotions. However, Xin Hu et al. [22] presented FNIRS

for recognition of different positive emotions. Using fNIRS, the researcher ex-

plored the brain hemodynamic responses to various pleasant emotions. They

used fNIRS signals and three different wavelengths of Near-infrared light (785,

808, and 850 nm) that were used to detect the concentration change of deoxy-

hemoglobin (HbR) and oxy-hemoglobin (HbO). Individual-level binary clas-

sifications of HbO-based hemodynamic responses to positive emotion groups

revealed unique classifications. The study results show an average of 73.79
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percent accuracy for encouragement vs. 11.49 percent for harmony and 73.29

percent 11.87 percent for playfulness vs. harmony.

Table 2.1: Literature Review

Paper Title Senors Modalities Emotions Classifier

Xin Hu Fnirs

Brain’s

hemodynamic

responses

love, gratitude,serenity,

interest, awe, pride,

amusement, inspiration,

hope, and joy

Binary

Wei-Long Zheng EEG
Eye Movement

& brain wave

Sad, Fair,

Happy,Neutral
SVM

Yongrui Huang EEG
Brain and

peripheral signals

Sad, Fair,

Happy, Neutral

SVM,

Neural network

Shashank Joshi et al. No Brain signal
good, neutral,

negative
RNN and kNN

Zeynab Mohammadi EEG
Video

(movie clips)

Arousal level,

Valence level

KNN,SVM,

GELM,DBN,

DBN-HMM

Muzaffer Aslan No Brain signal
Postive,

Negative

SVM, k-NN,

ELM

D. Jude Hemanth EEG Brain signal
Happy,Angry

,Sad,relax

Kohonen neural

network

Kitsuchart Pasupa Software Images
Original,

fear,anger,sad
SVM

A. Chatchinarat EEG Brain signal NO
Fixed rules,

SVM

Chunting Wan
HMD Bio

Pad, VR

Eye blink,

Skin Conductance

Reaction

Good and

bad mood
LDA

Electroencephalography (EEG) is less user-friendly and less resilient to
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head movement than fNIRS, which can offer greater spatial resolution. ([23]

[24] [7][25].To test the effectiveness of the suggested technique, trials for rec-

ognizing the three emotions out of many: sadness, neutrality, and angerness

are being proposed.

2.2 A SCIENTIFIC VIEW OF EMOTION

2.2.1 Models of Emotions

Emotion models also contribute to content personalization, enabling plat-

forms to recommend movies, music, or other content that aligns with users’

prevailing emotional states. Many scholars study in order to provide a defini-

tion for emotion and define the set of emotions. That is okay, but a natural

collection of distinct emotions has yet to be identified. Many researchers do

not think that emotion can be detected immediately. They think that self-

assessment, remarkable behavior, context, and physiological data can discern

emotion. According to psychologists, the start of emotion is linked to stim-

uli, and sensations and emotions do not occur in isolation. Psychologists be-

lieve. There are two types of models: classified models[26] and dimensional

models[27]. Darwin (1965) proposes an emotional theory, which Tomkins in-

terprets. Tomkins claimed that there are nine primary emotions[28].

According to Paul Ekman’s[29] fundamental emotion theory, there are

six universal, biologically intrinsic emotions: happiness, sorrow, fear, wrath,

disgust, and surprise. His studies on facial expressions and the Facial Ac-

tion Coding System (FACS) revealed that these emotions are exhibited con-

sistently throughout cultures. Ekman’s work emphasizes the universality of

human emotions and the importance of facial expressions in detecting and in-

terpreting these emotions. While cultural standards can impact how emotions

are expressed, the underlying emotional experiences are universal. Ekman’s

efforts have substantially increased our understanding of the essential signif-

icance of emotions in human behavior and communication. Then further,

few emotions is classified into subsections[30][31][32][33][34][35], which concen-

trated on positive and negative emotions. Other researchers concentrated on

specifics and divided emotions into larger groups. Emotion models are shown

in table 2.2[36].
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Table 2.2: Summary of Categorized Emotions Models

Reference Emotions

(Ekman & Oster, 1979)
Fear, sadness, happiness, anger, disgust,

and surprise

(Arnold, 1960)
Anger, aversion, courage, dejection, desire,

despair, fear, hate, hope, love, sadness

(Panksepp, 1982) Expectancy, rage, fear, panic

(Tomkins, 1962)
Surprise, interest, joy, rage, fear, disgust,

shame, and anguish.

(Johnson-Laird, 1989) Happiness, sadness, fear, anger, disgust

(Frijda, 1986)
Desire, happiness, interest, surprise,

wonder, sorrow

(Gray, 1985) Rage and terror, anxiety, joy

(Izard, 1977)
Anger, contempt, disgust, distress, fear,

guilt, interest, joy, shame, surprise

(James, 1884) Fear, grief, love, rage

(McDougall, 2003) Anger, disgust, elation, fear

(Weiner & Graham, 1984) Sadness, happiness

(Mowrer, 1960) Pain, pleasure

(Watson, 1925) Fear, love, rage

In contrast, some researchers argue against the notion of emotions being

organized into discrete circuits and critique the category-based paradigm due

to its perceived limitations. One of these limitations is that the intricate emo-

tional states experienced in everyday life may not be adequately represented

by a limited number of distinct categories. Nevertheless, expanding the range

of possible labels can complicate the process of annotation and diminish the

level of agreement among researchers and annotators[37]. As a result, these

researchers advocate for dimensional emotion modeling, a different method.

This paradigm proposes that emotions are the result of two or three distinct

physiological systems. Valence and arousal are two important variables for

understanding and categorizing emotions. Valence denotes the pleasantness

or unpleasantness of an emotional state, ranging from severely negative (-1)
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to extremely positive (1). Arousal, on the other hand, assesses emotional in-

tensity on a scale of 0 to 1, ranging from low (calm and unexcited) to high

(intense and stimulating). These dimensions enable researchers to generate a

two-dimensional emotional landscape, revealing the type and strength of di-

verse emotions, which is useful in psychology, neurology, and other sciences.

The third to power, which represents the intensity of emotions.

Russell’s ”Circumplex model” is another widely used dimensional model.[27],

which has two dimensions, arousal, and valence. As shown in Figure 2.1[38]

Figure 2.1: Circumplex model

Several studies have shown that emotional states experienced in ordinary

human interactions can be complex and nuanced, as evidenced in disorders

such as depression. As a result, utilizing a single label may fail to represent

the complexities of emotional states in our daily interactions. As a result,

the dimensional emotion model was chosen for this study because it provides

a more comprehensive framework for understanding and portraying the com-

plexities of emotional experiences.

2.2.2 Emotion Elicitations, Annotation, and Ground Truth

An emotion is a multifaceted mental and physiological state character-

ized by distinct feelings, such as joy, anger, or fear, which can be deliberately

induced or naturally elicited by various stimuli. [39][40] .In psychology, be-
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havioral studies, and social sciences, the phrases ”induced expression” and

”naturalistic expressions” are frequently used to describe various sorts of stim-

uli or reactions. Induced expressions refer to stimuli or responses intentionally

generated by researchers to elicit specific reactions or behaviors from study

participants. This approach is valuable for manipulating variables in con-

trolled studies and observing how individuals respond to predetermined situ-

ations. For instance, in a psychology experiment, researchers might employ

induced expressions by presenting participants with a series of emotionally

charged images to provoke a range of emotional reactions. Naturalistic expres-

sions, in contrast, pertain to stimuli or responses that occur spontaneously and

are not intentionally manipulated by researchers. These expressions reflect

how individuals naturally respond to stimuli or situations in their everyday

lives. The primary objective of studying naturalistic expressions is to gain

insights into how people react in their genuine environments, free from exter-

nal interference. For instance, observing people’s reactions in public settings,

such as their responses to an impromptu street performer, offers researchers

a glimpse into real-world behaviors and responses that are neither guided nor

artificially induced by external stimuli. In emotion recognition research, in-

duced expressions are commonly used[41]. Nonetheless, choosing the correct

stimulus to evoke a certain feeling is a significant difficulty in emotion elicita-

tion. In study settings, many stimuli such as events, pictures[42], music[43],

or movies[44] have been used to elicit emotions. Annotating the ground truth

for emotion elicitation trials or target emotions is another problem in emotion

detection[45]. Emotions are essentially subjective experiences that differ from

person to person, making determining the ”ground truth” difficult. Individ-

ual characteristics, societal standards, personal experiences, and circumstances

all have an impact on emotions. While there are several ways and method-

ologies for studying and assessing emotions, it is not possible to develop an

ultimate or generally agreed-upon ”ground truth” for emotions. Subjectivity

rating collects personal opinions on a subject and is used for product eval-

uations, ratings, and assessments, frequently using Likert scales to provide

qualitative data modified by individual viewpoints.are commonly utilized by

researchers[46]. The term ”self-reporting belief”[47] refers to individuals ex-

pressing their own ideas and opinions using methods such as questionnaires

and surveys, which are extensively used in psychology, social sciences, and

market research to collect subjective data. It has been demonstrated to be an

effective instrument for analyzing emotional reactions in a wide range of scenar-

ios, including responses to sights, sounds, and various stimulis[46]. The Self-

Assessment Manikin (SAM) is one such tool that assesses people’s emotional
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experiences[46]. An ”annotator” is another method for determining ground

truth. A person or entity who adds comments or annotations to something

in order to provide further context or information. They improve comprehen-

sion by annotating papers, tagging photos, and adding comments to videos.

