

FINAL YEAR PROJECT REPORT

CURRENCY DETECTION APP FOR BLIND PERSONS

In fulfillment of the requirement For degree of BS (COMPUTER SCIENCES)

By

RAMSHA MANZOOR HAMNA KHALID INTISAM LIAQUAT 54097 BSCS 54182 BSCS 54089 BSCS

SUPERVISED

BY

MISS. AZEEMA SADIA

BAHRIA UNIVERSITY (KARACHI CAMPUS) FALL-2022

DECLARATION

We hereby declare that this project report is based on our original work except for citations and quotations which have been duly acknowledged. We also declare that it has not been previously and concurrently submitted for any other degree or award at Bahria University or other institutions.

Signature	:	AND -
Name	:	Ramsha Manzoor
Reg No.	:	54097
Signature	:	de
Name	:	Hamna Khalid
Reg No.	:	54182
Signature	:	lot
Name	:	Intisam Liaquat
Reg No.	:	54089
Date	:	01-02-22

The copyright of this report belongs to the author under the terms of the copyright Ordinance 1962 as qualified by Intellectual Property Policy of Bahria University. Due acknowledgement shall always be made of the use of any material contained in, or derived from, this report.

© 2020, Ramsha Manzoor, Hamna Khalid, Intisam Liaquat All right reserved.

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express my gratitude to my research supervisor, Ma'am Azeema Sadia for his/her invaluable advice, guidance, and his/her enormous patience throughout the development of the research.

In addition, we would also like to express my gratitude to our loving parent and friends who had helped and given me encouragement.

CURRENCY DETECTION APP FOR BLIND PERSONS

ABSTRACT

Recognizing monetary notes is simple for a normal person, but it is not so for a visually impaired individual. A visually impaired person is someone who has either a partial or complete loss of vision. They face numerous challenges in their daily lives, including monetary interactions. Due to the similarity in paper texture and size of different types of currency notes, they have difficulties distinguishing between them. Institutions like as banks can afford expensive technology to address the issue of currency recognition, but the general public, particularly the visually challenged, cannot. The goal of this project is to assist such individuals and provide a cost-effective solution. This project proposes the creation of a money detection software that will aid in the identification of Pakistani currency notes. Based on Convolutional Neural Networks, we proposed a system for blind or visually impaired people to detect Pakistani cash (CNN). Seven different Pakistani paper currency notes (Rs.10, 20, 50, 100, 500, 1000, and 5000) are used for training and testing in the proposed system. This system, which will be implemented using image processing techniques and will be deployed as an Android application, will aid in the identification of money notes.

TABLE OF CONTENTS

DECLARATION	ii
APPROVAL FOR SUBMISSION	111
ACKNOWLEDGEMENTS	vi
ABSTRACT	vii
TABLE OF CONTENTS	viii
LIST OF FIGURES	xi
LIST OF SYMBOLS / ABBREVIATIONS	xii

CHAPTER

1

INTRODUCTION			1
1.1	Backgro	ound	I
1.2	Problem	n Statements	2
	1.2.1	Data Set Acquisition	2
	1.2.2	Existing System Approach	4
	1.2.3	Proposed System Approach	4
1.3	Aims an	d Objectives	5
1.4	Scope o	f Project	6

3

LITERATURE REVIEW

2.1	Related Work		8
	2.1.1	Computer Vision	10
	2.1.2	KNN Algorithm	10
	2.1.3	SIFT Algorithm	. 11
	2.1.4	Radial Basis Function Network	11
	2.1.5	Matching Template	11
	2.1.6	Image Processing	11
	2.1.7	LBP Algorithm	12
DE	SIGN A	ND METHODOLOGY	13

3.1	Methodology			13
3.2	Data co	Data collection		
3.3	Method			14
	3.3.1	CNN Features		14
	3.3.2	Proposed framework		14
	3.3.3	Alex-net architecture		15
3.4	Detectio	Detection through android application		
	3.4.1	Pre-Processing		16
	3.4.2	Edge Detection		16
	3.4.3	Feature Extraction		17
3.5	System	System Flowchart		17
3.6	Algorithm			18
3.7	Train the model			19

8

4	IMP	LEMENTATIONS	20
	4.1	Environment setup	20
	4.2	Architecture	21
	4.3	Model Training	22
5	RES	ULTS AND DISCUSSIONS	25
	5.1	Testing	25
	5.2	Pre-Test	26
	5.3	Tasks	27
	5.4	Post Test	27
	5.5	Important Findings of Testing	27
		5.5.1 Text Recognition	27
		5.5.2 Camera and images	27
		5.5.3 Bank notes	28
		5.5.4 General findings	28
	5.6	Testing Summary	28
6	CON	CLUSIONS AND RECOMMENDATIONS	30
	6.1	Experiment Procedure	30
	6.2	Visual results	30
	6.3	Future work	31
	6.4	Conclusions	31
REFER	ENCES		32

34

Х