

FINAL YEAR PROJECT REPORT

EVALUATION OF HANDWRITTEN DIGITS

USING CNN

In fulfillment of the requirement

For degree of

BS (COMPUTER SCIENCES)

By

HASEEB KHAN
NAMRA ALAM
SHAHERYAR KAMAL

54173 BSCS54139 BSCS54167 BSCS

SUPERVISED

BY

MISS SAMEENA JAVED

BAHRIA UNIVERSITY (KARACHI CAMPUS)

FALL-2022

DECLARATION

We hereby declare that this project report is based on our original work except for citations and quotations which have been duly acknowledged. We also declare that it has not been previously and concurrently submitted for any other degree or award at Bahria University or other institutions.

Signature :

Name : Shaheryar Kamal

Reg No. : 54167

Signature : William

Name : Haseeb khan

Reg No. : 54173

Signature : _____

Name : Namra Alam

Reg No. : 54139

Date : 01/02/22

The copyright of this report belongs to Bahria University according to the Intellectual Property Policy of Bahria University BUORIC-P15 amended on April 2019. Due acknowledgement shall always be made of the use of any material contained in, or derived from, this report.

© 2022 Bahria University. All right reserved.

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express our gratitude to our research supervisor, Ms **Sameena Javaid** for her invaluable advice, guidance and her enormous patience throughout the development of the research.

In addition, we would also like to express my gratitude to our loving parent and friends who had helped and given me encouragement.

EVALUATION OF HANDWRITTEN DIGITS USING CNN

ABSTRACT

The objective of this project is to develop Machine learning algorithm to evaluate handwritten digits of students. This report examines various procedures utilized for the acknowledgment of handwritten digits. Various stages including collection of information, picture handling like the pre-processing stage which includes trimming of images and resizing them and afterward amplification of images and feature extraction will be examined and talked about. At last, the finished result of the calculations will be written in the tool called Jupyter Notebook

This venture utilizes the Deep Learning model to foster the product. The fundamental benefit of utilizing this is a procedure is that it gives image classification and identification that is reasonable for digit recognition. Convolution neural network (CNN) is examined and utilized in light of the fact that it turns out better for data that are addressed as grid structures.

The framework first returns with the assortment of information and pre-interaction of the gathered pictures with expansion and smoothing. Division, resizing and includes extraction are likewise acted simultaneously. Then, the feed forward process through the organization is summoned to yield a result grid. In view of the result network, the perceived person not set in stone. This framework is intended to modify the organization for a singular client. Suggestions for future turn of events and ends are additionally remembered for the report.

ii

TABLE OF CONTENTS

DECLARATION

APPROVAL	FOR SUBMISSION	iii
ACKNOWL	EDGEMENTS	vi
ABSTRACT		vii
TABLE OF	CONTENTS	viii
LIST OF FIG	GURES	xii
LIST OF SY	MBOLS / ABBREVIATIONS	xiii
LIST OF AP	PENDICES	xiv
•		
CHAPTER		
1	INTRODUCTION	1
_	1.1 Background	1
	1.2 Problem Statements	1
	1.3 Aims and Objectives	2
	1.4 Scope of Project	2
2	LITERATURE REVIEW	4
	2.0 Previous Work	4
	2.1 Handwritten Digit Recognition with single layer No.	eural
	Network	5
	2.2 A Neural Network Approach for Cursive Handwi	ritten
	character Recognition using Binarization	5
	2.3 Handwritten Character Recognition using CNN-ECOC	6
	2.4 Automated Grading for Handwritten Answer Sheets u	using
	CNN	6

	2.5	A Comparative study on Handwritten Digit Recognition	ı using
	Neural	Network	6
	2.6	Advancements in Image Classification using Convoluti	onal
	Neural	Network	7
3	DESIG	GN AND METHODOLOGY	9
	3.1	Work Flow of the Project	9
	3.2	Project Methodology	10
4	IMPL	MENTATION	14
	4.1	Overview of the Project	14
	4.2	Custom Dataset	14
	4.3	CNN Model	15
	4.4	Merging MNIST Dataset	15
		4.4.1 Model Accuracy with Custom Dataset	16
		4.4.2 Model Accuracy after Merging MNIST Dataset	17
	4.5	User Interface	17
	4.6	Tinkter	18
5		LTS AND DISCUSSIONS nal Result	
			19
	5.1.1 C	onfusion Matrix and errors evaluation	19
	5.2 Gr	aph	20
	5.2.1 ROC	C Curves	21
		5.2.2 Precision and Recall	
		5.2.3 Training and validation graphs	
	5.3	Computational time	
	5.4	Real time Prediction on Digits	
	5	5.4.1 Prediction from pictures	24
	5.5	Failure Results	25
	5.6	Discussion	26