Annotators can be researchers, editors, or anybody who improves information

using annotations. The annotators would be able to assess the user’s emotional

arousal and valence[48].

The self-assessment manikin (SAM) will be used in this study to collect

basic emotions based on observed emotion, and I will then map different emo-

tions into the quadrants of the two-dimensional valence-arousal model. Shown

in figure 2.21

Figure 2.2: Dimensional of emotions

2.2.3 Using physiological Signals to evaluate emotional states

Measuring emotional moods via physiological signals is a multidisci-

plinary activity that entails monitoring numerous bodily systems and evaluat-

ing the data to get insights into an individual’s emotional well-being. To catch

these signals, scientists use a variety of ways. Monitoring heart rate and heart

rate variability to assess arousal and emotional regulation, assessing electro-

dermal activity (EDA) to measure skin conductance changes associated with

emotional arousal, and using electroencephalography (EEG) to detect distinct

brainwave patterns linked to different emotional states are some of the tech-

niques used[49] facial expressions can provide valuable significant information

1https://www.researchgate.net/figure/Core-emotions-established-in-the-circumplex-

modelf ig1324664655
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about an individual’s emotional state[50]. Physiological signals give a direct

window into a person’s emotional state, eliminating the need for self-reporting

or vocal representation.[29][51]. Heart rate, blood pressure, skin conductance,

and other autonomic nervous system reactions are normally involuntary and

regulated by the central and autonomic nervous systems. Because these re-

sponses are not under direct conscious control, it is difficult for humans to

intentionally fake or manipulate them.[52]. The responses of heart rate, blood

pressure, Galvanic Skin, and skin conductance are reliable indicators for the

recognition of emotions[53] [54].

This is especially relevant in specific contexts such as deception detec-

tion and lie detection. Emotion recognition methods concentrate on observing

changes in the two main elements of the nervous system: the Central Nervous

System (CNS) and the Autonomic Nervous System (ANS), aiming to uncover

the true inner emotions of individuals. Physiological responses, including brain

activity, respiration, Galvanic Skin Response (GSR), heart activity, and skin

temperature, originating from both the Central Nervous System (CNS) and

the Autonomic Nervous System (ANS), give important insights into a person’s

own emotional states. These are solid signs that you can recognize emotions.

[53] [54].

Two different types of sensors can be used to record these physiological

data: Wireless physiological sensors and tethered laboratory sensors. Sen-

sors for tethered laboratories These sensors are physically connected to data

collection systems by cables. They are commonly used in research settings

and under controlled circumstances because they provide accurate and quick

data collection. Examples include wired EEG electrodes, wired ECG sensors,

and other wired monitoring apparatus. Due to the absence of physical wires,

wireless physiological sensors offer more flexibility and mobility. They are fre-

quently used in everyday tasks, athletics, healthcare, and remote monitoring.

Examples include wearable fitness trackers, wireless heart rate monitors, and

wireless EMG sensors. The electrical activity of the brain is measured using

EEG (Electroencephalography) sensors. They are made up of scalp-mounted

electrodes, amplifiers that strengthen weak brain signals, and data collection

systems that capture and process EEG data. Brain-computer interfaces, neu-

roscience research, and clinical diagnostics all make use of EEG sensors. An

electrocardiogram, or ECG, is a medical test that captures the electrical activ-

ity of the heart. To identify cardiac disorders such as arrhythmias and heart

attacks, electrodes are placed on the skin. These electrodes produce a visual

depiction of the heart’s rhythm. It is a frequently used tool in emergency and

cardiology care. PPG (Photoplethysmography) technology is frequently used
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by smart wristbands to track a variety of physiological indicators, principally

heart rate and occasionally blood oxygen levels. Stress prediction, for example,

has demonstrated the significance of these wearable sensors.[55][55] as well as

emotion recognition[56].

2.3 Brain Computer Interface

A Brain-Computer Interface (BCI) is a cutting-edge technology that cre-

ates a direct communication channel between the human brain and external

devices or computer systems[57]. BCIs bridge the gap between neural activity

in the brain and control of various applications or technology. These interfaces

have far-reaching consequences in the fields of healthcare, assistive technol-

ogy, and human-computer interaction. The effectiveness of BCI is dependent

on improved signal processing algorithms that decode and interpret collected

brain signals. These algorithms mine brain data for patterns, frequencies, and

other properties to infer meaningful information about the user’s intents or

orders. This processed data is then utilized to control or provide feedback

to external equipment. BCIs have a wide range of applications, including

assistive technologies for people with impairments, such as facilitating com-

munication or operating wheelchairs or robotic limbs. BCIs are also used in

neurorehabilitation, gaming, and cognitive enhancement. It can be utilized as

a neuro-rehabilitation method to improve such patients’ motor and cognitive

skills[58]. Signal noise, accuracy, and user training are among the issues that

BCIs encounter. It is divided into five phases. As shown in Figure 2.3[59]

Figure 2.3: Five stages of a BCI system
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2.3.1 BCI types

BCI is split into three categories:

Active BCI

Active BCIs allow users to operate external equipment or communicate

directly with computers using their brain impulses, potentially benefiting those

with impairments. They entail capturing brain signals (for example, EEG),

processing them to extract commands, and delivering user feedback. Assistive

technology, neurorehabilitation, and other applications confront problems such

as signal noise and user training. The goal of the research is to make them

more accessible and user-friendly.

Reactive BCI

Reactive BCIs passively monitor brain activity and activate actions or

events based on observed patterns without requiring direct user input. They

are used in neurofeedback therapy and research to examine brain reactions.

Users do not actively control the UI.

Passive BCI

Passive BCIs detect and analyze brain activity without the need for user

intervention. They are used to monitor mental states, recognize emotions,

and conduct neuroscientific research, but privacy problems must be addressed.

Users go about their daily lives while data is quietly gathered.

2.3.2 BCI Techniques

Invasive

An invasive Brain-Computer Interface (BCI) system is a type of neu-

rotechnology that includes inserting electrodes or similar sensors directly into

brain tissue or onto the surface of the brain. In contrast to non-invasive BCIs,

which use external sensors to detect brain signals (such as EEG electrodes on

the scalp), invasive BCIs provide more precision and access to more detailed

neural data. They are, however, more obtrusive and risky because they require

surgery. Invasive BCIs are commonly used in both research and clinical con-

texts, notably for persons suffering from severe neurological diseases such as

paralysis or locked-in syndrome, when non-invasive BCIs may not give the nec-

essary level of precision. These technologies allow direct contact between the
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brain and outside devices. Model of signal acquisition via an invasive shown

in Figure 2.42.

Figure 2.4: Invasive

Semi-invasive

In terms of invasiveness, a semi-invasive Brain-Computer Interface (BCI)

device falls between non-invasive and completely invasive BCIs in the field of

neurotechnology. It often comprises the insertion of sensors or electrodes on

or just beneath the surface of the skull, with no direct penetration into brain

tissue required. In comparison to non-invasive BCIs (which rely on external

sensors such as EEG), this technique provides improved signal quality and

precision while being less invasive and dangerous than fully invasive BCIs that

require surgical implantation. Semi-invasive BCIs find a balance between inva-

siveness and effectiveness, making them suitable for applications such as move-

ment control or communication for people with neurological diseases. Model

of signal acquisition via a semi-invasive shown in Figure 2.53.

2https://neurotechjp.com/blog/5-startups-of-interest/
3http://learn.neurotechedu.com/introtobci/
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Figure 2.5: Semi-invasive

Non-invasive

Within the field of neurotechnology, a non-invasive Brain-Computer In-

terface (BCI) system operates without the necessity for surgical operations

or the insertion of electrodes into the brain. It instead uses external sensors

placed on or near the scalp to detect and interpret electrical activity or other

physiological signals produced by the brain. Electroencephalography (EEG),

(fMRI), and (NIRS) are examples of non-invasive BCI technology. These non-

invasive systems are used for a variety of functions, including communication,

control of external equipment, and study of brain function. Non-invasive BCIs

are thought to be safer and more user-friendly than invasive approaches, mak-

ing them appropriate for a wide range of applications such as assistive tech-

nology and cognitive neuroscience research. Model of signal acquisition via a

non-invasive shown in Figure 2.64.

4https://www.slideshare.net/ajaygeorge91/bci-ppt
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Figure 2.6: Model of signal acquisition via a non-invasive

2.3.3 Non-Invasive BCI systems

1. EEG

2. fMRI

3. MEG

4. fNIRS

Electroencephalography

The term ”electroencephalogram” was invented by Hans Berger, who

used it to record the first human brain activity. Gary Walter used electrodes

to investigate how the brain’s electrical impulses change dynamically in re-

sponse to various cognitive tasks. Electroencephalography (EEG) is a non-

invasive procedure that uses electrodes on the scalp to record the electrical

activity of the brain. It divides brainwaves into frequency bands, each of

which corresponds to a particular mental state.EEG electrodes detect and en-

hance electrical impulses produced by neurons in the brain. EEG brainwaves

are classified into numerous frequency bands, which include delta (0.5-4 Hz),

theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-100 Hz).

Each of these frequency ranges corresponds to a distinct set of mental states

and cognitive processes. Alpha waves, for example, are connected with relax-

ation, whereas beta waves are associated with alertness and active cognition.

