

FINAL YEAR PROJECT REPORT

COVID-19 DETECTION USING X-RAY

IMAGES

In fulfillment of the requirement For degree of BS (COMPUTER SCIENCES)

By

NIMRAH HAFEEZ AQDAS ZUBAIR MIFRAH KHAN 54093 BSCS 54106 BSCS 54109 BSCS

SUPERVISED

BY

TALHA ALAM

BAHRIA UNIVERSITY (KARACHI CAMPUS)

FALL-2022

DECLARATION

We hereby declare that this project report is based on our original work except for citations and quotations which have been duly acknowledged. We also declare that it has not been previously and concurrently submitted for any other degree or award at Bahria University or other institutions.

Signature	:	- Normal
Name	:	Nimrah Hafeez
Reg No.	:	54093
Signature	:	
Name	:	Aqdas Zubaiz
Reg No.	:	54106
Signature	:	Mifrol.
Name	:	Mifrah Khan
Reg No.	:	54109
Date	:	<u>2 - feb - 2022</u>

The copyright of this report belongs to Bahria University according to the Intellectual Property Policy of Bahria University BUORIC-P15 amended on April 2019. Due acknowledgement shall always be made of the use of any material contained in, or derived from, this report.

4

© Bahria University. All right reserved.

ACKNOWLEDGEMENTS

4

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express my gratitude to my research supervisor, Sir Talha Alam for his invaluable advice, guidance and his enormous patience throughout the development of the research.

In addition. We would also like to express my gratitude to our loving parent and friends who had helped and given me encouragement.

COVID-19 DETECTION USING X-RAY IMAGES

ABSTRACT

Corona virus which was originally emerged in China in the end of 2020, extend quickly over the entire world. It has affected the lifestyle, health and the world economy. This is challenging to examine the true patients as soon to stop dispersion of this outbreak to rapidly cure the infected patients. Hence there is an immense requirements for automatic identification tools because there is no machine-driven toolkits accessible and the manual RT-PCR test is time consuming and inconvenient. Current studies have conveyed that the use of radiology image methods suggest that these images consist of important data about COVID-19 virus. AI techniques in combination with diagnosis radiological could be useful for observation of this virus. It is also efficient to control the problem of a lack of specialized physicians in rural areas. In our proposed model, we have experimented the performance of three pretrained Convolutional Neural Network (CNN) models such as Mobile-Net, VGG-16, and ResNet50 to differentiate the infected patients from pneumonia, normal cases by using X-ray images for early diagnosis of COVID-19 infection. We have observed the supremacy of ResNet50 with accuracy and sensitivity of 95.44%. In contrary Mobile-net achieved the accuracy of 95.13% with less computational power to train our dataset as compared to Resnet50 and VGG16. This study is helpful for the researchers to develop a successful neural network for quick detection.

Keys: Convolutional Neural Network; Covid-19; radiological imaging; Deep Learning; pneumonia

TABLE OF CONTENTS

BALS AND MONTPLOCHOCY

2
3
5
6
7
10
11
12
13

CHAPTER

2

.

1	INTE	INTRODUCTION		
	1.1	Background and Gene Structure	14	
	1.2	Problem Statements	15	
	1.3	Aims and Objectives	15	
	1.3	Scope of the Project	16	

LITERATURE REVIEW		
2.1	Existing Research on COVID-19 Using X-ray	17-18
2.2	Comparison with state-of-the-art methods	18-25
2.3	Summary	25

MATE	RIALS	AND METHODOLOGY	26
3.1	Covid-	19 rapid Artificial Intelligence	26
	detecti	on	
3.2	Machin	ne learning	27
3.3	Deep 1	Neural network-based screening model	27-30
	for cov	vid-19	
3.4	Dataset		30-33
3.5	Proposed Methodology		33-34
	3.5.1	Preprocessing of data	34
	3.5.2	Use of Pre-trained Models for COVID-19	35
Detection		on	
	3.5.3	The VGG-16 Model	36-38
	3.5.4	TheResNet50 Model	38-41
	3.5.5	The MobileNet Model	41-44
	3.5.6 .	Training	44

4 IMPLEMENTATION

4.1	Experimental setup		46
	4.1.1	Software requirements	46
	4.1.2	Hardware requirements	46
4.2	Impleme	entation using Tkinter	47

5 RESULTS AND DISCUSSIONS

5.1	Train phase	53-55
5.2	Complete perfomance evaluation	53-58

6	CONCLU	59	
	6.1	Overview	59
	. 6.2	Conclusion	59-60
	6.3	Future prospects	60

REFERENCES

APPENDICES

9

61

•