The electroencephalogram (EEG) is frequently used in clinical diagnosis (e.g.,

epilepsy) and research to analyze real-time brain functions. Although it has

good temporal resolution, its spatial precision is restricted when compared to

other neuroimaging approaches. EEG technological advances are improving

its applicability in studying brain activity and neurological illnesses. When
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it comes to gathering exact characteristics of the brain, EEG has a limited

spatial resolution despite its excellent temporal resolution. activity.[60][61].

Figure 2.7 shows the EEG system5.

Figure 2.7: EEG headset for acquiring EEG signals from brain

Functional magnetic resonance imaging

The non-invasive neuroimaging technology functional magnetic resonance

imaging (fMRI) is used to observe and investigate brain activity. It monitors

variations in blood flow and oxygenation levels in various brain areas, reveal-

ing neuronal activity and functional connections. The participant lies inside a

magnetic resonance imaging (MRI) machine during an fMRI session. Different

brain regions demand more oxygenated blood as they grow more active. The

magnetic characteristics of oxygenated and deoxygenated blood are measured

by fMRI, which creates comprehensive maps of brain activity. Because it does

not utilize ionizing radiation, it is suitable for repeated usage. Although fMRI

has a high spatial resolution, allowing researchers to localize brain activity in

specific areas, it has a low temporal precision when compared to methods such

as EEG.FMRI scanners take up a lot of room and require a complex electrical

environment.[62]. As shown in Figure 2.8 FMRI scanner.

5http://www.magaemg.com/knowledge/electroencephalography-eeg/,Finland
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Figure 2.8: State of the art FMRI scanner

Magnetoencephalography

Magnetoencephalography (MEG) is a non-invasive neuroimaging tech-

nology that measures the magnetic fields created in the brain by neuronal

activity. MEG has a high temporal and spatial resolution, making it an ex-

cellent tool for researching brain function and localizing neuronal activity.A

participant wears a helmet-like apparatus containing sensitive sensors known

as superconducting quantum interference devices (SQUIDs)[63] during a MEG

session. These sensors detect the small magnetic fields produced by electri-

cal currents in the brain’s neurons. MEG can capture brain activity with

millisecond precision, providing insights into cognitive process timing.MEG is

very effective for properly locating the origins of brain activity. Researchers

and doctors may generate functional brain maps by integrating MEG data with

structural MRI (magnetic resonance imaging) scans, which demonstrate where

certain cognitive functions, such as speech production or visual processing, are

situated in the brain. As shown in Figure 2.9[58].
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Figure 2.9: MEG scanner

Functional near-infrared spectroscopy

The change in hemodynamic response concentration during neuro-activation

is measured using the non-invasive BCI technique known as functional near-

infrared spectroscopy (fNIRS), since the introduction of the principle of fNIRS

in 1977 by Jobsis.In fNIRS (functional Near-Infrared Spectroscopy) experi-

ments, researchers use optodes to produce near-infrared light to collect brain

impulses. The wavelength range for fNIRS functioning is typically between 650

and 1000 nm. Despite these limitations, fNIRS has received a lot of attention

in recent decades, exciting researchers all over the world and ushering in a new

age of progress in the field of Brain-Computer Interfaces (BCI)[64]. Because of

its non-invasiveness, convenience of use, and capacity to give real-time insights

into brain activity, it has proven to be a vital tool in neuroscience research, cog-

nitive psychology, and therapeutic applications. Researchers are increasingly

interested in the potential of fNIRS for applications such as brain-computer

communication, mental workload evaluation, and neurological condition mon-

itoring.

In our research we used Fnirs due to the key advantage of fNIRS is its

portability, making it a preferred choice over bulky fMRI scanners for certain

applications. However, it’s important to note that fNIRS systems offer a mod-

erate level of temporal and spatial resolution in comparison to techniques like

fMRI and EEG. Figure 2.10 shows a fNIRS instrument[58] 6.

6http://www.sh-dz.net/iss-imagent-functional-brain-imaging-system.html
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Figure 2.10: State of the art fNIRS instrument
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Table 2.3: Comparison of Technologies

Best Worst

Signal Depth
FMRI

(Full Brain)

EEG

(full brain)

FNIRS

(∼1.5cm into cotex)

Spatial Resolution
FMRI

(1 voxel= -3mm)

FNIRS

(1 channel=∼1cm)

EEG

(poor,unless great effort

and cost spend)

Sampling Rate
EEG

(250-2000 Hz)

FNIRS

(1-200Hz)

FMRI

(<=2 Hz)

Cost
EEG

($5k-200k)

FNIRS

($10k-400k)

FMRI

(a few billions $)

Portability
FNIRS

(few accessories)

EEG

(many accessories)

FMRI

(stationary)

Motion Tolerance

FNIRS

(just don’t move

optodes on scalp)

EEG

(don’t move muscles

around head )

FMRI

(don’t move upper body)

Participant Comfort

FNIRS

(snug cap,can fidget or

even walk, no safety risk)

EEG

(goopy cap,can’t

move,no safety risk)

FMRI

(lying still,loud machine,

safety risk)

2.4 Machine Learning

An essential component of artificial intelligence, machine learning, gives

computers the ability to learn on their own and make wise decisions. It centers

on the creation of statistical models and algorithms that let computers identify

patterns in data and use those patterns to make predictions. The core idea be-

hind machine learning is its ability to mine vast datasets full of input qualities

and related output labels for useful data and insights. The choice and quality

of datasets significantly impact the performance of machine learning models.

The establishment of features triggers the start of model training. Algorithms

adjust their internal structures during this phase by minimizing a predeter-

mined objective function, typically using optimization strategies like gradient

descent. Models are then validated and put to the test on a variety of datasets
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to determine their effectiveness and make sure they can generalize to new

data. Depending on the specific job, several assessment measures are utilized,

including accuracy, precision, recall, F1-score, and others. Hyperparameter

tuning, which involves changing the parameters guiding the learning process,

improves model performance further. The final step in machine learning is

deployment, which involves the incorporation of trained models into practical

applications for automated judgment or prediction. This stage marks the end

of the machine-learning process and calls for smooth integration into software

platforms or operational settings. As a dynamically developing discipline, ma-

chine learning continually unearths new uses in a variety of fields, such as

autonomous driving, medical diagnostics, speech and picture recognition, nat-

ural language processing, and recommendation systems. It continues to be

at the cutting edge of technical advancement, improving constantly thanks to

continued research and development activities. Types of machine learning are

the following:

Supervised machine learning

Supervised machine learning, uses labeled training data to train comput-

ers to make predictions or judgments. It entails building a model that can

generalize and make accurate predictions on new, previously unknown data

by employing input attributes and associated output labels. Several fields, in-

cluding image recognition, natural language processing, and recommendation

systems, employ this technique extensively. As a result, it is a basic approach

to leveraging existing knowledge and data to address real-world difficulties.

Unsupervised machine learning

Unsupervised machine learning, a subset of artificial intelligence, is the

process by which computer systems study and extract insights from unlabeled

data without regard for established output labels. This subset of machine

learning is generally used to uncover hidden patterns, structures, or correla-

tions in datasets. Unsupervised learning techniques commonly used include

clustering, which groups data points into meaningful clusters, and dimension-

ality reduction, which lowers data complexity while maintaining crucial infor-

mation. Unsupervised learning is useful for a variety of tasks, such as customer

segmentation, anomaly detection, and feature extraction, especially when the

underlying data structure is unknown and the primary goal is to obtain a

better understanding of the data’s intrinsic properties.
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CHAPTER 3

FUNCTIONAL NEAR-INFRARED

SPECTROSCOPY (FNIRS)

The term ”fNIRS” refers to functional near-infrared spectroscopy. Our

fNIRS sensors can measure brain activity, which gives the functional compo-

nent its name. This is done by monitoring changes in total, oxy-, and de-

oxyhemoglobin in the cerebral cortex, which are caused by neuro-activation of

the internal brain. Additionally, fNIRS offers a non-invasive way to obtain a

high-resolution brain signal in real-time. figure 3.1 shows Fnirs system 1.

Figure 3.1: Portable fNIRS system

The founders of NIRx, Professors Randall L. Barbour and Ray Aron-

son, introduced the idea of tomographic imaging multi-distance spectroscopic

observations in densely dispersed media in 1988. This technique depends on

1https://nirx.net/
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diffusely scattered light. This method has now been widely adopted and played

a key role in the development of fNIRS tomography in the present day. Table

3.1 shows NIRx fNIRS Technology Service Overview 2.

Table 3.1: NIRx fNIRS Technology Service Overview

Whole-head lab-based and portable/mobile fNIRS systems

Truly wireless wearable fNIRS systems

Multi-modal compatibly EEG, fMRI, TMS, eye-tracking, MEG, etc.

Neurofeedback/BCI:
export and analyze raw, unfiltered data for real-time

subject feedback

High-quality data
even on subjects with thick dark hair, by using superior

light source technology

Versatility
multiple extensions to meet the needs of a wide variety

of labs (e.g., cap sizes to fit all ages, etc.)

Upgradability
expand your NIRx system to enhance your ongoing

research capabilities

Reliability

NIRx end-users receive lifetime technical support from

our global team of experienced fNIRS researchers and

engineers, and exclusive access to our extensive online

support center and technical webinars

(fNIRS) is a neuroimaging method that is quickly developing. Gowerlabs

systems are at the leading of this development, making it possible to study

human brain function in a non-invasive, simple-to-use, and portable manner.

Here, we outline the underlying science that underlies our technology.

A Rush of Blood to the Head

The billions of neurons that make up our brains require a constant supply

of glucose and oxygen to function, just like any other cell. The metabolic

demand of neurons rises when they are active, firing action potential signals

and communicating with one another by releasing neurotransmitter molecules.

Local blood vessels will begin to rapidly expand in response to this increased

2https://nirx.net/

29



activity to ensure that they do not get exhausted from oxygen or glucose. As a

result, locations close to activated neurons see an inflow of oxygenated blood.

Although the mechanisms underlying neurovascular coupling are complicated,

the blood flow response to an increase in neuronal activity is consistent and

well-understood. This relationship exists between neuronal activity and the

localized response of the blood vessels. As a result, localized changes in cerebral

blood flow may be measured, and this is a great proxy for measuring brain

activity.

Seeing Red

The red and near-infrared regions of the electromagnetic spectrum ex-

hibit relatively low absorption rates in human tissues, allowing near-infrared

light to penetrate several centimeters into the tissue. This phenomenon can

be easily observed in everyday life, such as when your fingers appear to emit

a reddish glow when held near a white light source. While violet, blue, green,

yellow, and orange light are absorbed by the tissues in your hand, a significant

portion of red light is transmitted through your fingers and is visible to the

eye.

Despite the lower absorption of red and near-infrared light, it’s important

to note that there are still molecules within human tissues that absorb light

at these wavelengths. Hemoglobin, the molecule responsible for transporting

oxygen in the bloodstream, serves as the primary absorber of near-infrared

light in tissue. Furthermore, the absorption spectra of oxygenated and de-

oxygenated hemoglobin in the red and near-infrared ranges differ significantly.

This discrepancy results in oxygenated blood appearing noticeably brighter

red to the naked eye compared to deoxygenated blood. The image of fingers

placed over a white light source illustrates this phenomenon, where only red

light is visible due to the absorption of other parts of the visible spectrum by

the hand’s tissues. As shown in Figure 3.2 3.

3https://nirx.net/

30



Figure 3.2: Spectrum of red light

While red and near-infrared light is generally less absorbed by human

tissues compared to other colors, it’s important to note that These tissues

still have chemicals that absorb light at these wavelengths. Hemoglobin, the

molecule responsible for oxygen transport in the bloodstream, is the primary

absorber of near-infrared light in tissue. What’s particularly significant is that

the absorption spectra of oxygenated and deoxygenated hemoglobin in the red

and near-infrared ranges differ notably. This distinction results in oxygenated

blood appearing significantly brighter red to the naked eye compared to de-

oxygenated blood.

The Gowerlabs NTS Optical Imaging System utilizes two distinct near-

infrared wavelengths of light, generally 780nm and 850nm (but 685 nm and

850nm are also often employed) to efficiently quantify changes in the concen-

tration of both types of hemoglobin. This allows for precise monitoring of

alterations in hemoglobin concentration and provides valuable insights into

brain activity and blood flow dynamics. As shown in Figure 3.3 4.

4https://nirx.net/

31



Figure 3.3: Wavelengths of HBO and HBR

A Window to the Brain

The study of the human brain benefits greatly from two essential char-

acteristics: the near-infrared light transparency of human tissues and the dis-

tinct absorption characteristics of oxygenated and deoxygenated hemoglobin.

By directing two specific wavelengths of near-infrared light into the scalp and

observing the scattered light a few centimeters below the surface, we can de-

termine the concentrations of oxygenated and deoxygenated hemoglobin in

the brain. This capacity stems from the close relationship between neural ac-

tivity and local blood flow. When there is an increase in neuronal activity,

there is a corresponding local surge in oxygenated blood volume, leading to

an increase in oxyhemoglobin and often a simultaneous decrease in deoxyhe-

moglobin. This phenomenon is known as the Hemodynamic Response Function

(HRF). The typical fNIRS hemodynamic response function (HRF) recorded by

the Gowerlabs NTS Optical Imaging System illustrates an increase in oxyhe-

moglobin concentration (HbO) accompanied by a minor decrease in deoxyhe-

moglobin concentration (HbR) as oxygenated blood flows into the active brain

region. The total hemoglobin concentration (HbT) encompasses both forms of

hemoglobin and plays a crucial role in these processes. As shown in Figure 3.4
5.

5https://nirx.net/
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Figure 3.4: Hemodynamic response

3.1 NIRS Regions of Interest

All NIRx systems allow for adjustable probe placement, allowing data to

be collected from any area of the head (the probes can also be configured to

capture data from the periphery via fNIRS). Figure 3.5 shows brain region6.

Using a NIRx fNIRS system, it is simple to measure the following areas:

6https://nirx.net/
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Figure 3.5: Brain Regions

3.1.1 fNIRS Brain Regions of Interest

1. Pre-frontal cortex

2. Dorsa-lateral pre-frontal cortex

3. Supplementary motor area

4. Premotor cortex

5. Primary Motor cortex

6. Somatosensory cortex

7. Posterior parietal cortex

8. Primary auditory cortex

9. Broca’s / Wernicke’s area

10. Primary visual cortex

Pre-frontal cortex

The prefrontal cortex (PFC) is a crucial part of the brain that is en-

gaged in many intricate processes. A non-invasive technique called functional

near-infrared spectroscopy (fNIRS) monitors variations in total, oxy-deoxy,
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and oxyhemoglobin in various brain regions, including the PFC. Multi-channel

fNIRS devices can assess pre-frontal brain activity in investigations of cogni-

tion, decision-making, or language, for example, and can cover the entire PFC.

Since fNIRS can be set up almost instantly and is very portable, patients can

move around freely. As a result, it can be effectively used in psychology, sports

and rehabilitation sciences, and many other domains when carrying out daily

tasks. The frontal lobe and cerebral cortex are included in the PFC. It is im-

portant for many executive processes, including planning complicated cognitive

actions, maintaining attention, and engaging in goal-directed behavior. Ad-

ditionally linked to personality formation include conscious decision-making,

regulating social behavior, and personality expression, the pre-frontal cortex.

Additionally, the PFC is connected to short-term memory as well as the control

of language and voice. Figure 3.6 shows pre-frontal probes. 7

Figure 3.6: Pre-frontal probes

7https://nirx.net/
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3.2 fNIRS System

fNIRS works on the principle that neural activity is accompanied by

changes in blood oxygenation levels. When neurons are active, they require

more oxygenated blood. Hemoglobin, the protein responsible for carrying oxy-

gen, absorbs light differently when it is oxygenated (oxyhemoglobin) or de-

oxygenated (deoxyhemoglobin). fNIRS devices utilize near-infrared light to

measure the differential absorption of these two forms of hemoglobin.

3.2.1 Components of an fNIRS System

Light Source

The light source in fNIRS devices is usually comprised of multiple light-

emitting diodes (LEDs) that emit near-infrared light. The choice of wave-

lengths is crucial as they determine how deeply the light can penetrate brain

tissue. Common wavelengths used are around 730 nm and 850 nm, as these

wavelengths strike a balance between penetration and sensitivity to changes

in hemoglobin concentrations.

Photodetectors

Photodetectors, typically silicon photodiodes, are responsible for detect-

ing the intensity of the light that has traversed the brain tissue. These detec-

tors convert the intensity of the light into an electrical signal, which is then

processed for analysis.

Optode

Optodes are the optical elements that facilitate the transmission and

detection of light. They come in pairs – a source optode and a detector optode

– and are placed on the scalp. The distance between these optodes determines

the measurement depth in the brain. Shorter distances provide information

from shallower regions, while longer distances reach deeper brain structures.

Light Propagation

Near-infrared light is released and penetrates through the scalp, skull,

and brain tissue. Along the way, it is absorbed, scattered, and attenuated

by various tissues. The detectors measure the light intensity that has reached

them, which carries information about the absorption characteristics of hemoglobin

in the brain.
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Channels

The number of optodes, or channels, in an fNIRS system, determines the

spatial coverage of the brain. More channels provide better spatial resolution

but may also increase the complexity of data analysis.

Signal Processing Unit

The collected raw data from the photodetectors undergoes signal pro-

cessing to extract meaningful information. This processing includes filtering

to remove noise, converting raw intensity to optical density, and using algo-

rithms to separate the contributions of oxyhemoglobin and deoxyhemoglobin.

Some systems also use algorithms to account for superficial tissue interference.

Data Analysis Software

The processed data is then analyzed to extract relevant information

about brain activity. Various analysis methods are used, such as correlation-

based methods, general linear modeling, and machine learning techniques. Re-

searchers analyze changes in hemoglobin concentrations to infer neural activa-

tion patterns.

3.2.2 Types of fNIRS Systems

Continuous-Wave (CW) Systems

CW fNIRS devices emit a continuous light signal, and changes in intensity

are measured. These systems provide relatively simple data but can suffer from

limitations due to signal contamination from the skin and other superficial

tissues.

Time-Domain (TD) Systems

TD fNIRS devices emit short pulses of light and measure the time it

takes for the light to travel through the tissue and be detected. This method

enables greater depth resolution and improved signal-to-noise ratio.

Frequency-Domain (FD) Systems

FD fNIRS devices use modulated light sources and measure the phase

shift and amplitude attenuation of the detected light. This technique offers

improved accuracy and can distinguish between shallow and deep brain struc-

tures.
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3.2.3 Applications

fNIRS has a wide range of applications, including cognitive neuroscience,

clinical studies, developmental psychology, and brain-computer interface re-

search. It’s used to study brain activation during tasks like language process-

ing, problem-solving, motor activities, and social interactions.

3.2.4 Commercial fNIRS Systems

1. Hitachi ETG-4000

2. NIRx NIRSport

3. TechEn CW6

4. Shimadzu LABNIRS

5. Artinis PortaMon

3.3 NIRsport

An accessible, segmental, and reliable functional near-infrared spectroscopy

(fNIRS) device is the NIRsport. Our most cutting-edge fNIRS platform, with

a variety of features and capabilities, is the NIRSport2 system. We designed a

system that boasts excellent signal quality, broad versatility, and modularity

as our starting point, as well as the insight into future research, needs to offer

the most ideal user experience and the highest success in science. The revised

version, NIRsport-2, puts out a number of ready-to-implement innovations

and units to satisfy the needs of numerous cognitive neuroscience applications.

The fact that both of these devices are portable and are made to function in

harsh environments is their main advantage. The creation of a wearable and

portable system is made easier by this capability. The technical specifications

of the device are listed in table 3.2 as 8:

8https://nirx.net/
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Table 3.2: Specialized Detail of NIRSport

Maximum Sources 16(can be configured to 8,and upto 64 in multi-device mode)

Maximum Detectors 16(can be configured to 8,and upto 64 in multi-device mode)

Source Wavelengths Led: 760nm and 850nm

Source illumination type Led

Sampling Rate Up to 240Hz

Detector Sense Silicon photodiode(sipd) or avalanche photodiode(apd)

Operation Mode
Usb,wifi,stand alone,direct-to-device recoding mode:no

computer,tablet, no smartphone required

Optode Type

Single tip, or specialized dual tip c optodes(faster setup

time and better contact to skin) , blunt tip(infant and

child applications, better comfort )

Key Measurement

Features

Time multiplexing, full frequency-encoded measurement

and dynamic gain state switching

Detector Dynamic Range

and Senitivity
>80 db opt measurement dynamic range

Event synchronization Wireless (Isl: lab streaming layer), cable(8 bit ttl input)

Data Format
Raw light intensity:tab delimited(may be analysed in

any environment)

Headgear
Nirscap: freely configurable, measures whole head,

fit all ages ranges,multi-modal

Power Suppy Voltage

and consumption
90 to 250 vac(50Hz-60Hz);175w max

Dimensions(wxhxl),Net Weight 162mm * 125mm * 60mm, 970g

3.3.1 NIRSport2 Advantages

Modularity and Scalability

The modularity of this system’s setup, which includes 8 sources and 8

detectors, is critical. It has excellent scalability, allowing you to expand the

system from its base configuration of 8 × 8 to handle up to 80 sources and 80
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detectors, or you can choose the intermediate option of 16 x 16.

What’s more, this system can fully synchronize up to 5 devices, increas-

ing its versatility and adaptability for a variety of applications and research

purposes. Because of its scalability and synchronization capabilities, it is an

adaptable solution for a wide range of scientific and technological undertak-

ings.Figure 3.7 shows modularity and scalability 9

Figure 3.7: Modularity and Scalability

Signal Quality

The system is outfitted with high-powered dual LEDs that can give a

maximum light of 32mW, and customers can choose next-generation APD

detectors with sensitivity as low as 33 pW. What distinguishes this system

is its exclusive automated technology, which provides ultra-fast signal tuning

for both the source and the detector, speeding the data-collecting process.

Variable tension spring holders are used to improve user experience and mea-

surement quality by enabling optimal coupling with the scalp while ensuring

comfort during data collection. The system includes a comprehensive array

of short-distance detectors, allowing for configurable data-collecting configura-

tions. Furthermore, the addition of probe-level 9-axis accelerometer(s) broad-

ens the system’s capabilities, allowing it to record motion-related data and

extend its range. As shown in Figure 3.8 10.

9https://nirx.net/
10https://nirx.net/
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Figure 3.8: Short distance channels

Versatility

The NIRSport2 is a versatile research platform designed for a wide range

of applications and modalities such as EEG, VR, TMS, and MRI. Its lightweight

and compact shape, measuring 162 mm x 125 mm x 60 mm and weighing

around 900 grams, makes it excellent for motion-related research. It has wire-

less connectivity as well as onboard storage for untethered data capture. The

system also offers integration solutions for applications using other modali-

ties, such as EEG, VR, and MRI. It has a high-density architecture with 48

sources and 48 detectors, providing for improved data collection capabilities

when coupled to several NIRSport2 devices. As shown in Figure 3.9 11.

11https://nirx.net/
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Figure 3.9: Versatility of NIRSport2

3.3.2 NIRSport2 Functionality

The NIRSport2 is a cutting-edge software platform created to promote

usability, flexibility, and natural workflow. The NIRSport2 is a versatile and

user-friendly wireless functional near-infrared spectroscopy (fNIRS) platform

designed to measure hemodynamic responses in the cerebral cortex. The NIR-

Sport2 is built to withstand the rigors of scientific research. It can provide re-

liable data collection even in challenging conditions, ensuring that the research

results are accurate and consistent. This platform is known for its modularity

and robustness, making it suitable for various cognitive neuroscience applica-

tions.

One of the key features of the NIRSport2 is its ability to monitor changes

in oxyhemoglobin, deoxyhemoglobin, and total hemoglobin, providing valuable

insights into neuroactivation and brain function. Researchers and scientists can

use this platform to investigate how the brain responds to various cognitive

tasks, stimuli, or experimental conditions.

Moreover, the NIRSport2 offers a range of readily available upgrades

and modules that can be easily integrated into the system. These upgrades

allow researchers to customize the platform to meet specific research needs

and explore a wide array of cognitive neuroscience applications. Whether

you’re studying language processing, memory, attention, or other cognitive

processes, the NIRSport2’s flexibility makes it a valuable tool for advancing

our understanding of the human brain.

42



CHAPTER 4

METHODOLOGY

This chapter details the methodologies of experiment conduction, data

pre-processing, and processing. In experiment conduction, the demographic

information of participants, the experiment paradigm, and the signal acquisi-

tion methods are presented. The data pre-processing includes methods used

to filter data, channel selection, and calculation of change in light reduction at

a given wavelength. The processing method, however, highlights which data

classification techniques are selected and details the theoretical background of

classification chosen methods. The flowchart given in Figure 4.1 clearly indi-

cates this whole process from data acquisition to the classification of data for

three emotions i.e. Sad, Neutral, and Anger.

Figure 4.1: Flowchart of Methodology

43



4.1 Experimental Paradigm

Before the experimental trials begin, the user will be given an explana-

tion of the operation of the NIRSport Core System, in particular, the safety

measures put in place to allow termination of the equipment operation should

an emergency arise. A brief demonstration of the experiment will be given.

The age, gender, and demographic characteristics of the participants will also

be collected. After the briefing and collection of information, the process of

experimentation will start. In the experiment, the participant will be required

to wear a headset in order to record the brain responses (signals) using a non-

invasive fNIRS head cap (sensors) to study the possibility of classifying brain

signals due to various physiological and mental exercises. In order to record

offline training fNIRS data, the subject will be required to sit in a quiet and

dimly lit room selected for this purpose. The subject will be trained using the

NIRSport software, in which one will have to think that he/she is watching

video and getting emotional Several trials of this practice will be carried out

for training purposes.

The three emotions were drawn out in the experimental environment,

we used targeted film clips as the stimuli. We collected highly emotional

target film clips. There are ten participants (3 females, 7 males) and three

emotional film clips (anger, sad, neutral). After each trial, the subject will

be asked to relax for 45 seconds. There will be five number of trials for each

subject. Participants were asked to watch clips that contain emotions and

evoke the corresponding emotions. The article ratings were based on this how

they actually felt when they saw the clips, no how they thought music videos

should look. Second when participants did not evoke the right emotions or

when the arousal emotions were not strong enough were rejected. After each

trial, the subject will be asked to relax for 45 seconds. There will be five

number of trials for each subject

After watching each film clip, participants reported their emotional states

on arousal and valence. Arousal refers to the intensity or activation level of an

emotional experience. It represents how stimulating or calming an emotional

state is. On a numerical scale, arousal is often represented as ranging from

(0 to 1). Valence refers to the pleasantness or unpleasantness of an emotional

experience. It represents the emotional state’s positive or negative quality.

On a numerical scale, valence is often represented as ranging from (-1 to 1).

Classify these three emotions based on these dimensions. Sadness is typically

characterized by a negative valence (unpleasant feeling) and low arousal (a

sense of calm or deactivation). A neutral emotion falls in the middle of the

valence scale, indicating neither positive nor negative feelings. It also has low
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arousal. Anger is characterized by a negative valence (unpleasant feeling) and

high arousal (intense activation).

Neutral, sadness, and anger, emotion keywords are used in this dataset.

The experimental trial was carried out in the Bio-Mechatronics research labo-

ratory at the Air University. These research studies were conducted in accor-

dance with the most recent Helsinki Declaration’s ethical guidelines[65], and

the Air University local ethics committee gave its approval. The experimen-

tal paradigm for acquiring brain signals from the fNIRS head cap is given in

Figure 4.2

Figure 4.2: Experimental Model for Signal Acquisition

4.2 fNIRS Signal Acquisition

NIRx Technologies’ created fNIRS headset responds to the 3 cm source-

detector separations that are considered to be the industry standard [66][67].

The optodes are calibrated once the subject puts on the cap. Provides an
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analysis of the calibration’s outcome. Figure 4.4 depicts the problematic setup.

Optodes can be seen by the boxes. The color bar shows whether or not the

optodes are in touch with the scalp, which determines the colors. The color

white represents a separation between the scalp and the optodes. The red

color suggested that the connection between the scalp and the optode needed

to be changed because it was crucial. Sometimes hair gets in the way and

simply reconnecting the optode to the cap allows for a better connection. If

the problem is not resolved by this time, a clinical gel is used to fix the hair.

The firm includes the gel in the packaging with the machine and has certified

that it is healthful and safe to use with optodes. The yellow color denotes

an acceptable connection. Acquiring the signals is possible. In this case,

the machine calibrates its own operating conditions. Where the connection is

satisfactory, the machine increases the gain factor for the optodes, and it is

saved in a conditions file that is later utilized for signal processing. The green

hue indicates that the optodes have been correctly placed on the surface of the

head and that a great connection has been made for data collecting. This can

be analyzed in Figure 4.3.

Figure 4.3: Visual representation of Perfect optode settings
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Figure 4.4: Visual representation of problematic setup settings

After the optodes are installed, the signal collection starts. The subjects

had to carry out particular tasks that fNIRS concurrently indicated. The

participants were sitting in regular chairs around 100 cm from the emotion

signals that were visible to them, but the illumination of the screen didn’t

interfere with the optical sensors. [23]. The setting for the signal extraction

was created. A 20-channel fNIRS system was used to record the fNIRS signals

at a sampling rate of 7.6 Hz. Oxyhemoglobin (HbO) and deoxyhemoglobin

(HbR) concentration changes were monitored using near-infrared light with

two distinct wavelengths (760 and 850 nm). Fifteen probes (8 sources and 7

detectors) were positioned to cover the frontal cortex (probe spacing 30 mm)

for a total of 20 channels.

4.3 fNIRS Signal Processing

The raw light intensity values are obtained from changes in blood oxy-

genation in the brain. These values are acquired using dual-tip optodes at

two different wavelengths, 760nm and 850nm. These 760nm wavelength and

850nm wavelength are sensitive to changes in HBR and HBO hemoglobin con-

centrations in the blood. The acquired data is processed in the nirsLAB en-

vironment, which is specialized software for working with fNIRS data. Data

segments with unwanted information, such as the initial 0-5 seconds, periods

after 35 seconds, and any other unexpected spikes or discontinuities, are re-
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moved. This is likely done to eliminate noise or artifacts from the data. Any

sudden jumps or abrupt changes in the data, known as discontinuities, are fur-

ther removed to ensure a smoother dataset. Smooth the data with a bandpass

filter before analyzing the hemodynamic states. To elicit the most emotional

responses, signals corresponding to the last 30 seconds of each film clip were

collected. (following the procedure[68] ) These hemodynamic states are now

being used.

Figure 4.5: wavelength as wl 1 from 760nm and wl 2 from 850nm

Figure 4.6: The raw signals of all channels

Figure 4.5 shows the raw fNIRS signals obtained from both wavelengths
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(760nm,850nm). Figure 4.9 likely illustrates a comparison between the filtered

and raw data at both wavelengths, demonstrating the effect of the band-pass

filtering process in terms of noise reduction and signal enhancement. NirsLAB

uses the firls and filtfilt MATLAB commands for filtering. Firls computes

the parameters of a linear-phase filter, and Filtfilt applies these filter param-

eters to the data. Finite Impulse Response (FIR) filters are utilized for this

purpose. The roll-off parameter defines the width of the transition frequency

band, indicating how quickly the filter transitions between attenuating (cut-

ting) frequencies and allowing (passing) frequencies within the specified range.

A higher roll-off value results in a steeper and narrower transition band, while

a lower value produces a gentler and wider transition. The width of the tran-

sition band is calculated as 4.1 and 4.2 for each of the upper and lower limits

of frequency.

Upperlimit = 1 + (Roll − off)/2 (4.1)

Lowerlimit = 1− (Roll − off)/2 (4.2)

Figure 4.7: The signals at both wavelengths have been filtered using a band-

pass filter with a frequency range of 0.01Hz to 0.2Hz, and the default roll-off

value of 15 has been applied
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Figure 4.8: The Filter signals of all channels

Figure 4.9: Campare Between Original and Filtered Signal

The data that are now free from unwanted noise and artifacts are used

to determine changes in blood flow by applying something called the modified

Beer-Lambert Law[69][70][71]. This law helps us understand how light is ab-

sorbed and scattered in the brain, which gives insights into changes in blood

oxygen levels.
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These changes in blood flow are shown in real-time using the NIRStar®
system, and they’re also calculated later on in nirsLAB. The modified Beer-

Lambert Law involves certain parameters like absorption coefficients and the

distance between the measurement points.

In NirsLAB, we can adjust these parameters as needed, but in NIRStar®,

they’re fixed and calculated on the spot. Specifically, the values used for

real-time calculations are as follows: for 760nm, the absorption coefficients

are 3.843707 for deoxygenated blood and 1.4865865 for oxygenated blood; for

850nm, the values are 1.798643 for deoxygenated blood and 2.526391 for oxy-

genated blood. The distance between measurement points is typically set to

3.0cm. The unit for absorption coefficient is (1/cm)/(mmol/L), which repre-

sents the amount of light absorbed per unit distance and concentration. It is

defined as Mathematically(4.3)

△A(λ) = ϵ(λ).△c.d.DPF (λ) + g(λ) (4.3)

The variables can be defined as: A: Light reduction, or

△A(λ) : changesinlightreductionatagivenwavelength(λ) (4.4)

ϵ(λ) : lossofthechromophoreatacertainwavelength(λ) (4.5)

△c : Changesobservedinthechromophoreabsorption (4.6)

DPF (λ) : differentialpathlengthfactorforacertainwavelength(λ) (4.7)

g(λ) : scatteringofthelightwaveatacertainwavelength(λ) (4.8)

The separation between the light’s source and detector (referred to as

”d”) is considered significant, while the factor ”g” is disregarded in situations

where only light attenuation is being studied, as is the case in continuous-wave

NIRS) [72][73][74][75]

A dimensionless correction factor called the differential path length fac-

tor (DPF) accounts for the lengthened journey length brought on by light

scattering in biological tissue. When multiplied by the separation between the

source and detector, the DPF provides the actual path length that light travels

within the tissue cell. [76][23][77][78]

In NIRx technologies, a fixed DPF value (7.25 for 760nm and 6.38 for

850nm) compensates for tissue scattering. Figure 4.10 in nirsLAB displays

hemodynamic states, with the color bar representing oxygenation concentra-

tion, and optodes are denoted by red and yellow dots labeled according to the

international system.[79]

51



Figure 4.10: The illustration represents rest. “Cool Region”

Figure 4.11: shows hemodynamic changes hence the “hot” values emotion.
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4.4 Channel Selection

In our study, channel selection played a critical role in our analysis. Fig-

ure 4.12 displays changes in oxygenated hemoglobin (HbO) across all 20 chan-

nels during brain activity monitoring. However, not all optodes accurately

captured the true concentration changes. This underscores the necessity of

carefully choosing channels that are sensitive to the brain activity of interest.

To enhance the quality of our data, we employed signal averaging. Notably,

during emotional states, certain channels exhibited significant activity, while

others did not. In particular, channels 14, 15, and 17 showed minimal activ-

ity and were subsequently excluded from our classification process. Channel

selection, therefore, played a pivotal role in identifying the most informative

channels for classification in our study.

Figure 4.12: Optode-wise hemodynamic states visualization

4.5 Classification Process

After selecting data from various channels, features are extracted from

the chosen data samples. These features are then used as input features for

the classifier. The three emotions were divided into categories using classifiers.

To comprehensively evaluate the performance of data, the classifiers were im-

plemented, namely, Long Short-Term Memory (brain waves LSTM),k-nearest

neighbors(KNN), decision trees, random forest, support vector machine(SVM),

and Navies Bayes (NB). The training size is 0.8 and the test size is 0.2 of the

model to obtain the accuracy.
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4.5.1 Long Short-Term Memory (LSTM)

It’s really good at understanding and working with data that comes in

sequences, like time-series data or sentences in a paragraph With their ability

to effectively capture temporal dependencies and patterns over extended se-

quences, LSTMs have become a cornerstone in fields such as natural language

processing, speech recognition, and time series

Figure 4.13: LSTM Architecture

Architecture and Mechanism

At the heart of LSTM networks lies a sophisticated architecture designed

to overcome the limitations of traditional recurrent neural networks (RNNs).

The primary innovation of LSTMs is the integration of specialized memory cells

and gating mechanisms. These mechanisms include the input gate, forget gate,

and output gate, collectively orchestrating the flow of information within the

network. The memory cell serves as a reservoir of information that selectively

retains and updates crucial context over time, enabling LSTMs to capture and

remember long-term dependencies in sequential data.
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Gating Mechanisms

The gating mechanisms embedded in LSTMs are the key to their re-

markable ability to model sequences effectively. The input gate determines

which portions of the current input should be incorporated into the memory

cell, thus influencing the new information that enters the memory. The forget

gate, on the other hand, decides what information should be discarded from

the memory cell, enabling the network to selectively retain relevant context

while discarding noise. The output gate, the final component, regulates the

flow of information from the memory cell to produce the network’s prediction,

which is based on the memory’s stored context.

Forget Gate

At the start of an LSTM neural network cell’s operation, the key decision

is to determine whether to retain or forget the information from the preceding

time step. This choice is carried out through a component termed the forget

gate. The forget gate’s equation

ft = (Xt ∗ Uf +Ht− 1 ∗Wf) (4.9)

Let’s try to understand the equation, here Xt: The current timestamp is

used as input. Uf: weight linked to the input Ht-1: The previously hidden state

of the timestamp Wf: It’s the weight matrix connected to the hidden state. A

sigmoid function is then applied to it. This will result in (ft) being a number

between 0 and 1. This (ft) is then multiplied by the previous timestamp’s cell

state, as seen below.

Ct− 1 ∗ Ft = 0...ifF t = 0(forgeteverything) (4.10)

Ct− 1 ∗ Ft = Ct− 1...ifF t = 1(forgetnothing) (4.11)

Input Gate

The input gate is used to rate the significance of fresh data brought in

by the input. The equation for the input gate

it = (Xi ∗ Uf +Ht− 1 ∗Wi) (4.12)

Here,

Xt: The current timestamp is used as input Ui: weight linked to the

input Ht-1: The previously hidden state of the timestamp Wi: It’s the weight

matrix connected to the hidden state. Once more, we’ve utilized the sigmoid
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function on it. This means that the value of I at time step t will fall within

the range of 0 and 1.

New Information

Nt = tanh(Xt ∗ Uf +Ht− 1 ∗Wf) (4.13)

The updated information that is meant to be incorporated into the cell

state is determined by a function involving the previous hidden state at time

step t1 and the input x at the current time step t. Tanh is the activation func-

tion in this case. The value of the new information will fall within the range of

-1 to 1 as a result of the application of the hyperbolic tangent (tanh) function.

If (Nt) has a negative value, the information is subtracted from the cell state;

When the new information possesses a positive value, it is integrated into the

cell state during the ongoing time step. Nonetheless, the new information Nt

will not be directly added to the cell state. the updated equation:

Ct = Ft ∗ Ct− 1 + it ∗Nt (4.14)

Output Gate

The output gate’s equation is similar to the two gates.

Ot = (Xt ∗ Uo+Ht− 1 ∗Wo) (4.15)

Just like before, the sigmoid function ensures that its value falls between

0 and 1. Using the output Ot and the ”tanh” function applied to the updated

cell state Ct, we can figure out the current hidden state.

Ht = Ot ∗ tanh(Ct) (4.16)

In other words, the concealed state is affected by both Ct and Ot. You

can use the SoftMax function on the concealed form to find the final output

at the current time step.

Output = Softmax(Ht) (4.17)

The prediction is the output.
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Learning Long-Term Dependencies

One of the most compelling aspects of LSTMs is their proficiency in

learning and representing long-range dependencies within sequences. This is

achieved through the strategic interaction of the memory cell and the gating

mechanisms. By selectively incorporating, retaining, and discarding informa-

tion, LSTMs can capture relationships between elements that are separated by

significant temporal gaps. This stands in stark contrast to traditional RNNs,

which often struggle with the vanishing gradient problem, preventing them

from effectively modeling distant dependencies.

Applications Across Domains

LSTMs have propelled advancements in various domains reliant on se-

quential data analysis. In natural language processing, LSTMs excel at mod-

eling complex linguistic structures and nuances. This proficiency enables them

to perform tasks such as language modeling, sentiment analysis, and machine

translation, where context over extended sequences is critical. In speech recog-

nition, LSTMs are invaluable due to their capacity to handle variable-length

input sequences and capture intricate phonetic patterns. Additionally, their

prowess in time series forecasting has led to improved predictions in fields like

finance, weather prediction, and industrial processes.

Challenges and Considerations

While LSTMs offer remarkable capabilities, they are not without chal-

lenges. Extremely long sequences can still pose difficulties, and even LSTMs

may encounter difficulties in capturing dependencies that span very large time

gaps. Additionally, training LSTMs on extended sequences can be compu-

tationally intensive, necessitating optimizations to balance accuracy and effi-

ciency. Furthermore, the intricate nature of LSTMs can make it challenging to

interpret their internal workings, raising concerns about model explainability

in specific applications.

Advancements and Variants

Over time, researchers have extended the LSTM framework and intro-

duced variants to address specific challenges. Gated Recurrent Units (GRUs)

offer a simplified gating mechanism, achieving a balance between memory re-

tention and computational efficiency. Attention mechanisms have also been

integrated with LSTMs to enable the network to focus on specific parts of the
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input sequence, enhancing performance in tasks that require selective atten-

tion.

At its core, the network begins with an input layer meticulously crafted

to align with the number of features found in the input data, ensuring seamless

integration of information. To prepare the data for processing within LSTM

layers, a crucial step involves using dimension. This expansion is a common

requirement when working with LSTM layers, especially in the context of se-

quence data. The heart of the network lies in its LSTM layer, equipped with

an impressive battalion of 256 units. This LSTM layer is specially config-

ured to return sequences of data. The primary objective here is to harness the

power of LSTM’s memory cells to capture intricate sequential patterns embed-

ded within the input data. In transitioning from the LSTM layer to the final

output, a flattened layer is employed, serving the essential purpose of convert-

ing the LSTM layer’s output into a streamlined, one-dimensional array. This

transformation paves the way for seamless processing in subsequent layers. At

the network’s culmination, the output layer takes center stage, featuring 3 dis-

tinct units equipped with a softmax activation function. This configuration is

well-suited for tasks involving multiple classes, as softmax serves as a reliable

tool for multi-class classification.

Moving into the operational phase, the model undergoes a rigorous com-

pilation process, whereby it is armed with categorical cross-entropy loss as its

guiding metric for optimization. The Adam optimizer, a stalwart in the field

of gradient descent, is enlisted to orchestrate the fine-tuning of weights. In the

quest for precision, the model’s performance is scrutinized using accuracy as

the chosen evaluation metric. With the stage set, the model embarks on its

training journey, leveraging the training dataset over a span of 10 epochs.80%

of the data was trained while 20% of it was assigned to test and validate A crit-

ical aspect of this phase involves the validation split, which reserves 10% of the

data to monitor the model’s progress and forestall overfitting. Through this

iterative process, the model’s weights are dynamically adjusted, converging

towards minimizing the categorical cross-entropy loss. Finally, as the culmina-

tion of its training odyssey, the model is put to the test. It faces the crucible

of the test data, subjecting itself to rigorous evaluation. The outcome of this

evaluation manifests in two key dimensions: the measurement of loss and the

assessment of accuracy. Together, these metrics offer valuable insights into

the model’s performance, encapsulating its prowess in classifying brain signals

within the given classification task.

A comprehensive machine learning workflow is demonstrated, illustrating

the key steps involved in training and evaluating multiple classifiers using
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sci-kit-learn.In support Vector Machine (SVM) Classifier, The data is split

into training and testing sets using the train-test-split function. An SVM

classifier with a radial basis function (RBF) kernel is initialized for one-vs-one

classification. The SVM classifier is trained on the training data using fit.

Predictions are made on the test data, and the results are stored in y-pred. In

Decision Tree Classifier, The data is split into training and testing sets again.

A Decision Tree classifier is created. The classifier is trained on the training

data. Predictions are made on the test data and stored in y-pred. In the k-

Nearest Neighbors (k-NN) Classifier, Once more, the data is split into training

and testing sets. A k-NN classifier with 3 neighbors is created. The classifier is

trained on the training data. Predictions are made on the test data and stored

in y-pred. In the Random Forest Classifier, The data is split into training and

testing sets, but this time the test size is 30%. A Random Forest classifier

with 50 estimators is created. The classifier is trained on the training data.

Predictions are made on the test data and stored in y-pred. In Naive Bayes

Classifier (Gaussian Naive Bayes), Finally, the data is split into training and

testing sets one more time. A Gaussian Naive Bayes classifier is created. The

classifier is trained on the training data. Predictions are made on the test data

and stored in y-pred.
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CHAPTER 5

RESULTS & ANALYSIS

5.1 Performance Evaluation

To thoroughly evaluate the performance of the categorization model, we

have used a range of indicators. These measurements include mean Average

Precision (mAP), recall, and precision across various classification accuracy

levels. In the section that follows, each measure is explained in further detail.

5.1.1 Precision

We used the precision metric to assess how accurate our forecasts were.

Precision measures the proportion of correctly predicted positive instances to

all positively anticipated instances. This indicator, for instance, responds to

questions like what percentage of instances of each illness class are accurately

diagnosed, and vice versa. Precision is more broadly defined as the similarity

of several measurements. It represents a unique measure that is unaffected by

accuracy results. The correlation between true positives (TP) and the total

of true positives and false positives (FP) is what determines it. Technically

speaking, TP and FP values are used to calculate precision.

Precision = TP/TP + FP (5.1)

5.1.2 Recall

To measure the probability of the correct disease classification and the

true positive rate. The recall is the ratio of properly predicted positive data

to all data in an actual class. We used the recall metric to measure the exact

multi-class classification.

Recall = TP/TP + FN (5.2)
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5.1.3 F1 Score

The F1 score is a widely used metric for evaluating performance of a

classification model, especially in situations where the dataset is imbalanced.

It considers both precision and recall simultaneously to provide a balanced

measure of a model’s accuracy. In multiclass classification, the F1 score can

be calculated for each class, and then a suitable aggregation method (e.g.,

micro, macro, weighted) is applied to obtain an overall F1 score for the entire

classification task. The formula for calculating the F1 score for a single class

in multiclass classification is given by:

F1 = 2(precision ∗ recall/precision+ recall) (5.3)

5.2 Comprehensive Analysis

In this section, we explore a comprehensive analysis of the performance

of diverse machine learning models within the domain of emotion classifica-

tion, exploiting brain wave data as the underlying data set. The data set has

three distinctive emotional states: ”Neutral,” ”Sad,” and ”Anger.” We evalu-

ated each model’s performance utilizing an array of critical metrics, including

precision, recall, F1-score, accuracy, and loss. Here’s an in-depth summary of

the findings for each model.

In the realm of emotion classification, our investigation into several mod-

els has yielded intriguing insights. The LSTM (Long Short-Term Memory)

model stands as a formidable contender, boasting an astonishing accuracy of

99%. Notably, it excels in precision, recall, and F1-score for all three emotional

classes. For neutrality, it achieves perfection, with precision, recall, and F1-

score all reaching 1.00. Furthermore, it exhibits a remarkable ability to discern

sadness, achieving a precision of 0.98, a recall of 0.99, and an F1-score of 0.99.

Similarly, for anger, it maintains high precision (0.99) and recall (0.98), result-

ing in an F1-score of 0.99. This robust performance underscores the LSTM

model’s proficiency in accurately identifying a wide range of emotional states.

The model surfaces as an exceptional performer, exhibiting a formidable train-

ing accuracy of 99% Moreover, during the validation phase, the LSTM model

displays an impressive accuracy of 98%Its ability to generalize effectively to

unseen data is underscored by the strong validation accuracy, emphasizing its

robustness in capturing emotional patterns within brain wave data.
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Figure 5.1: Confusion matrix of LSTM

Figure 5.2: Model Loss and Accuracy of LSTM

On the other hand, the Support Vector Machine (SVM) model achieved

a respectable accuracy of 88%. While it showed strong precision and recall

for ”neutral” emotions, it faced challenges in accurately identifying ”Anger”

as shown in Table 5.1
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Figure 5.3: Confusion matrix of SVM

The Decision Tree and Random Forest models also deliver commendable

outcomes, boasting an accuracy of 98%. They share a common trait of consis-

tently high precision, recall, and F1-scores across the neutral, sad, and anger

classes, demonstrating their reliability in emotion classification. As shown in

Table 5.1

Figure 5.4: Confusion matrix of Decision Tree
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Figure 5.5: Confusion matrix of Random Forest

Similarly, the K-Nearest Neighbors (KNN) model also achieved an accu-

racy of 98% and demonstrated consistently high performance across all classes.

As shown in Table 5.1

Figure 5.6: Confusion matrix of K-NN

Conversely, the Naive Bayes (NB) model presented the lowest accuracy

at 76% and displayed difficulties in both precision and recall, particularly for
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the ”Anger” class. It exhibited lower precision, recall, and F1-scores compared

to other models. As shown in Table 5.1

Figure 5.7: Confusion matrix of Navies Bayes

Neutral Emotion: In identifying neutral emotions, all six models achieved

commendable results, reflecting their capacity to recognize this emotional state

accurately. The LSTM model excelled with a precision, recall, and F1-score of

1.00, signifying perfect classification. The Decision Tree and Random Forest

models followed closely, achieving high precision, recall, and F1-scores. Sim-

ilarly, K-Nearest Neighbors (KNN) demonstrated remarkable precision and

recall for neutral emotions. Naive Bayes showcased its proficiency with a pre-

cision of 0.94, and SVM displayed perfect precision. These findings indicate

that all models, to varying degrees, excel in identifying neutral emotions.

Sad Emotion: In the realm of sadness, the LSTM model emerged as a

standout performer, achieving a precision of 0.98, recall of 0.99, and an F1-

score of 0.99, demonstrating its excellence in capturing this emotional state.

The Decision Tree, Random Forest, and KNN models also delivered reliable

results, with strong precision, recall, and F1-scores. Conversely, Naive Bayes

showed limitations in recognizing sadness, with a precision and recall of 0.62

65



and 0.90, respectively, resulting in a lower F1-score of 0.73. SVM, while achiev-

ing a recall of 0.93, displayed a lower precision, leading to an F1-score of 0.85,

indicating room for improvement.

Anger Emotion: For anger, the LSTM model again demonstrated its

prowess, achieving a precision of 0.99 and a recall of 0.98, resulting in an F1-

score of 0.99. Both the Decision Tree and Random Forest models displayed

consistent high precision, recall, and F1-scores for anger. KNN also performed

well, with strong precision and recall. In contrast, Naive Bayes showed limita-

tions in capturing anger, with a precision and recall of 0.81 and 0.41, respec-

tively, resulting in an F1-score of 0.54. SVM exhibited a similar pattern, with

a lower recall and F1-score for anger.

Table 5.1: Evaluation of Classifier for Emotions

Emotions Neutral Sad Anger

Classifier precision recall f1-score precision recall f1-score precision recall f1-score

LSTM 1.00 1.00 1.00 0.98 0.99 0.99 0.99 0.98 0.99

RF 0.99 0.99 0.99 0.97 0.97 0.97 0.97 0.97 0.97

DT 0.99 0.99 0.99 0.97 0.98 0.97 0.97 0.98 0.97

KNN 0.99 0.99 0.99 0.98 0.99 0.99 0.98 0.97 0.98

SVM 1.00 0.96 0.98 0.77 0.93 0.85 0.90 0.75 0.81

NB 0.94 0.98 0.96 0.62 0.90 0.73 0.81 0.41 0.54

A comparative analysis underscores the LSTM model’s exceptional per-

formance, while Random Forest, Decision Tree, and KNN models also demon-

strated strong capabilities in emotion classification. SVM and NB, though

achieving moderate accuracy, showed variability in precision and recall across

emotion classes. These findings provide valuable insights for model selection,

aligning the choice with specific application requirements and trade-offs. Fu-

ture work may benefit from statistical significance tests to discern the signifi-

cance of performance differences among these models.
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Table 5.2: Model Accuracies

Models Accuracy

LSTM 99%

Decision Tree 98%

K-NN 98%

Random Forest 98%

SVM 88%

Naive Bayes 76%

These results not only advance our understanding of machine learning

algorithms for emotion classification but also carry implications for real-world

applications. The subsequent section delves deeper into these findings, dis-

cussing their relevance to the research objectives and practical utility in diverse

domains.
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CHAPTER 6

CONCLUSION & FUTURE WORK

This study represents a significant advancement in the field of emotion

classification and harnessing the potential of fNIRS (functional near-infrared

spectroscopy) brain wave data. The research investigation has yielded valu-

able insights and noteworthy findings that hold implications for both practical

applications and neuroscientific understanding.

6.1 Conclusions

(i)

The practical implications of this work are profound. The integration of

fNIRS technology, known for its non-invasive and real-time monitoring capa-

bilities, offers a new dimension to emotion recognition. This has far-reaching

implications, from the healthcare sector where it can aid in the diagnosis and

treatment of emotional disorders, to human-computer interaction scenarios

where it can enhance user experiences based on emotional states. The real-

time and portable nature of fNIRS technology opens doors to applications that

were previously challenging to implement.

(ii)

One of the central findings of this study lies in the performance of various

machine learning models. Notably, the LSTMmodels demonstrated perfect ac-

curacy rates. The Random Forest, KNN, decision tree achieved an exceptional

score, and the LSTM, with its strong training and validation accuracy, show-

cased the power of machine learning when coupled with fNIRS data. These

models have the potential to serve as formidable tools in decoding the complex

landscape of human emotions.

(iii)

Beyond practical applications, this study contributes to neuroscientific

understanding. The interpretability of machine learning models provides a

glimpse into the neural signatures associated with various emotional states.

68



This intersection of machine learning and neuroscience holds promise for un-

raveling the intricate neural processes underpinning human emotions. It paves

the way for a deeper understanding of how the brain processes emotions, which

has implications not only for affective computing but also for psychology and

neuroscience research. However, it is paramount to underscore the ethical

considerations inherent in the use of brain wave data. Ensuring privacy, ob-

taining informed consent, and implementing robust data security measures

must remain integral to the development and deployment of fNIRS technol-

ogy. Upholding these ethical standards is imperative to sustain public trust

and safeguard participant rights.

(iv)

In summary, this thesis not only advances the capacity to recognize and

understand human emotions but also exemplifies the potential of interdisci-

plinary collaboration. By uniting machine learning, neuroscience, and ethical

principles, we are well-positioned to continue unraveling the intricate tapestry

of human emotions, guided by the powerful lens of fNIRS technology.

6.2 Future Work

Looking ahead, future research may explore real-time emotion recogni-

tion in clinical contexts, where fNIRS technology can bridge the gap between

neurological insights and therapeutic interventions. Additionally, the fusion of

fNIRS data with other physiological and behavioral data sources presents ex-

citing prospects for a more comprehensive understanding of emotional states.
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Figure 6.3: Participant Consent Form

80
































